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Abstract. The comprehensive Gröbner systems of parametric polyno-
mial ideal were first introduced by Volker Weispfenning. Since then, many
improvements have been made to improve these algorithms to make them
useful for different applications. In contract to reduced Groebner bases,
which is uniquely determined by the polynomial ideal and the term order-
ing, however, comprehensive Groebner systems do not have such a good
property. Different algorithm may give different results even for a same
parametric polynomial ideal. In order to treat this issue, we give a deci-
sion method to determine whether two comprehensive Groebner systems
are equal. The polynomial ideal membership problem has been solved
for the non-parametric case by the classical Groebner bases method,
but there is little progress on this problem for the parametric case until
now. An algorithm is given for solving this problem through comput-
ing comprehensive Groebner systems. What’s more, for two parametric
polynomial ideals and a constraint over the parameters defined by a con-
structible set, an algorithm will be given to decide whether one ideal
contains the other under the constraint.

Keywords: Constructible Set, Quasi-algebraic set, Gröbner Bases,
Comprehensive Gröbner System.

1 Introduction

The comprehensive Gröbner systems of parametric polynomial ideal were in-
troduced by Volker Weispfenning in 1992 [12]. Many engineering problems are
parameterized and have to be repeatedly solved for different values of param-
eters. The comprehensive Gröbner systems can give the structure of solution
space(finitely many, infinitely many, or the dimension of the solutions), which is
similar to the properties of the Gröbner bases.

Let k be a field, k[U ][X ] be the polynomial ring with the parameters U =
{u1, . . . , um} and the variables X = {x1, . . . , xn}, where U and X are disjoint.
K is an algebraically closed field of k, F be a subset of k[U ][X ]. A specialization
σ is the homomorphism from k[U ][X ] to K[X ]. The comprehensive Gröbner
systems for F is a finite set G = {(A1, G1), . . . , (Al, Gl)}, which satisfy σā(Gi)
is a Gröbner basis for the ideal 〈σā(F )〉 in K[X ] for any ā ∈ Ai and i = 1, . . . , l.

Many algorithmshave been provided for computing the comprehensiveGröbner
systems, including CGB (V.Weispfenning, 1992)[12], CCGB(V.Weispfenning,
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2003)[13], ACGB(Y.Sato and A.Suzuki, 2003)[9], SACGB(Y.Sato and A.Suzuki,
2006)[10], HSGB(González-Vega et al., 2005)[2] and BUILDTREE (A.Montes,
2002)[5]. A speed-up of the algorithm was given by Nabeshima [7]. A newest ver-
sion for computing CSG was provided by Kapur, Sun and Wang by removing re-
dundant segments [3]. There is an related concept of Gröbner cover introduced by
Montes and Wibmer in 2010 [6]. In contract to reduced Gröbner bases, which is
uniquely determined by the polynomial ideal and the term ordering, however, the
comprehensive Gröbner systems do not have such a good property. Different algo-
rithm may output different results. Weispfenning[13], Manubens and Montes[4],
Wibmer[14] have done some researches about the canonical Gröbner system. In
this paper, we compare two CGS from another aspect.

In ISSAC’09, Suzuki and Sato[8] gave a method to compute the inverses in
residue class rings of parametric polynomial ideals. For a given parametric ideal
I ⊂ k[U ][X ], and a polynomial f ∈ k[U ][X ], they first compute a CGS G of
I + 〈fy − 1〉. For any branch (A,G) ∈ G. if there is a polynomial which can be
expressed as y − h, where h ∈ k[U ][X ], then f is invertible in K[X ]/(I : f∞)
under the constraint A. In order to judge whether f is invertible in K[X ]/I, it
still need to decide whether I and I : f∞ are equal under the constraint A. This
is the motivation of the paper.

The ideal membership problem of non-parametric case has been totally solved
in the past[1]. But there is little research about the problem of parametric case
until now. This paper can solve this problem through computing CGS of the
parametric polynomial ideal. In the paper, we also give a method to decide
whether two comprehensive Gröbner systems are equal. As a consequence, for
two parametric polynomial ideals and a constructible set, the method can judge
whether one of ideals is contained in the other one under the constraint of the
constructible set.

This paper is organized as follow. Section 2 gives some preliminaries about
the constructible set and the quasi-algebraic set. In section 3, the method of
solving the ideal membership problem is presented. The inclusion and equiva-
lence relation about two parametric ideal are also given in this section. Finally,
some conclusions are given in section 4.

2 Notations and Preliminary

2.1 Notations

Let k be a field, K be the algebraic closure of k, R be a polynomial ring k[U ]
in parameters U = {u1, . . . , um}, and R[X ] be a polynomial ring over R in
variables X = {x1, . . . , xn} where X and U are disjoint. Let PP (X) be the
sets of power products of X , and ≺ be an admissible monomial ordering on
PP (X). As before, for a polynomial f ∈ R[X ] = k[U ][X ], the leading power
product, leading coefficient and leading monomial of f w.r.t. the ordering ≺ are
denoted by lpp(f), lc(f) and lm(f) respectively. Note that lc(f) ∈ k[U ] and
lm(f) = lc(f)lpp(f).
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For arbitrary ā ∈ Km, a specialization ofR induced by ā is a homomorphism
σā : R −→ K. That is, for ā ∈ Km, the induced specialization σā is defined as
follows:

σā : f −→ f(ā),

where f ∈ R. Every specialization σā : R −→ K extends canonically to a
specialization σā : R[X ] −→ K[X ] by applying σā coefficient-wise. For a subset
F of k[U ][X ], σa(F ) = {σa(f) | f ∈ F}.
Definition 1 (Member). Let F be an subsets of parametric polynomial ring
k[U ][X ], f ∈ k[U ][X ]. We say f is a member of the ideal generated by E, if
for any a in Km, σa(f) is a member of the ideal generated by σa(E) in K[X ].

Definition 2 (Contain). Let E,F be two subsets of the parametric polynomial
ring k[U ][X ]. We say E contains F , if the ideal generated by σā(E) contains
the ideal generated by 〈σā(F ) in K[X ] for any ā ∈ Km. If E contains F , and F
contains E, we say E and F are equal.

For any ā ∈ Km, if every element in the Gröbner bases of 〈σā(F )〉 is contained
in the ideal 〈σā(E)〉, it is obvious that E contains F . For different ā ∈ Km,
the Gröbner bases of 〈σā(F )〉 may be different, so we need to study the struc-
ture of the Gröbner bases of 〈σā(F )〉 with respect to the parametric space Km.
Before that, we introduce the notations about quasi-algebraic set and the con-
structible set.

For any subset E = {e1, . . . , es} of k[U ], the set of common zeros in Km of
E is a Zariski closed set, denoted by V(E). For a single polynomial h in R, we
denote the complement of V(h) in Km by V(h)c, which is a basic Zariski open
set. A quasi-algebraic set is the intersection of a Zariski closed set with a basic
Zariski open set, and a constructible set is a finite union of quasi-algebraic set
[11]. We denote V(E) ∩ V(h)c by V(E)\V(h).

In this paper, we only consider the constructible set has a form V(E)\V(N),
where E = {e1, . . . , es} and N = {n1, . . . , nt} are subsets of R. It is obvious
that V(E)\V(N) = ∪t

i=1(V(E)\V(ni)). We say a constructible set V(E)\V(N)
is consistent if it is not empty.

Now we can describe the structure of the Gröbner bases of a parametric ideal.
For a parametric polynomial system F ⊂ R[X ], a comprehensive Gröbner system
of F is defined below.

Definition 3 (CGS). Let F be a subset of R[X ], A1, . . . , Al be algebraical
constructible subsets of Km, G1, . . . , Gl be subsets of R[X ], and S be a subset of
Km such that S ⊂ A1∪· · ·∪Al. A finite set G = {(A1, G1), . . . , (Al, Gl)} is called
a comprehensive Gröbner system on S for F , if σā(Gi) is a Gröbner basis
for the ideal 〈σā(F )〉 in K[X ] for any ā ∈ Ai and i = 1, . . . , l. Each (Ai, Gi) is
called a branch of G. Particularly, if S = Km, then G is called a comprehensive
Gröbner system for F .

In above, the constructible set Ai can be expressed as Ai = V(Ei) \ V(Ni),
where Ei, Ni are subsets of k[U ].
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Notes that, for many algorithm of computing CGS, such as the algorithm
given in [3,7], the output of these algorithm has the following property: for any
branch (A,G) of a CGS, for each g ∈ G, σā(lc(g)) 
= 0 for any ā ∈ A. So in the
paper, we always assume the CGS has the above property.

2.2 Some Preliminaries

Given two polynomial f, g in k[U ][X ], and a term ordering “ ≺ ”. If there is a
term cαX

α in f with the coefficient cα 
= 0, and Xα is a multiple of lpp(g), we
say f can be reduced by g, and r = lc(g)f−cαX

γg is the remainder of f reduced
by g through one step reduction, where Xγ = Xα

lpp(g) . Continuing reduce r by g

until no term of the remainder is a multiple of lpp(g), assume the remainder is
r0, we say the r0 is the remainder of f reduced by g.

For a subset F of k[U ][X ], and a polynomial g ∈ k[U ][X ], we can define
the reduction of g by F as the following lemma. The pseudo division algorithm
in k[U ][X ] is similar to the division algorithm in k[X ], more details about the
division algorithm can refer to the book [1].

Lemma 1. Let F = {f1, . . . , fs} be a subset of k[U ][X ], and “ ≺ ” be a term
ordering. Then every g ∈ k[U ][X ] can be represented as:

s∏

i=1

lc(fi)
δig = p1f1 + · · ·+ psfs + r,

for some elements h1, . . . , hs, r in k[U ][X ], nonnegative integers δ1, . . . , δs, such
that:

i.) pi = 0 or lpp(pifi) � lpp(g),
ii.) r = 0 or no term of r is a multiple of any lpp(fi), i = 1, . . . , s.

At the end of this part, we review some properties about the constructible set
and the quasi-algebraic set.

For a constructible set A = V(E) \ V(N), where E,N = {n1, . . . , nl} are
subsets of k[U ]. We are only interested in those constructible sets which are

consistent. Since A = V(E)\V(N) =
⋃l

i=1(V(E)\V(ni)), we only need to know
whether the quasi-algebraic set V(E) \ V(ni) is empty, for i = 1, . . . , l.

Lemma 2. Let A = V(E) \ V(h) be a quasi-algebraic set, where E is a subset
of k[U ] and h is a polynomial in k[U ]. Then A is consistent if and only if h is
not in the radical ideal generated by E in k[U ].

In the following lemma, we show any finite intersection of quasi-algebraic set
is a quasi-algebraic set.

Lemma 3 ([11]). Let A1 = V(E1) \ V(h1), A2 = V(E2) \ V(h2) be two quasi-
algebraic sets, where E1, E2 are subsets of k[U ], and h1, h2 are polynomials in
k[U ]. Then A1 ∩ A2 is also a quasi-algebraic set, and A1 ∩ A2 = V(E1, E2) \
V(h1h2).
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Given a quasi-algebraic set A = V(E)\V(h) ⊂ Km, and a parametric poly-
nomial f = c1X

α1 + · · ·+ ctX
αt ∈ k[U ][X ], ci ∈ k[U ] for i = 1, . . . , t. If for any

a ∈ A, the specialization σa(f) = 0, then A must be a subset of the common
zeros of the coefficients, i.e. A ⊂ V(c1, . . . , ct). Let A be the Zarisiki closure of A,

V(〈E〉 : h∞) = V(〈E〉)\V(h) = A ⊂ V(c1, . . . , ct) = V(c1, . . . , ct),

so ci is in the radical ideal generated by the saturated ideal 〈E〉 : h∞ in k[U ] for
i = 1, . . . , t. On the other hand, we can regard the polynomials in E and h as
polynomial in k[U,X ], then f is in the radical ideal generated by the saturated
ideal 〈E〉 : h∞ in k[U,X ].

Lemma 4. Given a quasi-algebraic set A = V(E)\V(h) ⊂ Km, and a paramet-
ric polynomial f ∈ k[U ][X ]. If for any a ∈ A, the specialization σa(f) = 0, then
〈E, fhv − 1〉 = 〈1〉 = k[v, U,X ], where v is an auxiliary variable different from
X an U .

3 The Computations about Two Parametric Ideals

In this section, first we give the method to judge whether a parametric polyno-
mial is a member of a parametric polynomial ideal. Then we give the method
to determine the inclusion and equivalence relationship about two parametric
polynomial ideals. Several examples will be given for illustrating our methods.

3.1 The Membership Problem of Parametric Ideal

Given a subset F of parametric polynomial ring k[U ][X ], and a parametric poly-
nomial f in k[U ][X ]. If f is a member of the ideal generated by F in k[U,X ],
it is obvious for any a ∈ Km, σa(f) is a member of the ideal generated by
σa(F ). But there are some situations, f is not a member of the ideal gener-
ated by F in k[U,X ], f is still a member of ideal generated by F . For example,
F = {a3b2x2 − y2, ab2x2 − b2xy2}, f = abx2 − b3y6, it is easy to check f is not
in the ideal generated by F in k[a, b, x, y]. But we will see, for any (a, b) ∈ C

2,
σa(f) is a member of the ideal generated by σa(F ), so f is a member of the ideal
generated by F .

In order to check whether a parametric polynomial is a member of a para-
metric ideal, we have following theorem.

Theorem 4. Let F be a subset of parametric polynomial ring k[U ][X ], and f
be a parametric polynomial in k[U ][X ]. Assume G = {(A1, G1), . . . , (Al, Gl)} be
a comprehensive Gröbner system of F w.r.t. a term ordering “ ≺ ”. For any
branch (A,G) in G, r is the remainder of f reduced by G. If for any a ∈ A,
σa(r) = 0, then f is a member of the parametric ideal generated by F .

We continue the above example to illustrate the result given in Theorem 1.
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Example 1. Let F = {a3b2x2 − y2, ab2x2 − b2xy2} be a subset of Q[a, b][x, y],
and f = abx2 − b3y6 in Q[a, b][x, y]. Check whether f is a member of the ideal
generated by F .

First, a CGS G of F w.r.t. a lexicographic ordering x � y is computed.

G = {(A1, G1), (A2, G2), (A3, G3)},
where A1 = V(∅)\V(ab), G1 = {ab2y4 − y2, xy2 − b2y6, ab2x2 − b2xy2};A2 =
V(a)\V(1), G2 = {y2};A3 = V(b)\V(a), G3 = {y2}.

For branch (A1, G1), f is reduced by G1 to 0. For branch (A2, G2), f is
reduced by G2 to abx2. Since under the constraint A2, a = 0, so for any a ∈ A2,
σa(abx

2) = 0. For branch (A3, G3), f is reduced by G3 to abx2. Since under the
constraint A3, b = 0, so for any a ∈ A3, σa(abx

2) = 0. By the Theorem 1, f is a
member of parametric ideal generated by F .

3.2 The Equivalence Relationship about Two Parametric Ideal

In this part, we give the method to determine whether a parametric polynomial
ideal E contains another parametric polynomial ideal F .

Let G1 = {(A1, G1), . . . , (Al, Gl)} be a CGS of E w.r.t. a term ordering “ ≺1 ”,
and G2 = {(B1, H1), . . . , (Br, Hr)} be a CGS of F w.r.t. a term ordering “ ≺2 ”.
For any branch (A,G) ∈ G1, if σa(F ) is contained in 〈σa(E〉, it is obvious E
contains F . We have the following theorem.

Theorem 5. Let G1,G2 be as above. For any branch (A,G) ∈ G1 and (B,H) ∈
G2, assume G = {g1, . . . , gs}, H = {h1, . . . , ht}, and ri be the remainder of hi

reduced by G for i = 1, . . . , t. If for any a ∈ A ∩B, σa(ri) = 0, then E contains
F , where i = 1, . . . , t.

Remark 1. If we only need to know whether F is contained in E under some
constructible set A, we only need to compute a CGS of F on A, then use the
Theorem 2.

If E contains F and F contains E, E and F are equal. We have the following
consequence of Theorem 2.

Corollary 6. Let G1,G2 be as above. For any branch (A,G) ∈ G1 and (B,H) ∈
G2, assume G = {g1, . . . , gs}, H = {h1, . . . , ht}, ri be the remainder of hi reduced
by G w.r.t. “ ≺1 ” , and qj be the remainder of gj reduced by H w.r.t. “ ≺2 ” .
If for any a ∈ A∩B, σa(ri) = 0 and σa(qj) = 0, then E and F are equal, where
i = 1, . . . , t, j = 1, . . . s.

In the ISSAC’09, Suzuki and Sato give a method to compute the inverse in
residue class rings of parametric polynomial ideals. Given a parametric polyno-
mial ideal I ⊂ k[U ][X ], and f ∈ k[U ][X ], they first compute a CGS of 〈I+fy−1〉
w.r.t. a block order “y >> X >> U” in k[U ][X, y]. By their method, it only
can decide whether f is invertible in K[X ]/(I : f∞) in every branch directly.
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In order to judge whether f is invertible in K[X ]/I, it still need to compare
whether I and I : f∞ are equal in every branch. The following is the example
come from [8].

Example 2. Let I = {ax2
3+2x2x3+bx2

1x3+(−b+d)x1x3−dx3+ax2
2+abx2

1x2+
adx1x2 + x2

1 + cx1 + e, ax2 + ax1x2 + x1x3} be a set of parametric polynomials,
f = x1+ax2+x3 be a parametric polynomial in Q[U ][X ], where U = {a, b, c, d, e}
are parameters and X = {x1, x2, x3} are variables. We need to check under what
specialization σ from Q[U ] to C, σ(f) is invertible in C[X ]/〈σ(I)〉, where C is
the complex field.

Suzuki and Sato computes a CGS of I+ 〈fy−1〉 in Q[a, b, c, d, e][x1, x2, x3, y]
w.r.t. a lexicographic term ordering y � x1 � x2 � x3. There are six branches
where f is invertible in C[X ]/(I : f∞). We only choose two of them to study
whether I and I : f∞ are equal in these branch.

Branch 1: (A1, G1)
A1 = V(a)\V(e(c+ d)(b− c− d+ 2)),
G1 = {(2x2−d)x3+x2

1+cx1+e, x1x3, (−2x2+d)x2
3−ex3, (4x

2
2+(−2c−4d)x2+

dc+ d2)x3 − ex1 − e2y − ec};
Branch 6: (A6, G6)
A6 = V(e, c+ d, b+ 2, a− 1)\V(d),
G6 = {−x2

3 + (−2x2 + d)x3 − x2
2 + (d+ 1)x2,−x3 − x2 − x1 + d,−dy + 1}.

In the branch (A1, G1), G
′
1 = G1 ∩ Q[U ][X ] = {(2x2 − d)x3 + x2

1 + cx1 +
e, x1x3, (−2x2 + d)x2

3 − ex3} is the Gröbner basis of I : f∞ under the constraint
of A1. We first compute a CGS G1 of I under the constraint A1,

G1 = {V(a)\V(e(c+d)(b−c−d+2)), {(2x2−d)x3+x2
1+cx1+e, x1x3, (−2x2+d)x2

3−ex3}}.

It is obvious I and I : f∞ are equal under the constraint A1, so σa(f) is invertible
in C[X ]/〈σa(I)〉 for a ∈ A1.

In the branch (A6, G6), G
′
6 = G6 ∩ Q[U ][X ] = {−x2

3 + (−2x2 + d)x3 − x2
2 +

(d + 1)x2,−x3 − x2 − x1 + d} = {g1, g2} is the Gröbner basis of I : f∞ under
the constraint of A6. We first compute a CGS G2 of I under the constraint A6:
G2 = {V(e, c+ d, b+2, a− 1)\V(d), {x4

2 +4x3
2x3 − dx3

2 − 2x3
2 +6x2

2x
2
3 − 3dx2

2x3 −
4x2

2x3 + dx2
2 + x2

2 + 4x2x
3
3 − 3dx2x

3
3 − 2x2x

2
3 + dx2x3 + x4

3 − dx3
3, x1x3 + x3

2 +
3x2

2x3 − dx3
2 − 2x2

2 + 3x2x
2
3 − 2dx2x3 − 2x2x3 + dx2 + x2 + x3

3 − dx2
3, x1x2 +

x1x3 + x2, x
2
1 − dx1 + x2

2 + 2x2x3 − dx2 + x2
3 − dx3}} = {A6, {h1, h2, h3, h4}}.

It is obvious there is no term of g1 = −x2
3 + (−2x2 + d)x3 − x2

2 + (d + 1)x2,
or g2 = −x3 − x2 − x1 + d ∈ G′

6 can be reduced by {h1, h2, h3, h4}, so the
remainder of g1, g2 reduced by {h1, h2, h3, h4} are r1 = g1, r2 = g2 respectively.
For a = (1,−2, 1,−1, 0) ∈ A6, σa(r1) = −x2

3 + (−2x2 − 1)x3 − x2
2 
= 0. So I

and I : f∞ are not equal under the constraint A6. That is, σa(f) is invertible in
C[X ]/〈σa(I : f∞)〉 but not invertible in C[X ]/〈σa(I)〉 for a ∈ A6.
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4 Conclusions

In this paper, we give the method to solve the membership problem about para-
metric polynomial ideals, and determine whether two parametric polynomial
ideal are equal.

Given a parametric polynomial f and an ideal F in k[U ][X ], before computing
a CGS of F , we can first compute a Gröbner bases G of F in k[U,X ] and the
remainder of f reduced by G. If the remainder is zero, then f is obvious the
member of F . Otherwise, we use the theorem 4 to decide whether f is a member
of F . Similarly, for two subset I, J of k[U ][X ], if the reduced Gröbner bases of I
and J in k[U,X ] are same, I and J must equal.
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