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Abstract Rational Univariate Representation (RUR) of zero-dimensional ideals is used to describe the ze-

ros of zero-dimensional ideals and RUR has been studied extensively. In 1999, Roullier proposed an efficient

algorithm to compute RUR of zero-dimensional ideals. In this paper, we will present a new algorithm to com-

pute Polynomial Univariate Representation (PUR) of zero-dimensional ideals. The new algorithm is based on

some interesting properties of Gröbner basis. The new algorithm also provides a method for testing separating

elements.
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1 Introduction

An efficient algorithm for computing Rational Univariate Representation (RUR) was proposed by Rouillier

in 1999 [10]. RUR is often used to describe the zeros of a zero-dimensional ideal. An RUR for a zero-

dimensional ideal I ⊂ K[x1, . . . , xn], where K is a field with characteristic 0, has the following form:

f(t) = 0, x1 =
g1(t)

g(t)
, . . . , xn =

gn(t)

g(t)
,

where t is an auxiliary variable different from the variables x1, . . . , xn, and f, g, g1, . . . , gn are polynomials

in K[t].

For an RUR, we have

V (I) =

{(
g1(α)

g(α)
, . . . ,

gn(α)

g(α)

)∣∣∣∣α ∈ V (f(t))

}
⊂ C

n,

where C is an algebraic closure of K. Moreover, the geometrical information about I can also be reflected

in this RUR. For example, the multiplicity of ( g1(α)g(α) , . . . ,
gn(α)
g(α) ) in V (I) ⊂ Cn is exactly the same as the

multiplicity of α in V (f(t)) ⊂ C. Therefore, with an RUR for I, one can easily obtain all the information

about the zeros of I by simply solving f(t) = 0.

The RUR has been studied extensively since it was proposed. Noro and Yonoyama [8] proposed a

modular method for computing RUR. Ouchi and Keyser [9] presented an approach to compute RUR via
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toric resultants. Zeng and Xiao [13, 14] gave an algorithm for computing RUR by using Wu’s methods.

Tan and Zhang developed an improved algorithm for finding separating elements of zero-dimensional

ideals [12]. Cheng et al. [2] also used linear univariate representation to isolate roots of zero-dimensional

ideals. Many applications of RUR have been studied in [3, 7].

Polynomial Univariate Representation (PUR) is a special version of RUR, and a PUR can be easily

transformed from an RUR. A PUR for a zero-dimensional ideal I ⊂ K[x1, . . . , xn] has the following form:

f(t) = 0, x1 = g1(t), . . . , xn = gn(t),

where f, g, g1, . . . , gn are polynomials of K[t]. A PUR for I also contains all the information about the

zeros of I. The main work of this paper is to present a new method for computing Polynomial Univariate

Representations for zero-dimensional ideals via the properties of Gröbner basis. Our new algorithm will

use some new interesting properties of Gröbner basis.

Separating elements play an important role in the new algorithm. For a zero-dimensional ideal I, a

polynomial r(x1, . . . , xn) ∈ K[x1, . . . , xn] is a separating element on V (I) ⊂ Cn, if r(α) �= r(β) for any

two different elements α, β in V (I).

The basic idea of the new algorithm is as follows. Let r(x1, . . . , xn) be a separating element on V (I).

An auxiliary ideal J = 〈f1, . . . , fs, r − r(x1, . . . , xn)〉 ⊂ K[x1, . . . , xn, r] can be constructed, where r is

an auxiliary variable different from the variables x1, . . . , xn. Note that J is a zero-dimensional ideal in

K[x1, . . . , xn, r]. Next, consider the linear map mr : [g] −→ [r(x1, . . . , xn)g] defined on the quotient ring

K[x1, . . . , xn]/I, and let P (λ) be the characteristic polynomial of mr. Substituting λ by r in P (λ), we

have P (r) ∈ J [11]. The new algorithm aims to find polynomials Di(r) ∈ K[r] such that

√
J = 〈sqrfree(P (r)), x1 −D1(r), . . . , xn −Dn(r)〉,

where sqrfree(P (r)) is the square-free part of the polynomial P (r). With these Di(r)’s, we can show that

P (r) = 0, x1 = D1(r), . . . , xn = Dn(r),

is a Polynomial Univariate Representation for I. To find these polynomials Di(r) ∈ K[r], we consider

the Gröbner basis for the ideal J ∩ K[xi, r] respectively. The properties of Gröbner basis will help us

construct Di(r) for each xi efficiently.

In the new algorithm, a separating element on V (I) should be chosen at the beginning, so we need

to check whether a randomly chosen r(x1, . . . , xn) is a separating element. Rouillier provides a method

for this purpose in [10]. Unlike Rouillier’s approach, the new algorithm also uses a new technique for

checking whether r(x1, . . . , xn) is a separating element during the procedure of constructing Di(r)’s.

This paper is organized as follows. In Section 2, some basic notations are introduced first, then some

facts about Gröbner basis of zero-dimensional ideals in two variables are given. The method for computing

a PUR for a zero-dimensional ideals is presented in Section 3. We discuss some aspects of implementation

in Section 4. An illustrative example is provided in Section 5. Conclusion remarks come in Section 6.

2 Preliminaries

Let K[x1, . . . , xn] be a polynomial ring, where K is a field of characteristic 0 and x1, . . . , xn are variables.

Given a term order, for any nonzero polynomial f ∈ K[x1, . . . , xn], the notations lm(f), lc(f) and

lpp(f) denote the leading monomial, leading coefficient and leading power product of f respectively,

and it follows that lm(f) = lc(f)lpp(f). The degree of f w.r.t. variable xi is denoted as degxi
(f).

Similarly, we use coeff(f, xm
i ) to denote the coefficient of xm

i in f . Usually, coeff(f, xm
i ) is a polynomial

in K[x1, . . . , xi−1, xi+1, . . . , xn].

The ideal generated by {f1, . . . , fm} is denoted as 〈f1, . . . , fm〉. Let I be an ideal in K[x1, . . . , xn] and

f be a polynomial, 〈f, I〉 stands for the ideal generated by f and I, and
√
I refers to the radical ideal of

I.
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For two polynomials f and g in K[x1, . . . , xn], the notation gcd(f, g) stands for the greatest common

divisor of f and g, and sqrfree(f) refers to the square-free part of f . We say f | g if f divides g; and say

f � g otherwise.

Let G = {g1, . . . , gs} be a finite set of polynomials in the ring K[x1, . . . , xn] and t = xα be a term

in K[x1, . . . , xn]. For any polynomial g ∈ K[x1, . . . , xn], we say g has a t-representation w.r.t. G, if

there exist polynomials f1, . . . , fs ∈ K[x1, . . . , xn] such that g = f1g1 + · · · + fsgs and t 
 lpp(figi) for

i = 1, . . . , s.

The following lemma gives a criterion to determine if a set of polynomials is a Gröbner basis by using

t-representations. The proof of this lemma can be found in [1].

Lemma 2.1. Let G = {g1, . . . , gs} be a set of polynomials in K[x1, . . . , xn]. Then the set G itself

is a Gröbner basis, if and only if the S-polynomial of gi and gj has a t-representation w.r.t. G with

t ≺ lcm(lpp(gi), lpp(gj)) for any 1 � i, j � s.

Some facts about zero-dimensional ideals in two variables are given below. Some extended results can

be found in [5].

Lemma 2.2. Let J1 be a zero-dimensional ideal in K[r, x1], Let G = {p0, g1, . . . , gt} be the reduced

Gröbner basis of J1 w.r.t. the lex order with x1 > r. Suppose polynomials in G have the following form:

p0 ∈ K[r],

g1 = p1x
m1
1 + g′1,

· · · · · ·
gt = ptx

mt
1 + g′t,

where degx1
(g′i) < mi for i = 1, . . . , t and 0 < m1 < · · · < mt. Note that p1, . . . , pt are polynomials in

K[r] and pt = 1. Then the following assertions hold.

(i) pi divides pi−1 for each 1 � i � t.

(ii) pi divides gi for each 1 � i � t. In this case, let qi’s be the polynomials such that gi = piqi.

(iii) The set {pi, gi+1, . . . , gt} is a Gröbner basis for the ideal 〈pi, J1〉 w.r.t. the lex order with x1 > r

for each 1 � i � t.

(iv) q1 | qi mod (p0/p1) holds for 1 < i � t, i.e., there exists hi such that qi−hiq1 ∈ 〈p0/p1〉. Moreover,

qi | qj mod (pi−1/pi) holds for all 1 � i < j � t.

(v) For any irreducible factor a of p0, there exists a unique integer k (1 � k � t) such that a | pk−1

and a � pk, and the set {a, qk} is a Gröbner basis for the ideal 〈a, J1〉 w.r.t. the lex order with x1 > r.

Proof. (i) First, we prove p1 divides p0. It suffices to show gcd(p0, p1) = p1, and we will prove this by

contradiction. Since G is the reduced Gröbner basis for the ideal J1, it follows that degr(p1) < degr(p0).

Suppose gcd(p0, p1) = p and p �= p1, which implies degr(p) < degr(p1). Since p is the greatest common

divisor of p0 and p1, there exist s and t in K[r] such that p = sp0 + tp1. Let f := sxm1
1 p0 + tg1 =

sp0x
m1
1 + t(p1x

m1
1 + g′1) = pxm1

1 + tg′1 ∈ J1. Since G is the reduced Gröber basis for J1 w.r.t. the lex

order with x1 > r and degr(p) < degr(p1), it follows that lm(p0) divides lm(f) = xm1
1 lm(p) and hence

lm(p0) | lm(p), which is a contradiction with degr(p) < degr(p0). So we must have gcd(p0, p1) = p1. The

cases i = 2, . . . , t can be proved similarly.

(ii) We prove this assertion by the induction on i.

First, we prove the case i = 1. Let h1 := (p0/p1)g1 − xm1
1 p0 = (p0/p1)g

′
1 ∈ J1. Since G is the reduced

Gröbner basis for J1 and degx1
(h1) = degx1

(g′1) < m1, then p0 divides h1 = (p0/p1)g
′
1. Hence there

exists a polynomial f ∈ K[x1, r] such that (p0/p1)g
′
1 = p0f , which means p0g

′
1 = p0p1f and p1 divides

g′1. As g1 = p1x
m1
1 + g′1, we have p1 divides g1.

Second, we assume the assertion holds for cases i < k, i.e., pi divides gi for each 1 � i � k − 1. We

need to show the assertion also holds for the case i = k. Let hk := (pk−1/pk)gk − x
mk−mk−1

1 gk−1 =

(pk−1/pk)g
′
k − x

mk−mk−1

1 g′k−1 ∈ J1. Since G is the reduced Gröbner basis for J1 w.r.t. the lex order

with x1 > r and degx1
(hk) < mk, there exist polynomials f0, f1, . . . , fk−1 ∈ K[x1, r] such that hk =

f0p0 + f1g1 + · · · + fk−1gk−1. Lemma 2.2 shows that pk−1 divides pi for each 0 � i � k − 1, and
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according to the induction assumption, we have pk−1 | gi for each 1 � i � k − 1, so pk−1 divides

hk = (pk−1/pk)g
′
k−x

mk−mk−1

1 g′k−1. Note that gk−1 = pk−1x
mk−1

1 +g′k−1 and pk−1 divides g
′
k−1. Then pk−1

divides (pk−1/pk)g
′
k, which means there exists a polynomial f ∈ K[x1, r] such that pk−1g

′
k = pk−1pkf .

Thus, pk divides g′k and hence pk divides gk.

(iii) To show the set {pi, gi+1, . . . , gt} is a Gröbner basis for the ideal 〈pi, J1〉, we only need to prove

the set {pi, p0, g1, . . . , gt} is a Gröbner basis for the ideal 〈pi, J1〉 w.r.t. the lex order with x1 > r. For

convenience, we assume pi, p0, g1, . . . , gt are all monic polynomials. In this proof, t-presentations and

Lemma 2.1 are used. Since G is a Gröbner basis for the ideal J1, pi divides p0, and pi divides gj for

1 � j � i, we only need to show the S-polynomial spoly(pi, gj) has a t-representation w.r.t. the set

{p0, pi, g1, . . . , gt} where i+ 1 � j � t.

Given j where i+ 1 � j � t, the S-polynomial of pi and gj is

spoly(pi, gj) = x
mj

1 pi − (pi/pj)gj + ((pi/pj)− lm(pi/pj))gj .

Note that pi divides gi. Next, consider the S-polynomial of gi and gj :

spoly(gi, gj) = x
mj−mi

1 gi − (pi/pj)gj + ((pi/pj)− lm(pi/pj))gj

= x
mj−mi

1 (piqi)− (pi/pj)gj + ((pi/pj)− lm(pi/pj))gj

= x
mj

1 pi − (pi/pj)gj + ((pi/pj)− lm(pi/pj))gj + x
mj−mi

1 pi(qi − xmi
1 ).

According to the above two equations, we have

spoly(pi, gj) = spoly(gi, gj)− x
mj−mi

1 pi(qi − xmi
1 ).

Since spoly(gi, gj) can be reduced to 0 by {p0, g1, . . . , gt} which is a Gröbner basis, then spoly(gi, gj) has a

t-representation w.r.t. {p0, g1, . . . , gt} where t ≺ lcm(lpp(gi), lpp(gj)) = lcm(lpp(pi), lpp(gj)). Combined

with fact lpp(x
mj−mi

1 pi(qi − xmi
1 )) ≺ lcm(lpp(pi), lpp(gj)), the S-polynomial spoly(pi, gj) also has a t-

representation w.r.t. {pi, p0, g1, . . . , gt} where t ≺ lcm(lpp(pi), lpp(gj)). Then Lemma 2.1 shows the set

{pi, p0, g1, . . . , gt} is a Gröbner basis for the ideal 〈pi, p0, g1, . . . , gt〉 = 〈pi, J1〉.
(iv) In this proof, we regard qi and q1 as polynomials in K[r][x1]. Dividing qi by q1 w.r.t. x1, we

have qi = hiq1 + ri where hi, ri ∈ K[r][x1], degx1
(ri) < degx1

(q1) and lpp(hi) = xmi−m1

1 . Multiplying

both sides of the equation by p1, we have (p1/pi)gi = p1qi = p1hiq1 + p1ri = hig1 + p1ri. It follows that

p1ri = (p1/pi)gi − hig1 ∈ J1. Since G is a Gröbner basis for J1 and degx1
(ri) < degx1

(q1), we have p0
divides p1ri, and hence (p0/p1) divides ri. As qi = hiq1 + ri, it follows qi − hiq1 ∈ 〈p0/p1〉, which means

q1 | qi mod (p0/p1).

Lemma 2.2 shows that the set {pi, gi+1, . . . , gt} is a Gröbner basis for the ideal 〈pi, J1〉 where 1 � i � t.

Then we can prove qi | qj mod (pi−1/pi) similarly where 1 � i < j � t.

(v) Let a be an irreducible factor of p0, then there exists a unique integer k (1 � k � t) such that

a | pk−1 and a � pk, since pt = 1 and pi divides pi−1. Note that the set {a, qk} itself is a Gröbner basis

w.r.t. the lex order with x1 > r, so it suffices to show 〈a, J1〉 = 〈a, qk〉.
On the one hand, it follows that gcd(a, pk) = 1 since a � pk, so there exist polynomials s, t ∈ K[r] such

that sa+ tpj = 1. Consequently, qk = (sa+ tpk)qk = sqka+ tgk ∈ 〈a, J1〉, which means 〈a, qk〉 ⊂ 〈a, J1〉.
On the other hand, to prove 〈a, J1〉 ⊂ 〈a, qk〉, we only need to show that p0, g1, . . . , gt ∈ 〈a, qk〉. Since

a | pi for 0 � i � k − 1, we have p0, g1, . . . , gk−1 ∈ 〈a, qk〉. The equation gk = pkqk indicates gk ∈ 〈a, qk〉.
For each i where k < i � t, Lemma 2.2 shows that there exists a polynomial hi ∈ K[x1, r] such that

qi − hiqk ∈ 〈pk−1/pk〉. Since a divides (pk−1/pk), we have qi − hiqk ∈ 〈a〉, and hence, gi = piqi =

pi(qi − hiqk) + pihiqk ∈ 〈a, qk〉. To sum up, we have 〈a, J1〉 ⊂ 〈a, qk〉.
Finally, we have 〈a, J1〉 = 〈a, qk〉 and the set {a, qk} is a Gröbner basis for the ideal 〈a, J1〉 w.r.t. the

lex order with x1 > r.
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3 A new method for computing a PUR for a zero-dimensional ideal

In this section, we will present a new method for computing a PUR for a zero-dimensional ideal. The

following is the main theorem of this paper.

Theorem 3.1. Let I be a zero-dimensional ideal in K[x1, . . . , xn], r(x1, . . . , xn) be a separating element

on V (I), and J = 〈r − r(x1, . . . , xn), I〉 be an ideal in K[x1, . . . , xn, r], where r is an auxiliary variable.

Let p0 ∈ K[r] be a polynomial such that J ∩K[r] = 〈p0〉. If there exist polynomials D1, . . . , Dn ∈ K[r]

such that
√
Ji = 〈sqrfree(p0), xi −Di〉 where Ji = J ∩K[xi, r], then

√
J = 〈sqrfree(p0), x1 −D1, . . . , xn −Dn〉.

Moreover, let mr : [g] −→ [r(x1, . . . , xn)g] be a linear map defined on the quotient ring K[x1, . . . , xn]/I,

and P (λ) ∈ K[λ] be the characteristic polynomial of mr. Then sqrfree(p0) = sqrfree(P (r)) and

P (r) = 0, x1 = D1(r), . . . , xn = Dn(r),

is a Polynomial Univariate Representation of I.

Proof. First, we prove
√
J = 〈sqrfree(p0), x1 −D1, . . . , xn −Dn〉. On the one hand, for each i where

1 � i � n, we have Ji ⊂ J , which implies
√
Ji ⊂ √

J . And hence, sqrfree(p0), xi − Di ∈ √
J since

〈sqrfree(p0), xi −Di〉 =
√
Ji. So we have 〈sqrfree(p0), x1 −D1, . . . , xn −Dn〉 ⊂

√
J . On the other hand,

for any f ∈ √
J , consider the remainder of f w.r.t. the set {sqrfree(p0), x1 −D1, . . . , xn −Dn}. That is,

we can represent f as f = sqrfree(p0)f0 + (x1 − D1)f1 + · · · + (xn − Dn)fn + g, where f0, f1, . . . , fn ∈
K[x1, . . . , xn, r], g ∈ K[r], and g = 0 or degr(g) < degr(sqrfree(p0)). Since f, sqrfree(p0), xi −Di ∈

√
J ,

we have g ∈ √
J , and hence, there exists a positive integer m such that gm ∈ J . Note that gm ∈

J ∩ K[r] = 〈p0〉, so p0 divides gm, and hence, sqrfree(p0) divides g, which implies g must be 0. Thus,

f = sqrfree(p0)f0 +(x1 −D1)f1 + · · ·+(xn −Dn)fn ∈ 〈sqrfree(p0), x1 −D1, . . . , xn −Dn〉. Since f is any

polynomial in
√
J , then we have

√
J ⊂ 〈sqrfree(p0), x1 −D1, . . . , xn −Dn〉.

Second we show that P (r) = 0, x1 = D1(r), . . . , xn = Dn(r) is a PUR for I. Since
√
J = 〈sqrfree(p0),

x1 −D1, . . . , xn −Dn〉, then we have

V (J) = V (sqrfree(p0), x1 −D1, . . . , xn −Dn) = {(D1(α), . . . , Dn(α), α) | p0(α) = 0} ⊂ C
n+1.

By the construction of the ideal J , we have V (I) = {(D1(α), . . . , Dn(α)) | p0(α) = 0} ⊂ Cn and α =

r(D1(α), . . . , Dn(α)). According to the knowledge of basic linear algebra, p0 is the minimal polynomial

of the linear map mr, so P (r) and p0 share the same irreducible factors, i.e., sqrfree(P (r)) = sqrfree(p0).

Then V (I) = {(D1(α), . . . , Dn(α)) | P (α) = 0}. Since r(x1, . . . , xn) is a separating element on V (I), the

point (D1(α), . . . , Dn(α)) in V (I) has the same multiplicity as α in V (P (r)). For more details of this

proof, interested readers please see [10]. Besides, when K is the rational number field or real number

field, Di(α) is real only if α is real. So

P (r) = 0, x1 = D1(r), . . . , xn = Dn(r),

is a PUR for I.

In Theorem 3.1, the polynomials D1, . . . , Dn always exist since J is a zero-dimensional ideal. But how

to compute these Di’s is the key step of computing a PUR. In the following, we will present an efficient

method to obtain these Di’s. Without loss of generality, we will describe in detail how to compute D1

such that
√
J1 = 〈sqrfree(p0), x1 −D1〉, and the other Di’s can be obtained similarly.

By Lemma 2.2, the polynomials in G can be reformulated in the following form:

p0 ∈ K[r], g1 = p1q1, . . . , gt = ptqt,

where lm(qi) = xmi
1 and pi ∈ K[r] for i = 1, . . . , t, and 0 < m1 < · · · < mt.

To compute a polynomial D1 ∈ K[r] such that
√
J1 = 〈sqrfree(p0), x1 −D1〉 where 〈p0〉 = J1 ∩K[r],

we need the following proposition.
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Proposition 3.2. Let I be a zero-dimensional ideal in K[x1, . . . , xn], r(x1, . . . , xn) be a polynomial in

K[x1, . . . , xn], J = 〈r − r(x1, . . . , xn), I〉 be an ideal in K[x1, . . . , xn, r] where r is an auxiliary variable

and J1 be the ideal J ∩ K[x1, r]. Let p0 ∈ K[r] be a polynomial such that J ∩ K[r] = 〈p0〉, and G =

{p0, g1, . . . , gt} be the reduced Gröbner basis for the zero-dimensional ideal J1 w.r.t. the lex order with

x1 > r. Suppose the polynomials in G have the following form:

p0 ∈ K[r], g1 = p1q1, . . . , gt = ptqt,

where lm(qi) = xmi
1 and pi ∈ K[r] for i = 1, . . . , t, and 0 < m1 < · · · < mt. Then the following assertions

hold.

(i) Let a be an irreducible factor of p0, and k an integer such that a | pk−1 and a � pk. If r(x1, . . . , xn)

is a separating element on V (I), then {a, (x1 − dk)
mk} is a Gröbner basis for the ideal 〈a, J1〉 w.r.t. the

lex order with x1 > r where dk = −coeff(qk, x
mk−1
1 )/mk.

(ii) If r(x1, . . . , xn) is a separating element on V (I), then {sqrfree(pi−1/pi), x1 − di} is a Gröbner

basis for
√〈sqrfree(pi−1/pi), J1〉 w.r.t. the lex order with x1 > r where di = −coeff(qi, x

mi−1
1 )/mi for

1 � i � t.

(iii) Let Q be a polynomial in K[r] and Q divides sqrfree(pi−1/pi). If r(x1, . . . , xn) is a separating

element on V (I), then {Q, x1−di} is a Gröbner basis for
√〈Q, J1〉 w.r.t. the lex order with x1 > r where

di = −coeff(qi, x
mi−1
1 )/mi for 1 � i � t.

Proof. (i) Let a be an irreducible factor of p0, then there exists a unique integer k (1 � k � t) such

that a | pk−1 and a � pk. Note that the set {a, (x1 − dk)
mk} itself is a Grönber basis w.r.t. the lex

order with x1 > r. To prove the set {a, (x1 − dk)
mk} is a Grönber basis for the ideal 〈a, J1〉, we need

to show that 〈a, J1〉 = 〈a, (x1 − dk)
mk〉. Lemma 2.2 (v) indicates 〈a, J1〉 = 〈a, qk〉, so it suffices to show

〈a, qk〉 = 〈a, (x1 − dk)
mk〉 which is equivalent to qk − (x1 − dk)

mk ∈ 〈a〉.
Since a is an irreducible polynomial in K[r], the quotient ring K[r]/〈a〉 is in fact a field. Let L be an

algebraic closed field which contains K[r]/〈a〉. Equivalent class of qk in (K[r]/〈a〉)[x1] is denoted as q̄k.

Then q̄k has a factorization in L[x1]:

q̄k = (x1 − ū1)
n1 · · · (x1 − ūl)

nl ,

where ū1, . . . , ūl ∈ L and n1 + · · ·+ nl = mk.

We claim that ū1 = ū2 = · · · = ūl. To prove this claim, we only need to show ū1 = ū2, and the other

equations can be proved similarly. Assume ū1 �= ū2. We denote the equivalent class of r in K[r]/〈a〉 as
r̄, then a(r̄) = 0 ∈ L.

First, we show that (ū1, r̄) ∈ V (J1) ⊂ L2, where J1 = 〈p0, g1, . . . , gt〉. Since a is a factor of p0, we

have p0(r̄) = 0. As gi = piqi and a divides pi for 1 � i � k − 1, then gi(ū1, r̄) = 0. We also have

gk(ū1, r̄) = pk(r̄)qk(ū1, r̄) = 0, since x1 − ū1 is a factor of q̄k. For each i where k < i � t, Lemma 2.2

(iv) shows that there exists a polynomial hi ∈ K[x1, r] such that qi − hiqk ∈ 〈pk−1/pk〉, so we have

qi − hiqk ∈ 〈a〉 due to the fact a | (pk−1/pk). Thus, gi(ū1, r̄) = hi(ū1, r̄)qk(ū1, r̄) = 0. To sum up, we

have (ū1, r̄) ∈ V (J1).

Second, we can prove (ū2, r̄) ∈ V (J1) similarly.

Since J is a zero-dimensional ideal, (ū1, r̄) and (ū2, r̄) can be extended to the points in V (J) ⊂
Ln+1 respectively. Let (ū1, b̄2, . . . , b̄n, r̄), (ū2, c̄2, . . . , c̄n, r̄) ∈ V (J) be the points extended from (ū1, r̄)

and (ū2, r̄). Then we have (ū1, b̄2, . . . , b̄n), (ū2, c̄2, . . . , c̄n) ∈ V (I) ⊂ Ln and r̄ = r(ū1, b̄2, . . . , b̄n) =

r(ū2, c̄2, . . . , c̄n) by the definition of J . But this contradicts with that r(x1, . . . , xn) is a separating

element on V (I). So we must have ū1 = ū2, and the claim is proved.

Next, let ū := ū1 = · · · = ūl, then q̄k can be expanded as

q̄k = (x1 − ū)mk = xmk
1 −mkūx

mk−1
1 + · · ·+ (−1)mk ūmk .

Let d̄k be the equivalent class of dk in K[r]/〈a〉, then we have ū = d̄k ∈ K[r]/〈a〉, and hence, q̄k =

(x1 − d̄k)
mk , which implies qk − (x1 − dk)

mk ∈ 〈a〉.
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(ii) We will only give the proof for the case i = 1, the proofs are the same for the others. Since the set

{sqrfree(p0/p1), x1 − d1} itself is a Gröbner basis w.r.t. the lex order with x1 > r, it suffices to show that√〈sqrfree(p0/p1), J1〉 = 〈sqrfree(p0/p1), x1−d1〉. Suppose sqrfree(p0/p1) = a1 . . . as, where a1, . . . , as are

irreducible polynomials in K[r].

First, we show that the following equation holds for each j where 1 � j � s:

√
〈aj , J1〉 = 〈aj , x− d1〉.

For each factor aj , Proposition 3.2 (i) indicates that there exists a unique integer k (1 � k � t) such

that aj | pk−1 and aj � pk, and the set {aj, (x1 − dk)
mk} is a Gröbner basis for the ideal 〈aj , J1〉 w.r.t.

the lex order with x1 > r, where dk = −coeff(qk, x
mk−1
1 )/mk and qk − (x1 − dk)

mk ∈ 〈aj〉. Therefore

〈aj , J1〉 = 〈aj , (x1 − dk)
mk〉, and √〈aj , J1〉 = 〈aj , x − dk〉 follows easily. By Lemma 2.2 (iv), we have

qk−hkq1 ∈ 〈p0/p1〉 ⊂ 〈aj〉, where hk ∈ K[x1, r]. As proved in Proposition 3.2 (i), qk− (x1−dk)
mk ∈ 〈aj〉

holds, so it follows that (x1 − dk)
mk − hkq1 ∈ 〈aj〉, which means q1 | (x1 − dk)

mk mod aj . Since

(K[r]/〈aj〉)[x1] is a unique factorization domain, we have q1 − (x1 − dk)
m1 ∈ 〈aj〉 where m1 = degx1

(q1).

Note that d1 = −coeff(q1, x
m1−1
1 )/m1, so we have d1 − dk ∈ 〈aj〉, and it follows that

√〈aj , J1〉 =

〈aj , x1 − dk〉 = 〈aj , x1 − d1〉.
Next, we show that √

〈a1 · · · as, J1〉 =
√

〈a1, J1〉 ∩ · · · ∩
√
〈as, J1〉.

The inclusion “ ⊂ ” holds obviously, and it suffices to show the inclusion “ ⊃ ” also holds. Let h be a

polynomial in
√〈a1, J1〉 ∩ · · · ∩√〈as, J1〉, then h ∈ √〈ai, J1〉 for each 1 � i � s. Hence there exists a

positive integer ni such that hni ∈ 〈ai, J1〉, and it follows that hn1+···+ns ∈ 〈a1 · · ·as, J1〉, which means

h ∈ √〈a1 · · ·as, J1〉.
Finally, since 〈a1 · · · as, x− d1〉 = 〈a1, x− d1〉 ∩ · · · ∩ 〈as, x− d1〉, we have

√
〈a1 · · ·as, J1〉 =

√
〈a1, J1〉 ∩ · · · ∩

√
〈as, J1〉

= 〈a1, x− d1〉 ∩ · · · ∩ 〈as, x− d1〉
= 〈a1 · · · as, x− d1〉,

which means
√〈sqrfree(p0/p1), J1〉 = 〈sqrfree(p0/p1), x1 − d1〉.

(iii) Since Q divides sqrfree(pi−1/pi), the conclusion is direct from Proposition 3.2 (ii).

In Theorem 3.1 and the above proposition, r(x1, . . . , xn) is always needed to be a separating element

on V (I). The following remark is used to check whether a polynomial is a separating element on V (I).

Remark 3.3. With notations defined above, let di = −coeff(qi, x
mi−1
1 )/mi for each 1 � i � t. If there

exists an integer k such that sqrfree(pk−1/pk) does not divide the polynomial qk − (x1 − dk)
mk , then the

polynomial r(x1, . . . , xn) is not a separating element on V (I).

The method based on the above remark for checking separating element can be integrated in the main

process of computing Di’s and we do not need to test separating element before the computations of Di’s.

Generally, the testing of separating element is usually redundant, since the probability that a randomly

chosen polynomial is a separating element is 1.

Proposition 3.2 provides a specific method for computing the polynomialD1 such that
√
J1=〈sqrfree(p0),

x1 −D1〉 where 〈p0〉 = J1 ∩K[r].

The basic ideal is that let Q1, . . . , Qs be polynomials in K[r] such that sqrfree(p0) = Q1 · · ·Qs. We

can obtain d1, . . . , ds ∈ K[r] easily such that 〈Qi, x1 − di〉 =
√〈Qi, J1〉. Note that gcd(Qi, Qj) = 1 if

i �= j. Next, a polynomial D1 such that D1 ≡ di mod Qi can be constructed by Chinese Remainder

Theorem. Then it is evident that
√
J1 = 〈sqrfree(p0), x1 −D1〉. Specifically, the above Qi’s and di’s can

be obtained in the following way.

First, let Q1 := sqrfree(p0/p1) and d1 := −coeff(q1, x
m1−1
1 )/m1. Clearly, Q1 �= 1. If Q1 does not

divide q1 − (x1 − d1)
m1 , then r(x1, . . . , xn) is not a separating element by Remark 3.3, which means

we have to choose another r(x1, . . . , xn) and start from the beginning again; otherwise, we will have
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〈Q1, x1 − d1〉 =
√〈Q1, J1〉 by Proposition 3.2. Let Q := sqrfree(p0)/Q1 which contains the remaining

factors of sqrfree(p0). If Q = 1, then all factors of sqrfree(p0) have been considered and the procedure

for finding Qi’s and di’s is over; otherwise, we should go to the next step.

Second, let k be the smallest integer such that gcd(Q, sqrfree(pk−1/pk)) �= 1. Then denote Q2 :=

gcd(Q, sqrfree(pk−1/pk)) and d2 := −coeff(qk, x
mk−1
1 )/mk. If Q2 does not divide qk − (x1 − d2)

mk ,

we choose another r(x1, . . . , xn) and repeat all the procedures from the beginning; otherwise, we have

〈Q2, x1 − d2〉 =
√〈Q2, J1〉. Now we update Q by Q := Q/Q2. If Q = 1, then the procedure is over;

otherwise, we find another k such that gcd(Q, sqrfree(pk−1/pk)) �= 1, and repeat the above process.

The procedure must terminate in finite steps, since Q becomes its proper factor after each update.

Let D1 be the polynomial constructed by Chinese Remainder Theorem such that D1 ≡ di mod Qi

for i = 1, . . . , s where Qi and di are obtained by the above method. Clearly, Qi divides sqrfree(p0),

gcd(Qi, Qj) = 1 for i �= j, and sqrfree(p0) = Q1 · · ·Qs since for any irreducible factor a of sqrfree(p0),

there always exists an integer k such that a | pk−1 and a � pk, which means a ∈ sqrfree(pk−1/pk).

Therefore, we have 〈Qi, x1 − di〉 = 〈Qi, x1 − D1〉 =
√〈Qi, J1〉, and hence 〈sqrfree(p0), x1 − D1〉 =√〈sqrfree(p0), J1〉 =

√
J1.

Remark 3.4. A natural method for computing a PUR for zero-dimensional ideal is based on the

following fact: 〈sqrfree(pi−1)/sqrfree(pi), J1〉 = 〈sqrfree(pi−1)/sqrfree(pi), (x1 − di)
mi〉 for 1 � i � n

where di = −coeff(qi, x
mi−1
1 )/mi. This approach is similar to solving systems of equations from the lex

order Gröbner basis. However, this method is less efficient than the new technique presented in this

paper, since sqrfree(pi−1/pi) usually contains more factors than sqrfree(pi−1)/sqrfree(pi).

4 Some details in implementation

Let I = 〈f1, . . . , fs〉 be a zero-dimensional ideal in K[x1, . . . , xn], G be a Gröbner basis for I, and

r(x1, . . . , xn) be a random polynomial in K[x1, . . . , xn]. Then the set G∪{r−r(x1, . . . , xn)} is a Gröbner

basis for J = 〈f1, . . . , fs, r − r(x1, . . . , xn)〉 ⊂ K[x1, . . . , xn, r] w.r.t. a block order with r > {x1, . . . , xn},
where r is an auxiliary variable.

If G is a Gröbner basis for the ideal J , then the Gröbner basis for the ideal J ∩K[xi, r] w.r.t. the lex

order with xi > r can be obtained by the FGLM algorithm [4] or MMM algorithm [6] within polynomial

time.

The probability that a random polynomial r(x1, . . . , xn) is a separating element on V (I) is 1. This has

been studied by many researchers, and we also give a proof for the following proposition in [11].

Proposition 4.1. Let K be a field of characteristic 0 and I be a zero-dimensional ideal in K[x1, . . . , xn],

then the probability that a random polynomial in K[x1, . . . , xn] is a separating element on V (I) is 1. If

the chosen polynomial is not a separating element, then a separating element can be obtained within finite

steps.

For the sake of efficiency, the polynomial r(x1, . . . , xn) is usually selected as a linear form of {x1, . . . , xn}
with coefficients in the field of rational numbers, in practical implementation.

5 An example

In this section, we use an illustrative example to show how the new method works.

Example 5.1. Let I = 〈x2(x − 1), (y − 2)2(y + 1)〉 be a zero-dimensional ideal of Q[x, y] where Q is

the rational number field. The set G = {x2(x− 1), (y− 2)2(y+1)} is a Gröbner basis for I w.r.t. the lex

order with x > y.

Next, we use the new method to compute a PUR for I.

Let r(x, y) := x+ y, then the set {x2(x− 1), (y− 2)2(y+1), r− x− y} is a Gröbner basis for the ideal

J = 〈x2(x− 1), (y − 2)2(y + 1), r − x− y〉 w.r.t. the lex order with r > x > y.
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Consider the linear map mr : [g] −→ [r(x, y)g] defined on the quotient ring Q[x, y]/I, we can compute

the characteristic polynomial P (λ) of mr. Substituting λ by r, we get

P (r) = r(r + 1)2(r − 3)2(r − 2)4.

First, we compute Dx ∈ Q[r] such that 〈sqrfree(P (r)), x − Dx〉 =
√〈sqrfree(P (r)), Jx〉 where Jx =

J ∩Q[x, r].

By using the MMM algorithm, we get the reduced Gröbner basis Gx for the ideal J ∩ K[x, r] w.r.t.

the lex order with x > r. The set Gx consists of the following polynomials:

p0 = r(r + 1)2(r − 3)2(r − 2)3,

g1 = (r − 2)

(
x+

1

96
r6 +

1

96
r5 − 25

96
r4 +

11

96
r3 + r2 − 3

8
r − 1

)
,

g2 = x2 +
3

32
r7 − 23

32
r6 +

51

32
r5 +

3

32
r4 − 59

16
r3 +

15

8
r2 +

9

4
r − 1.

Here p1 = r − 2, p2 = 1, q1 = g1/p1, q2 = g2/p2, m1 = 1 and m2 = 2. Note that sqrfree(P (r)) =

sqrfree(p0).

Let Q1 := sqrfree(p0/p1) = r(r + 1)(r − 2)(r − 3) and d1 := −coeff(q1, 1) = − 1
96r

6 − 1
96r

5 + 25
96r

4 −
11
96r

3 − r2 + 3
8r + 1. Note that Q1 divides q1 − (x − d1). Then we have 〈Q1, x − d1〉 =

√〈Q1, Jx〉.
Since Q = sqrfree(p0)/Q1 = 1, the polynomial d1 is the desired Dx such that 〈sqrfree(P (r)), x −Dx〉 =√〈sqrfree(P (r)), Jx〉. Note that we can simplify d1 via reducing d1 by sqrfree(p0). At last, we get

Dx = 1
4r

3 − 3
4r

2 + 1.

Similarly, we can compute Dy = − 1
4r

3 + 3
4r

2 + r − 1 such that

〈sqrfree(P (r)), y −Dy〉=
√

〈sqrfree(P (r)), Jy〉

where Jy = J ∩Q[y, r].

Finally, we obtain a Polynomial Univariate Representation of I:

P (r) = r(r + 1)2(r − 3)2(r − 2)4 = 0, x = Dx =
1

4
r3 − 3

4
r2 + 1, y = Dy = −1

4
r3 +

3

4
r2 + r − 1.

In the above example, the polynomial r(x, y) = x+ y is a separating element on V (I) . However, what

if r(x, y) is not a separating element? For example, let r(x, y) := 3x− y.

The set {x2(x − 1), (y − 2)2(y + 1), r − 3x + y} is a Gröbner basis for the ideal J = 〈x2(x − 1), (y −
2)2(y + 1), r − 3x+ y〉 w.r.t. the lex order with r > x > y. The corresponding characteristic polynomial

of mr is P (λ). By substituting λ with r, we get

P (r) = (r − 4)(r + 2)4(r − 1)4.

Next, we compute Dx ∈ Q[r] such that 〈sqrfree(P (r)), x − Dx〉 =
√〈sqrfree(P (r)), Jx〉 where Jx =

J ∩Q[x, r]. By using the MMM algorithm, the reduced Gröbner basis Gx for the ideal J ∩K[x, r] w.r.t.

the lex order with x > r, consists of:

p0 = (r − 4)(r − 1)2(r + 2)3,

g1 = (r + 2)(r − 1)2
(
x− 1

6
r − 1

3

)
,

g2 = x2 −
(
1

3
r +

2

3

)
x− 1

216
r5 +

5

72
r3 +

11

108
r2 − 1

18
r − 1

9
.

Here p1 = (r + 2)(r − 1)2, p2 = 1, q1 = g1/p1, q2 = g2/p2, m1 = 1 and m2 = 2.

Let Q1 := sqrfree(p0/p1) = (r − 4)(r + 2) and d1 := −coeff(q1, 1) = 1
6r +

1
3 . Note that Q1 divides

q1 − (x− d1), so we have 〈Q1, x− d1〉 =
√〈Q1, Jx〉. Since Q = sqrfree(p0)/Q1 = r − 1 �= 1, we go to the

next step.
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Let Q2 := gcd(Q, sqrfree(p1/p2)) = r − 1 and d2 := −coeff(q2, x)/2 = 1
6r +

1
3 . However, Q2 does not

divide q2 − (x− d2)
2, which means r(x, y) = 3x− y is not a separating element on V (I). In this case, we

have to choose another r(x, y) and start from the beginning again. Proposition 4.1 shows that by using

a specific method for choosing r(x, y), we can get a separating element within finite steps.

6 Conclusions and future works

A new method for computing a Polynomial Univariate Representation for a zero-dimensional ideal is

presented in this paper. This method is based on some interesting properties of Gröbner basis of zero-

dimensional ideals. If both the Gröbner basis of the zero-dimensional ideal and separating element

are given, then the complexity of our method is of polynomial time. The new method also includes

a new technique for testing separating elements. In our algorithm, we choose random polynomials as

candidates of separating elements. Since any random polynomial is a separating element with probability

1, our method is quite efficient.

According to our experimental data, we usually have sqrfree(p0/p1) = sqrfree(p0) in practical examples,

which means d1 = −coeff(q1, x
m1
1 )/m1 is just the polynomial D1 such that 〈sqrfree(p0), x1 − D1〉 =√〈sqrfree(p0), J1〉 where J1 = J ∩K[x1, r]. In this case, a PUR for I can be obtained quite efficiently.

We guess the probability that sqrfree(p0/p1) = sqrfree(p0) happens is 1, and we may prove this in the

future.

Some properties of Gröbner bases for zero-dimensional ideals in two variables are given in Lemma 2.2.

It seems that these properties remain true even if the number of variables is bigger than two. We believe

these properties can be further studied, and this will be included in our future work.
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