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Abstract An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined

by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its Gröbner basis, no extra

Gröbner basis computation is needed for factoring a polynomial over this extension field. Nothing more than

linear algebraic technique is used to get a characteristic polynomial of a generic linear map. Then this polynomial

is factorized over the ground field. From its factors, the factorization of the polynomial over the extension field

is obtained. The algorithm has been implemented in Magma and computer experiments indicate that it is very

efficient, particularly for complicated examples.
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1 Introduction

Factorization of polynomials over algebraic extension fields has been widely investigated and there are

polynomial-time algorithms for factoring multivariate polynomial over algebraic number field [1, 2, 6, 13,

16, 25].

Factorization over algebraic extension fields is needed for irreducible decomposition of algebraic variety

by using characteristic set method [29,30]. In [26,27], Wang and Lin proposed a very good algorithm for

factoring multivariate polynomials over algebraic fields obtained from successive extensions of the filed of

rational numbers. This problem has been further investigated by Li and Yuan in [17, 31]. Li’s algorithm

decomposes ascending chain into irreducible ones directly and Yuan’s algorithm follows Trager’s method

(see [25]). Their methods involve the computation of characteristic set, Gröbner basis or resultant of

multivariate polynomial system and all these computations are quite expensive. Rouillier’s approach can

also deduce an algorithm for the same aim (see [23]). All the above algorithms are probabilistic, and

if the characteristic of the ground field is 0, the algorithms terminate in finite steps with probability 1

(see [8, 27]). Besides, Steel gave his factorization method in another way when the characteristic of the

field is positive and he concentrated on how to conquer the ground inseparability (see [24]).

The main purpose of the current paper is to present an efficient algorithm to solve the following

factorization problem:
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Let k be a perfect computable field and k[x1, . . . , xn] the polynomial ring in indeterminate {x1, . . . , xn}
with coefficients in k. Let I ⊂ k[x1, . . . , xn] be a maximal ideal such that K = k[x1, . . . , xn]/I is indeed

an algebraic extension field of k. For a polynomial f ∈ K[y], we will derive a new efficient algorithm for

factoring f over the field K.

The above problem can be converted to univariate polynomial factorization over the ground field k by

using a generic linear map. If the maximal ideal I is represented by its Gröbner basis for any admissible

order, no extra Gröbner basis computation is needed in the new algorithm. The new algorithm can check

whether a factor of f is irreducible during the factorization process. For those reducible factors, the new

algorithm will factor them further.

In [19], Monico proposed a new approach for computing a primary decomposition of a zero-dimensional

ideal. This idea also plays an important role in the new proposed algorithm. However, Monico’s algorithm

is not complete, i.e., the components in the output of Monico’s algorithm cannot be assured to be primary.

Our new algorithm overcomes this flaw when applying Monico’s idea to the above factorization problem,

i.e., the irreducible factors can be verified without extra computations.

Noro and Yokoyama presented algorithms for computing prime decomposition of radical ideals and

factorization of polynomials over algebraic extension field in [20–22]. Let σ : k[x1, . . . , xn] → K be the

canonical map σ(c) = [c] for all c ∈ k[x1, . . . , xn], where [c] denotes the residue class c + I. This map

can be extended (coefficient wise) to σ : k[x1, . . . , xn, y]→ K[y]. Let J = I + 〈h〉, where σ(h) = f (it is

easy to check that J is well-defined). A polynomial in k[x1, . . . , xn, y] is said to be a separating element

for J ⊂ k[x1, . . . , xn, y], if the evaluations of this polynomial as a function on any two distinct zeros of

J are not equal. In Noro and Yokoyama’s algorithm, if the polynomial y is a separating element for J ,

then a factorization of f is obtained by factoring the norm of f over the ground field; otherwise, variable

substitutions are made to y, i.e., update y by y+ c1x1 + · · ·+ cnxn, where ci are constants in k, and then

check whether y is a separating element for ideal after variable substitution. Notice that such variable

substitution is very expensive if the degree of f in y is high. In our algorithm, such variable substitutions

will be avoided by computing the characteristic polynomial or minimal polynomial of some linear map.

This paper is organized as follows. Some necessary preliminaries are given in Section 2. In Section 3,

we show how the problem of polynomial factorization over algebraic extension field, which is proposed

in [26,27,29,30], can be transformed to a univariate factorization problem. A new algorithm for factoring

polynomials over algebraic extension field is presented in Section 4. Examples and comparisons appear

in Sections 5 and 6 respectively. Finally, we conclude this paper in Section 7.

2 Preliminaries

Let k be a perfect field which admits efficient operations and factorization of univariate polynomials. Let

R be a multivariate polynomial ring over the field k and Q an ideal of R. Let Ak(Q) = R/Q denote the

quotient ring.

Since we can add elements ofAk(Q) and multiply elements with scalars in k, Ak(Q) has the structure of

a vector space over the field k. Furthermore, if Q is zero-dimensional, then Ak(Q) is a finite-dimensional

vector space.

Given a polynomial r ∈ R, we define a map mr from Ak(Q) to itself by multiplication:

mr : Ak(Q)→ Ak(Q),

[g] �→ [rg],

where [g] denotes the residue class in Ak(Q) of the polynomial g ∈ R.

Here are the main properties of the map mr.

Proposition 2.1. Let r ∈ R. Then

(1) mr is a linear map from Ak(Q) to Ak(Q).

(2) mr = mg holds exactly when r − g ∈ Q. In particular, mr is the zero map exactly when r ∈ Q.

(3) Let q be a univariate polynomial over k. Then mq(r) = q(mr).
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(4) If Chp(mr) is the characteristic polynomial of mr, then Chp(mr)(r) ∈ Q.

Proof. For the proofs of parts (1), (2) and (3), please see [4]. For the part (4), since Chp(mr) is

the characteristic polynomial of the linear map mr, Chp(mr)(mr) = 0 by Cayley-Hamilton theorem.

According to part (3), it follows that mChp(mr)(r) = Chp(mr)(mr) = 0. Thus, Chp(mr)(r) belongs to

the ideal Q by part (2).

Proposition 2.2. If Q is a maximal ideal of R, then the minimal polynomial of mr is irreducible

over k.

Proof. Assume R is the polynomial ring k[x1, . . . , xn]. Let 〈Q, z − r〉 be the ideal generated by Q and

z − r over the polynomial ring k[x1, . . . , xn, z], where z is a new indeterminate. Since Q is a maximal

ideal in k[x1, . . . , xn], it follows that 〈Q, z − r〉 is also a maximal ideal in k[x1, . . . , xn, z] and so is the

ideal 〈Q, z − r〉 ∩ k[z].

To study the ideal 〈Q, z− r〉 ∩ k[z], let g be the monic generator of the principal ideal 〈Q, z− r〉 ∩ k[z].
Substitute the indeterminate z by r in g, then g(r) ∈ 〈Q, z − r〉 ∩ k[x1, . . . , xn] = Q, which means

g(mr) = mg(r) = 0 by Proposition 2.1. Since 〈Q, z − r〉 ∩ k[z] is maximal in k[z], g is irreducible over k,

and hence g is the minimal polynomial of mr.

Since the characteristic polynomial and minimal polynomial of a linear map will be used quite fre-

quently in this paper, we use the notations ChpAk(Q)(mr) and MpAk(Q)(mr) to denote the characteristic

polynomial and the minimal polynomial of mr in Ak(Q) respectively. Sometime we use Chp(mr) and

Mp(mr) for short, if no confusion occurs.

The following proposition, which is a basic conclusion from standard linear algebra, illustrates the

relationship between minimal polynomial and characteristic polynomial.

Proposition 2.3. The minimal polynomial MpAk(Q)(mr) and characteristic polynomial ChpAk(Q)(mr)

share the same irreducible factors.

Thus we have an instant corollary of Proposition 2.2.

Corollary 2.4. If Q is a maximal ideal of R, then the characteristic polynomial ChpAk(Q)(mr) is a

power of a polynomial which is irreducible over k.

With the above propositions, next we study more properties about ChpAk(Q)(mr).

Now suppose that Q is a zero-dimensional radical ideal of R and Q has a minimal prime decomposition:

Q = Q1 ∩ · · · ∩Qt,

where each Qi is a prime ideal of R.

We define the linear map mr,i in the same fashion as mr. Denote Ak(Qi) = R/Qi for i = 1, . . . , t, and

consider the linear maps:

mr,i : Ak(Qi)→ Ak(Qi),

[g] �→ [rg],

where [g] denotes the residue class in Ak(Qi) of the polynomial g ∈ R.

The following proposition proposed by Monico [19] describes the relationship between the characteristic

polynomials of mr and mr,i’s.

Proposition 2.5. Let ChpAk(Q)(mr), ChpAk(Qi)(mr,i) be the characteristic polynomials of mr,mr,i

respectively. Then

ChpAk(Q)(mr) = ChpAk(Q1)(mr,1) · · ·ChpAk(Qt)(mr,t).

3 Factorization of polynomials over algebraic extension field

In this section, we will discuss the main ideas about the new factorization method. First of all, we need

some new notations. Throughout this section, let R = k[x1, . . . , xn] and Ry = k[x1, . . . , xn, y]. Please
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note that the notation R represents a general multivariate polynomial ring in the last section, while in

this section R denotes the specific polynomial ring k[x1, . . . , xn]. I is a maximal ideal in R and Iy is the

ideal generated by I over the polynomial ring Ry. Since I is a maximal ideal, the quotient ring R/I is

indeed a field. For convenience, we denote K = R/I, which is a finite extension field of k. Remark that

the quotient ring Ry/Iy is not a field, as Iy is not a maximal ideal in Ry any more.

The ring K[y], which is a polynomial ring over K with the indeterminate y, is a principal ideal domain,

so each polynomial f in K[y] has a unique factorization over K. What we will do next is to give an

efficient algorithm to calculate the factorization of f in K[y].

In order to exploit the properties of I, we should connect the ring Ry and K[y]. Consider the canonical

map:

σ : R→ K = R/I,

c �→ [c],

which sends a polynomial c ∈ R to [c] ∈ K. And σ extends canonically onto Ry by applying σ coefficient-

wise. By definition, σ(g) = 0 if and only if g ∈ Iy for any g ∈ Ry.

Conversely, given an element c ∈ K, we say a polynomial d ∈ R is a lift of c if σ(d) = c. Similarly,

we say h ∈ Ry is a lift of g ∈ K[y] if σ(h) = g holds. Clearly, an element c ∈ K (or g ∈ K[y]) may have

infinite distinct lifts, as the map σ is not injective. Pay attention that, the lifts of g ∈ K[y] may have

different degrees in y.

Since K = k(α1, . . . , αn) = k[α1, . . . , αn], the elements in K have polynomial forms in the letters

α1, α2, . . . , αn, i.e., for g ∈ K[y], g has the following form:

g =

d∑
i=0

ci(α)y
i,

where ci(α) ∈ k[α1, . . . , αn] for i = 0, . . . , d. Let h =
∑d

i=0 ci(x)y
i, where ci(x) ∈ k[x1, . . . , xn] such that

σ(ci(x)) = ci(α). It is easy to check σ(h) = g, and we call h a natural lift of g.

Let F be a set of polynomials in Ry, the ideal generated by F over Ry is denoted by 〈F 〉Ry as usual.

In the rest of this paper, we always make the following assumptions:

• f is a square-free polynomial in K[y] and h ∈ Ry is a lift of f .

• Q = 〈I, h〉Ry ⊂ Ry and Ak(Q) = Ry/Q.

• For r ∈ Ry, the linear map mr is defined from Ak(Q) to Ak(Q) as in the last section.

• f = f1 · · · ft is an irreducible factorization of f over K and hi is a lift of fi.

• mr,i is the linear map defined from Ak(Qi) to Ak(Qi), where Ak(Qi) = Ry/Qi and Qi = 〈I, hi〉Ry

for i = 1, . . . , t.

• ChpAk(Q)(mr), ChpAk(Qi)(mr,i) ∈ k[λ] are the characteristic polynomials ofmr andmr,i respectively.

We use Chp(mr),Chp(mr,i) for short, if no confusion occurs.

Now it is time to describe the main ideas of the new algorithm for factoring f over K[y]. The fol-

lowing lemma builds a relation between the factorization of a square-free polynomial and the minimal

decomposition of a radical ideal.

Lemma 3.1. Q = 〈I, h〉Ry ⊂ Ry is a radical ideal and

Q = Q1 ∩ · · · ∩Qt

is a minimal prime decomposition of Q, where Qi = 〈I, hi〉Ry for i = 1, . . . , t.

Proof. First, we begin by showing the definition of Q = 〈I, h〉Ry is well defined. Suppose h′ is another
lift of f in Ry. Then it suffices to show the two ideals Q = 〈I, h〉Ry and Q′ = 〈I, h′〉Ry are identical.

By the definition of lift, we have σ(h) = f = σ(h′). Since σ is a homomorphism map, it follows that

σ(h − h′) = 0, which means h − h′ ∈ Iy and hence Q = Q′. Similarly, Qi’s are also well defined for the

same reasons.
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Next, we prove Q = 〈I, h〉Ry is a radical ideal of Ry. If gm ∈ Q for some positive integer m, then gm

has an expression gm = t+ sh, where t ∈ Iy and s ∈ Ry. Since σ is a homomorphism map, we have

σ(g)m = σ(gm) = σ(t) + σ(s)σ(h) = σ(s)f,

which means f | σ(g)m. Since f is a square-free polynomial as assumed, f | σ(g)m implies f | σ(g). Let

σ(g) = bf , b ∈ K[y] and a ∈ Ry be a lift of b. Since h is a lift of f , it follows that σ(g) = σ(a)σ(h), which

means σ(g − ah) = 0 and hence g − ah ∈ Iy. So g ∈ Q, which shows Q is a radical ideal.

Similarly, it is easy to show Qi is a prime ideal by using the property that fi is irreducible over K

(hence square-free), and the proof is omitted here.

Finally, we finish this proof by showing the Qi’s constitute a minimal prime decomposition of Q.

On one hand, we have f | σ(g) for any g ∈ Q. It follows that fi | σ(g) for i = 1, . . . , t. Then g belongs

to each Qi as discussed above and hence lies in the intersection of these Qi’s.

On the other hand, given g ∈ Q1 ∩ · · · ∩Qt, it is easy to see that fi | σ(g) for all i = 1, 2, . . . , t. Since

fi’s are irreducible factors of f and coprime with each other, it follows that f = f1f2 · · · ft | σ(g), which
means there exists a ∈ Ry such that σ(g) = σ(a)f and hence g − ah ∈ Iy. Thus, g ∈ Q.

We have now proved that

Q = Q1 ∩ · · · ∩Qt.

As fi and fj are distinct irreducible factors of f whenever i 	= j, then hi /∈ Qj and hj /∈ Qi, which

indicates the above decomposition is minimal.

The following theorem is the main theorem of this paper which provides a new method for factoring

polynomials over algebraic extension fields.

Theorem 3.2 (Main theorem). With the notations defined as earlier, if the characteristic polynomial

Chp(mr) has an irreducible factorization:

Chp(mr) = qm1
1 · · · qms

s ,

where qi is irreducible over k and qi 	= qj whenever i 	= j, then gcd(f, σ(qi(r))) 	= 1 and

f = c

s∏
i=1

gcd(f, σ(qi(r))),

where c is constant in K and gcd(g1, g2) is the monic greatest common divisor of g1 and g2 for any

g1, g2 ∈ K[y]. Furthermore, if mi = 1, then gcd(f, σ(qi(r))) is irreducible over K.

Proof. For convenience, suppose f is monic. In this case, c = 1.

Since f is square-free and f = f1 · · · ft is an irreducible factorization of f as assumed, Q = 〈I, h〉Ry is

a radical ideal and Qi = 〈I, hi〉Ry ’s are prime ideals by Lemma 3.1. Furthermore, Q has a minimal prime

decomposition Q = Q1 ∩ · · · ∩Qt. We also have Chp(mr) = Chp(mr,1) · · ·Chp(mr,t) by Proposition 2.5.

Since Chp(mr,i) ∈ k[λ] is the characteristic polynomial of mr,i, substituting λ in Chp(mr,i) by the

expression of r ∈ Ry, it follows that Chp(mr,i)(r) ∈ Qi = 〈I, hi〉Ry by Proposition 2.1. That is, there

exist a ∈ Iy and b ∈ Ry such that Chp(mr,i)(r) = a+ bhi. Applying σ to both sides of equation, we get

σ(Chp(mr,i)(r)) = σ(a) + σ(b)σ(hi) = σ(b)fi, which means fi | σ(Chp(mr,i)(r)). This shows that fi is a

nontrivial common divisor of f and σ(Chp(mr,i)(r)) for 1 � i � t.

By Corollary 2.4, each Chp(mr,i) must be a power of an irreducible polynomial in k[λ]. Notice that

Chp(mr) = Chp(mr,1) · · ·Chp(mr,t) = qm1
1 · · · qms

s , which implies that for each j there exists at least one

Chp(mr,i) such that Chp(mr,i) | qj . So gcd(f, σ(qj(r))) 	= 1 for 1 � j � s.

We have already shown that fi | σ(Chp(mr,1)(r)) · · · σ(Chp(mr,t)(r)) = σ(q1(r))
m1 · · ·σ(qs(r))ms .

Since fi is irreducible over K, then there exists a j where 1 � j � s, such that fi | σ(qj(r)). As assumed,

f1, . . . , ft are distinct factors of the square-free polynomial f . It follows that

f = f1 · · · ft
∣∣∣∣

s∏
i=1

gcd(f, σ(qi(r))). (3.1)
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For each i, gcd(f, σ(qi(r))) is square-free since f itself is square-free.

Since qi and qj are co-prime in k[λ] whenever i 	= j, then there exist a, b ∈ k[λ] such that aqi+ bqj = 1.

Substituting λ by the expression of r, the equality still holds for a(r)qi(r) + b(r)qj(r) = 1. Applying σ to

both sides of equation, we have σ(a(r))σ(qi(r))+σ(b(r))σ(qj (r)) = 1, which implies σ(qi(r)) and σ(qj(r))

are co-prime in K[y] and hence gcd(f, σ(qi(r))) and gcd(f, σ(qj(r))) are co-prime as well. Therefore,∏s
i=1 gcd(f, σ(qi(r))) is square-free, which indicates

s∏
i=1

gcd(f, σ(qi(r))) | f, (3.2)

since gcd(f, σ(qi(r))) | f for 1 � i � s.

From (3.1) and (3.2), we have f =
∏s

i=1 gcd(f, σ(qi(r))). The first part of theorem is proved.

Particularly, if mk = 1 for some k, the equation qm1
1 · · · qms

s = Chp(mr,1) · · ·Chp(mr,t) shows qk divides

only one Chp(mr,i). Then we have Chp(mr,i) = qk and Chp(mr,i) is co-prime with other Chp(mr,j)

whenever i 	= j. With a similar discussion, it is easy to show σ(Chp(mr,i)(r)) and σ(Chp(mr,j)(r)) are

co-prime in K[y] whenever i 	= j. Clearly, gcd(f, σ(Chp(mr,i)(r))) = gcd(f, σ(qk(r))) is a factor of f

and we also know fi | gcd(f, σ(Chp(mr,i)(r))) as discussed earlier. Therefore, if there exists fj such that

fi 	= fj and fj | gcd(f, σ(Chp(mr,i)(r))), then σ(Chp(mr,i)) and σ(Chp(mr,j)) will have a nontrivial

common divisor fj. This contradiction implies gcd(f, σ(qk(r))) = fi and hence irreducible over K.

Then we have two immediate corollaries of the main theorem.

Corollary 3.3. If Chp(mr) is square-free, suppose Chp(mr) = q1 · · · qs is an irreducible factorization

of Chp(mr) over k, then

f = c

s∏
i=1

gcd(f, σ(qi(r)))

is an irreducible factorization of f over K, where c is constant in K.

Corollary 3.4. If Chp(mr) is irreducible over k, then f is irreducible over K.

Corollary 3.3 indicates that if we are lucky enough to get a square-free Chp(mr), then we can obtain

the complete factorization of f directly; otherwise, by the main Theorem 3.2, we will get some factors of

f , which can be factored in a further step.

The most important contribution of the main theorem is that we are able to check which factor of f

is irreducible by simply investigating whether mi is 1, which ensures the method provided in this paper

is a complete method for factoring polynomials in K[y].

4 Algorithm for factorization

In this section, we will present the algorithm for factorization over algebraic extension field based on the

main Theorem 3.2. Before doing that, we discuss some algorithmic details first.

Given a polynomial f ∈ K[y], it is usually not square-free. So in order to apply the main theorem, we

can factor the square-free part of f first and deduce a factorization of f afterwards, which is not very

difficult no matter the field K is characteristic 0 or not. In the new algorithm, the gcd computation over

algebraic extension field is necessary, and many algorithms have been proposed for this purpose [10,14,18].

In case the characteristic polynomial Chp(mr) is difficult to compute, we can calculate the minimal

polynomial Mp(mr) instead with the following observation.

Proposition 4.1. If the characteristic polynomial Chp(mr) is square-free, then the minimal polynomial

Mp(mr) and the characteristic polynomial Chp(mr) are identical.

Proof. It is an easy corollary of Proposition 2.3.

Conversely, if the minimal polynomial has lower degree than its characteristic polynomial, then the

characteristic polynomial is not square-free. Many methods can be used for computing the minimal

polynomial, such as the famous FGLM method (see [7]).
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Now, it is time to present the algorithm for factorization over algebraic extension field.

Algorithm 1 — Factorization

Input: f , a square-free monic polynomial in K[y].

Output: the factorization of f in K[y].

begin

r← a random polynomial in k[x1, . . . , xn, y]

Chp(mr)← the characteristic polynomial of the linear map mr

factorize Chp(mr) over k and obtain Chp(mr) = qm1
1 · · · qms

s

for i from 1 to s do

fi←gcd(f, σ(qi(r)))

if mi = 1 #fi is irreducible

then gi←fi

else gi←Factorization(fi)

end if

end for

return g1g2 · · · gs
end

Remark 4.2. The computation of Chp(mr) is an important step of the above algorithm. According

to the method provided in [4], Chp(mr) is easy to compute if the Gröbner basis of Q = 〈I, h〉Ry is known,

where h is a nature lift of f . Fortunately, if f is monic in K[y], the Gröbner basis of Q can be constructed

directly, since {G, h} is a Gröbner basis of 〈I, h〉Ry with the elimination monomial order y � x, where G

is a Gröbner basis of I.

The correctness of the above algorithm is ensured by the main Theorem 3.2. So it remains to discuss

the termination.

First, we will show Chp(mr) is square-free with a fairly high probability for a random chosen r ∈ Ry.

Clearly, if Chp(mr) is square-free, then the algorithm terminates immediately by Corollary 3.3.

Proposition 4.3. If the characteristic of k is 0, then the probability that the characteristic polynomial

Chp(mr) is square-free for a random r ∈ Ry is 1.

Proof. The technique of the proof draws lessons from [19].

Since Q = 〈I, h〉Ry is a zero-dimensional radical ideal, the quotient ring Ak(Q) = Ry/Q has finite

dimension as a vector space. Let d = dimk(Ak(Q)). According to the basic algebraic geometry, we know

the variety V (Q) has d distinct points, say z1, . . . , zd, in an extension field of k.

Notice that Chp(mr) ∈ k[λ] is square-free if and only if r(zi) 	= r(zj) whenever i 	= j, which is a direct

consequence of Theorem 4.5 in [4]. Therefore, consider the following set:

C = {r | Chp(mr) is not square-free} = {r | ∃ zi, zj ∈ V (Q) with zi 	= zj such that r(zi) = r(zj)}.

Since V (Q) has finite points, it only suffices to show the set

Cij = {r | r(zi) = r(zj) and zi 	= zj}

is an algebraic set.

Let {e1, . . . , ed} be the standard monomial basis of Ak(Q). Thus, [r] = a1e1 + · · ·+ aded, where ai ∈ k

for i = 1, . . . , d. So Cij also has an isomorphic form:

C̃ij = {(a1, . . . , ad) ∈ kd | a1e1(zi) + · · ·+ aded(zi) = a1e1(zj) + · · ·+ aded(zj) and zi 	= zj}.
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According to [4, Subsection 2.4], zi is uniquely determined by the vector (e1(zi), . . . , ed(zi)). Therefore,

zi 	= zj implies

(e1(zi), . . . , ed(zi)) 	= (e1(zj), . . . , ed(zj)),

and hence (e1(zi)− e1(zj), . . . , ed(zi)− ed(zj)) is a nonzero vector.

Thus C̃ij is a proper algebraic set in kd. Consequently, C is isomorphic to a proper algebraic set of kd.

Since the characteristic of k is 0, the probability that a random r ∈ Ry belongs to the set C is 0, which

completes the proof.

In order to simplify the computation, we usually prefer r in a linear form. The following corollary

shows Chp(mr) is also square-free with a high probability for a randomly chosen linear r.

Corollary 4.4. If the characteristic of k is 0, then the probability that the characteristic polynomial

Chp(mr) is square-free for a random linear r ∈ Ry is also 1.

Proof. The proof is in the same fashion as Proposition 4.3. The only difference is that r has a linear

expression r = by + a1x1 + · · ·+ anxn. Then the set Cij = {r | r(zi) = r(zj) and zi 	= zj} is isomorphic

to a proper algebraic set of kn+1, which completes the proof.

There are some tricks for choosing a linear r so as to speed up the algorithm. For example, the variable

y needs to appear in the expression of r and we usually set the coefficient of y as 1; also, if the variable xi

happens to be a leading power product of some polynomial in the Gröbner basis of I, then this variable

xi is not needed in r, as it can be reduced afterwards.

Although the probability that the characteristic polynomial Chp(mr) is square-free for a random

(linear) r ∈ Ry is 1, it is not sufficient to show the algorithm terminates all the time. However, the

following proposition indicates that if we select r in a special fashion, the algorithm terminates in finite

steps.

Proposition 4.5. If the characteristic of k is 0, then we can find an r ∈ Ry such that Chp(mr) is

square-free in finite steps.

Proof. In fact, according to the proof of Proposition 4.3, the set C is the union of all Cij for i 	= j,

where Cij is isomorphic to the set {(a1, . . . , ad) ∈ kd | a1(e1(zi) − e1(zj)) + · · · + ad(ed(zi) − ed(zj)) =

0 and zi 	= zj}. Thus, C is isomorphic to the solution set of a polynomial equation F (a1, . . . , ad) = 0,

while the total degree of F is at most d(d − 1)/2. Let di = degai
F (a1, . . . , ad) for i = 1, . . . , d and

D = {(a1, . . . , ad) | ai is an integer, 0 � ai � di and 1 � i � d}. Since F 	= 0, F cannot vanish on all the

points of D. So there must exist (a′1, . . . , a
′
d) ∈ D such that F (a′1, . . . , a

′
d) 	= 0. Then r = a′1e1+ · · ·+a′ded

is the r such that Chp(mr) is square-free. As the cardinality of D is finite, this r can be constructed

within finite steps.

Therefore, in each recursive call of Factorization(fi), if we choose a different r in the above fashion,

the algorithm must terminate in finite steps.

5 A rough complexity analysis

At last, we say something about the complexity of the new algorithm. The complexity of this algorithm

contains three parts:

(1) Given a Gröbner basis G of I, then the set {G, h} is a Gröbner basis of Q = 〈I, h〉Ry as discussed

earlier, so computing a basis for Ak(Q) has complexity O(D), where D is the dimension of the linear

space Ak(Q).

(2) Computing the matrix of mr requires O(D3) field operations in the worst case. Computing the

characteristic polynomial Chp(mr) requires O(D3) field operations.

(3) Factorizing the univariate polynomial Chp(mr) has been studied by many researchers, and more

details can be found in [3, 15].
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As a result, by using this new algorithm, the problem of factoring polynomials over algebraic extension

field can be transformed to the factorization of univariate polynomials over the ground field in polynomial

time.

6 A complete example

In this section, we illustrate the new algorithm through a complete example.

Example 6.1. Given a maximal ideal I = 〈x2
1 + 1, x2

2 + x1〉 ⊂ Q[x1, x2], where Q is the rational field.

Then the extension field is K = Q[x1, x2]/I. Notice that {x2
1 + 1, x2

2 + x1} is already a Gröbner basis of

I for the lexicographic order with x2 � x1.

We are going to factor the polynomial

f = y3 + (α1α2 − 2α1 − α2)y
2 + (α1α2 + 2α2 − 2)y + α1 − α1α2 ∈ K[y],

where αi = [xi] ∈ K.

Since f is square-free and monic in K[y],

h = y3 + (x1x2 − 2x1 − x2)y
2 + (x1x2 + 2x2 − 2)y + x1 − x1x2 ∈ Ry

is a natural lift of f . Thus, {x2
1 + 1, x2

2 + x1, h} is a Gröbner basis of the ideal Q = 〈I, h〉Q[x1,x2,y] for the

lexicographic order with y � x2 � x1.

According to the new algorithm, we need to choose a random polynomial r ∈ Ry = Q[x1, x2, y] first.

Here r = x1 + 2x2 + y is selected. Let Ak(Q) = Q[x1, x2, y]/Q, which is a vector space over Q with a

monomial basis

B = [1, x2, x1, x1x2, y, x2y, x1y, x1x2y, y
2, x2y

2, x1y
2, x1x2y

2]T.

Next, compute the matrix M of the linear map mr w.r.t. B. Then

mr(B) = MB,

where M is a 12× 12 matrix,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 1 0 1 0 0 0 0 0 0 0

0 0 −2 1 0 1 0 0 0 0 0 0

−1 0 0 2 0 0 1 0 0 0 0 0

2 −1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 2 1 0 1 0 0 0

0 0 0 0 0 0 −2 1 0 1 0 0

0 0 0 0 −1 0 0 2 0 0 1 0

0 0 0 0 2 −1 0 0 0 0 0 1

0 0 −1 1 2 −2 0 −1 0 3 3 −1

1 0 0 −1 −1 2 2 0 −1 0 −3 3

1 −1 0 0 0 1 2 −2 −3 1 0 3

0 1 1 0 −2 0 −1 2 3 −3 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The characteristic polynomial of this matrix is

Chp(mr) = λ12 + 26λ10 − 116λ9 + 371λ8 − 2064λ7 + 6802λ6 − 17916λ5 + 49922λ4

− 109088λ3 + 155984λ2 − 134592λ+ 55872

= (λ4 + 10λ2 − 12λ+ 18)(λ4 + 8λ2 − 72λ+ 97)(λ4 + 8λ2 − 32λ+ 32).
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The next step is to substitute λ by the expression of r in each factor of Chp(mr). For example,

q1 = λ4 + 10λ2 − 12λ+ 18 becomes

q1(r) = (x1 + 2x2 + y)4 + 10(x1 + 2x2 + y)2 − 12(x1 + 2x2 + y) + 18.

And

σ(q1(r)) = (α1 + 2α2 + y)4 + 10(α1 + 2α2 + y)2 − 12(α1 + 2α2 + y) + 18 ∈ K[y].

In the following, we compute the gcd of f and σ(q1(r)). Finally obtain

gcd(f, σ(q1(r))) = y + α1α2.

Since m1 = 1, y + α1α2 is an irreducible factor of f by Theorem 3.2. Similarly, since m2 = m3 = 1, the

other irreducible factors of f can be obtained from q2 = λ4+8λ2−72λ+97 and q3 = λ4+8λ2−32λ+32:

gcd(f, σ(q2(r))) = y − α1 − α2, gcd(f, σ(q3(r))) = y − α1.

As a result, we get a complete factorization of f ∈ K[y]:

f = (y + α1α2)(y − α1 − α2)(y − α1).

In the above procedure, Chp(mr) is square-free, so we obtain a complete factorization of f directly.

However, what if Chp(mr) is not square-free?

For example, if r = − 3
2x1 − 1

2x2 + y is selected at the beginning, then we repeat the above steps.

The monomial basis B does not change, but the matrix varies and the characteristic polynomial

becomes

Chp(mr) = λ12 +
7

2
λ10 − 7

2
λ9 +

113

8
λ8 − 3

2
λ7 +

33

4
λ6 +

41

4
λ5 +

273

64
λ4 +

67

16
λ3 +

467

128
λ2 +

169

128
λ+

89

512

=

(
λ4 +

5

2
λ2 − 9

2
λ+

89

8

)(
λ4 +

1

2
λ2 +

1

2
λ+

1

8

)2

.

Let q1 = λ4 + 5
2λ

2 − 9
2λ + 89

8 and q2 = λ4 + 1
2λ

2 + 1
2λ + 1

8 . Since m1 = 1, we can get an irreducible

factor of f by Theorem 3.2:

gcd(f, σ(q1(r))) = y + α1α2.

While the other factor q2 only leads to a reducible factor of f :

gcd(f, σ(q2(r))) = y2 − (2α1 + α2)y + α1α2 − 1,

which needs to be factored further.

Let f ′ = y2 − (2α1 + α2)y + α1α2 − 1 and h′ = y2 − (2x1 + x2)y + x1x2 − 1 ∈ Ry is a natural lift of

f ′. Next r′ = −2x1 − 2x2 + y is chosen. And the monomial basis of Q[x1, x2, y]/〈I, h′〉Q[x1,x2,y] is

B′ = [1, x2, x1, x1x2, y, yx2, yx1, yx1x2]
T.

Notice the length of B′ is 8, which is smaller than the previous one. Thus an 8× 8 matrix is constructed

and the characteristic polynomial is

Chp(mr′) = λ8 + 4λ6 + 20λ5 + 23λ4 + 40λ3 + 102λ2 + 100λ+ 34

= (λ4 + 2λ2 + 16λ+ 17)(λ4 + 2λ2 + 4λ+ 2) = q′1q
′
2.

Since m′
1 = m′

2 = 1, we obtain two irreducible factors of f ′:

gcd(f ′, σ(q′1(r
′))) = y − α1 and gcd(f ′, σ(q′2(r

′))) = y − α1 − α2.

Combined with the factor we got earlier, f has a complete factorization in K[y]:

f = (y + α1α2)(y − α1)(y − α1 − α2).

The new algorithm can also perform well when the ground field k is a finite field. However, if we

consider the factorization when the ground field is a finite field, according the proof of Proposition 4.3,

we will have a lower probability to find an r such that Chp(mr) is square-free, especially when the

cardinality of k is small.
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7 Timings

We have implemented the new algorithm both for the case k = Q and for finite fields in Magma. Since

Wang’s algorithm can only work for fields of characteristic 0. In order to be fair, the examples are

randomly generated over the ground field k = Q.

We tested the examples in appendix both for cfactor which is an implementation of Wang’s algorithm

and for efactor which is an implementation of the new algorithm. The timings in the following table are

obtained from a computer (Windows XP, CPU Core2 Duo 2.66GHz, Memory 2GB).

We should mention that cfactor is implemented in Maple 7, since cfactor only can work correctly for

Maple 7, while efactor is implemented in Magma. For the input of the new algorithm, the maximal ideal

can be expressed by its Gröbner basis for any admissible order, generally for a total degree order. And

for the input of Wang’s algorithm, the maximal ideal has to be its irreducible ascending set, which is

equivalent to a lexicographic Gröbner basis. Notice that a Gröbner basis with lexicographic order usually

has larger coefficients than that with a total degree order.

In the third column of Table 1, h(i) is a lift of f (i). From Table 1, we can see that the new algorithm

is much more efficient than Wang’s, especially for complicated examples.

By analyzing Wang’s algorithm and the new algorithm, we think there are three main reasons that

make the new algorithm more efficient than Wang’s. First, in Wang’s algorithm, the variable y in f ,

which is to be factored, needs to be replaced by a linear combination of a new variable y′ and the xi’s.

This leads to the expansions of the coefficients as well as the terms of f when the degree of f in y is

big. Second, the modulo map by a Gröbner basis, which sends a polynomial into its remainder, is a

ring homomorphism, which speeds up the new algorithm. But in Wang’s algorithm, the pseudo-

remainder map does not hold this property. Last and the most important, the complexity of computing

the characteristic polynomial of mr is polynomial time for any given r. However, the complexity of

computing the characteristic set in Wang’s algorithm is exponential. Besides, any new technique for

calculating the characteristic polynomial will speed up the new algorithm as well.

8 Conclusions and future work

In this paper, we present a new method for factoring polynomials over an algebraic extension field and this

algorithm performs pretty good for characteristic 0 systems as well as finite field systems. Compared with

Monico’s primary decomposition method, the new algorithm is complete and the irreducible factors can be

verified without extra computations. The new algorithm surely terminates within finite steps if the linear

map in each recursive call of the algorithm is selected in a special fashion. And in most cases, the proposed

Table 1 Comparation with Wang’s algorithm

Ry dimk Ry/〈I(i), h(i)〉Ry cfactor (sec.) efactor (sec.)

f(1) Q[x1, x2, y] 16 0.032 0.000

f(2) Q[x1, x2, x3, y] 28 0.110 0.031

f(3) Q[x1, x2, x3, x4, y] 48 12.171 0.734

f(4) Q[x1, x2, x3, x4, y] 32 9.109 0.328

f(5) Q[x1, x2, x3, x4, y] 64 245.531 4.313

f(6) Q[x1, x2, x3, x4, x5, y] 32 44.359 1.297

f(7) Q[x1, x2, x3, x4, x5, y] 48 91.500 9.719

f(8) Q[x1, x2, x3, x4, x5, y] 48 377.327 11.469

f(9) Q[x1, x2, x3, x4, x5, y] 80 2011.375 63.578

f(10) Q[x1, x2, x3, x4, x5, x6, y] 64 > 2h 96.344
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algorithm terminates in few loops, as the characteristic polynomial of a generic linear map is square-free

with probability 1. Moreover, the total complexity of this new algorithm can be controlled in a reasonable

degree.

However, when the characteristic of ground field is 0, the expansion of coefficients is unavoidable. The

situation is better in finite field. Therefore, a natural idea emerges. That is we can factor the polynomials

in finite field first, and lift the factorization to characteristic 0 afterwards. We also notice that Gao [9]

gave an efficient algorithm for computing the primary decomposition over finite fields, which may help

to improve the new algorithm in finite field and hence benefits our future work.
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Appendix: Examples in timings

1. f (1) = (y + α1)(y − 2α2)(y
2 + α1 + α2), I

(1) = (x1 + x2
2, 1 + x2

1 − x2x1) ⊂ Q[x1, x2].

2. f (2) = (y + α1α3 + α2 + α1)(y − 2α2
2 + α2

3 + 1)(y2 + α1α2 + α3),

I(2) = (x2
1 − x2x1 + x3x1 − x1 − x2, x

2
1 − x3x1 + x1 − x2

2 − x3x2 − x2 + x2
3,−1 + x2

1 + x3x1 + x1

− x2
2 − x2 + x2

3 − x3) ⊂ Q[x1, x2, x3].

3. f (3) = (y + α1)(y − 2α4)(y + α2 + α3),

I(3) = (x2
1 + x3x1 − x1x4 + x2

2 − x2 + x3x4 − x2
4 − x4, x

2
1 + x2x1 − x1x4 + x2

2 + x3x2 + x2 + x2
4 − x4,

1 + x2x1 − x3x1 + x1x4 + x1 + x2
2 − x3x2 + x2x4 − x2 + x2

3 + x3x4 − x2
4, x

2
1 + x2x1 + x3x1 + x1x4

− x2
2 + x3x2 − x2 + x2

3 − x3x4 − x2
4 + x4) ⊂ Q[x1, x2, x3, x4].

4. f (4) = (y − 2α2
4 + α3α1 + α2 + 1)(y + α2

2 + α3α4 + α1α3 + 2),

I(4) = (−1 − x2
1 + x3x1 + x2

2 − x3x2 + x2
3 − x3x4 + x2

4 + x4, 1 + x2x1 + x3x1 + x1 − x3x2 − x2x4

+ x2 − x2
3 − x3x4 − x3, 1 + x3x1 + x1x4 + x1 + x2

2 + x2x4 − x2 − x3 − x2
4, x

2
1 + x2x1 + x3x1 + x1x4

− x1 − x2x4 − x2
3 + x3x4 − x3 + x2

4 + x4) ⊂ Q[x1, x2, x3, x4].

5. f (5) = (y2 + (α1 + α4α2)y + α3α4 + α2)(y
2 + (α1α3 − α4)y + α3 + α2α4α1),

I(5) = (−1+2x2
1−x2x1+2x3x1−x1x4+x2

2+x2x3+2x2x4− 2x2
3+2x3x4−x3−x4, x

2
1− 2x1x4−x1

+2x2
2+x2x3+2x2x4−x2−x3x4+x3−2x2

4+2x4, 2−2x2
1+2x2x1+x3x1+2x1+2x2x3+x2x4−x2

3−2x3

−2x2
4, 2x

2
1−x2x1−x3x1−x1x4−x2

2+x2x3−x2x4−2x2+2x2
3−2x3x4+x3+x2

4+2x4) ⊂ Q[x1, x2, x3, x4].

6. f (6) = (y + α1 + α3α4 + α2α5)(y + α2α5 + 2− α3 + α4),

I(6) = (2 − x2
1 + x1x2 − 2x3x1 + 2x4x1 − 2x1 + 2x2

2 + x2x3 + 2x2x5 + 2x2
3 + x3x4 − x3 − 2x4x5

− 2x4 + 2x5, 1 − x2
1 − x1x2 − x3x1 − x1x5 + x1 − x2

2 − 2x2x3 + 2x2x4 − 2x2x5 + x2 + x2
3 + 2x3x4

−x3−2x2
4−x4x5+x4+2x2

5, 1−2x2
1−2x1x2−2x3x1−x4x1−x1x5+x2

2+2x2x3−2x2x4+x2x5−2x2

− x2
3 − 2x3x4 + 2x3x5 − 2x3 − 2x2

4 + x4x5 + 2x2
5 + x5, x

2
1 − x1x2 − x3x1 − x4x1 + 2x1 + 2x2

2 + x2x3

+ 2x2 + 2x3x5 + x2
4 − x4 + 2x2

5 − x5, x2 − 2x4 + x5 − 1) ⊂ Q[x1, x2, x3, x4, x5].

7. f (7) = (y + α1 + α3α4)(y − α2α5)(y − α3 + α4),

I(7) = (1− 2x3x1 +x4x1+2x1x5+x1− 2x2
2−x2x3+2x2x4+2x2x5− 2x2−x2

3− 2x3x4 +2x3x5 +x3

+x2
4+2x4x5+x4−x2

5−2x5, 1−2x2
1+2x1x2−2x3x1−2x4x1+2x1x5−2x1+x2

2+2x2x3+x2x4+2x2x5

− 2x2 + 2x2
3 − x3x4 + 2x3x5 + 2x3 + 2x2

4 − x4x5 − 2x2
5 + x5,−x2

1 − x1x2 − x3x1 + x4x1 − 2x1x5

+ 2x1 − x2
2 + 2x2x3 − x2x4 + 2x2x5 + 2x2 − 2x2

3 + 2x3x4 − x3x5 − x3 − x2
4 + 2x4x5 + 2x4 − 2x2

5

+2x5,−1− 2x2
1 + 2x1x2 − x3x1 − x4x1 + x1x5 + x1 +2x2x3 + x2x4 + x2x5 + 2x2 + x3x4 + x3 − 2x2

4

− x4 + x2
5 − x5, x2 − x3 + x4 − x5 + 1) ⊂ Q[x1, x2, x3, x4, x5].

8. f (8) = (y2 + (α1 − α2α4)y + α2α5 + α3 + α5)(y + α3α5 + α2α4α3),

I(8) = (2+x2
1+2x2x1+x3x1+2x1x4−2x1x5+2x1−x2

2+2x3x2+2x4x2+2x2x5−x2−2x3x4+x3x5

+x3−x2
4−x4x5−x4+x2

5−2x5, 1−x2
1+2x2x1−x3x1+2x1x4+2x1x5−2x1+2x2

2−x3x2−x4x2−x2x5

+ 2x2 + 2x2
3 − 2x3x4 + 2x3x5 − 2x2

4 + 2x4x5 − x4 − x2
5 + x5, 1 + 2x2x1 + x3x1 + x1x4 + 2x1x5 + x2

2

+ x4x2 − 2x2x5 − x2
3 + x3x4 − x3x5 − x3 + x4x5 − x4 + x2

5 − x5, x
2
1 + 2x2x1 + 2x3x1 + 2x1x4 + x1x5

−2x1+2x2
2+x3x2+2x4x2−2x2−2x2

3+2x3x4−2x3−2x2
4−x4x5+x2

5, x1−2x2−2x3+2x4+x5−2)

⊂ Q[x1, x2, x3, x4, x5].



1168 Sun Y et al. Sci China Math June 2013 Vol. 56 No. 6

9. f (9)=(y2 +(α1−α2α4)y+α2α5 +α3 +α5)(y
2 + y(1+α3−α2 +α3α5) +α4 +α3−α1α5)(y+α3α5

+ α2α4α3),

I(9) = I(8) ⊂ Q[x1, x2, x3, x4, x5].

10. f (10) = (y + α1 + α2 + α6 + α3α4 + α2α5α6)(y + α2α6 − α1α5 + 2− α3 + α4),

I(10) = (−1 + 2x2
1 + x1x2 + 2x1x3 − x1x4 + x1x5 − 2x1x6 + 2x1 − x2

2 + x3x2 + 2x4x2 − 2x2 + x2
3

− 2x3x5+2x3x6− 2x2
4−x4x5+2x4x6+x4− 2x5x6− 2x5+x2

6+2x6,−2x2
1−x1x5− 2x1− 2x2

2+x3x2

−x4x2−x2x6−x2
3+2x4x3+2x3x5−x3+2x2

4−2x4−x2
5−x5x6+x5+2x2

6,−1+x4−x5+x6+x5x6−2x4x6

+ 2x4x5 − 2x3x6 + x3x5 + x4x3 − x2x6 + 2x2x5 + x3x2 − x1x6 − x1x5 − 2x1x4 − x1x3 − x1x2 + 2x2

− 2x2
1+ x2

2+2x2
3− x2

4 + x2
5 + x2

6, 2− x2
1− 2x1x3− 2x1x4− 2x1x5 + x1x6 + x1− x3x2 +2x4x2− 2x2x6

− x2 + 2x2
3 − x4x3 + 2x3x5 + x3x6 + x3 + x2

4 + x4x5 − x4 − 2x2
5 + 2x5x6 + x5 − x6, x1x2 − 2x1x4

−x1x5−x1x6−x1−x3x2−2x4x2−2x2x5−2x2x6−x2
3−x4x3−2x3x5−2x3x6−x3−2x4x5−2x4x6−2x4

− x2
5 + 2x5x6 − x5 + 2x2

6 + x6,−2x1 + x2 + x3 − 2x4 + 2x5 + x6 − 2) ⊂ Q[x1, x2, x3, x4, x5, x6].


