
Journal of Symbolic Computation 52 (2013) 124–142
Contents lists available at SciVerse ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

An efficient method for computing comprehensive Gröbner
bases ✩,✩✩

Deepak Kapur a, Yao Sun b,c, Dingkang Wang c

a Dept. of Computer Science, University of New Mexico, Albuquerque, NM, USA
b SKLOIS, Institute of Information Engineering, CAS, Beijing 100093, China
c KLMM, Academy of Mathematics and Systems Science, CAS, Beijing 100190, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 October 2011
Accepted 3 May 2012
Available online 6 August 2012

Keywords:
Gröbner basis
Comprehensive Gröbner basis
Comprehensive Gröbner system
Stability condition

A new approach is proposed for computing a comprehensive Gröb-
ner basis of a parameterized polynomial system. The key new idea
is not to simplify a polynomial under various specialization of its
parameters, but rather keep track in the polynomial, of the power
products whose coefficients vanish; this is achieved by partition-
ing the polynomial into two parts—nonzero part and zero part
for the specialization under consideration. During the computa-
tion of a comprehensive Gröbner system, for a particular branch
corresponding to a specialization of parameter values, nonzero
parts of the polynomials dictate the computation, i.e., computing
S-polynomials as well as for simplifying a polynomial with re-
spect to other polynomials; but the manipulations on the whole
polynomials (including their zero parts) are also performed. Once
a comprehensive Gröbner system is generated, both nonzero and
zero parts of the polynomials are collected from every branch and
the result is a faithful comprehensive Gröbner basis, to mean that
every polynomial in a comprehensive Gröbner basis belongs to the
ideal of the original parameterized polynomial system. This tech-
nique should be applicable to all algorithms for computing a com-
prehensive Gröbner system, thus producing both a comprehensive
Gröbner system as well as a faithful comprehensive Gröbner basis
of a parameterized polynomial system simultaneously. To propose
specific algorithms for computing comprehensive Gröbner bases,
a more generalized theorem is presented to give a more general-
ized stable condition for parametric polynomial systems. Combined

✩ This paper is an expanded version of the paper entitled “Computing comprehensive Gröbner systems and comprehensive
Gröbner bases simultaneously” that is presented at ISSAC’2011 (Kapur et al., 2011).
✩✩ The first author is supported by the National Science Foundation award CCF-0729097 and the last two authors are
supported by NKBRPC 2011CB302400, NSFC 10971217, 60970152 and 61121062.

E-mail addresses: kapur@cs.unm.edu (D. Kapur), sunyao@iie.ac.cn (Y. Sun), dwang@mmrc.iss.ac.cn (D.K. Wang).
0747-7171/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jsc.2012.05.015

http://dx.doi.org/10.1016/j.jsc.2012.05.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:kapur@cs.unm.edu
mailto:sunyao@iie.ac.cn
mailto:dwang@mmrc.iss.ac.cn
http://dx.doi.org/10.1016/j.jsc.2012.05.015

D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142 125
with the new approach, the new theorem leads to two efficient al-
gorithms for computing comprehensive Gröbner bases. The timings
on a collection of examples demonstrate that both these two new
algorithms for computing comprehensive Gröbner bases have bet-
ter performance than other existing algorithms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The concept of a comprehensive Gröbner basis was introduced by Weispfenning (1992) as a special
basis of a parametric polynomial system such that for every possible specialization of its parameters,
the basis obtained from the comprehensive Gröbner basis serves as a Gröbner basis of the ideal
generated by the specialization of the parametric polynomial system (see also Kapur, 1995, where
a related concept of a parametric Gröbner basis is introduced).

Generally, a faithful comprehensive Gröbner basis for a given polynomial set F is harder to com-
pute than a comprehensive Gröbner system of F . The difficulty of computing a faithful comprehensive
Gröbner basis of F is that all the polynomials in this comprehensive Gröbner basis should be faithful
polynomials, i.e., these polynomials should belong to the ideal 〈F 〉, while the polynomials in a com-
prehensive Gröbner system of F are not necessarily faithful polynomials. Therefore, the algorithms for
computing comprehensive Gröbner systems usually have better performance than those for compre-
hensive Gröbner bases. Consequently, a mainstream approach for computing a comprehensive Gröbner
basis is to compute a faithful comprehensive Gröbner system, i.e. all the polynomials appearing in this
comprehensive Gröbner system are faithful polynomials. In Weispfenning (1992), Weispfenning gave
a method of preserving all polynomials faithful during computations of a comprehensive Gröbner sys-
tem. However, Weispfenning’s method, which colors different parts of the polynomials appearing in
the computation, is complicated and not efficient.

We present in this paper, an efficient method to keep track of faithful polynomials during the
computations, such that a comprehensive Gröbner basis of a parametric polynomial system can be
constructed more efficiently. The key idea is to split a polynomial into two parts—nonzero part and
zero part for the specialization under consideration. The proposed idea can be used in all algorithms
for computing comprehensive Gröbner systems, including Weispfenning’s (Weispfenning, 1992), Ka-
pur’s (Kapur, 1995), Montes’ (Montes, 2002; Manubens and Montes, 2006, 2009; Montes and Wibmer,
2010), Wang’s (Chen et al., 2005), Suzuki–Sato’s (Suzuki and Sato, 2006), Nabeshima’s (Nabeshima,
2007) as well as our recently proposed algorithm (Kapur et al., 2010).

To illustrate the key idea, let us consider Example 8.4 from Weispfenning (2003) where Weispfen-
ning defined the concept of a canonical comprehensive Gröbner basis of a parametric polynomial
system to mimic the concept of a reduced Gröbner basis of a polynomial system determined by the
associated ideal and term order. Suppose there are two polynomials f , g ∈ k[u, v][x, y]:

f = y + ux + v, g = uy + x + v.

Further, suppose we are interested in computing Gröbner basis with the lexicographic order in-
duced by y � x.

Clearly, f can be used to simplify g , resulting in

h = g − u f = (
1 − u2)x − uv + v.

In fact, g can be deleted without any loss of generality. Based on the specialization of u and v , the
leading power product of h is either x or 1.

For the branch where 1 − u2 �= 0, the nonzero part of h is (1 − u2)x + (−uv + v). Since both f
and h have noncomparable leading power products, { f ,h} constitutes a Gröbner basis for this branch
for those specializations satisfying 1 − u2 �= 0.

For the branch, where 1 − u2 = 0 and −uv + v �= 0 for all those specializations of u and v , the
nonzero part of h is −uv + v and the zero part of h is (1 − u2)x. For this branch, a Gröbner basis
is {h}, since the leading power product of the nonzero part of h is 1, which reduces every other power

126 D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142
product. If h is simplified using the specializations of u and v, the Gröbner basis would have been {1}.
However, such a Gröbner basis is not faithful, since 1 is not in 〈 f , g〉. But to maintain the faithfulness,
we keep h instead.

Finally, for the branch where 1− u2 = 0 and −uv + v = 0, h vanishes completely. And, the nonzero
part of f is itself, since the leading coefficient of f is 1. A Gröbner basis for this branch is { f }; if the
specialization of u and v had been used to simplify f , we have {y + x + v} as a Gröbner basis.

Using the proposed algorithm, a comprehensive Gröbner system consists of three branches:
a branch corresponding to specializations satisfying 1 − u2 �= 0, for which { f ,h} is a Gröbner ba-
sis for a 0-dimensional specialization; another branch, corresponding to the specialization satisfying
1−u2 = 0, −uv + v �= 0 (which can be further simplified to u +1 = 0, v �= 0), for which {h} is a Gröb-
ner basis for the ideal generated by 1; the last branch corresponds to the specialization 1 − u2 = 0
and −uv + v = 0, for which { f } is a Gröbner basis for the one-dimensional ideal.

The key difference between the output of this algorithm and other algorithms including our al-
gorithm in Kapur et al. (2010), is that a Gröbner basis in every branch in a comprehensive Gröbner
system is a subset of the original ideal, and hence contributes to a comprehensive Gröbner basis.

A faithful comprehensive Gröbner basis for the above system can be easily constructed by taking
the union of Gröbner bases along all the branches; for every possible specialization, there is exactly
one branch generating a Gröbner basis for the specialized ideal; furthermore, by construction, all the
polynomials are in the ideal of the original system. For the above example, a comprehensive Gröbner
basis is { f ,h}.1

Based on the ideas illustrated for the above example, we propose in this paper, an efficient method
of computing a faithful comprehensive Gröbner basis. The key idea is that, during computations of a
comprehensive Gröbner system, the zero part of a polynomial under a specialization is also kept in a
tuple representation so as to recover the original polynomial when needed. Specifically, when com-
puting a comprehensive Gröbner system of the set F ⊂ k[U][X], we use a tuple (q, q̄) ∈ (k[U][X])2 to
replace each polynomial p = q + q̄ in the computation, with the following properties: (i) p ∈ 〈F 〉, and
(ii) q̄ is 0 under the specialization of parameters being considered. When a comprehensive Gröbner
system of F is obtained, then for each tuple (g, ḡ) in this comprehensive Gröbner system, we recover
the faithful polynomial g + ḡ; this way, a comprehensive Gröbner basis of F is obtained simultane-
ously with the comprehensive Gröbner system.

An important feature of this new method is that it can be implemented in any algorithm for
computing comprehensive Gröbner systems to obtain faithful comprehensive Gröbner bases simulta-
neously. Consequently, the algorithm can exploit the efficiency of existing Gröbner bases algorithms.
In particular, it uses the efficient algorithm proposed in Kapur et al. (2010) for computing a compre-
hensive Gröbner system which has the following properties:

• Branches (segments) generated are disjoint and constitute a partition of the parameter space.
• Consistency of parametric constraints is tested, so empty segments along branches are not gener-

ated.
• The leading coefficients of polynomials in each branch are not zero under the specializations

associated with the branch.

To illustrate how this approach works, we first propose a more generalized stable condition for
parametric polynomial systems, and then present two efficient algorithms for computing compre-
hensive Gröbner bases based on the new stable condition. This new proposed stable condition is
a substantially improved version of Kalkbrener’s stable condition (Kalkbrener, 1997), and it completes
the theory of computing comprehensive Gröbner systems that are presented in Kapur et al. (2010).

Comprehensive Gröbner basis and Gröbner system constructions have been found useful in many
engineering applications which can be modeled using parameterized polynomial systems; see Donald
et al. (1992), Gao et al. (2003), Montes (2002) for examples of some applications. These constructions

1 An interested reader would notice that this result is different from the one reported in Weispfenning (2003). In fact, the
canonical comprehensive Gröbner basis reported there for the same order is a proper superset of the above result, suggesting
that after all, the definition in Weispfenning (2003) does not quite capture the notion of minimality and hence, canonicity.

D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142 127
have also been found useful for automated geometry theorem proving (Chen et al., 2005) and auto-
mated geometry theorem discovery (Montes and Recio, 2007), as well as more recently, for computing
loop invariants in program analysis (Kapur, 2006). Solving parametric polynomial systems has also
been investigated by Chou and Gao (1992) and Chen et al. (2007) using the characteristic set con-
struction, as well as by Wibmer (2007) using Gröbner cover.

This paper is an expanded version of the paper entitled “Computing comprehensive Gröbner sys-
tems and comprehensive Gröbner bases simultaneously” that is presented at ISSAC’2011 (Kapur et al.,
2011). The paper is organized as follows. We give some notations and definitions in Section 2. The
new technique mentioned above is described in Section 3. We propose a new stable condition for
parametric polynomial systems and two new algorithms for computing comprehensive Gröbner bases
in Section 4. A simple example illustrates one of the proposed algorithms in Section 5. Empirical data
and comparison with other existing algorithms are presented in Section 6. Concluding remarks follow
in Section 7.

2. Notations and definitions

Let k be a field, R be the polynomial ring k[U] in the parameters U = {u1, . . . , um}, and R[X] be
the polynomial ring over the parameter ring R in the variables X = {x1, . . . , xn} where X ∩ U = ∅, i.e.
X and U are disjoint sets.

Let PP(X), PP(U) and PP(U , X) be the sets of power products of X , U and X ∪ U respectively. The
order ≺X,U is an admissible block term order on PP(U , X) where U � X . The orders ≺X and ≺U are
the restrictions of ≺X,U on PP(X) and PP(U) respectively.

For a polynomial f ∈ R[X] = k[U][X], the leading power product, leading coefficient and leading
monomial of f w.r.t. the order ≺X are denoted by lppX (f), lcX (f) and lmX (f) respectively. Note
that lppX (f) ∈ PP(X). Since f can also be regarded as an element of k[U , X], in this case, the leading
power product, leading coefficient and leading monomial of f w.r.t. the order ≺X,U are denoted by
lppX,U (f), lcX,U (f) and lmX,U (f) respectively. For f , we always have lmX (f) = lcX (f) lppX (f) and
lmX,U (f) = lcX,U (f) lppX,U (f).

Given a field L, a specialization of R is a homomorphism σ : R −→ L. In this paper, we always
assume L to be an algebraically closed field containing k and we only consider the specializations
induced by the elements in Lm . That is, for ā ∈ Lm , the induced specialization σā is defined as follows:

σā : f −→ f (ā),

where f ∈ R . Every specialization σ : R −→ L extends canonically to a specialization σ : R[X] −→
L[X] by applying σ coefficient-wise.

For a parametric polynomial system, the comprehensive Gröbner system and comprehensive Gröb-
ner basis are defined below.

Definition 2.1 (CGS). Let F be a subset of R[X], A1, . . . , Al be algebraically constructible subsets of Lm ,
G1, . . . , Gl be subsets of R[X], and S be a subset of Lm such that S ⊆ A1 ∪ · · · ∪ Al . A finite set G =
{(A1, G1), . . . , (Al, Gl)} is called a comprehensive Gröbner system on S for F , if σā(Gi) is a Gröbner
basis for the ideal 〈σā(F)〉 in L[X] for any ā ∈ Ai and i = 1, . . . , l. Each (Ai, Gi) is called a branch of G .
If S = Lm , then G is simply called a comprehensive Gröbner system for F .

A comprehensive Gröbner system G = {(A1, G1), . . . , (Al, Gl)} for F is called faithful, if in addition,
every element of Gi is also in 〈F 〉.

For a set F ⊂ R = k[U], the variety defined by F in Lm is denoted by V (F). In this paper, the
constructible set Ai always has the form: Ai = V (Ei) \ V (Ni), where Ei , Ni are subsets of k[U]. Par-
ticularly, we call Ei and Ni equality constraints and disequality constraints respectively. Clearly, if the
set Ai = V (Ei) \ V (Ni) is empty, the branch (Ai, Gi) is redundant.

Definition 2.2 (CGB). Let F be a subset of R[X] and S be a subset of Lm . A finite subset G in R[X] is
called a comprehensive Gröbner basis on S for F , if σā(G) is a Gröbner basis for the ideal 〈σā(F)〉
in L[X] for any ā ∈ S . If S = Lm , then G is simply called a comprehensive Gröbner basis for F .

128 D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142
A comprehensive Gröbner basis G for F is called faithful, if in addition, every element of G is also
in 〈F 〉.

A typical approach to compute a comprehensive Gröbner basis on S for F is to compute a faithful
comprehensive Gröbner system G = {(A1, G1), . . . , (Al, Gl)} on S for F ⊂ R[X] first. Since G is faithful,
we have Gi ⊂ 〈F 〉 for i = 1, . . . , l. Then the set G1 ∪ · · · ∪ Gl is a comprehensive Gröbner basis on S
for F . However, almost all known algorithms for computing comprehensive Gröbner systems output
non-faithful comprehensive Gröbner systems, since polynomials get simplified based on parameter
specialization. So the main challenge for computing a comprehensive Gröbner basis is to retrieve
the terms that are simplified by parameter specializations. In the next section, we propose a new
approach for this purpose.

3. A polynomial as a tuple under parameter specialization

As mentioned in the introduction and illustrated using an example, the key new idea in our ap-
proach is to keep track of polynomials in 〈F 〉 while computing various Gröbner bases under different
parameter specializations. If some terms in these polynomials vanish due to specialization of param-
eters during the computation of a comprehensive Gröbner system, this information can be kept by
splitting the polynomial into the nonzero part and the zero part under the specialization.

A polynomial p ∈ 〈F 〉 is replaced by a tuple (q, q̄) along a branch of a comprehensive Gröbner
system computation for a specialization of parameters from a constructible set Ai , such that

(i) p = q + q̄, and further,
(ii) σ(q̄) is 0 for every parameter specialization σ from Ai .

We call (q, q̄) an admissible tuple representation of p in the ideal 〈F 〉 w.r.t. Ai .
For an admissible tuple representation (q, q̄) of p, the polynomial q̄ corresponds to the zero part

of p, because q̄ is 0 under the specializations from Ai . The polynomial q will appear in the branches
of comprehensive Gröbner systems, and it is supposed to be the nonzero part of p, although we do
not include the condition “σ(lcX (q)) �= 0 for any specialization from Ai” in the above definition. The
additional condition is excluded because this property is not preserved under addition. However, as
the reader would observe that, all existing algorithms for computing comprehensive Gröbner systems
aim to make lcX (q) nonzero under the specializations from Ai .

Since general polynomials are replaced by admissible tuple representations, we next show how to
manipulate admissible tuple representations in practical computations.

3.1. Basic operations

Let us see the addition and multiplication of admissible tuple representation of polynomials from
an ideal. Given admissible tuple representations (p, p̄) and (q, q̄) of p + p̄ and q + q̄ in 〈F 〉, w.r.t. Ai ,
the sum of (p, p̄) and (q, q̄) is (p + q, p̄ + q̄), which is also an admissible tuple representation of
p + q + p̄ + q̄ in the ideal 〈F 〉 w.r.t. Ai . Furthermore, given a polynomial r ∈ R[X], the product of
(p, p̄) and r is (r · p, r · p̄), also an admissible tuple representation of r · p + r · p̄ in the ideal 〈F 〉
w.r.t. Ai .

Next, let us now consider other operations on admissible tuple representations while comput-
ing a comprehensive Gröbner system. In Gröbner basis computations, there are two crucial steps:
S-polynomial construction from a pair of distinct polynomials and simplification of a polynomial by
another polynomial. In addition, we also need to simplify polynomials according to equality and dis-
equality constraints on parameters.

For a constructible set Ai and two admissible tuple representations p = (p, p̄), q = (q, q̄) of p + p̄
and q + q̄ in an ideal 〈F 〉 w.r.t. Ai , respectively, assuming both lcX (p) and lcX (q) are nonzero w.r.t. Ai ,
their S-polynomial is defined to be

lcX (q)tp · p − lcX (p)tq · q = (
lcX (q)tp p − lcX (p)tqq, lcX (q)tp p̄ − lcX (p)tqq̄

)
,

D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142 129
where tp = lcm(lppX (p),lppX (q))

lppX (p)
and tq = lcm(lppX (p),lppX (q))

lppX (q)
. Clearly, the S-polynomial of p and q is also

an admissible tuple representation of the polynomial lcX (q)tp(p + p̄)− lcX (p)tq(q + q̄) in 〈F 〉 w.r.t. Ai .
Similarly, along a branch corresponding to a constructible set Ai , assuming lppX (g) divides lppX (f)

and lcX (g) is nonzero w.r.t. Ai , the result of reducing (simplifying) f = (f , f̄) by g = (g, ḡ) is

lcX (g) · f − lcX (f)t · g = (
lcX (g) f − lcX (f)tg, lcX (g) f̄ − lcX (f)t ḡ

)
,

where t = lppX (f)
lppX (g)

. The result is an admissible tuple representation of the simplified polynomial in the
ideal of 〈F 〉.

Next, let us consider simplifying an admissible tuple representation by the equality and disequality
constraints. Let p = (p, p̄) be an admissible tuple representation of p + p̄ in 〈F 〉 w.r.t. Ai = V (Ei) \
V (Ni), with Ei, Ni ⊂ k[U]. We next simplify p by Ai in the following way. If lcX (p) is zero w.r.t. Ai ,
then the tuple (p, p̄) is simplified to (q, q̄) by moving all terms in p that vanish into q̄ such that
p + p̄ = q + q̄ and the leading coefficient of q is not always zero for the specializations from Ai and q̄
is 0 w.r.t. Ai . Note that (q, q̄) is admissible tuple representation of q + q̄ = p + p̄ in 〈F 〉 w.r.t. Ai .

For an admissible tuple representation (p, p̄) of the polynomial p + p̄ in 〈F 〉 w.r.t. Ai , we usually
require lcX (p) to be nonzero w.r.t. Ai during computations along a branch for Ai . This condition can
be achieved by expanding the constructible set Ai , and this method has been used in many algorithms
including Kapur (1995), Montes (2002), Chen et al. (2005). For example, let h = lcX (p) ∈ k[U], and h
is not always zero under the specializations from Ai = V (Ei) \ V (Ni), where Ei, Ni ⊂ k[U]. In order to
make lcX (p) nonzero, we set A′

i = V (Ei) \ V (h × Ni), where h × Ni = {hn | n ∈ Ni}. Then lcX (p) will be
nonzero w.r.t. A′

i . In case h = 0, we can continue to consider the tuple (p, p̄) w.r.t. the constructible
set A′′

i = V (Ei ∪ {h}) \ V (Ni): that is, simplify (p, p̄) to (q, q̄) by A′′
i first, and then repeat the above

discussions if lcX (q) is not always zero w.r.t. A′′
i .

In algorithms for computing a comprehensive Gröbner system from F , if we use the above admis-
sible tuple representation of polynomials in F and perform the above S-polynomial and reduction as
defined above on tuples, then for each branch, we get a finite set of admissible tuples such that their
first components constitute a Gröbner basis of F under the parameter specialization belonging to Ai .
Furthermore, these constructions produce tuples such that the polynomials corresponding to them,
obtained by adding the two components of the tuple, are in the ideal 〈F 〉. In this way, a faithful
Gröbner basis is generated for every branch corresponding to Ai .

The operations in this section are only basic operations for admissible tuple representations. To
manipulate tuples more efficient in practical implementations, we next introduce another two kinds
of operations: module operations and polynomial operations.

3.2. Module operations

Another way to manipulate admissible tuple representations of polynomials is to consider tuples
as elements in a module and use corresponding module operations. Below we discuss this; for termi-
nologies on “module” computations, an interested reader can refer to Chapter 5 of Cox et al. (2005).

Let F be a subset of R[X] and Ai be a constructible set. Then

M(F , Ai) = {
(p, p̄)

∣∣ p + p̄ ∈ 〈F 〉 and σā(p̄) = 0 for all ā ∈ Ai
}

is the set of all admissible tuple representations of polynomials from 〈F 〉 w.r.t. Ai . Clearly, M(F , Ai) ⊂
(R[X])2 is an R[X]-module with the following operations:

1. for p = (p, p̄),q = (q, q̄) ∈ M(F , Ai), p + q := (p + q, p̄ + q̄) ∈ M(F , Ai), and
2. for p = (p, p̄) ∈ M(F , Ai) and r ∈ R[X], r · p := (r · p, r · p̄) ∈ M(F , Ai).

Since M(F , Ai) is a module, we can use general definitions of the S-polynomial and reduction in a
module. To make these definitions consistent with those defined on tuples in the last subsection, it
suffices to extend the term order defined on R[X] to the free R[X]-module (R[X])2 in a POT (position
over term) fashion with (1,0) � (0,1). More precisely, let e1 = (1,0), e2 = (0,1); then for i, j = 1,2,

xαei � xβe j iff

{ i < j,
or

α β
i = j and x � x .

130 D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142
An important operation for computing a comprehensive Gröbner system is simplifying (p, p̄) ∈
M(F , Ai) w.r.t. Ai . As mentioned earlier, we can simplify (p, p̄) to (q, q̄) by moving all terms in p
that vanish into q̄ such that p + p̄ = q + q̄ and the leading coefficient of q is not always zero for the
specializations from Ai and q̄ is 0 w.r.t. Ai . This simplification can also be expressed using module
operations. Assume Ai = V (Ei) \ V (Ni) where Ei, Ni ⊂ R and 〈Ei〉 is radical. Then simplifying (p, p̄)

w.r.t. Ai is equivalent to reducing (p, p̄) by the set {(e,−e) | e ∈ Ei} ⊂ M(F , Ai). For example, let
F = {ax2 + bx +a + 1} ⊂ Q[a,b][x], Ai = V (Ei) = V ({a,b − 1}) and p = (ax2 + bx +a + 1,0) ∈ M(F , Ai).
Then p = (ax2 + bx + a + 1,0) can be reduced to (x + 1,ax2 + bx − x + a) as follows:(

ax2 + bx + a + 1,0
) − (

x2 + 1
) · (a,−a) − x · (b − 1,1 − b) = (

x + 1,ax2 + bx − x + a
)
.

Notice that the result is also an element in M(F , Ai), since (a,−a), (b − 1,1 − b) ∈ M(F , Ai).

3.3. Polynomial operations

Another way to represent a tuple of polynomials is by a single polynomial using an extra variable
such that this extra variable separates the two parts of the tuple. All tuple operations can then be im-
plemented efficiently on the corresponding polynomials. We think that this might be the motivation
behind the trick used in Suzuki and Sato (2006).

The key idea is that for an admissible tuple representation (p, p̄) of p + p̄ in 〈F 〉 w.r.t. a con-
structible set Ai , we use the polynomial py + p̄ in the polynomial ring R[X, y] to represent (p, p̄),
where y is a new variable different from parameters U and unknowns X . In this case, the set

M(F , Ai) = {
py + p̄

∣∣ p + p̄ ∈ 〈F 〉 and σā(p̄) = 0 for all ā ∈ Ai
}

is isomorphic to the set of all admissible tuple representations of polynomials from 〈F 〉 w.r.t. Ai .
M(F , Ai) is still an R[X]-module and is not substantially different from the module defined in the

last subsection. A polynomial py + p̄ from M(F , Ai) corresponds to an admissible tuple representation
of the polynomial p + p̄ in 〈F 〉 w.r.t. Ai .

Operations on the elements in M(F , Ai) can be done by the following polynomial operations:

1. for f = py + p̄, g = qy + q̄ ∈ M(F , Ai), f + g := (p + q)y + p̄ + q̄, and
2. for f = py + p̄ ∈ M(F , Ai) and r ∈ R[X], r f := rpy + r p̄.

The S-polynomial of f and g in M(F , Ai) is defined to be spoly(f , g), where spoly(f , g) is the gen-
eral S-polynomial defined in a polynomial ring. The reduction of elements in M(F , Ai) is no different
from the general reduction defined in a polynomial ring. To make the definitions of S-polynomial
and reduction consistent with the corresponding definitions of admissible tuple representations, we
require the term order on R[X, y] to be a block order with X � y.

Simplification of a polynomial py + p̄ w.r.t. Ai = V (Ei) \ V (Ni), where Ei, Ni ⊂ R , is similar as
the module case. That is, simplifying py + p̄ w.r.t. Ai is equivalent to reducing py + p̄ by the set
{ey − e | e ∈ Ei}.

Note that since we require X � y, the polynomials, whose degrees are greater than 2 in y, will
not be generated by the above operations.

3.4. Duplication of manipulations done on the first components

As the reader might have noticed, it suffices to perform various Gröbner basis operations only on
the first component of the tuple representation of a polynomial from the input ideal to generate a
comprehensive Gröbner system. However, to compute a comprehensive Gröbner basis consisting of
faithful polynomials from the input ideal, the same operations have to be done on the second compo-
nent also, even though computations on the second components do not affect the overall computation
of a Gröbner basis along a branch under a specialization.

In this way, another method of handling admissible tuple representations appears. That is, record-
ing the manipulations done on the first components first, and then act these manipulations to the

D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142 131
second components afterward. Specifically, let (p1, p̄1), . . . , (ps, p̄s) be several admissible tuple repre-
sentations of polynomials in 〈F 〉 w.r.t. Ai , and p be a polynomial computed from p1, . . . , ps , i.e. there
exist q1, . . . ,qs in R[X], such that: p = q1 p1 + · · · + qs ps. Then the tuple (p,q1 p̄1 + · · · + qs p̄s) is an
admissible tuple representation of some polynomial in 〈F 〉 w.r.t. Ai .

In specific algorithms for computing comprehensive Gröbner systems for the polynomials
{p1, . . . , ps} ⊂ R[X], the Gröbner basis for the ideal generated by {p1, . . . , ps} is usually needed. So a
Gröbner basis implementation that also provides information about how the elements of a Gröbner
basis can be obtained from the input basis (i.e., the representation of each element of a Gröbner
basis in terms of the input basis), can be used to derive the required information about the second
components; hence, in this way, the faithful polynomial corresponding to the first component can be
generated.

General methods of getting information about Gröbner basis elements in terms of the input basis
are very expensive. However, using the results from Sun and Wang (2011) as well as Sun et al. (2012),
if one uses the F5 algorithm or other signature-based algorithms to compute a Gröbner basis, then
the desired information can be constructed from the outputs of these algorithms within polynomial
time.

4. New algorithms for computing comprehensive Gröbner bases

The algorithm proposed in Kapur et al. (2010) is an efficient algorithm for computing comprehen-
sive Gröbner systems. In this section, we first present a stability condition for parametric polynomial
systems. We use this stability condition later to compute comprehensive Gröbner bases.

Theorem 4.1. Let G be a Gröbner basis for an ideal 〈F 〉 ⊂ R[X] w.r.t. an admissible order ≺ in X and σ be a
specialization from R to L. Let Gm be a subset of G such that σ(lcX (g)) �= 0 for any g ∈ Gm. Let Gredund be
the set {g ∈ G \ Gm | there exists g′ ∈ Gm such that lppX (g′) divides lppX (g)}, and G0 = G \ (Gm ∪ Gredund).
Then the following two conditions are equivalent.

(1) σ(Gm) = {σ(g) | g ∈ Gm} is a Gröbner basis for 〈σ(F)〉 in L[X] w.r.t. ≺.
(2) For every g ∈ G0 , the polynomial σ(g) is reducible to 0 modulo σ(Gm).

It should be noted that the above Gm does not necessarily contain all the g ’s that satisfies
σ(lcX (g)) �= 0 in G .

Proof. The proof for (1) ⇒ (2) is trivial, since σ(g) ∈ 〈σ(F)〉 for any g ∈ G0. Next, we prove (2) ⇒ (1).
We first claim σ(lcX (g)) = 0 for every g ∈ G0. If σ(lcX (g)) �= 0, then by (2), there exists g′ ∈ Gm

such that lppX (g′) divides lppX (g). This means g must be in the set Gm or Gredund by definition,
which is a contradiction with g ∈ G0 = G \ (Gm ∪ Gredund).

Next, to prove σ(Gm) is a Gröbner basis for 〈σ(F)〉, it suffices to show that for any f ∈ 〈F 〉, there
exists g ∈ Gm such that lppX (σ (g)) divides lppX (σ (f)). Similarly to the proof for Theorem 3.1 in
Kalkbrener (1997), we do the proof by induction on ≺.

Induction basis: Consider the case lppX (f) = 1. Since G is a Gröbner basis for 〈F 〉, there must
exist some g ∈ G such that lppX (g) divides lppX (f) = 1, i.e. lppX (g) = 1.

If there exists g ∈ Gm ∪ Gredund such that lppX (g) = 1, then there must exist g′ ∈ Gm such that
lppX (g′) = 1 by the definition of Gredund . In this case, lppX (σ (g′)) divides lppX (σ (f)) no matter
f = 0 or not.

Otherwise, the set H = {g ∈ G | lppX (g) = 1} is a subset of G0. Assume H = {h1, . . . ,hs}. Then
there exist c1, . . . , cs ∈ R such that lcX (f) = c1lcX (h1) + · · · + cslcX (hs). Since lppX (f) = 1, we have
lcX (f) = f . Then we must have σ(f) = 0, because σ(lcX (hi)) = 0 by the above claim.

Induction step: Consider the case lppX (f) � 1. We assume for any f ′ ∈ 〈F 〉 with lppX (f ′) ≺
lppX (f), there always exists g ∈ Gm such that lppX (σ (g)) divides lppX (σ (f ′)).

If there exists g ∈ Gm ∪ Gredund such that lppX (g) divides lppX (f), then there must exist g′ ∈ Gm
such that lppX (g′) divides lppX (f) by the definition of Gredund . Next we discuss two cases depending
on whether σ(lcX (f)) is 0 or not.

132 D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142
1. If σ(lcX (f)) �= 0, then lppX (σ (f)) = lppX (f), and hence, lppX (σ (g′)) divides lppX (σ (f)).
2. If σ(lcX (f)) = 0, then the polynomial

f ′ = lcX
(

g′) f − lcX (f)
(
lppX (f)/ lppX

(
g′))g′

is in 〈F 〉. Moreover, we have lppX (f ′) ≺ lppX (f) and σ(f ′) = σ(lcX (g′))σ (f). By induction as-
sumption, there exists g′′ ∈ Gm such that lppX (σ (g′′)) divides lppX (σ (f ′)) = lppX (σ (f)).

Otherwise, the set H = {g ∈ G | lppX (g) divides lppX (f)} is a subset of G0. Assume H =
{h1, . . . ,hs}. Then there exist c1, . . . , cs ∈ R such that lcX (f) = c1lcX (h1)+· · ·+cslcX (hs). Note that the
claim indicates σ(lcX (hi)) = 0, and hence σ(lcX (f)) = 0. By (2), for each hi ∈ H , the polynomial σ(hi)

is reducible to 0 modulo σ(Gm). Similar to the proof of Theorem 3.1 in Kalkbrener (1997), there ex-
ist an h̄i ∈ 〈F 〉 and a bi ∈ R \ ker(σ) with σ(bi)σ (hi) = σ(h̄i) and lppX (hi) � lppX (σ (hi)) = lppX (h̄i).
Consider the polynomial

f ′ = bf − (b/b1)c1
(
lppX (f)/ lppX (h1)

)
(b1h1 − h̄1) − · · ·

− (b/bs)cs
(
lppX (f)/ lppX (hs)

)
(bshs − h̄s),

where b = b1b2 · · ·bs . Obviously, we have f ′ ∈ 〈F 〉 and lppX (f ′) ≺ lppX (f). Note that σ(bihi − h̄i) = 0
and σ(b) �= 0. So we also have σ(f ′) = σ(b)σ (f). By induction assumption, there exists g′′ ∈ Gm such
that lppX (σ (g′′)) divides lppX (σ (f ′)) = lppX (σ (f)). �

The reader would notice that in the statement of Theorem 4.1, Gm is not required to be mini-
mal, i.e., for any two distinct g1, g2 ∈ Gm , lppX (g1) could be a multiple of lppX (g2), since we want
to establish below Theorem 3.1 in Kalkbrener (1997) immediately follow from the above theorem.
A set Gm in Theorem 4.1 can be selected to require that for any two distinct g1, g2 ∈ Gm , neither
lppX (g1) is a multiple of lppX (g2) nor lppX (g2) is a multiple of lppX (g1) in order to obtain a min-
imal Gröbner basis for 〈σ(F)〉. Further, in Theorem 4.1, we have that σ(lcX (g)) �= 0 for any g ∈ Gm ,
and σ(lcX (g)) = 0 for any g ∈ G0, which is proved as a claim in the proof of Theorem 4.1. However,
for g ∈ Gredund, there is no condition on σ(lcX (g)) being 0 or not.

Corollary 4.2. (See Kalkbrener, 1997.) Let G = {g1, . . . , gs} be a Gröbner basis for the ideal 〈F 〉 ⊂ R[X] w.r.t.
an admissible order ≺ in X, and σ be a specialization from R to L. We assume that the gi ’s are ordered in
such a way that there exists an r ∈ {0, . . . , s} with σ(lcX (gi)) �= 0 for i ∈ {1, . . . , r} and σ(lcX (gi)) = 0 for
i ∈ {r + 1, . . . , s}. Then the following two conditions are equivalent.

(1) {σ(g1), . . . , σ (gr)} is a Gröbner basis for 〈σ(F)〉 w.r.t. ≺.
(2) For every i ∈ {r + 1, . . . , s}, the polynomial σ(gi) is reducible to 0 modulo {σ(g1), . . . , σ (gr)}.

Proof. The proof for (1) ⇒ (2) is trivial. To prove (2) ⇒ (1), let Gm = {g1, . . . , gr}, Gredund = {g ∈
G \ Gm | there exists g′ ∈ Gm such that lppX (g′) divides lppX (g)}, and G0 = G \ (Gm ∪ Gredund). Clearly,
the set G0 is a subset of {gr+1, . . . , gs}. So by (2), for any g ∈ G0, the polynomial σ(g) is reducible to 0
modulo σ(Gm) = {σ(g1), . . . , σ (gr)}. Theorem 4.1 shows σ(Gm) is a Gröbner basis for 〈σ(F)〉. �

The above proof shows that Theorem 4.1 is a strict generalization of Kalkbrener’s theorem (Corol-
lary 4.2). The set Gredund is often not the empty set. Hence, the set Gm in Theorem 4.1 is usually a
proper subset of the set {g1, . . . , gr} in Corollary 4.2. Moreover, the set G0 in Theorem 4.1 is also
usually a proper subset of {gr+1, . . . , gs} in Corollary 4.2, which means fewer polynomials need to be
checked in Theorem 4.1.

We define below the concept of a minimal Dickson basis of a set of polynomials consisting only of
those polynomials whose leading power products cannot be simplified by any polynomial in the set.
We then prove two other corollaries of Theorem 4.1, which are useful for developing algorithms for
comprehensive Gröbner bases in the next subsections.

D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142 133
Definition 4.3 (Minimal Dickson basis). Let ≺ be an admissible order in X . For a polynomial set G
in R[X], we say F ⊂ R[X], denoted by MDBasis(G), is a minimal Dickson basis of G , if

1. F is a subset of G ,
2. for every polynomial g ∈ G , there is some polynomial f ∈ F such that lppX (g) is a multiple of

lppX (f), i.e. 〈lppX (F)〉 = 〈lppX (G)〉, and
3. for any two distinct f1, f2 ∈ F , neither lppX (f1) is a multiple of lppX (f2) nor lppX (f2) is a

multiple of lppX (f1).

A minimal Dickson basis of a set may not be unique.

Corollary 4.4. Let G be a Gröbner basis for the ideal 〈F 〉 ⊂ R[X] w.r.t. an admissible order ≺ in X. Let G0 be any
subset of G, Gr ⊂ R be the set of all the coefficients of G0 , and Gm = MDBasis(G \ G0). If σ is a specialization
from R to L such that

1. σ(g) = 0 for g ∈ Gr , and
2. σ(h) �= 0, where h = ∏

g∈Gm
lcX (g) ∈ R,

then σ(Gm) is a (minimal) Gröbner basis of 〈σ(F)〉 in L[X] w.r.t. ≺X .

Proof. Note that σ(g) = 0 for any g ∈ G0, since all the coefficients of g are in Gr . Let Gredund =
G \ (Gm ∪ G0). The corollary holds by Theorem 4.1. �

By setting G0 be the set G ∩ R , the above corollary becomes Theorem 4.3 in Kapur et al. (2010).

Corollary 4.5. (See Kapur, Sun and Wang, 2010.) Let G be a Gröbner basis for the ideal 〈F 〉 ⊂ k[U , X] w.r.t. an
admissible block order with U � X. Let Gr = G ∩ k[U] and Gm = MDBasis(G \ Gr). If σ is a specialization
from k[U] to L such that

1. σ(g) = 0 for g ∈ Gr , and
2. σ(h) �= 0, where h = ∏

g∈Gm
lcX (g) ∈ k[U],

then σ(Gm) is a (minimal) Gröbner basis of 〈σ(F)〉 in L[X] w.r.t. ≺X .

Compared with Corollary 4.5 which is one of the main results in Kapur et al. (2010), Corollary 4.4
gives us more flexibilities for choosing the set G0 to construct specializations. For example, let F =
{ax − b,by −a, cx2 − y, cy2 − x} be a subset of Q[a,b, c][x, y]. As discussed in Section 5, G = {x3 − y3,

cx2 − y,ay2 −bc, cy2 − x,ax −b,bx −acy,a2 y −b2c,by −a,a6 −b6,a3c −b3,b3c −a3,ac2 −a,bc2 −b}
is a Gröbner basis for the ideal generated by F over the ring Q[a,b, c, x, y] w.r.t. the block order
≺X,U with {a,b, c} � {x, y}, and within each block, ≺X and ≺U are graded reverse lexicographic
orders with y < x and c < b < a, respectively. G is also a Gröbner basis for the ideal 〈F 〉 over the ring
Q[a,b, c][x, y] w.r.t. ≺X .

Using Corollary 4.4, we have (at least) the following three ways of constructing specializations, and
at the same time, obtaining Gröbner bases for the ideal 〈F 〉 after the specializations.

1. Let G0 = G ∩ Q[a,b, c] thus implying that the chosen specialization must make all polynomials
in G0 to be 0. Let Gm = {bx − acy,by − a} be a minimal Dickson basis of G \ G0. So both Corol-
laries 4.4 and 4.5 indicate that, the set σ(Gm) is a Gröbner basis of 〈σ(F)〉 for any specialization
deduced by points in V (G0) \ V (b).

2. We choose G0 = {ay2 − bc,ax − b,bx − acy,a2 y − b2c,by − a,a6 − b6,a3c − b3,b3c − a3,ac2 − a,

bc2 − b} and a specialization which makes all these polynomials to be 0. Let Gm = {cx2 − y,

cy2 − x} be a minimal Dickson basis of G \ G0. According to Corollary 4.4, the set σ(Gm) is a
Gröbner basis of 〈σ(F)〉 for any specialization deduced from V (a,b) \ V (c).

134 D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142
3. We choose G0 = ∅. Let Gm = {bc2 − b} be a minimal Dickson basis of G . Then Corollary 4.4 also
shows σ(Gm) is a Gröbner basis of 〈F 〉 for any specialization deduced from C3 \ V (bc2 − b).

Using Corollary 4.4, we present two algorithms for computing comprehensive Gröbner bases using
tuple representations of polynomials. The first algorithm uses module operations for computations,
whereas the second algorithm uses the trick of introducing a new variable to represent a tuple of
polynomials using a single polynomial.

4.1. Algorithm using module operations

The theorem below serves as a basis of the algorithm for computing a comprehensive Gröbner
basis. The set E below refers to the set of equality constraints, and it is usually the empty set at the
beginning.

Theorem 4.6. Let F be a set of polynomials in k[U , X], E be a subset of k[U], and M be a k[U , X]-module
generated by {(f ,0) | f ∈ F } ∪ {(e,−e) | e ∈ E}. Suppose G is a Gröbner basis for the module M w.r.t. an order
extended from ≺X,U in a position over term fashion with (0,1) ≺ (1,0), where ≺X,U is an admissible block
order with U � X.

Denote G1st = {g | (g, ḡ) ∈ G}, Gr = G1st ∩ k[U] and Gm = MDBasis(G1st \ Gr). Gm is a subset of G such
that {(g, ḡ) ∈ Gm | g ∈ Gm}. If σ is a specialization from k[U] to L such that

1. σ(g) = 0 for g ∈ Gr , and
2. σ(h) �= 0, where h = ∏

g∈Gm
lcX (g) ∈ k[U],

then

(1) for each (g, ḡ) ∈ Gm, g + ḡ ∈ 〈F 〉 and σ(ḡ) = 0, and
(2) {σ(g + ḡ) | (g, ḡ) ∈ Gm} is a Gröbner basis of 〈σ(F)〉 in L[X] w.r.t. ≺X .

That is, {(V (Gr) \ V (h), Gm)} is comprehensive Gröbner system on V (Gr) \ V (h) for F , and {g + ḡ |
(g, ḡ) ∈ Gm} is a comprehensive Gröbner basis on V (Gr) \ V (h) for F .

Proof. For (1), we first show E ⊂ 〈Gr〉. Since G is a Gröbner basis of the module M generated by
{(f ,0) | f ∈ F } ∪ {(e,−e) | e ∈ E} w.r.t. an order extended from ≺X,U in a POT fashion with (0,1) ≺
(1,0), we next show G1st is a Gröbner basis for the ideal 〈F ∪ E〉 w.r.t. ≺X,U . For any h ∈ 〈F ∪ E〉,
we have h = ∑

f ∈F p f f + ∑
e∈E qee where p f ,qe ∈ k[U , X], so (h,−(

∑
e∈E qee)) = ∑

f ∈F p f (f ,0) +∑
e∈E qe(e,−e) ∈ M. As G is a Gröbner basis for M, there exists (g, ḡ) ∈ G such that lppX (g) divides

lppX (h), which means G1st is a Gröbner basis for the ideal 〈F ∪ E〉. Besides, Gr = G1st ∩k[U] ⊂ 〈F ∪ E〉,
so we have E ⊂ 〈Gr〉 ⊂ k[U] since ≺X,U is a block order with U � X .

Notice that Gm is a subset of the module M; for each (g, ḡ) ∈ Gm , we have(
g
ḡ

)
=

∑
f ∈F

p f

(
f
0

)
+

∑
e∈E

qe

(
e

−e

)
,

where p f ,qe ∈ k[U , X]. So g + ḡ = (
∑

f ∈F p f f + ∑
e∈E qee) + ∑

e∈E qe(−e) = ∑
f ∈F p f f ∈ 〈F 〉, and

ḡ = ∑
e∈E qe(−e). Since E ⊂ 〈Gr〉, then σ(ḡ) = 0.

For (2), G1st is a Gröbner basis for the ideal 〈F ∪ E〉 w.r.t. ≺X,U as shown above, Gr = G1st ∩ k[U]
and Gm = MDBasis(G1st \ Gr), so σ(Gm) = {σ(g + ḡ) | (g, ḡ) ∈ Gm} is a minimal Gröbner basis of
〈σ(F)〉 by Corollary 4.4. �

The above theorem does not require us to compute a whole Gröbner basis for the module M.
Instead, it suffices to compute G ⊂ M such that G1st = {g | (g, ḡ) ∈ G} is a Gröbner basis for the
ideal 〈F ∪ E〉.

D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142 135
The above theorem gives a direct way to compute a comprehensive Gröbner system and a compre-
hensive Gröbner basis simultaneously for F ⊂ k[U , X] on V (E) \ V (N). First, we compute a Gröbner
basis G for the module generated by {(f ,0) | f ∈ F } ∪ {(e,−e) | e ∈ E} w.r.t. an order extended
from ≺X,U in a position over term fashion with (0,1) ≺ (1,0), where ≺X,U is an admissible block
order with U � X .

Theorem 4.6 shows that {(V (Gr) \ (V (h) ∪ V (N)), Gm)} is comprehensive Gröbner system on
V (Gr) \ (V (h) ∪ V (N)) for F , and {g + ḡ | (g, ḡ) ∈ Gm} is a comprehensive Gröbner basis on
V (Gr) \ (V (h) ∪ V (N)) for F , where h = ∏

g∈Gm
lcX (g) ∈ k[U].

The ideals 〈Gr〉 and 〈E〉 may not be identical in general, so we need to consider the difference
of these two ideals. That is, if V (E) \ (V (Gr) ∪ V (N)) is not empty, then for any specialization σ
from k[U] to L deduced by a point in V (E) \ (V (Gr) ∪ V (N)), we must have 〈σ(F)〉 = 〈1〉. The set Gr
is a comprehensive Gröbner basis on V (E) \ (V (Gr) ∪ V (N)) for F .

The constructible set V (E) \ V (N) has been divided into disjoint three parts:

V (E) \ V (N) = (
V (E) \ (

V (Gr) ∪ V (N)
)) ∪ (

V (Gr) \ V (h)
) ∪ (

V (Gr,h) \ V (N)
)
.

We can set E ′ = Gr ∪ {h} and use Theorem 4.6 to recursively compute a comprehensive Gröbner sys-
tem and a comprehensive Gröbner basis on V (E ′)\ V (N) for F . Finally, collecting all results computed
in the above three steps, we can get a comprehensive Gröbner system as well as a comprehensive
Gröbner basis simultaneously for F on V (E) \ V (N).

We give below a detailed algorithm for computing a comprehensive Gröbner basis on V (E) \ V (N)

for F ⊂ k[U , X]. The correctness of the new algorithm is a direct result of the above theorem. The
core of the algorithm below is an efficient algorithm for computing a comprehensive Gröbner system
proposed in Kapur et al. (2010). Its termination can be proved in a same way as in Kapur et al. (2010).
Proposition 4.7 below is a proof of termination the algorithm.

In order to keep the presentation simple, we have deliberately avoided to include tricks and opti-
mizations such as factoring h in the description below. All the tricks suggested in Kapur et al. (2010)
can be used here as well. In fact, our implementation incorporates fully these optimizations.

Algorithm CGB-Module(E, N, F)

Input: (E, N, F): E , N , finite subsets of k[U]; F , a finite subset of k[U , X].
Output: a comprehensive Gröbner basis of the set F on V (E) \ V (N).

1. CG S := CGSMainMod(E, N, F), where CG S is a finite set of 3-tuples (Ei, Ni,Gi) such that
{(V (Ei)\ V (Ni), G1st

i)}, where G1st
i = {g | (g, ḡ) ∈ Gi}, constitutes a comprehensive Gröbner system

on V (E) \ V (N) for F , and for each (g, ḡ) ∈ Gi , g + ḡ ∈ 〈F 〉 and σ(ḡ) is 0 for every parameter
specialization σ from V (Ei) \ V (Ni).

2. Return {g + ḡ | (g, ḡ) ∈ Gi for all i}.

Below we assume that all Gröbner basis computations are done in (k[U , X])2 using the order
extended by ≺X,U in a POT fashion with (1,0) � (0,1).

Algorithm CGSMainMod(E, N, F)

Input: (E, N, F): E , N , finite subsets of k[U]; F , a finite subset of k[U , X].
Output: CG S: a finite set of 3-tuples (Ei, Ni,Gi) such that {(V (Ei) \ V (Ni), G1st

i)}, where G1st
i =

{g | (g, ḡ) ∈ Gi}, constitutes a comprehensive Gröbner system on V (E) \ V (N) for F , and for each
(g, ḡ) ∈ Gi , g + ḡ ∈ 〈F 〉 and σ(ḡ) is 0 for every parameter specialization σ from V (Ei) \ V (Ni).

1. If inconsistent(E, N), then return ∅.
2. Otherwise, G0 := ReducedGröbnerBasis({(f ,0) | f ∈ F } ∪ {(e,−e) | e ∈ E}).
3. G := G0 \ {(g, ḡ) ∈ G0 | g = 0} and G1st := {g | (g, ḡ) ∈ G}.
4. If there exists (g, ḡ) ∈ G such that g = 1, then return {(E, N, {(g, ḡ)})}.
5. Let Gr := {(g, ḡ) ∈ G | g ∈ k[U]} and Gr := {g | (g, ḡ) ∈ Gr}.
6. If inconsistent(E, Gr × N), then CG S := ∅, else CG S := {(E, Gr × N,Gr)}.
7. If inconsistent(Gr, N), then return CG S .

136 D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142
8. Otherwise, let Gm := MDBasis(G1st \ Gr) and Gm := {(g, ḡ) ∈ G \ Gr | g ∈ Gm}.
9. If consistent(Gr, N × {h}), then CG S := CG S ∪ {(Gr, N × {h},Gm)}, where h = lcm{h1, . . . ,hk} and

{h1, . . . ,hk} = {lcX (g) | g ∈ Gm}.
10. Return CG S ∪ ⋃

hi∈[h1,...,hk] CGSMainMod(Gr ∪ {hi}, N × {h1h2 · · ·hi−1}, {g + ḡ | (g, ḡ) ∈ G \ Gr}).

In the above algorithm, A × B = { f g | f ∈ A, g ∈ B}. Also, for the case i = 1, N ×{h1h2 · · ·hi−1} = N ,
and inconsistent(E, N) returns true if V (E)\ V (N) is empty, false otherwise. In Kapur et al. (2010), we
have discussed various heuristics for performing the inconsistency check (inconsistent(E, N)). Besides,
please note that in each recursive call of the function CGSMainMod(E, N, F), the constructible set
S = V (E) \ V (N) is partitioned into the following three disjoint parts:

S = S1 ∪ S2 ∪ S3,

where S1 = V (E) \ (V (Gr)∪ V (N)), S2 = V (Gr) \ (V (N)∪ V (lcm(h1, . . . ,hk))), and S3 = ⋃
i V (Gr,hi) \

(V (N) ∪ V (lcm(h1, . . . ,hi−1))).

Proposition 4.7. The algorithm CGB-Module terminates after finitely many steps.

Proof. We use König’s Lemma to prove the termination. It suffices to show that (1) in each recursive
call of the algorithm CGSMainMod, only finitely many branches are created, and (2) along each branch,
the algorithm terminates after finitely many steps.

For (1), by algorithm CGSMainMod, at step 10, since the number of polynomials in Gm is finite,
only finitely many branches are created. For (2), since hi = lcX (g) ∈ k[U] for some g ∈ G1st , G1st is a
reduced Gröbner basis for 〈F ∪ E〉 ⊂ k[U , X], and Gr = G1st ∩ k[U], then hi /∈ 〈Gr〉 ⊂ k[U], as otherwise,
the polynomial g ∈ G1st can be simplified further by Gr . In the next recursive call of CGSMainMod,
the ideal generated by the input set E ′ = Gr ∪ {hi} is strictly larger than 〈E〉 from the previous call of
CGSMainMod. So each branch must terminate after finitely many steps. �
4.2. Algorithm using polynomial operations

We first give the theorem on which the algorithm in this subsection is based. Recall that the set E
also refers to the set of equality constraints.

Theorem 4.8. Let F be a set of polynomials in k[U , X], E be a subset of k[U], and I be an ideal over k[U , X, y]
generated by { f y | f ∈ F } ∪ {ey − e | e ∈ E}. Suppose G is a Gröbner basis for the ideal I w.r.t. an admissible
block order with U � X � y.

Denote G1st = {g | gy + ḡ ∈ G}, Gr = (G1st ∩ k[U]) ∪ E and Gm = MDBasis(G1st \ Gr). Gm,y is a subset
of G such that {gy + ḡ ∈ G | g ∈ Gm}. If σ is a specialization from k[U] to L such that

1. σ(g) = 0 for g ∈ Gr , and
2. σ(h) �= 0, where h = ∏

g∈Gm
lcX (g) ∈ k[U],

then

(1) for each gy + ḡ ∈ G, g + ḡ ∈ 〈F 〉 and σ(ḡ) = 0, and
(2) {σ(g + ḡ) | gy + ḡ ∈ Gm,y} is a Gröbner basis of 〈σ(F)〉 in L[X] w.r.t. ≺X .

That is, {(V (Gr) \ V (h), Gm)} is comprehensive Gröbner system on V (Gr) \ V (h) for F , and {g + ḡ | gy +
ḡ ∈ Gm,y} is a comprehensive Gröbner basis on V (Gr) \ V (h) for F .

Proof. According to the block order with U � X � y, it is easy to see that every polynomial in G has
at most degree 1 in y.

For (1), since each gy + ḡ ∈ G is in the ideal generated by { f y | f ∈ F } ∪ {ey − e | e ∈ E}, we
have gy + ḡ = ∑

f ∈F p f (f y) + ∑
e∈E qe(ey − e) where p f ,qe ∈ k[U , X]. Setting y = 1 in the equa-

D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142 137
tion, we then have g + ḡ = ∑
f ∈F p f f , which means g + ḡ ∈ 〈F 〉. When setting y = 0, we get ḡ =

−∑
e∈E qee ∈ 〈E〉. Since E ⊂ Gr as defined, we have σ(ḡ) = 0.

For (2), let GU ,X = G ∩ k[U , X]. We first show that G1st ⊂ 〈F ∪ E〉 and G1st ∪ GU ,X is a Gröbner
basis for 〈F ∪ E〉. From (1), for any gy + ḡ ∈ G1st , we have g + ḡ ∈ 〈F 〉 and ḡ ∈ 〈E〉. So for each
gy + ḡ ∈ G1st , the relation g ∈ 〈F ∪ E〉 holds directly, and then G1st ⊂ 〈F ∪ E〉. Next, for any h ∈ 〈F ∪ E〉,
we have h = ∑

f ∈F p f f + ∑
e∈E qee where p f ,qe ∈ k[U , X], so the polynomial hy − (

∑
e∈E qee) =∑

f ∈F p f (f y) + ∑
e∈E qe(ey − e) is in the ideal generated by { f y | f ∈ F } ∪ {ey − e | e ∈ E}. Note that

G is a Gröbner basis for this ideal by hypothesis. Then there exists h0 ∈ G such that lppX (h0) divides
lpp(hy − (

∑
e∈E qee)) = lppX (h)y. Assume h0 = gy + ḡ . If g �= 0, then we have g ∈ G1st and lppX (g)

divides lppX (h); if g = 0, then we have h0 = ḡ ∈ GU ,X and lppX (ḡ) divides lppX (h). As a result,
G1st ∪ GU ,X is a Gröbner basis for 〈F ∪ E〉.

Let G ′ = G1st ∪ GU ,X ∪ E and G0 = Gr ∪ GU ,X = (G1st ∩ k[U]) ∪ GU ,X ∪ E . Then G ′ is a Gröbner
basis for 〈F ∪ E〉. If the specialization σ satisfies 1 and 2, then it is easy to check σ(lcX (g)) �= 0
for any g in Gm and σ(g′) = 0 for any g′ ∈ G0. Then by Corollary 4.4, the set σ(Gm) is a Gröbner
basis for 〈σ(F)〉. Using (1), we have {σ(g + ḡ) | gy + ḡ ∈ Gm,y} is a Gröbner basis of 〈σ(F)〉 in L[X]
w.r.t. ≺X . �

Based on the above theorem, we give below another algorithm for computing a comprehensive
Gröbner basis on V (E) \ V (N) for F ⊂ k[U , X].

Algorithm CGB-Polynomial(E, N, F)

Input: (E, N, F): E , N , finite subsets of k[U]; F , a finite subset of k[U , X].
Output: a comprehensive Gröbner basis of the set F on V (E) \ V (N).

1. CG S := CGSMainPoly(E, N, F), where CG S is a finite set of 3-tuples (Ei, Ni, Gi) such that
{(V (Ei) \ V (Ni), G1st

i)}, where G1st
i = {g | gy + ḡ ∈ Gi}, constitutes a comprehensive Gröbner sys-

tem on V (E)\ V (N) for F , and for each gy + ḡ ∈ Gi , g + ḡ ∈ 〈F 〉 and σ(ḡ) is 0 for every parameter
specialization σ from V (Ei) \ V (Ni).

2. Return {g + ḡ | gy + ḡ ∈ Gi for all i}.

Below we assume that all Gröbner basis computations are done in k[U , X, y] using the block order
with U � X � y.

Algorithm CGSMainPoly(E, N, F)

Input: (E, N, F): E , N , finite subsets of k[U]; F , a finite subset of k[U , X].
Output: CG S: a finite set of 3-tuples (Ei, Ni, Gi) such that {(V (Ei) \ V (Ni), G1st

i)}, where G1st
i = {g |

gy + ḡ ∈ Gi}, constitutes a comprehensive Gröbner system on V (E) \ V (N) for F , and for each gy +
ḡ ∈ Gi , g + ḡ ∈ 〈F 〉 and σ(ḡ) is 0 for every parameter specialization σ from V (Ei) \ V (Ni).

1. If inconsistent(E, N), then return ∅.
2. Otherwise, G0 := ReducedGröbnerBasis({ f y | f ∈ F } ∪ {ey − e | e ∈ E}).
3. G := G0 \ (G0 ∩ k[U , X]) and G1st := {g | gy + ḡ ∈ G}.
4. If there exists gy + ḡ ∈ G such that g = 1, then return {(E, N, {gy + ḡ})}.
5. Let Gr,y := {gy + ḡ ∈ G | g ∈ k[U]} and Gr := {g | gy + ḡ ∈ Gr,y} ∪ E .
6. If inconsistent(E, Gr × N), then CG S := ∅, else CG S := {(E, Gr × N, Gr,y)}.
7. If inconsistent(Gr, N), then return CG S .
8. Otherwise, let Gm := MDBasis(G1st \ Gr) and Gm,y := {gy + ḡ ∈ G \ Gr,y | g ∈ Gm}.
9. If consistent(Gr, N ×{h}), then CG S := CG S ∪{(Gr, N ×{h}, Gm,y)}, where h = lcm{h1, . . . ,hk} and

{h1, . . . ,hk} = {lcX (g) | g ∈ Gm}.
10. Return CG S ∪ ⋃

h∈[h1,...,hk] CGSMainPoly(Gr ∪ {hi}, N × {h1h2 · · ·hi−1}, {g + ḡ | gy + ḡ ∈ G \ Gr,y}).

The correctness and termination of the above algorithm can be established in a way similar to
those of CGB-Module.

138 D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142
5. A simple example

Note that the algorithms CGB-Module and CGB-Polynomial have the same theoretical base. So we
only illustrate the algorithm CGB-Module by using the same example discussed in Kapur et al. (2010)
primarily to help an interested reader to see the differences between the algorithm in Kapur et al.
(2010) and the new algorithm of this paper. The discussion here is however self-contained.

Example 5.1. Let F = {ax − b,by − a, cx2 − y, cy2 − x} ⊂ Q[a,b, c][x, y], with the block order ≺X,U ,
{a,b, c} � {x, y}; within each block, ≺X and ≺U are graded reverse lexicographic orders with y < x
and c < b < a, respectively.

At the beginning, F (1) = F = {ax − b,by −a, cx2 − y, cy2 − x}, E(1) = ∅ and N(1) = {1}. We compute
a comprehensive Gröbner system for {(f ,0) | f ∈ F (1)} ∈ (Q[a,b, c][x, y])2 using the tuple represen-
tation, so that along every branch, for every polynomial in a Gröbner basis, we can also extract the
original polynomial from the input ideal generated by F (1) to maintain the faithfulness of the output.
In the following procedure, checking whether a constructible set, such as V (E) \ V (N), is empty is
done by using methods given in Kapur et al. (2010).

(1) The set V (E(1)) \ V (N(1)) = V (0) \ V (1) = C3 is not empty. The reduced Gröbner basis of the
Q[a,b, c][x, y]-module 〈(f ,0) | f ∈ F (1)〉 ⊂ (Q[a,b, c][x, y])2 w.r.t. the order extended by ≺X,U in POT
fashion, is

G(1)
0 = {(

x3 − y3,0
)
,
(
cx2 − y,0

)
,
(
ay2 − bc,0

)
,
(
cy2 − x,0

)
,

(ax − b,0), (bx − acy,0),
(
a2 y − b2c,0

)
, (by − a,0),

(
a6 − b6,0

)
,(

a3c − b3,0
)
,
(
b3c − a3,0

)
,
(
ac2 − a,0

)
,
(
bc2 − b,0

)}
.

Let G(1) := G(1)
0 \ {(g, ḡ) ∈ G(1)

0 | g = 0} = G(1)
0 and G1st(1) be the set {g | (g, ḡ) ∈ G(1)}. Next denote

G(1)
r := {(g, ḡ) ∈ G(1) | g ∈ Q[a,b, c]} = {(a6 −b6,0), (a3c −b3,0), (b3c −a3,0), (ac2 −a,0), (bc2 −b,0)},

and correspondingly, G(1)
r := {g | (g, ḡ) ∈ G(1)

r }. Boldfaced symbols such as G and Gr are used for sets
of vectors in (Q[a,b, c][x, y])2, while regular symbols such as G1st and Gr , denote polynomials sets in
Q[a,b, c][x, y] that are constructed by the first components of the corresponding vector sets.

The constructible set (V (E(1)) \ V (G(1)
r)) \ V (N(1)) = C3 \ V (G(1)

r) is not empty. This implies that
(C3 \ V (G(1)

r),Gr) is a trivial branch of the comprehensive Gröbner system for F (1) .
(2) Since G1st(1) \ G(1)

r = {x3 − y3, cx2 − y,ay2 −bc, cy2 − x,ax −b,bx −acy,a2 y −b2c,by −a}, then
let G(1)

m := MDBasis(G1st(1) \ G(1)
r) = {bx − acy,by − a} and G(1)

m := {(bx − acy,0), (by − a,0)}. Further,
h(1) := lcm{lcX (bx − acy), lcX (by − a)} = b. This gives us another branch of comprehensive system
for F (1) corresponding to the case when all polynomials in G(1)

r are 0 and b �= 0 by Theorem 4.6:
(V (G(1)

r) \ V (b),Gm). Note that V (G(1)
r) \ V (b) is not empty.

(3) The next branch to consider is when b = 0. The Gröbner basis of G(1)
r ∪ {b} is {a3,ac2 − a,b},

which is the input E(2) in the recursive call of CGSMainMod, with the other input being N(2) = {1}
and F (2) = {g + ḡ | (g, ḡ) ∈ G(1) \ G(1)

r }.
Since V (E(2)) \ V (N(2)) is not empty, we can compute the reduced Gröbner basis for {(f ,0) |

f ∈ F (2)} ∪ {(a3,−a3), (ac2 − a,−ac2 + a), (b,−b)}. By removing the tuples whose first compo-
nent is 0, we get G(2) = {(x3 − y3,0), (cx2 − y,0), (cy2 − x,0), (a,−by), (b,−b)} of which G(2)

r =
{(a,−by), (b,−b)}. Similarly, denote G1st(2) = {g | (g, ḡ) ∈ G(2)} and G(2)

r = {g | (g, ḡ) ∈ G(2)
r }. We can

check the set V (E(2)) \ V (G(2)
r) is empty, so no element in G(2)

r contributes to the comprehensive
Gröbner system.

Next, G(2)
m = {cx2 − y, cy2 − x}, G(2)

m = {(cx2 − y,0), (cy2 − x,0)} and h(2) = lcm(lcX (cx2 − y),

lcX (cy2 − x)) = c. This results in another branch: (V (G(2)
r) \ V (c),G(2)

m).
(4) For the case when h(2) = c = 0, the set E(3) = {a,b, c} which is the Gröbner basis of G(2)

r ∪ {c}.
Now N(3) = {1} and F (3) = {x3 − y3, cx2 − y, cy2 − x}. Computing the reduced Gröbner basis for
{(f ,0) | f ∈ F (3)} ∪ {(a,−a), (b,−b), (c,−c)} and removing the tuples whose first component is 0,

D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142 139
we get G(3) = {(x,−cy2), (y,−cx2), (a,−a), (b,−b), (c,−c)}. Then, G(3)
r = {(a,−a), (b,−b), (c,−c)},

G(3)
m = {x, y} and G(3)

m = {(x,−cy2), (y,−cx2)}. Further, h(3) = lcm(lcX (x), lcX (y)) = 1. Similarly, de-
note G(3) and G(3)

r as before. This gives the last branch: (V (G(3)
r),G(3)

m).
Since h(3) = 1, no more branches are generated and the algorithm terminates. Thus, we obtain a

comprehensive Gröbner system for F :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
a6 − b6,0

)
,
(
a3c − b3,0

)
, if a6 − b6 �= 0 or a3c − b3 �= 0(

b3c − a3,0
)
,
(
ac2 − a,0

)
, or b3c − a3 �= 0 or ac2 − a �= 0(

bc2 − b,0
)}

, or bc2 − b �= 0,{
(bx − acy,0), (by − a,0)

}
, if a6 − b6 = a3c − b3

= b3c − a3 = ac2 − a

= bc2 − b = 0 and b �= 0,{(
cx2 − y,0

)
,
(
cy2 − x,0

)}
if a = b = 0 and c �= 0,{(

x,−cy2
)
,
(

y,−cx2
)}

if a = b = c = 0.

An interested reader would observe comparing the above output with the output from Kapur et al.
(2010) that except for the last branch, the outputs are the same. In Kapur et al. (2010), the last branch
for the case when a = b = c = 0, the Gröbner basis is: {x, y}, whereas in the above the Gröbner basis
is: {x − cy2, y − cx2}, when the tuple representation is replaced by the corresponding polynomials
from the ideal of F . x− cy2 is the faithful polynomial from the ideal of F corresponding to the output
element x in Kapur et al. (2010); similarly, y − cx2 is the faithful polynomial corresponding to y.

A comprehensive Gröbner basis of F , after removing the duplicate ones, can be obtained directly
from the above comprehensive Gröbner system. That is {a6 − b6,a3c − b3,b3c − a3,ac2 − a,bc2 − b,

bx − acy,by − a, cx2 − y, cy2 − x}.

6. Implementation and comparative performance

Both the algorithms CGB-Module and CGB-Polynomial have been implemented on the computer al-
gebra system Singular (Decker et al., 2012).2 The implementation has been experimented on a number
of examples from different application domains including geometry theorem proving and computer
vision, and it has been compared with implementations of other algorithms. Since the proposed algo-
rithm uses the new technique and basic module/polynomial operations, it is efficient and can compute
comprehensive Gröbner basis for most problems in a few seconds.

Table 1 shows a comparison of our implementations on Singular with other existing algorithms
for computing comprehensive Gröbner bases, including: Suzuki–Sato algorithm implemented by
Nabeshima in Risa/Asir (package PGB, ver20090915) and the function “cgb” for computing compre-
hensive Gröbner bases in Reduce (package RedLog). The versions of Singular, Risa/Asir and Reduce are
ver3-1-2, ver20090715 and free CSL version, respectively.

The implementation has been tried on many examples. Many of these examples could be solved
very quickly. To generate complex examples, we modified problems F1, F2, F3, F4, F5, F6 and F8 in
Nabeshima (2007), and labeled them as S1–S7. The polynomials for these problems are given below:
We have also been successful in solving the famous P3P problem for pose-estimation from computer
vision, which is investigated by Gao et al. (2003) using the characteristic set method; see the polyno-
mial system below.

S1: F = {ax4 y + xy2 + bx, x3 + 2xy + cy, x2 y + bx2}, X = {x, y}, U = {a,b, c};
S2: F = {ax2 y3 + ay + by, x2 y2 + xy + 2x,ax2 + by + 2x}, X = {x, y}, U = {a,b, c};
S3: F = {ax4 + cx2 + y,bx3 + x2 + y + 2, cx2 + dx + y}, X = {x, y}, U = {a,b, c,d};
S4: F = {ax3 y + cxz2, x4 y + 3dy + z, cx2 + bxy, x2 y2 + x2, x5 + y5}, X = {x, y, z}, U = {a,b, c,d};

2 Implementation codes on Singular are available at http://www.mmrc.iss.ac.cn/~dwang/.

http://www.mmrc.iss.ac.cn/~dwang/

140 D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142
Table 1
Timings.

Exa. Algorithm Time (s) Exa. Algorithm Time (s)

S1 New-mod(S) 1.155 S5 New-mod(S) 0.890
New-poly(S) 1.191 New-poly(S) 1.388
cgb(R) 24.960 cgb(R) 2.395
SuzukiSato(A) >1 h SuzukiSato(A) >1 h

S2 New-mod(S) 0.530 S6 New-mod(S) 0.738
New-poly(S) 0.716 New-poly(S) 0.842
cgb(R) 134.513 cgb(R) 9.496
SuzukiSato(A) 1.56 SuzukiSato(A) error

S3 New-mod(S) 0.451 S7 New-mod(S) 18.303
New-poly(S) 1.099 New-poly(S) 15.217
cgb(R) 309.334 cgb(R) >1 h
SuzukiSato(A) error SuzukiSato(A) >1 h

S4 New-mod(S) 2.633 P3P New-mod(S) 19.565
New-poly(S) 3.109 New-poly(S) 14.564
cgb(R) 54.871 cgb(R) >1 h
SuzukiSato(A) >1 h SuzukiSato(A) >1 h

S5: F = {y3 + bx,ax2 y + bxy + cx, y2 + bx2 y + cxy}, X = {x, y}, U = {a,b, c};
S6: F = {dx4 + ax3 + bx2 + cx + d,4bx3 + 3ax2 + 2bx + c}, X = {x}, U = {a,b, c,d};
S7: F = {ax2 + byz, cw2 + by + z, (x − z)2 + (y − w)2,2dxw − 2byz}, X = {x, y, z, w}, U = {a,b, c,d};

P3P: F = {(1−a)y2 −ax2 − py +arxy +1, (1−b)x2 −by2 −qx+brxy +1}, X = {x, y}, U = {p,q, r,a,b}.

For all these examples, the term orders used on X are graded reverse lexicographic orders.
In Table 1, entries labeled with New-mod(S) and New-poly(S) are the algorithms CGB-Module and

CGB-Polynomial implemented on Singular; (R) and (A) stand for Reduce and Risa/Asir, respectively.
The label “error” is included if an implementation ran out of memory or broke down. The timings
were obtained by running the implementations on Core i5 2.8 GHz with 12 GB memory running
64-bit Windows 7.

As is evident from Table 1, the proposed algorithms have better performance in contrast to other
algorithms discussed in the literature for two possible reasons. Firstly, the proposed approach is sim-
pler and easier to implement leading to considerable savings in computational performance. Secondly,
the algorithm for computing comprehensive Gröbner systems proposed in Kapur et al. (2010) is ex-
ploited in our implementation. As shown in Kapur et al. (2010), this algorithm is one of the most
efficient algorithms at present, which also speeds up the implementations for computing comprehen-
sive Gröbner bases. The reader would notice that the algorithm CGB-Module usually performs better
than the algorithm CGB-Polynomial on simple examples. However, for more complicated examples
such as S7 and P3P, the algorithm CGB-Polynomial has a better performance. An interesting topic for
further investigation is a better identification of classes of problems for which these two algorithms
are the most efficient.

Since the core of our approach is the use of our algorithm for computing comprehensive Gröbner
systems proposed in Kapur et al. (2010), we compared our implementation with Montes’ implemen-
tation cgsdr from Singular library grobcov.lib. Both implementations are implemented on Singular. In
Table 2, timings for the above examples on the computer (Core i5 2.8 GHz, 12 GB memory, 64-bit
Windows 7) are given.

In Table 2, Kapur–Sun–Wang refers to the algorithm we proposed in Kapur et al. (2010), and Montes
means the implementation cgsdr from Singular library grobcov.lib.

7. Concluding remarks

We have adapted the algorithm proposed in Kapur et al. (2010) for computing a comprehensive
Gröbner system of a parameterized polynomial system F such that the new algorithms not only pro-

D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142 141
Table 2
Timings.

Exa. Algorithm Time (s) Exa. Algorithm Time (s)

S1 Kapur–Sun–Wang 0.240 S5 Kapur–Sun–Wang 1.357
Montes 0.714 Montes 7.036

S2 Kapur–Sun–Wang 0.521 S6 Kapur–Sun–Wang 0.990
Montes 1.546 Montes 67.780

S3 Kapur–Sun–Wang 0.045 S7 Kapur–Sun–Wang 1.672
Montes >1 h Montes >1 h

S4 Kapur–Sun–Wang 0.120 P3P Kapur–Sun–Wang 2.309
Montes 11.966 Montes 2.811

duce comprehensive Gröbner systems of F but they also generate comprehensive Gröbner bases of F .
The main idea is to use polynomials from the ideal generated by F during the computation along var-
ious branches corresponding to constructible sets specializing parameters in the algorithm in Kapur
et al. (2010). Polynomials from 〈F 〉 are represented as tuples, with the first component corresponding
to its nonzero part under the specialization and the second component being zero under the special-
ization. The key steps of a Gröbner basis computation including reduction of a polynomial by another
polynomial and S-polynomial construction, are performed on these tuple representations; these steps
can be done by computing Gröbner bases of a module or a larger ideal.

The new algorithms produce comprehensive Gröbner systems, in which each branch is a finite set
of tuples along a constructible set (which is specified by a finite set of equalities over parameters and
a finite set of disequalities over parameters), with the properties (i) the constructible sets constitute
a partition over the set of parameter specializations under consideration, and (ii) for every param-
eter specialization in the constructible set of the branch, the second component of every tuple is 0
under the specialization and the leading coefficient of the first component in every tuple is nonzero
under the specialization, and most importantly, (iii) the sum of the first component and the second
component in the tuple is in the ideal generated by the input F . For generating a comprehensive
Gröbner system, the second component of these tuples do not give any useful information and can
hence be discarded. Using these second components however, a comprehensive Gröbner basis is the
union over every branch of the set of polynomials obtained by adding the two components of each
tuple. Such a comprehensive Gröbner basis is faithful since all the polynomials in the basis are also
in the ideal; thus, both a comprehensive Gröbner system as well as a comprehensive Gröbner basis
of a parametric polynomial system are simultaneously generated. Further, no branches with empty
segments (inconsistent set of parametric polynomial constraints) are generated, and branches are dis-
joint and the associated Gröbner basis for every branch has a fixed set of leading power products,
also implying that there is at most one branch for the parametric constraints for which the Gröbner
basis of a polynomial system is {1}.

The algorithm is faster in practice than known existing algorithms primarily because it does not
need to use primary decomposition of parametric constraints as well as it generates fewer branches.

The above construction can be used to adapt all known algorithms for computing a comprehen-
sive Gröbner system. We believe that various optimization criteria to discard redundant computations
can also be integrated in the proposed algorithm. As a result, future advances to make compre-
hensive Gröbner systems more efficient can be directly exploited in the proposed approach and
algorithms.

A theoretical contribution of this paper is a more generalized stable condition for parametric poly-
nomial systems which serves as the base of the proposed algorithms for computing comprehensive
Gröbner bases. We also believe this new stable condition can lead to more interesting results.

Using insights discussed above, we are investigating the design of a new algorithm for computing
a minimal comprehensive Gröbner basis of a parametric polynomial systems, which will be reported
in a forthcoming paper. Using this notion, we are able to define a canonical minimal comprehensive
Gröbner basis, unlike the notion in Weispfenning (2003), where a canonical comprehensive Gröbner
basis is defined but it does not have the property of being minimal.

142 D. Kapur et al. / Journal of Symbolic Computation 52 (2013) 124–142
Acknowledgements

We thank the referees for their many constructive suggestions which helped in highlighting the
key contributions of the proposed approach. We particularly thank Professor Antonio Montes for his
helpful discussions and encouragement.

References

Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W., 2007. Comprehensive triangular decomposition. In: Proc. CASC’07.
In: Lecture Notes in Comput. Sci., vol. 4770. Springer, Berlin, pp. 73–101.

Chen, X.F., Li, P., Lin, L., Wang, D.K., 2005. Proving geometric theorems by partitioned-parametric Gröbner bases. In: Proc. Auto-
mated Deduction in Geometry (ADG) 2004. In: Lecture Notes in Comput. Sci., vol. 3763. Springer, Berlin, pp. 34–43.

Cox, D., Little, J., O’Shea, D., 2005. Using Algebraic Geometry, second ed. Springer, New York.
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H., 2012. Singular 3-1-4 – A computer algebra system for polynomial com-

putations. http://www.singular.uni-kl.de.
Donald, B., Kapur, D., Mundy, J.L. (Eds.), 1992. Symbolic and Numerical Computation for Artificial Intelligence. Computational

Mathematics and Applications. Academic Press Ltd., London.
Gao, X.S., Chou, S.C., 1992. Solving parametric algebraic systems. In: Proc. ISSAC’1992. ACM Press, New York, pp. 335–341.
Gao, X.S., Hou, X.R., Tang, J.L., Chen, H.F., 2003. Complete solution classification for the perspective-three-point problem. IEEE

Trans. PAMI 25 (8), 930–943.
Kalkbrener, K., 1997. On the stability of Gröbner bases under specialization. J. Symbolic Comput. 24 (1), 51–58.
Kapur, D., 1995. An approach for solving systems of parametric polynomial equations. In: Saraswat, Van Hentenryck (Eds.),

Principles and Practice of Constraint Programming. MIT Press, Cambridge.
Kapur, D., 2006. A quantifier-elimination based heuristic for automatically generating inductive assertions for programs. J. Syst.

Sci. Complex. 19 (3), 307–330.
Kapur, D., Sun, Y., Wang, D.K., 2010. A new algorithm for computing comprehensive Gröbner systems. In: Proc. ISSAC’2010. ACM

Press, New York, pp. 29–36.
Kapur, D., Sun, Y., Wang, D.K., 2011. Computing comprehensive Gröbner systems and comprehensive Gröbner bases simultane-

ously. In: Proc. ISSAC’2011. ACM Press, New York, pp. 193–200.
Manubens, M., Montes, A., 2006. Improving DISPGB algorithm using the discriminant ideal. J. Symbolic Comput. 41 (11), 1245–

1263.
Manubens, M., Montes, A., 2009. Minimal canonical comprehensive Gröbner system. J. Symbolic Comput. 44 (5), 463–478.
Montes, A., 2002. A new algorithm for discussing Gröbner basis with parameters. J. Symbolic Comput. 33 (1–2), 183–208.
Montes, A., Recio, T., 2007. Automatic discovery of geometry theorems using minimal canonical comprehensive Gröbner systems.

In: Proc. Automated Deduction in Geometry (ADG) 2006. In: Lecture Notes in Artificial Intelligence, vol. 4869. Springer,
Berlin, Heidelberg, pp. 113–138.

Montes, A., Wibmer, M., 2010. Gröbner bases for polynomial systems with parameters. J. Symbolic Comput. 45 (12), 1391–1425.
Nabeshima, K., 2007. A speed-up of the algorithm for computing comprehensive Gröbner systems. In: Proc. ISSAC’2007. ACM

Press, New York, pp. 299–306.
Sun, Y., Wang, D.K., 2011. Solving detachability problem for the polynomial ring by signature-based Gröbner basis algorithms.

Preprint, arXiv:1108.1301 [cs.SC].
Sun, Y., Wang, D.K., Ma, X.D., Zhang, Y., 2012. A signature-based algorithm for computing Gröbner bases in solvable polynomial

algebras. In: Proc. ISSAC’2012. ACM Press, New York, pp. 351–358.
Suzuki, A., Sato, Y., 2006. A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proc.

ISSAC’2006. ACM Press, New York, pp. 326–331.
Weispfenning, V., 1992. Comprehensive Gröbner bases. J. Symbolic Comput. 14 (1), 1–29.
Weispfenning, V., 2003. Canonical comprehensive Gröbner bases. J. Symbolic Comput. 36 (3–4), 669–683.
Wibmer, M., 2007. Gröbner bases for families of affine or projective schemes. J. Symbolic Comput. 42 (8), 803–834.

http://www.singular.uni-kl.de

	An efﬁcient method for computing comprehensive Gröbner bases
	1 Introduction
	2 Notations and deﬁnitions
	3 A polynomial as a tuple under parameter specialization
	3.1 Basic operations
	3.2 Module operations
	3.3 Polynomial operations
	3.4 Duplication of manipulations done on the ﬁrst components

	4 New algorithms for computing comprehensive Gröbner bases
	4.1 Algorithm using module operations
	4.2 Algorithm using polynomial operations

	5 A simple example
	6 Implementation and comparative performance
	7 Concluding remarks
	Acknowledgements
	References

