
An Algorithm for Transforming Regular Chain

into Normal Chain�

Banghe Li and Dingkang Wang

Key Laboratory of Mathematics Mechanization
Academy of Mathematics and Systems Science

Chinese Academy of Sciences
Beijing 100080, China

libh@amss.ac.cn, dwang@mmrc.iss.ac.cn

Abstract. We present an improved algorithm to compute the normal
chain from a given regular chain such that their saturation ideals are the
same. Our algorithm is based on solving a system of linear equations and
the original method computes the resultants of multivariate polynomials.
From the experiments, for the random polynomials, our algorithm is
much more efficient than the original one.

1 Introduction

Characteristic set method has been successfully applied to automatic theorem
proving by Wu [11]. In fact, this method also can be used for solving systems
of polynomial equations. In order to solve a system of polynomial equations,
the polynomial system should be decomposed into chains. Wu himself proposed
an algorithm to compute such decompositions. The regular zeros of the chain
in the decomposition maybe empty and some redundant components may be
introduced by using Wu’s method. Yang introduced regular chain and the regular
zeros of a regular chain should not be empty [12]. Both Yang and Kalbrener
presented algorithms to decompose a system of polynomials into a series of
regular chains such that the zeros of the system of polynomials are the union
of the regular zeros of the regular chains. Efficient algorithms to decompose a
system of polynomials into regular chains have been proposed by Moreno [6] and
Wang [10].

In [3], Gao introduced the concept of p-chain in order to solve systems of
equations of parametric polynomials. To avoid the confusion, we will rename the
p-chain as normal chain in this paper. To compute the normal chain from a given
regular chain, the resultants of multivariate polynomials will be computed and
the computation of resultants will be too costly. In [9], normal chain is introduced
and an algorithm is proposed to compute a normal chain from a chain if it does
not fail. An algorithm to decompose polynomial system into normal chains is
given in [8].

� Partially supported by NKBRPC (2004CB318000) and NSFC (10771206).

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 236–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Algorithm for Transforming Regular Chain into Normal Chain 237

In all the existed algorithms to compute the normal chain from a regular chain,
the computation of polynomial resultant is needed and resultant computation of
polynomials is quite cost.

In this paper, we will present a new algorithm to compute the normal chain
from a regular chain. Our algorithm is based on solving system of linear equa-
tions. It is not needed to compute the resultants of multivariate polynomials in
our algorithm and the experiment results show that our algorithm is much more
efficient than the original one.

After giving some preliminaries in section 2, we will give an algorithm to
compute the inverse of a uni-variable polynomial modulo another uni-variable
polynomial. A table to record the timings for computing the inverses of random
polynomials is given in section 3. An algorithm will be given to compute a normal
chain from a regular chain such that they have the same saturation ideal in section
4. An example to decompose the Lorentz polynomial system into normal chains
will be reported in section 5. The conclusions will be given in the last section.

2 Preliminaries

Let K[u1, · · · , up, y1, · · · , ys] be the polynomial ring with u1, · · · , up, y1, · · · , ys

as indeterminates and coefficients in a field K. Let U = {u1, · · · , up}. Y =
{y1, · · · , ys}. K[u1, · · · , up, y1, · · · , ys] is denoted by K[U, Y]. In this paper, we
always assume that the variable ordering is u1 < · · · < up < y1 < · · · < ys.

Let E be an algebraic closed extension field containing K. For a polynomial set
F, (F) denotes the ideal generated by F over the ring K[U, Y]. Zero(F) denotes
the common zeros in E(p+s) of the polynomials in F. Let D be a polynomial,
Zero(F/D) denotes the common zeros in E(p+s) of the polynomials in F which
are not zeros of D.

For any nonzero polynomial P , the leading variable of P is denoted as vP , the
leading coefficient of P with respect to vP is called the initial of P , denoted by
I(P). We denote deg(P, yi) the degree of P w.r.t. yi.

LetA : A1, · · · , As be a chain and the leading variables of Ai is yi. We will use IA
to denote the product of the initials of the polynomials inA, i.e. IA =

∏s
i=1 I(Ai).

For two univariable polynomials P and Q, the remainder of P divided by
Q w.r.t. y will be denoted by rem(P, Q, y). If P and Q are multivariable poly-
nomials, the psudoremainder of P divided by Q w.r.t. yi will be denoted by
prem(P, Q, yi). For two polynomials P , Q , the Sylvester resultant of P and Q
with respect to yi is denoted by res(P, Q, yi).

Definition 1. Let P be a polynomial, A = A1, · · · , As be a chain with yi as the
leading variable of Ai. Let Rs = P , Ri−1 = res(Ri, Ai, yi) for i = s, · · · , 1. R0 is
called the resultant of P with respect to A, denoted by Res(P ;A).

It is easy to see that R0 is in K[u1, · · · , up]. There are polynomials F , Gi for
i = 1, · · · , s such that

FP +
s∑

i=1

GiAi = Res(P ;A) (1)

238 B. Li and D. Wang

Definition 2. Suppose A is a chain, if ξ ∈ En and ξ ∈ Zero(A/IA), then ξ is
called a regular zero of A.

The regular zeros of a chain maybe empty.
Let A = A1, · · · , As be a chain, the ideal generated by A over K[U, y1, · · · , ys]

will be denoted by (A). Let Ai = A1, · · · , Ai for 1 ≤ i ≤ s, each Ai is also a chain
and the ideal generated by Ai over K[U, y1, · · · , yi] will be denoted by (Ai).

Definition 3. Let A = A1, · · · , As be a chain in K[U, Y] and P be a polynomial
in K[U, Y]. P is said to be invertible w.r.t. A if (A, P) ∩K[U] �= {0}
If P is invertible w.r.t. A, then there exist Q in K[U, Y] and M �= 0 in K[U] such
that PQ ≡M mod (A)

An algorithm to test if a polynomial is invertible with respect to a chain is
given in [2]. Procedures to compute the inverse of a polynomial with respect to
a chain are given in [2,5,6].

Definition 4. Let A = A1, · · · , As be a chain. Let Ai = A1, · · · , Ai for i =
1, · · · s. A is a regular chain if s=1 or Res(I(Ai);Ai−1) �= 0 for i = 2, · · · , s.
The regular chain is introduced by Yang et. al. in [12]. The above definition
implies that the regular zeros of a regular chain are not empty.

Definition 5. Let A = A1, · · · , As be a chain and ξ ∈ E(p+s) be a zero of A.
ξ = (ξ1, · · · , ξp, ξp+1, · · · , ξp+s), ξ is called to be a generic regular zero of A if
(ξ1, · · · , ξp) are algebraically independent over K.

The following theorem establishes the relationship between regularity of a chain
and invertibility of its initials.

Theorem 1. Let A = A1, · · · , As be a chain, the following statements are
equivalent:

1. A is a regular chain
2. For i = 1, · · · , s, I(Ai) is invertible w.r.t. A.
3. For any generic regular point ξ, I(Ai)(ξ) �= 0 for i = 1, · · · , s.

Please see [2] or [10] for the proof of the theorem.

Definition 6. A chain A = A1, · · · , As is called a normal chain if I(Ai) is in
K[U] for i = 1, · · · , s.
This definition means that a normal chain must be a regular chain. To compute
the regular zeros of a normal chain is much easier than to compute the regular
zeros of a regular chain. A normal chain is also called a p-chain in Gao and Chou
[3]. Some properties about normal chains have been discussed in Wang [10].

Definition 7. Let A = A1, · · · , As be a chain, the saturation ideal of A, denoted
by (A) : I∞A , is defined as follows

(A) : I∞A = {P |Ik
AP ∈ (A) for some integer k ≥ 0 } (2)

An Algorithm for Transforming Regular Chain into Normal Chain 239

Lemma 1. Let A = A1, · · · , As be a regular chain, let P be a polynomial in
K[U, Y], P ∈ (A) : I∞A if and only if there exist a polynomial L in K[U]\{0}
such that LP ∈ (A).

Please refer [2,5] for the proof.

3 An Algorithm to Compute the Inverse of a Polynomial
Modulo an Ideal

Let P , Q be polynomials in K[x]. If P and Q have no common divisors, there
exist polynomial P ′ and Q′ such that deg(P ′, x) < deg(Q, x), deg(Q′, x) <
deg(P, x) and PP ′ + QQ′ = 1. The extended Euclidean algorithm can compute
out P ′ and Q′. Let d = deg(Q, x), suppose P ′ = ad−1x

d−1 + · · · + a0, from
rem(PP ′−1, Q, x) = 0 , we can get a system of linear equations on the variables
a0, · · · , ad−1. It is easy to solve all the ai for i = 0, · · · , d− 1.

Let’s see a simple example:

P = 4x3 + 8x2 + 7x + 3, Q = 5x4 + 4x3 + 3x2 + 6.
Let P ′ = a3x

3 + a2x
2 + a1x + a0,

rem(PP ′−1, Q, x) = (− 61
125a3 + 19

25a2 + 24
5 a1 +4a0)x3 +(− 657

125a3 + 3
25a2 + 23

5 a1 +
8a0)x2 + (− 144

25 a3 − 24
5 a2 + 3a1 + 7a0)x + (− 114

125a3 − 144
25 a2 − 24

5 a1 + 3a0 − 1).
If rem(PP ′ − 1, Q, x) = 0, we have

− 61
125a3 + 19

25a2 + 24
5 a1 + 4a0 = 0

− 657
125a3 + 3

25a2 + 23
5 a1 + 8a0 = 0

− 144
25 a3 − 24

5 a2 + 3a1 + 7a0 = 0
− 114

125a3 − 144
25 a2 − 24

5 a1 + 3a0 − 1 = 0

(3)

The solution is a0 = 2194
13255 , a1 = − 1614

13255 , a2 = − 709
79530 , a3 = 2309

15906 . then P ′ =
2309
15906x3− 709

79530x2− 1614
13255x+ 2194

13255 . P ′ is the inverse of P modulo the polynomial
Q.

For polynomials P and Q, the following algorithm will compute the inverse
of P modulo Q.

Algorithm 1. InverseModUniVarPol
Input : P ,Q are two polynomials in K[x] which have no common divisors.
Output: P ′ such that PP ′ = 1mod (Q).
d← deg(Q,x)
P ′ ← ad−1x

d−1 + · · ·+ a0

r ← rem(PP ′, Q, x)
H ← coeffs(r − 1, x); The set of the coefficients r w.r.t x.
S ← solution of H = 0 for ai for i = 0, · · · , d− 1
P ′ ← subs(S,P ′); substitute the solutions for the ai’s in P ′

return P ′

240 B. Li and D. Wang

Suppose Q = xd +ad−1x
d−1 + · · ·+a0 is a monic polynomial , the companion

matrix of Q is the n× n square matrix

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

.
...

0 0 · · · 1 −ad−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

To compute the inverse of a polynomial modulo a monic polynomial, we have
the following theorem.

Theorem 2. Suppose P, Q ∈ K[x], Q is monic, and P, Q have no common
divisors. Let G be the companion matrix of Q, P ′ = bd−1x

d−1 + · · ·+ b0, then P ′

is the inverse of P modulo Q, i.e. PP ′ = 1 mod Q if and only if (b0, · · · , bd−1)T

is the solution of P (G)y = (1, 0, · · · , 0)T .

Proof. Let I be the ideal generated by Q in K[x]. K[x]/I can be thought as
a finite dimensional linear vector space over K. {1, x, · · · , xd−1} is a mono-
mial basis of K[x]/I. Mx is a linear map from K[x]/I to itself, Mx is defined
by Mx(F) = xF mod I for any F in K[x]/I. It is easy to check that G is
the matrix representation of Mx on the monomial basis {1, x, · · · , xd−1} . Let
MP (F) = PF mod I, MP is a linear map defined by P on K[x]/I and P (G) is
the matrix representation of MP , hence MP (P ′) = PP ′ = 1 mod I if and only
if (b0, · · · , bd−1)T is the solution of P (G)y = (1, 0, · · · , 0)T .

Another proof of this theorem also can be found in [7].
If P , Q are polynomial in K[U, y1, · · · , yi], we can extend the above algorithm

to find polynomial P ′ in K[U, y1, · · · , yi] and M in K[U, y1, · · · , yi−1] such that
prem(PP ′ −M, Q, yi) = 0.

Algorithm 2. InverseModPol
Input : P ,Q are two polynomials in K[U, y1, · · · , yi] which have no common

divisors.
Output: P ′ ∈ K[U, y1, · · · , yi] and M ∈ K[U, y1, · · · , yi−1] such that

prem(PP ′ −M, Q, yi) = 0.
d← deg(Q,yi)
P ′ ← ad−1y

d−1
i + · · ·+ a0

r ← prem(PP ′ −M, Q, yi)
H ← coeffs(r, yi); The set of the coefficients r w.r.t x.
S ← solution of H = 0 for ai for i = 0, · · · , d− 1 and M is considered as a
parameter
P ′ ← subs(S,P ′); substitute the solutions for the ai’s in P ′

M ← denom(P ′); M is the denominator of P ′.
return (P ′, M)

An Algorithm for Transforming Regular Chain into Normal Chain 241

For P , Q are polynomial in K[U, y1, · · · , yi], we know that there exists P ′ and
Q′ in K[U, y1, · · · , yi] and M in K[U, y1, · · · , yi−1] such that P ′P + Q′Q = M .

We have implemented the above algorithm. The following is a table which
records the timings to compute the inverse of a polynomial modulo another
polynomial.

Timings of Computing the Inverse
Number of Total Timings
Variables Degree InverseModPol InverseModPol-SubRes

3 3 0.046 0.040
3 4 0.198 0.311
3 5 0.880 1.608
3 6 4.492 9.917
3 7 23.343 64.644
3 8 119.563 407.158
3 9 587.672 2138.584
4 3 0.145 0.067
4 4 1.728 1.564
4 5 43.377 55.396
4 6 1109.934 1426.564
4 7 19673.498 39052.547

If we apply the above algorithm successively, then we can compute the the
inverse of a polynomial modulo the saturation ideal of a regular chain. Let P
be a polynomial, A = A1, · · · , As ⊂ K[U, Y] be a regular chain, P is invertible
w.r.t. A, then there exist polynomial P ′ ∈ K[U, Y] and M ∈ K[U] such that
PP ′ −M = 0 mod ((A) : I∞A).

The following algorithm will compute the inverse of a polynomial modulo the
saturation ideal of a regular chain.

Algorithm 3. InverseModSat
Input : P is a polynomial in K[U, Y], A = A1, · · · , As is a regular chain

in K[U, Y], yi is the leading variable of Ai for i = 1, · · · , s, P is
invertible w.r.t. A.

Output: P ′ ∈ K[U, Y], M ∈ K[U] such that PP ′ = M mod ((A) : I∞A).
Q← 1
for i from s to 1 step -1 do

(P ′, M) ← InverseModPol(P, Q, yi)
P ←M
Q← QP ′

end
P ′ ← Q
M ← P
return (P ′, M)

242 B. Li and D. Wang

4 Transforming Regular Chain into Normal Chain

Let A = A1, · · · , As be a regular chain and Ai = A1, · · · , Ai for i = 1, · · · , s,
let Ii be the initial of Ai, i.e. Ii = I(Ai), I1 ∈ K[U], for i = 2, · · · , s, Ii is
invertible w.r.t. A, then there exist I ′i in K[U, y1, · · · , yi−1], Mi in K[U] such that
prem(IiI

′
i −Mi;Ai−1) = 0. i.e. IiI

′
i = Mi + Ni and Ni ∈ (Ai−1) : I∞Ai−1

. We let
B1 = A1, H1 = 1, and for i = 2, · · · , s, Bi = Miy

ni

i + I ′iRi and Hi = M2 · · ·Mi,
with Ai = Iiy

ni

i + Ri. Let Bi = B1, · · · , Bi.

Theorem 3. For A and B as above, A is a regular chain and B is a normal
chain , we have (A) : I∞A = (B) : I∞B .
Proof. We will prove (Ai) : I∞Ai

= (Bi) : I∞Bi
for i = 1, · · · , s.

(⊂) We will prove (Ai) : I∞Ai
⊂ (Bi) : I∞Bi

by induction on i. It is true for i = 1.
Suppose it is also true for i− 1, we will prove it for i.

For any P ∈ (Ai) : I∞Ai
then there exist a nonzero polynomial Li ∈ K[U]

such that LiP ∈ (Ai) by lemma 1, i.e. there exist polynomial Qi such that
LiP = QiAi mod (Ai−1).

HiLiP = Hi−1MiQiAi mod (Ai−1)
= Hi−1Qi(IiI

′
i −Ni)Ai mod (Ai−1)

= Hi−1Qi(IiBi + Niy
ni

i −NiAi)mod (Ai−1)

By induction, we know that HiLiP is in (Bi) : I∞Bi
. Since Hi, Li ∈ K[U], we know

that P is in (Bi) : I∞Bi
by lemma 1.

(⊃) For any P ∈ (Bi) : I∞Bi
, then there exist a nonzero polynomial Li ∈ K[U]

such that LiP is in (Bi) by lemma 1. From I ′iAi = Bi + Niy
ni

i , we know that
LiP ∈ (Ai) : I∞Ai

. Since Li is in K[U] and Ai is a regular chain, then P is in
(Ai) : I∞Ai

.

Let B′
1 = B1, B′

1 = B1, for i = 2, · · · , s, let B′
i be the remainder of Bi w.r.t B′

i−1

and B′
i = B′

1, · · · , B′
i . Let B′ = B′

s. It is easy to see that B′ is a normal chain
and (B) : I∞B = (B′) : I∞B′ . B′ is called the normalization of A. It is easy to check
that

Zero(B′/IB′) ⊂ Zero(A/IA) ⊂ Zero(A) ⊂ Zero(B′)

According to the above theorem, we have the following algorithm to transform
a regular chain into a normal chain.

From the above theorem, we have

Corollary 1. For a polynomial set F, there is an algorithm to compute a series
of normal chains Bi such that

Zero(F) =
⋃

i

Zero((Bi) : I∞Bi
) (4)

Proof. For a polynomial set F, there are algorithms to compute a series of regular
chains Ai such that

Zero(F) =
⋃

i

Zero((Ai) : I∞Ai
)

An Algorithm for Transforming Regular Chain into Normal Chain 243

Algorithm 4. Reg2Norm
Input : A = A1, · · · , As is a regular chain in K[U,Y], yi is the leading variable

of Ai for i = 1, · · · , s
Output: B = B1, · · · , Bs is a normal chain in K[U,Y] such that

(A) : I∞
A = (B) : I∞

B
Q← 1
if s=1 then return A
B1 ← A1

for i← 2 to s do
Ii ← I(Ai)
(I ′

i, Mi) ← InverseModSat(Ii,Ai−1)
ni ← deg(Ai, yi)
Ri ← Ai − Iiy

ni
i

Bi ←Miy
ni
i + I ′

iRi

end
B ← B1

for i← 2 to s do
B ← B, Reduce(Bi,B)

end
return B

where Ai’s are regular chains. For each Ai, the above algorithm will compute a
normal chain Bi such that (Ai) : I∞Ai

= (Bi) : I∞Bi
, and so

Zero(F) =
⋃

i

Zero((Ai) : I∞Ai
) =

⋃

i

Zero((Bi) : I∞Bi
)

The corollary is proved.
If the polynomial system F is zero dimensional, then we have

Zero(F) =
⋃

i

Zero(Bi)

Corollary 2. For a polynomial set F, there is an algorithm to compute a series
of normal chains Ai such that

Zero(F) =
⋃

i

Zero(Ai/IAi)) (5)

5 Examples

Example 1. Solving the following Lorentz problem:

f1 = x2(x3 − x4)− x1 + c = 0
f2 = x3(x4 − x1)− x2 + c = 0
f3 = x4(x1 − x2)− x3 + c = 0
f4 = x1(x2 − x3)− x4 + c = 0

where x1, x2, x3 and x4 are variables and c is a parameter.

244 B. Li and D. Wang

This problem has been discussed in [3]. In order to solve this system of equa-
tions of parametric polynomials. We will decompose this polynomial system into
normal chains.

Let F = {f1, f2, f3, f4}, for a variable order x4 > x3 > x2 > x1 > c, we have
the zero decomposition

Zero(F) =
9⋃

i=1

Zero(Ai/IAi)

where Ai’s are regular chains.
We can transform the regular chainsAi into normal chainsBi by using algorithm

Reg2Norm such that
⋃9

i=1 Zero(Bi/IBi) ⊂ Zero(F). For this example, we have

Zero(F) =
9⋃

i=1

Zero(Bi/IBi)

where Bi are normal chains. By our new algorithm, it takes 63 seconds to get
the normal chains while the old algorithm will cost 106 seconds.

The following is a table which records the length of the chain and the number
of the terms of the polynomials in the normal chains which are in the decompo-
sition of the Lorentz polynomial system.

The normal chains in the decomposition
normal chains length of the chain number of terms

1 4 2 2 2 2
2 4 1291 1289 410 13
3 5 1 2 1 2 2
4 5 2 2 1 2 3
5 5 2 2 2 2 2
6 5 3 6 7 5 3
7 5 1 2 2 2 3
8 5 9 9 9 5 5
9 5 15 15 15 8 8

6 Conclusions

We give a new algorithm to compute the normal chain from a regular chain such
that their saturation ideals are the same. Our algorithm is based on solving sys-
tem of linear equations and it is much more efficient than the original algorithm
to compute the normalization of a regular chain.

References

1. Aubry, P., Lazard, D., Maza, M.M.: On the Theories of Triangular Sets. J. Symbolic
Computation 28, 105–124 (1999)

2. Bouziane, D., Kandri Rody, A.K., Maarouf, H.: Unmixed-dimensional Decompo-
sition of a Finitely Generated Perfect Differential Ideal. J. Symbolic Computa-
tion. 31, 631–649 (2001)

An Algorithm for Transforming Regular Chain into Normal Chain 245

3. Gao, X.S., Chou, S.C.: Solving parametric algebraic systems. In: Proceedings IS-
SAC 1992, Berkeley, July 27-29, pp. 335–341. Association for Computing Machin-
ery, New York (1992)

4. Kalbrener, M.: A Generalized Euclidean Algorithm for Computing Triangular Rep-
resentations of Algebraic Varieties. J. Symbolic Computation 15, 143–167 (1993)

5. Lazard, D.: A new method for solving algebraic systems of positive demension.
Discrete Appl. Math. 33, 147–160 (1991)

6. Moreno, M.M.: On triangular decompositions of algebraic varieties. In: MEGA
2000, Bath, England (presented, 2000)

7. Pan, V.Y.: Sturctured Matrices and Polynomials. Birkhäuser, Boston (2001)
8. Wang, D.K., Zhang, Y.: An algorithm for decomposing a polynomial system into

normal ascending sets. Science in China, Series A: Mathematics 50(10), 1441–1450
(2007)

9. Wang, D.M.: Some Notes on Algebraic Method for Geometric Theorem Proving
10. Wang, D.M.: Elimination Method. Springer, New York (2001)
11. Wu, W.T.: Basic principles of mechanical theorem proving in elementray geome-

tries. J. Syst. Sci. Math. Sci. 4, 20–235 (1984)
12. Yang, L., Zhang, J.Z.: Search dependency between algebraic equations: An algo-

rithm applied to automated reasoning. Technical Report ICTP/91/6, International
Center For Theoretical Physics, Trieste (1991)

	An Algorithm for Transforming Regular Chain into Normal Chain
	Introduction
	Preliminaries
	An Algorithm to Compute the Inverse of a Polynomial Modulo an Ideal
	Transforming Regular Chain into Normal Chain
	Examples
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

