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Abstract We present an algorithm to decompose a polynomial system into a finite set of normal

ascending sets such that the set of the zeros of the polynomial system is the union of the sets of the

regular zeros of the normal ascending sets. If the polynomial system is zero dimensional, the set of the

zeros of the polynomials is the union of the sets of the zeros of the normal ascending sets.
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1 Introduction

The characteristic set method was introduced by Ritt[1] and Wu[2]. This method has been used

for mechanical geometric theorem proving by Wu. It can also be used for solving a system

of polynomial equations. In order to solve a system of polynomial equations, the polynomial

system should be decomposed into a triangular form. An algorithm to decompose a polynomial

system into ascending sets was proposed in [2]. Many improvements for this algorithm have been

proposed by Chou[3], Chou and Gao[4,5], and Wang[6]. Wu’s algorithm may produce redundant

decompositions of varieties and the components may be empty. One can discover the possible

emptiness of a component, which is defined by an ascending set by computing the projection[7].

Wu also gave an algorithm to decompose a variety into irreducible components, with each

irreducible component being not empty, and factorization over the algebraic extension field

needed for the irreducible decomposition of the variety. An algorithm to factor polynomials

over an algebraic extension field was proposed by Trager[8], and factorization has also been

investigated by Wang[6] and Yuan[9]. Generally, polynomial factorization over an algebraic

extension field is costly. To avoid the emptiness of the varieties and the factorization, Yang and

Zhang[10] introduced regular chains and gave an algorithm to compute the regular decomposition

of a polynomial system. Kalbrener[11] also presented an algorithm to decompose a system of

polynomials into a series of regular chains such that the variety defined by the system of

polynomials is the union of the regular zeros of the regular chains. Lazard[12] introduced a

normalized triangular set and gave a method to decompose a polynomial system into a series
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of normalized triangular sets uniquely. Maza and others[13,14] gave an efficient algorithm for

solving zero-dimensional systems following Lazard’s method. Szanto[15] also investigated the

representation of algebraic sets by regular chains. Kandri and others[16,17] introduced the

concept of invertibility for a polynomial with respect to an ascending set and gave an algorithm

to decompose a polynomial system into a finite set of regular chains. In his algorithm, it is

required to compute the Gröbner basis for lexical order and the cost of computation is expensive.

In this paper, we will present an algorithm, which is different from the above algorithms, to

decompose a polynomial system into a series of normal ascending sets which are particular

regular chains. As a part of the algorithm, this algorithm can also be used to decompose a

polynomial system into a series of regular chains.

After giving some preliminaries in Sec. 2, some properties of regular chains will be investi-

gated in Sec. 3. We will give the main algorithm and prove the correctness and termination

of the algorithm in Sec. 4. An example will be given to illustrate the algorithm in Sec. 5.

Conclusions will be given in the final section.

2 Preliminaries

Let K be a field of characteristic zero, K[x1, . . . , xn] be the polynomial ring with x1, . . . , xn as

indeterminates and the coefficients in K. Let E be an algebraically closed extension field of K.

For a polynomial set F , Zero(F) denotes the common zeros in En of the polynomials in F . Let

J be a polynomial, Zero(F/J) be the common zeros in En of the polynomials in F which are

not zeros of J . Given a variable ordering, for any nonzero polynomial P , the leading variable

of P is denoted by lv(P ), and the leading coefficient of P w.r.t. lv(P ) is called the initial of

P , denoted by init(P ). The degree of P w.r.t. lv(P ) is called the leading degree denoted by

ldeg(P ). We define the reductum of P as red(P ) = P − init(P )lv(P )ldeg(P ). For a polynomial

P and a varaible x, the degree of P w.r.t. x will be denoted by deg(P, x), and the leading

coefficient of P w.r.t. x will be denoted by lc(P, x). The psudoremainder of P divided by Q

w.r.t. x will be denoted by Prem(P, Q, x). The Sylvester resultant of two polynomials P and

Q w.r.t. x will be denoted by Res(P, Q, x).

Definition 2.1. Let P be a polynomial, A : A1, . . . , As be an ascending set. Let Rs = P ,

Ri−1 = Prem(Ri, Ai, lv(Ai)) for i = s, . . . , 1. R = R0 is called the remainder of P w.r.t. A,

denoted by Prem(P,A). There are polynomials Qi such that

JP =

s
∑

i=1

QiAi + R, (1)

where J = Ik1

1 · · · I
ks

s , each ki is a nonnegative integer and Ii is the initial of Ai for i = 1, . . . , s.

Definition 2.2. Let P be a polynomial, A : A1, . . . , As be an ascending set. Let Rs = P ,

Ri−1 = Res(Ri, Ai, lv(Ai)) for i = s, . . . , 1. R0 is called the resultant of P w.r.t. A, denoted by

Res(P,A). There are polynomials F , Gi for i = 1, . . . , s such that

FP +
s

∑

i=1

GiAi = Res(P,A). (2)

Definition 2.3. Suppose A is an ascending set, let J be the product of the initials of the

polynomials in A, if ξ ∈ Zero(A/J), then ξ is called a regular zero of A.
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Definition 2.4. Let A : A1, . . . , As be an ascending set, xi1 , . . . , xis
be the leading variables

of A1, . . . , As and xis+1
, . . . , xin

be the other variables where xi1 , . . . , xin
is a permutation of

x1, . . . , xn. A zero (ξ1, . . . , ξn) of A is said to be regular generic if ξis+1
, . . . , ξin

are algebraically

independent over K.

In [6], a regular generic zero is called a regular zero. Here, to avoid confusion over the regular

zero defined previously, we use the term regular generic zero. For an ascending set A, the set

of regular zeros or zeros of A may be empty. To avoid this case, Yang and Zhang introduced

the concept of a regular ascending set or regular chain in [10].

Definition 2.5. Let A : A1, . . . , As be an ascending set. Let Ai = A1, . . . , Ai for i = 1, . . . s.

A is a regular chain if s=1 or Res(init(Ai),Ai−1) 6= 0 for i = 2, . . . , s.

From the above definitions, we know that the set of regular zeros of a regular chain is not

empty and an irreducible ascending set is a regular chain.

Now we will give the definition of a normal ascending set.

Definition 2.6. An ascending set A : A1, . . . , As is called a normal ascending set if s=1 or

deg(init(Ai), lv(Aj)) = 0 for 1 6 i < j 6 s.

A normal ascending set is called a p-chain by Gao and Chou in [7]. Some properties for

normal ascending sets have been discussed by Wang in [6].

From the above definition, we know that a normal ascending set is a regular chain.

Definition 2.7. Let A : A1, . . . , As be an ascending set. The ideal generated by A is denoted

by (A). Let J be the product of the initials of the polynomials in A, the saturation ideal of A,

denoted by [A], is defined as [A] = {P |JkP ∈ (A) for some integer k > 0}.

For the resultant of polynomials, in [18] Loos showed that

Lemma 2.8. Let A, B and Q be polynomials and a0 is the leading coefficient of A w.r.t. xi,

deg(B, xi) = m, deg(AQ + B, xi) = l. Then

Res(A, AQ + B, xi) = al−m
0 Res(A, B, xi),

Res(A, BQ, xi) = Res(A, B, xi)Res(A, Q, xi).

Lemma 2.9. Let P1, P2 be two nonzero polynomials and have positive degrees in xi. Suppose

d1 = deg(P1, xi) > d2 = deg(P1, xi) > 0. Let P3 = Prem(P1, P2, xi), then

Res(P1, P2, xi)|Res(P1, P3, xi).

Proof. Let d3 = deg(P3, xi). Since P3 is the pseudo-remainder of P1 divided by P2, then we

have a polynomial Q such that Id1−d2+1
2 P1 = QP2 + P3. By lemma 2.8, we have

Res(P1, I
d1−d2+1
2 P1 − P3, xi) = Res(P1,−P3, xi) = (−1)d1Res(P1, P3, xi),

and
Res(P1, QP2, xi) = Res(P1, Q, xi)Res(P1, P2, xi),

then
(−1)d1Res(P1, P3, xi) = Res(P1, Q, xi)Res(P1, P2, xi).

The lemma is proved.

From [19], we have
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Lemma 2.10. Let P, Q be two polynomials and have positive degree in xi. Then

(1) There exist two polynomials A and B such that AP + BQ = Res(P, Q, xi).

(2) Res(P, Q, xi) = 0 if and only if P and Q have a common factor which has positive degree

in xi.

3 Properties of regular chains

Lemma 3.1. For any regular chain A and polynomial P , then

Res(P,A) 6= 0⇔ P (ξ) 6= 0 for any regular generic zero ξ ofA.

See [6] for the proof.

Corollary 3.2. Let A be a regular chain, P ∈ [A], then for any regular generic zero ξ of A,

P (ξ) = 0.

Proof. Suppose A : A1, . . . , As and P ∈ [A], then there are polynomials Qi such that

JkP =

s
∑

i=1

QiAi, (3)

where k is a nonnegative integer and J = I1 · · · Is, Ii is the initial of Ai. Let ξ be a regular

generic zero of A, then Ai(ξ) = 0 for i = 1, . . . , s. By (3), Jk(ξ)P (ξ) = 0. Res(Ii,A) 6= 0

because A is a regular ascending set. By Lemma 2.8 and Lemma 3.1, we have J(ξ) 6= 0 and

P (ξ) = 0.

From [14], we have the following lemma.

Lemma 3.3. Let A ⊂ K[x1, . . . , xn] be a regular chain, then {P ∈ K[x1, . . . , xn]|Prem(P,A)

= 0} is the saturation ideal of A.

Lemma 3.4. Let P be a polynomial, A be a regular chain. Let R = Prem(P,A), then

Res(P,A) = 0 if and only if Res(R,A) = 0.

Proof. It is easy to prove by Lemma 3.1.

Lemma 3.5. Let A = A1, . . . , As be a regular chain. Let P , Q be two polynomials and

Res(Q,A) 6= 0. Then Prem(P,A) = 0 if and only if Prem(QP,A) = 0.

Proof. (⇒) Since P ∈ [A], we have QP ∈ [A]. Then Prem(QP,A) = 0 by Lemma 3.3.

(⇐) Let R = Prem(P,A), we have JP =
∑s

i=1 QiAi + R, where J = Ik1

1 · · · I
ks

s , each ki is a

nonnegative integer and Ii is the initial of Ai.

From Prem(QP,A) = 0, we have J ′QP =
∑s

i=1 Q′
iAi, where J ′ = I

k′

1

1 · · · I
k′

s

s , each k′
i is a

nonnegative integer and Ii is the initial of Ai. It is easy to check J ′QR ∈ (A). Let R′ =

Res(Q,A) 6= 0, we know there exist polynomials H and Fi for i = 1, . . . , s such that HQ +
∑s

i=1 FiAi = R′, J ′HQR ∈ (A), i.e. J ′(R′ −
∑s

i=1 FiAi)R ∈ (A), then J ′R′R ∈ (A). By

Lemma 3.3, the remainder of RR′ w.r.t. A is 0. Since RR′ is already reduced to A, then R = 0.

The lemma is proved.

Lemma 3.6. Suppose P is a polynomial which has positive degree in xi, A : A1, . . . , As

to be a regular chain and deg(Aj , xi) = 0 for j = 1, . . . , s. If Res(lc(P, xi),A) 6= 0, then

Prem(P,A) 6= 0.

Proof. Suppose P = a0x
l
i +a1x

l−1
i + · · ·+al, deg(P, xi) = l, lc(P, xi) = a0. If Prem(P,A) = 0,

then a0 ∈ [A], then Res(a0,A)=0 by Lemma 3.1. This contradiction shows that Prem(P,A) 6=0.
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Lemma 3.7. Let P1, P2 be two nonzero polynomials which have positive degrees in xi, A be

a regular chain and A doesn’t involve xi. R = Prem(P2,A). If Prem(Res(P1, P2, xi),A) = 0

and Res(lc(P1, xi),A) 6= 0 then Prem(Res(P1, R, xi),A) = 0.

Proof. Suppose A = A1, . . . , As,

P1 = a0x
l
i + a1x

l−1
i + · · ·+ al, lc(P1, xi) = a0, P2 = b0x

m
i + b1x

m−1
i + · · ·+ bm.

Let R = c0x
m
i + c1x

m−1
i + · · ·+ cm. Since R = Prem(P2,A), there exist polynomials Qi and J

such that JP2 =
∑s

i−1 QiAi + R. ci can be written as ci = Jbi − di, di ∈ (A).

Res(P1 , P2, xi)

=

�������������������������������
a0 b0

a1 a0 b1 b0

a1

. . . b1
. . .

...
. . . a0

...
. . . b0

... a1

... b1

al bm

al

... bm

...

. . .
...

al bm

�������������������������������
= 1

Jl

�������������������������������
a0 Jb0

a1 a0 Jb1 Jb0

a1

. . . Jb1
. . .

...
. . . a0

...
. . . Jb0

... a1

... Jb1

al Jbm

al

... Jbm

...

. . .
...

al Jbm

�������������������������������
= 1

Jl

�������������������������������
a0 c0 + d0

a1 a0 c1 + d1 c0 + d0

a1

. . . c1 + d1

. . .

...
. . . a0

...
. . . c0 + d0

..

. a1

..

. c1 + d1

al cm + dm

al

... cm + dm

...

. . .
...

al cm + dm

�������������������������������
Expanding the determinant by row, if deg(R, xi) = k, we know

Res(P1, P2, xi) =
1

J l
am−k
0 Res(P1, R, xi) + d,

where d ∈ (A), i.e. J lRes(P1, P2, xi) = am−k
0 Res(P1, R, xi) + J ld. Since Res(a0,A) 6= 0, by

Lemma 3.3 and Lemma 3.5, we have Prem(Res(P1, R, xi),A) = 0.

4 Normal decomposition of a polynomial system

Lemma 4.1. Let A = A1, . . . , As be an ascending set, and As−1 = A1, . . . , As−1 be a normal

ascending set, Is be the initial of As. If Res(Is,As−1) 6= 0, then we can find a normal ascending

set A′ such that

Zero(A′/J ′) ⊂ Zero(A/J) ⊂ Zero(A) ⊂ Zero(A′), (4)

where J , J ′ are the product of the initials of polynomials in A, A′ respectively.
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Proof. Let R = Res(Is,As−1), there exist polynomials F ,Hi, i = 1, . . . , s such that

FIs +

s−1
∑

i=1

GiAi = R. (5)

Set y = lv(As), d = deg(As, y). Let

A′
s = F As +

( s−1
∑

i=1

GiAi

)

yd = F (Isy
d + red(As)) +

( s−1
∑

i=1

GiAi

)

yd = Ryd + F red(As). (6)

The initial of A′
s is R = Res(Is,As−1), A′

s and As have the same leading variable. Let

A′′
s = Prem(A′

s,As−1), from (1), we know that

In1

1 · · · I
ns−1

s−1 A′
s =

s−1
∑

i=1

PiAi + A′′
s , (7)

where Ii is the initial of Ai and ni is a nonnegative integer for i = 1, . . . , s − 1. The lead-

ing variable of A′′
s is the same as the leading variable of As. The initial of A′′

s is I ′′s =

In1

1 · · · I
ns−1

s−1 Res(Is,As−1). Now let A′ = A1, . . . , As−1, A
′′
s , we will prove that A′ satisfies

the following relations:

Zero(A′/J ′) ⊂ Zero(A/J) ⊂ Zero(A) ⊂ Zero(A′),

where J , J ′ are the product of the initials of polynomials in A, A′ respectively.

(1) It is obvious Zero(A/J) ⊂ Zero(A).

(2) We will prove Zero(A) ⊂ Zero(A′).

For any ξ in Zero(A), then Ai(ξ) = 0 for i = 1, . . . , s, and from (6), it is easy to see that

A′
s(ξ) = 0. From (7) we also know that A′′

s (ξ) = 0. This shows that Zero(A) ⊂ Zero(A′).

(3) We will prove Zero(A′/J ′) ⊂ Zero(A/J). J ′, J are the product of the initials of polyno-

mials in A′,A respectively.

For any ξ in Zero(A′/J ′), i.e. Ai(ξ) = 0, i = 1, . . . , s − 1: A′′
s (ξ) = 0 and Ii(ξ) 6= 0 for

i = 1, . . . , s − 1, I ′′s (ξ) 6= 0. Since I ′′s = In1

1 · · · I
ns−1

s−1 Res(Is,As−1), then Res(Is,As−1)(ξ) 6= 0.

From (5), we know that Is(ξ) 6= 0 and F (ξ) 6= 0. From (6) and (7), As(ξ) = 0. This means

ξ ∈ Zero(A/J) so that we have Zero(A′/J ′) ⊂ Zero(A/J).

Definition 4.2. For an ascending set A = A1, . . . , As, let A′
1 = A1, A

′
1 is a normal ascending

set. If for i = 2, . . . , s, Res(Ii,A
′
i−1) 6= 0, from the above Lemma 4.1, we can get a normal

ascending set A′
i. Let A′ = A′

s, A
′ is called the normalization of A.

From Lemma 4.1, we have

Corollary 4.3. If A is a regular chain, let A′ be the normalization of A, then

Zero(A′/J ′) ⊂ Zero(A/J) ⊂ Zero(A) ⊂ Zero(A′),

where J , J ′ are the product of the initials of polynomials in A, A′ respectively.

Theorem 4.4. Suppose A is a regular chain, J is the product of the initials in A and P is

a polynomial reduced to A. If Res(P,A) = 0, then we can find two nonzero polynomials F and

G which are reduced to A such that Zero(A/J) = Zero({A, F}/J) ∪ Zero({A, G}/J)
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Proof. Let A = A1, . . . , As, we will use induction on s, the number of polynomials in A.

For s = 1, A = A1. P is reduced to A1. From Res(P,A) = 0, Res(P, A1, lv(A1)) = 0. Hence

P has positive degree in lv(A1), from Lemma 2.10, P and A1 have a common factor F , since

P is reduced to A1, then the degree of F w.r.t the variable lv(A1) is less than ldeg(A1), and

A1 has at least two factors F and G such that A1 = FG and F , G are reduced to A1.

Zero(A/J) = Zero(A, F/J) ∪ Zero(A, G/J).

This proves the case s=1.

Now assume that the theorem is true for s < k, we will prove the theorem is also true

when s = k. In this case, A = A1, . . . , Ak−1, Ak. Let A′ = A1, . . . , Ak−1. Let y = lv(Ak), if

deg(P, y) = 0, the theorem is true by induction.

In the following, we will discuss the case that P has positive degree in y. Let R = Res(P, Ak).

There are three cases: (1) R = 0. (2) Prem(R,A′) = 0. (3) Prem(R,A′) 6= 0. For case (1) and

(3), the theorem is true by induction.

Now we will consider the case Prem(R,A′) = 0. Let P1 = Ak, P2 = P , I1 = lc(P1, y),

I2 = lc(P2, y);

Let Ri = Prem(P1, Pi−1, y), Pi = Prem(Ri,A
′), Ii = lc(Pi, y), i = 3, 4, . . .. deg(P1, y) >

deg(P2, y) > deg(P3, y) > · · · .

By Lemma 2.9, we have Prem(Res(P1, Ri, y),A′) = 0. Since A is a regular chain, Res(I1,A
′)

6= 0, by Lemma 3.7, we have

Prem(Res(P1, Pi, y),A′) = 0. (8)

Let j be the smallest i such that Pi = 0 or Pi 6= 0, deg(Pi, y) = 0.

Ij−1P1 = Qj−1Pj−1 + Rj . (9)

Let F = Pj−1 6= 0, G = Prem(Qj−1,A
′). F and G are reduced to A′, so they are reduced to

A. If Res(Ij−1,A
′) = 0, the theorem is true by induction.

Now assuming Res(Ij−1,A
′) 6= 0, we will prove G 6= 0 for the cases (i) Pi = 0 (ii) Pi 6= 0,

deg(Pi, y) = 0.

(i) Pj = 0, i.e. Prem(Rj ,A
′) = 0. By the assumption, Res(Ij−1,A

′) 6= 0, by Lemma 3.3 and

Lemma 3.6, from (9) we know that G 6= 0.

(ii) Pj 6= 0 and deg(Pj , y) = 0. If G = 0, then Prem(Qj−1,A
′) = 0. From (8), by Lemma 3.3,

for a positive integer m, we have Prem(Rm
j ,A′) = 0. i.e. Prem((Ij−1P1−Qj−1Pj−1)

m,A′) = 0.

By Lemma 3.3, Prem((Ij−1P1)
m,A′) = 0. Since Res(Ij−1,A

′) 6= 0 and Res(I1,A
′) 6= 0, then

Res(lc((Ij−1P1)
m),A′) = Res((Ij−1I1)

m,A′) 6= 0. By Lemma 3.6, Prem((Ij−1P1)
m,A′) 6= 0.

This contradiction shows that G 6= 0.

For both (i) and (ii), it is easy to check Zero(A/J) = Zero({A, F}/J)∪Zero({A, G}/J). The

theorem is proved.

Based on the above theorem, we have the following algorithm.
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Algorithm: Dec

Input : P is a nonzero polynomial

A = A1, . . . , As is a normal ascending set.

P is reduced to A and Res(P,A) = 0

Output: F, G are nonzero polynomials and reduced to A such that

Zero(A/J) = Zero({A, F}/J) ∪ Zero({A, G}/J).

if s = 1 then F ← the greatest common divisor of P and A1; G← A1/F

return {F, G}

y ← lv(As)

A′ ← A1, . . . , As−1

if deg(P, y) = 0 then return Dec(P,A′)

P1 ← As

P2 ← P

repeat

P3 ← Prem(P1, P2, y)

if deg(P3, y) = 0 or Prem(P3,A
′) = 0 then

F ← P2

Q← the psudo-quotient of P1 divided by F

G← Prem(Q,A′)

return {F, G}

end

P2 ← Prem(P3,A
′)

I ← lc(P2, y)
until Res(I,A′) = 0 ;

return Dec(I,A′)

Theorem 4.5. For a polynomial system F , there is an algorithm which permits the computa-

tion of a series of normal ascending sets Ai in finite steps such that Zero(F) =
⋃

i Zero(Ai/Ji),

where Ji is the product of the initials of the polynomials in Ai.

Proof. Now we will prove the correctness of algorithm ND.

Let A be the characteristic set of F , A = A1, . . . , As, then Zero(A/J) ⊂ Zero(F) ⊂ Zero(A)

where J is the product of the initials of the polynomials in A.

First, for s = 1, the proof is obvious. Second, there is a positive integer i such that

Res(Ii,A
′) = 0, from theorem 4.4, there are nonzero polynomials F, G such that Zero(A′/J ′) =

Zero({A′, F}/J ′) ∪ Zero({A′, G}/J ′). Since Zero(F) ⊂ Zero(A) ⊂ Zero(A′),

Zero(F) = Zero({F ,A′}/J ′) ∪ Zero({F ,A′, J ′})

= Zero({F ,A′, F}/J ′) ∪ Zero({F ,A′, G}/J ′) ∪
i−1
⋃

j=1

Zero({F ,A′, I ′i})

where I ′i is the initial of A′
i in A′. Third, A′ is the normalization of A, from Corollary 4.3,

we know that Zero(A′/J ′) ⊂ Zero(A/J), then Zero(F) = Zero(A′/J ′) ∪
⋃s

j=1 Zero({F ,A′, I ′i})

where I ′i is the initial of A′
i in A′.

In the following, we will prove the termination of algorithm ND.

Each I ′i , which is the initial of A′
i, is reduced to A′, and nonzero polynomials F, G are also
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reduced to A′. This shows that the algorithm will terminate.

Algorithm: ND

Input : F is a polynomial set

Output: Ai is a series of normal ascending sets such that

Zero(F) =
⋃

i Zero(Ai/Ji)

Ji is the product of the initials of the polynomials in Ai

A ← the characteristic set of F # Suppose A = A1, . . . , As;

A′ ← A1

i← 2

if s = 1 then

I1 ← init(A1)

return A′ ∪ND({F ,A, I1})

end

while i < s do

if Res(Ii,A
′) = 0 then

{F, G} ← Dec(Ii,A
′)

for j=1 to i-1 do Ij ← init(A′
j)

return (
⋃i−1

j=1 ND({F ,A,A′, Ii})) ∪ND({F ,A,A′, F}) ∪ND({F ,A,A′, G})

else

A′ ← A′, Ai

A′ ← the normalization of A′ # For regular decomposition, omit this line.

end

end

# Suppose A′ = A′
1, . . . , A

′
s;

for j=1 to s do Ij ← init(A′
j)

return A′ ∪
⋃s

j=1 ND({F ,A,A′, Ij}

This algorithm can also be used to decompose a polynomial system into a finite set of regular

ascending sets.

5 Example

Example 5.1. Compute the normal decomposition of the polynomial system F = {x2 + x +

1, y2 + y + 1, (xy + x + 1)z2 + z − 1}.

We will give the normal decomposition for the variable ordering x < y < z. Let A =

A1, A2, A3. A1 = x2 + x + 1, A2 = y2 + y + 1, A3 = (xy + x + 1)z2 + z − 1. It is already an

ascending set, and is itself the characteristic set. A′ = A1, A2 is a normal ascending set. The

initial of A3 is I3 = xy + x + 1. Res(I3,A
′) = Res(Res(I3, A2, y), A1, x) = Res(x2 + x + 1, x2 +

x + 1, x) = 0. In fact, Prem(Res(I3, A2, y), A1) = 0. Let P1 = A2, P2 = I3, A
′′ = A1. Let

P3 = Prem(P1, P2, y) = x2 + x + 1. We have Prem(P3,A
′′) = 0

x2(y2 + y + 1) = (xy − 1)I3 + r, r = x2 + x + 1.

Let F = I3 = xy + x + 1, G = xy − 1. We have

Zero(A′) = Zero(A′, F ) ∪ Zero(A′, G), Zero(F) = Zero(A) = Zero(A, F ) ∪ Zero(A, G).
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The characteristic set of {A, F} is A1 = x2 + x + 1, x + 1 + y,−3z2 + (x − 1)z − x + 1. The

characteristic set of {A, G} is A2 = x2 + x + 1, y− x, z − 1. Since the initials of A1 and A2 are

integers, we have Zero(F) = Zero(A1)∪ Zero(A2) where A1 and A2 are normal ascending sets.

6 Conclusions

In this paper, we present an algorithm to decompose a polynomial system into a series of normal

ascending sets such that the zeros of the polynomial system are the union of the regular zeros of

the normal ascending set. In fact, this algorithm can also be used to decompose the polynomial

system into a series of regular chains. If the system is zero dimensional, then the zeros of the

polynomial system are the union of the zeros of the normal ascending sets where the initials

are constants.
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