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Abstract In this paper, we investigate the problem that the conclusion is true on some
components of the hypotheses for a geometric statement. In that case, the affine variety
associated with the hypotheses is reducible. A polynomial vanishes on some but not all the
components of a variety if and only if it is a zero divisor in a quotient ring with respect to
the radical ideal defined by the variety. Based on this fact, we present an algorithm to decide
if a geometric statement is generally true or generally true on components by the Gröbner
basis method. This method can also be used in geometric theorem discovery, which can give
the complementary conditions such that the geometric statement becomes true or true on
components. Some reducible geometric statements are given to illustrate our method.
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1 Introduction

Automated theoremproving is the deriving ofmathematical theoremsby a computer program,
which has been studied for several decades. It can be traced back to the excellent work of
Gelernter et.al. [1], Tarski [2], Seidenberg [3], Collins [4] and so on. After that, there are
two main algebraic methods to prove geometric theorem automatically: the Wu’s method
and the Gröbner basis method. In 1977, Wu Wen-Tsün [5,6] used the characteristic sets and
pseudo division to prove the geometric statement mechanically. Many complicated geometry
theorems have been proved by Wu’s method [7]. The work of Ritt [8] provided excellent
algebraic tools and algorithms for Wu’s method. The notion of Gröbner basis was introduced
by Buchberger in 1965. It is a powerful tool for solving multivariable polynomial systems.
Chou [9], Kapur [10], Kutzler and Stifter [11] have done some works to prove geometry
theorem by Gröbner basis method.

A geometric statement contains some hypotheses and a conclusion. Let K [U, X ] be a
polynomial ring over an algebraic closed field K in U and X , where U = {u1, . . . , um}
are parameters which can be arbitrarily chosen, and X = {x1, . . . , xn} are variables. For
a statement from elementary geometry, the hypotheses can be expressed by the following
parametric polynomial equations

⎧
⎨

⎩

f1(u1, . . . , um, x1, . . . , xn) = 0,
· · ·

fs(u1, . . . , um, x1, . . . , xn) = 0,

and the conclusion is

f (u1, . . . , um, x1, . . . , xn) = 0,

where f1, . . . , fs, f are polynomials in K [U, X ].
InWu’s method, it firstly reduces the hypotheses f1, . . . , fs to a triangle formwith respect

to the variables X , and then successive pseudo divides the conclusion f by the triangle form.
If the remainder is zero, then the geometric theorem is generally true. In Gröbner basis
method, a Gröbner basis G of the ideal 〈 f1, . . . , fs, f y − 1〉 in K (U )[X, y] is computed,
where K (U )[X, y] is a polynomial ring over field K (U ) in variables X and y. If 1 is in G,
then the geometric theorem is generally true.

If the varietyV defined by the ideal I = 〈 f1, . . . , fs〉 is reducible, the automated geometric
theorem proving will become more difficult. Since the conclusion f may vanish on some but
not all components of V , the Morley’s trisector theorem [12] and V.Thèbault’s conjecture
[13] are the case in point. This problem can be solved by combining Ritt’s decomposition
algorithm with Wu’s method. It decomposes the variety V by using Ritt’s decomposition
algorithm, and then checks the conclusion f on every components of V by Wu’s method.
Chou pointed out that the Gröbner basis method alone can not solve such problem unless
factorization is used (cited from [7], page 88). However, the procedure of factorization is
difficult and time-consuming. In this paper, we will prove the reducible geometric theorem
by Gröbner method without factorization.

The automated theorem discovery is finding complementary conditions for a given geo-
metric statement to become true [14]. Many related works have been done on these topics,
which include [7,15–20]. In theseworks, the notion of comprehensiveGröbner system (CGS)
has been used. The CGS was introduced by Weispfenning in 1992 [21]. Since then, many
algorithms have been developed for computing CGS efficiently, including [22–28]. In 2004,
Chen et al. [16] applied CGS to prove and discover geometric theorem automatically. Their
method can not only prove whether the geometric theorem is generally true, but also provide
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complementary hypotheses such that the statement becomes true. Instead of computing a
Gröbner basis in geometric theorem proving, a CGS of the parametric polynomial system
{ f1, . . . , fs , f y − 1} is computed in geometric theorem discovery. Manubens and Montes
[29] proposed the minimal canonical CGS, which can also be used in mechanical proving. In
Chen or Manubens’ method, only the complementary conditions which make the geometric
statement become true can be found. However, the problem of reducible geometric statement
discovery can not be solved completely by their methods.

In this paper, we will present two algorithms to prove or discover the reducible geome-
try theorem automatically by Gröbner basis method without factorization. For a geometric
statement, the conclusion vanishes on some but not all the components of a variety asso-
ciated with the hypotheses if and only if it is a zero divisor in a quotient ring with respect
to the radical ideal defined by the variety. Based on the observation, we prove and discover
geometric theorems automatically regardless whether it is irreducible or reducible.

This paper is organized as follows. Some concepts and results about geometric theorem
are given in Sect. 2. In Sect. 3, an algorithm is presented to prove geometric theorem auto-
matically. Some reducible geometric theorems are proved by the algorithm. In Sect. 4, we
extend geometric statement to parametric case and give an algorithm to find complemen-
tary conditions such that the statement becomes true or true on components. Finally, some
conclusions are presented in Sect. 5.

2 Some Results About Geometric Theorem

From the view of algebra, we review some previous results about geometric theorem in this
section.

Let K be an algebraically closed field, K [U, X ] be a polynomial ring over K in
U and X , where U = {u1, . . . , um} are parameters and X = {x1, . . . , xn} are vari-
ables. Given a geometric statement, it is assumed that the hypotheses can be expressed
as f1(U, X) = 0, . . . , fs(U, X) = 0, and the conclusion can be expressed as f (U, X) = 0,
where f1, . . . , fs, f are polynomials in K [U, X ]. Let I = 〈 f1, . . . , fn〉 be an ideal in
K [U, X ], V = V(I ) = {(a1, . . . , am+n) ∈ Km+n | fi (a1, . . . , am+n) = 0, 1 ≤ i ≤
s}, I(V ) = { f ∈ K [U, X ] | f (p) = 0,∀ p ∈ V }. We call V(I ) the affine variety defined by
I , and I(V ) the ideal of V .

Definition 2.1 Let W be an irreducible variety in the affine space Km+n with coordinates
u1, . . . , um, x1, . . . , xn . We say that u1, . . . , um are algebraically independent on W if no
nonzero polynomial in the ui alone vanishes identically onW , i.e. I(W )∩ K [u1, . . . , um] =
{0}.

From Chapter 6 of the book [30], V has a minimal decomposition

V = V1 ∪ · · · ∪ Vp ∪ Vp+1 · · · ∪ Vp+q , (1)

where each Vk is an irreducible subvariety of V , Vi 	⊂ Vj for i 	= j , and the parameters U
are algebraically independent on the subvariety Vi for 1 ≤ i ≤ p andU are not algebraically
independent on the subvariety Vj for p + 1 ≤ j ≤ p + q . Each Vk is called a component
of V, 1 ≤ k ≤ p + q . Moreover, the components V1, . . . , Vp are called the non-degenerate
components of V , which are corresponding to the non-degenerate cases of the hypotheses.
The components Vp+1, . . . , Vp+q are called the degenerate components of V , which are
corresponding to the degenerate cases of the hypotheses. If p > 1, the geometric statement
is called reducible.
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Definition 2.2 Given a geometric statement, it is assumed that the hypotheses are expressed
as f1(U, X) = 0, . . . , fn(U, X) = 0 and the conclusion is expressed as f (U, X) = 0.
Let V be the variety defined by { f1, . . . , fn} and have a minimal decomposition as in (1).
The geometric statement is called true if f vanishes on every point of V . The geometric
statement is called generally true if f vanishes on all non-degenerate components of V , i.e.
f vanishes on V1∪· · ·∪Vp . The geometric statement is called generally true on components
if f vanishes on some but not all non-degenerate components of V . Otherwise, the geometric
statement is called generally false.

From the Hilbert’s Nullstellensatz, a geometric statement is true if and only if f is a
member of the radical of I in K [U, X ]. So we can decide whether a geometric statement is
true by solving an ideal membership problem.

The following proposition gives methods to decide whether a geometric statement is
generally true.

Proposition 2.3 Let all the notations be the same as inDefinition 2.2 and y be a new variable
different from U and X. The following assertions are equivalent:

1. The geometric statement is generally true, i.e. the conclusion f vanishes on V1∪· · ·∪Vp.
2. The conclusion f is in the radical ideal of 〈 f1, . . . , fn〉 in K (U )[X ].
3. {1} is the reduced Gröbner basis of the ideal 〈 f1, . . . , fn, f y − 1〉 in K (U )[X, y].
4. The Gröbner basis of 〈 f1, . . . , fn, f y − 1〉 in K [U, X, y] (in lexicographic ordering

U < X and U < y) contains at least a polynomial g(U ) in K [U ].
Proof The detailed proofs of (1 ⇔ 2) and (2 ⇔ 3) can refer to the Chapter 5 of [9]. Now
we proof (3 ⇔ 4).
′′ ⇒′′ From (3), there exits p1, . . . , ps, ps+1 in K (U )[X, y] such that

1 = p1 f1 + p2 f2 + · · · + ps fs + ps+1( f y − 1).

There must exit h(U ) ∈ K [U ] such that h(U )pi ∈ K [U ][X, y] for 1 ≤ i ≤ s + 1. So

h(U ) = h(U )p1 f1 + h(U )p2 f2 + · · · + h(U )ps fs

+h(U )ps+1( f y − 1) ∈ 〈 f1, . . . , fn, f y − 1〉 ⊂ K [U, X, y].
For any Gröbner basis G of 〈 f1, . . . , fn, f y − 1〉 in K [U, X, y] (in lexicographic ordering
U < X andU < y), there exists a polynomial g(U ) in G such that the leading term of h(U )

is divided by the leading term of g(U ). According to term ordering, g(U ) is in K [U ].
“⇐” It is obvious through a similar analysis. ��

3 Reducible Geometric Theorem Proving

The problem of deciding whether a geometric statement is generally true can be solved by
Proposition 2.3. In this section, we focus on whether a geometric statement is generally true
on components when it is not true or generally true.

3.1 Generally True on Components

Let J be an ideal in K (U )[X ], a polynomial f is a zero divisor in K (U )[X ]/J if f /∈ J
and there exists a polynomial h in K (U )[X ] such that h /∈ J and f h ∈ J . The following
theorem gives necessary and sufficient conditions to decide whether a geometric statement
is generally true on components from an algebraic view.
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Theorem 3.1 Let all the notations be the same as in Definition 2.2, J be the ideal generated
by f1, . . . , fn in K (U )[X ], and √

J be the radical ideal of J . Then the geometric statement
is generally true on components if and only if f is a zero divisor in K (U )[X ]/√J .

Proof Let
V = V( f1, . . . , fn) = V1 ∪ · · · ∪ Vp ∪ Vp+1 · · · ∪ Vp+q , (2)

be a minimal decomposition of V , where the parametersU are algebraically independent on
the components Vi for 1 ≤ i ≤ p and algebraically dependent on the components Vj for
p + 1 ≤ j ≤ p + q . Let W = V1 ∪ · · · ∪ Vp .

(“⇒”) If the geometric statement is generally true on components, then f vanishes on some
Vi but not all, 1 ≤ i ≤ p. Without loss of generality, we assume f vanishes on V1 ∪ · · · ∪Vi0
but does not vanish onVi0+1, . . . , Vp , where 1 ≤ i0 < p. SinceVi0+1∪. . .∪Vp � W, I(W ) �

I(Vi0+1 ∪ · · · ∪ Vp). There exists a polynomial h ∈ I(Vi0+1 ∪ · · · ∪ Vp)\I(W ). So h vanishes
on Vi0+1 ∪ · · · ∪ Vp but does not vanish on W . Hence, f h vanishes on W . From Proposition
2.3, f h is in the

√
J . Since f and h are not in

√
J , f is a zero divisor in K (U )[X ]/√J .

(“⇐”) If f is a zero divisor in K (U )[X ]/√J , then f is not in
√
J and there exists a

polynomial h /∈ √
J such that f h ∈ √

J . From Proposition 2.3, f h vanishes on W . Since h
is not in

√
J , h does not vanish on some Vi for 1 ≤ i ≤ p, and then f must vanish on these

components where h does not vanish. Moreover, f is not in
√
J , then f does not vanish on

W . Hence, the geometric statement is generally true on components. ��
Remark 3.2 Assume f vanishes and only vanishes on the components Vi0 , . . . , Vik of V , it
is obvious that I + 〈 f 〉 vanishes on Vi0 ∪ · · · ∪ Vik . So Vi0 ∪ · · · ∪ Vik ⊂ V(I, f ). That is to
say, the conclusion f only vanishes on those components of V where I + 〈 f 〉 vanishes.

From Theorem 3.1, we can judge whether a geometric statement is generally true on com-
ponents by checkingwhether the conclusion polynomial f is a zero divisor in K (U )[X ]/√J .
By decomposing the radical ideal

√
J , we can decide whether f is a zero divisor in

K (U )[X ]/√J . However, it is difficult and time-consuming procedure to decompose an
ideal. In the following, we give another method to check whether f is a zero divisor in
K (U )[X ]/√J without decomposing the radical ideal

√
J .

Let J : f s = {g | g f s ∈ J }, J : f ∞ = {g | g f m ∈ J, ∃ m ∈ N
+}, J : f ∞ = J : f m

means J : f m−1
� J : f m = J : f m+1.

Theorem 3.3 Let J be an ideal and f be a polynomial in K (U )[X ],√J be the radical ideal
of J . Then f is a zero divisor in K (U )[X ]/√J if and only if f /∈ √

J and there exists a
polynomial h ∈ J : f ∞ such that h /∈ √

J .

Proof (“⇒”): If f is a zero divisor in K (U )[X ]/√J , then f /∈ √
J and there exists a

polynomial g /∈ √
J such that f g ∈ √

J . Hence, there exists an integer s such that f s gs ∈ J ,
and gs ∈ J : f s ⊂ J : f ∞. Let h = gs , we have h ∈ J : f ∞ and h /∈ √

J .
(“⇐”): if f /∈ √

J and there exists a polynomial h ∈ J : f ∞ such that h /∈ √
J . Assume

J : f ∞ = J : f m , we have h f m ∈ J . Clearly, hm f m ∈ J and h f ∈ √
J . Thus, f is a zero

divisor in K (U )[X ]/√J since f /∈ √
J and h /∈ √

J . ��
If a Gröbner basis of J : f ∞ is computed, then we can decide whether f is a zero

divisor in K (U )[X ]/√J by checking elements in the Gröbner basis. Consequently, whether
a geometric statement is generally true on components can be determined by Theorem 3.1.

Example 3.4 Consider a geometric statement whose hypotheses is f1 = (x1−u)(x2+u)2 =
0 and the conclusion is f = x2 + u = 0.
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Since
√
J = √〈 f1〉 = 〈(x1 − u)(x2 + u)〉 ⊂ K (U )[X ], it is obvious that f is not in the

radical ideal
√
J but it is a zero divisor in K (U )[X ]/√J . Hence, the geometric statement is

generally true on components by Theorem 3.1.

Example 3.5 Consider a geometric statement whose hypotheses are f1 = xy = 0, f2 =
x2 = 0, and the conclusion is f = y = 0.

Since
√
J = √〈 f1, f2〉 = 〈x〉, it is obvious that f is not in the radical ideal

√
J and it is

not a zero divisor of K [X ]/√J . Hence, the geometric statement is generally false.

Remark 3.6 When the geometric statement is not generally true, Montes and Recio [17]
also give a method to decide whether a geometric statement is generally true on compo-
nents by deciding whether the ideal 〈 f1, . . . , fn, f 〉 is 〈1〉 in K (U )[X ]. It concludes that if
〈 f1, . . . , fn, f 〉 	= 〈1〉, then the geometric statement is generally true on components. The
ideal 〈 f1, f2, f 〉 	= 〈1〉 in Example 3.5„ and thus the geometric statement should generally
true on components by [17]. However, it is obvious that the varietyV( f1, f2, f ) = {(0, 0)} is
not a subvariety ofV( f1, f2). Hence the conclusion f does not vanish on any non-degenerated
component of V byRemark 3.2. The geometric statement is not generally true on components
by our method.

3.2 The Algorithm for Proving Reducible Geometric Theorem

Given a geometric statement, assume f1 = 0, . . . , fn = 0 are the hypotheses equations and
f = 0 is the conclusion equation, where f1, . . . , fn, f are polynomials in K [U, X ]. Let J be
the ideal generated by { f1, . . . , fn} in K (U )[X ]. We compute a Gröbner basis G of the ideal
H = J + 〈 f y − 1〉 in K (U )[X, y] with respect to any monomial ordering in K (U )[X, y],
where y is a new variable different from X . By Proposition 2.3, if 1 ∈ G, then f ∈ √

J and
the geometric statement is generally true. If the geometric statement is not generally true, let
G∞ = G ∩ K (U )[X ]. Note that G∞ is a Gröbner basis of J : f ∞ ⊂ K (U )[X ]. Combining
Theorems 3.1 and 3.3, if there is a polynomial h inG∞ but not in

√
J , then f is a zero divisor

in K (U )[X ]/√J and the geometric statement is generally true on components. Otherwise,
the geometric statement is generally false. In summary, we give the Algorithm 1 to prove
geometric theorems automatically.

Algorithm 1 Proving Reducible Geometric Theorem Automatically
Require: Given a geometric statement, assume f1 = 0, . . . , fn = 0 are the hypotheses equations, and f = 0

is the conclusion equation, where f1, . . . , fn , f ∈ K [U, X ];
Ensure: Decide whether the geometric statement is generally true or generally true on components.

Step 1: Let J = 〈 f1, . . . , fn〉 ⊂ K (U )[X ]. Computing a minimal Gröbner basis G of ideal H =
J + 〈 f y − 1〉 ⊂ K (U )[X, y] w.r.t. any monomial ordering.
Step 2: If 1 ∈ G, then the geometric statement is generally true and the algorithm is terminated. Else, go
to Step 3.
Step 3: Let G∞ = G ∩ K (U )[X ]. If there is a polynomial h in G∞ but not in

√
J , then the geometric

statement is generally true on components. Otherwise, the geometric statement is generally false.

3.3 Application to Reducible Geometric Theorem Proving

There are two reducible geometric theorems proved by Algorithm 1. The first example comes
from [7].

123



Automated Reducible Geometric Theorem Proving and Discovery... 337

Fig. 1 Example 3.7

Example 3.7 Let�ABC be a triangle, ACDE and BCFG be two squares drawn on the two
sides AC and BC respectively, and M be the midpoint of the line segment AB. Checking
whether the conclusion |DF | = 2|CM | is true or not.

Without loss of generality, fix a triangle �ABC with A = (u1, 0), B = (u2, u3),C =
(0, 0), whereU = {u1, u2, u3} are parameters. Since the positions ACDE and BCFG w.r.t.
triangle �ABC is not unique, there are totally four possible cases based on the hypotheses
(see Fig. 1a–d). We want to prove whether the geometric statement is generally true or
generally true on components in the following analysis.

Let F = (x1, x2), M = (x3, x4) and D = (0, x5), where X = {x1, x2, x3, x4, x5} are
variables. Then the hypotheses of the statement can be expressed as:

f1 = x22 + x21 − u23 − u22 = 0, (|CF | = |BC |)
f2 = x25 − u21 = 0, (|DC | = |CA|)
f3 = u3x2 + u2x1 = 0, (CF⊥BC)

f4 = 2x3 − u2 − u1 = 0, (M is the midpoint ofAB)

f5 = 2x4 − u3 = 0.
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Fig. 2 Example 3.8

The conclusion is

f = x21 + (x2 − x5)
2 − 4(x23 + x24 ) = 0, (|DF | = 2|CM |).

Step 1 : Let J = 〈 f1, f2, f3, f4, f5〉 ⊂ K (U )[X ]. Computing a Gröbner basis G of J +
〈 f y − 1〉 in K (U )[X, y] w.r.t. a lexicographical ordering with y > x5 > · · · > x1, we get
G = {x21 − u23, u3x2 + u2x1, 2x3 − u2 − u1, 2x4 − u3, u3x5 + u1x1, 4u1u2y + 1}.
Step 2 : Since 1 /∈ G, the geometric statement is not generally true.
Step 3 : Let G∞ = G ∩ K (U )[X ] = {−u23 + x21 , u3x2 + u2x1, 2x3 − u2 − u1, 2x4 −
u3, u3x5 + u1x1}. Checking polynomials in G∞, we get h = u1x1 + u3x5 ∈ G∞ but h not
in

√
J . Hence, the geometric statement is generally true on components by Theorem 3.1 and

3.3.
The following is another geometric statement which is generally true on components.

Example 3.8 Three equilateral triangles A1BC, AB1C, ABC1 are erected on the three sides
of triangle ABC . Checking whether the conclusion |B1C1| = |A1C | is true or not (see
Fig. 2a, b).

Without loss of generality, fix a triangle �ABC with A = (0, 0), B = (1, 0) and C =
(u1, u2), where U = {u1, u2} are parameters. Since the positions of triangles A1BC, AB1C
and ABC1 w.r.t. this triangle �ABC are not unique, there are totally eight possible cases
based on the hypotheses. Two representative cases are showed in Fig. 2a, b. We need to check
whether the conclusion |B1C1| = |A1C | is true.

From Fig. 2a, b, we know intuitively the conclusion |B1C1| = |A1C | does not always
hold. Now we prove the reducible geometric statement automatically.

Let A1 = (x1, x2), B1 = (x3, x4),C1 = (x5, x6), where X = {x1, . . . , x6} are variables.
The hypotheses of the geometric statement can be expressed as:
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f1 = x25 + x26 − 1, (|AC1| = |AB|)
f2 = (x5 − 1)2 + x26 − 1, (|BC1| = |AB|)
f3 = (x1 − u1)2 + (x2 − u2)2 − (u1 − 1)2 − u22, (|CA1| = |BC |)
f4 = (x1 − 1)2 + x22 − (u1 − 1)2 − u22, (|BA1| = |BC |)
f5 = (x23 + x24 ) − (u21 + u22), (|AB1| = |AC |)
f6 = (x3 − u1)2 + (x4 − u2)2 − (u21 + u22). (|CB1| = |AC |)

The conclusion can be expressed as:

f = (x5 − x3)
2 + (x6 − x4)

2 − (x1 − u1)
2 − (x2 − u2)

2, (|B1C1| = |A1C |).
Step 1 : Let J = 〈 f1, f2, f3, f4, f5, f6〉 ⊂ K (U )[X ]. Computing a Gröbner basis G of
J + 〈 f y − 1〉 in K (U )[X, y] w.r.t. a lexicographical ordering y > x6 > · · · > x2 > x1, we
get G = {4x21 + (−4u1 − 4)x1 + u21 + 2u1 − 3u22 + 1, 2u2x2 + (2u1 − 2)x1 − u21 − u22 +
1, 4x23 − 4u1x3 − 3u22 + u21, 2u2x4 + 2u1x3 − u21 − u22, 2x5 − 1, 2u2x6 − 2x3 + u1, (9u21 −
3u22)y − 2x3 − 2u1}.
Step 2 : Since 1 /∈ G, the geometric statement is not generally true.
Step 3 : Let G∞ = {4x21 + (−4u1 −4)x1 +u21 +2u1 −3u22 +1, 2u2x2 + (2u1 −2)x1 −u21 −
u22 + 1, 4x23 − 4u1x3 − 3u22 + u21, 2u2x4 + 2u1x3 − u21 − u22, 2x5 − 1, 2u2x6 − 2x3 + u1}.
Checking polynomials in G∞, we get h = 2u2x6 − 2x3 + u1 ∈ G∞ is not in

√
J . Hence,

the geometric statement is generally true on components by Theorem 3.1 and 3.3.

4 Geometric Theorem Discovery

In this section,we aim to find the complementary conditions such that the geometric statement
becomes true or true on components. Instead of the Gröbner basis, the CGS is used.

4.1 Comprehensive Gröbner Systems

Let K be an algebraically closed field, R be a polynomial ring K [U ] in parameters U =
{u1, . . . , um}, and R[X ] be a polynomial ring over R in variables X = {x1, . . . , xn} where
X and U are disjoint. For a polynomial f ∈ R[X ] = K [U ][X ], the leading coefficient and
leading term of f w.r.t. the ordering < are denoted by lcX ( f ) and ltX ( f ) respectively. Note
that lcX ( f ) ∈ K [U ] and ltX ( f ) are monomials in K [X ].

A specialization of R is a homomorphism σ : R −→ K . We only consider the special-
izations induced by the elements in Km . That is, for a ∈ Km , the induced specialization σa
is defined as follows:

σa : f −→ f (a),

where f ∈ R. Every specialization σ : R −→ K extends canonically to a specialization
σ : R[X ] −→ K [X ] by applying σ coefficient-wise.

Following [23], an algebraically constructible set A is defined to be of the form: A =
V(E) \ V(N ), where E, N are subsets of K [U ] and V(E) (or V(N )) is the affine variety
defined by E (or N ). The E is called the equation constraint of A and N is called the
non-equation constraint of A.

For a parametric polynomial system, a CGS is defined below.

Definition 4.1 Let F be a subset of R[X ], A1, . . . , Al be algebraically constructible subsets
of Km , S be a subset of Km such that S ⊂ A1 ∪ · · · ∪ Al , and G1, . . . ,Gl be subsets
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of R[X ]. A finite set G = {(A1,G1), . . . , (Al ,Gl)} is called a comprehensive Gröbner
system(CGS) on S for F , if σa(Gi ) is a Gröbner basis for the ideal 〈σa(F)〉 in K [X ] for any
a ∈ Ai , i = 1, . . . , l. Each (Ai ,Gi ) is called a branch of G and Ai is called the parametric
constraint of this branch. If S = Km,G is called a comprehensive Gröbner system for F .

Definition 4.2 A comprehensive Gröbner system G = {(A1,G1), . . . , (Al ,Gl)} for F is
said to be minimal,1 if for each i = 1, . . . , l,

1. Ai 	= ∅, and furthermore, for each i, j = 1, . . . , l, Ai ∩ A j = ∅ whenever i 	= j ;
2. for each g ∈ Gi , σa(lcX (g)) 	= 0 for any a ∈ Ai ;
3. for all g ∈ Gi , ltX (g) is not divisible by any leading term of Gi \ {g}.

4.2 The Algorithm for Discovering Reducible Geometric Theorem

Given a geometric statement, assume the hypotheses are expressed as f1(U, X) =
0, . . . , fn(U, X) = 0 and the conclusion is expressed as f (U, X) = 0, where f1, . . . , fn, f
are polynomials in K [U ][X ]. Let G = {(A1,G1), . . . , (Al ,Gl)} be a minimal CGS for
F = { f1, . . . , fn}. For any branch (Ai ,Gi ) ∈ G and any a ∈ Ai , the variety Va =
V(σa( f1), . . . , σa( fn)) ⊂ Kn has a minimal decomposition

Va = Va,1 ∪ · · · ∪ Va,s, (3)

each Va,i is called a component of Va .
Assume (Ai ,Gi ) is a branch of G, the geometric statement is called true under Ai if the

conclusion σa( f ) vanishes on every point of Va for any a ∈ Ai . The geometric statement
is called true on components under Ai if the conclusion σa( f ) vanishes on some but not all
components of Va for any a ∈ Ai .

Theorem 4.3 Given a geometric statement, assume the hypotheses are expressed as
f1(U, X) = 0, . . . , fn(U, X) = 0 and the conclusion is expressed as f (U, X) = 0, where
f1, . . . , fn, f are polynomials in K [U ][X ]. Let G = {(A1,G1), . . . , (Al ,Gl)} be a minimal
CGS for H = { f1, . . . , fn, f y − 1} w.r.t. a blocking ordering such that y > X > U,2

where y is a new variable different from U and X. For any branch (A,G) ∈ G, assume
A = V(E)\V(N ), we have the following assertions:

1. If there is a nonzero polynomial g(U ) ∈ K [U ] in G, then the geometric statement is
true under A. What’s more, A is the complementary condition such that the geometric
statement becomes true.

2. If f is a zero divisor in K [U, X ]/
√
Ĩ , then the geometric statement is true on components

under A, where Ĩ = 〈 f1, . . . , fn, E〉 ⊂ K [U, X ]. What’s more, A is the complementary
condition such that the geometric statement becomes true on components.

Proof (1) If there is a nonzero polynomial g(U ) ∈ K [U ] in G. From the def-
inition of minimal CGS, σa(g) is a nonzero constant for any a ∈ A. Then
〈σa( f1), . . . , σa( fn), σa( f )y − 1〉 = 〈1〉. Hence, σa( f ) ∈ √〈σa( f1), . . . , σa( fn)〉, and
σa( f ) vanishes on the variety V(σa( f1), . . . , σa( fn)) ⊂ Kn . Therefore, the geometric
statement is true under A, and A is the complementary condition such that the geometric
statement becomes true.

1 Programs for computing minimal comprehensive Gröbner systems, which is based on the algorithm in [23],
are available at http://mmrc.iss.ac.cn/~dwang/software.html.
2 The variables are divided in three blocks y, X , and U . A monomial ordering is chosen for each block. To
compare two monomials, we firstly compare their y part. If the y part is equal, then we compare their X part.
If the y and X parts are equal, then we compare their U part.
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(2) If f is a zero divisor in K [U, X ]/
√
Ĩ , where Ĩ = 〈 f1, . . . , fn, E〉 ⊂ K [U, X ]. Then

σa( f ) is a zero divisor in K [X ]/√〈σa( f1), . . . , σa( fn)〉 for any a ∈ A. From Theo-
rem 3.1, σa( f ) vanishes on some but not all components of V(σa( f1), . . . , σa( fn)) ⊂
Kn . Hence, the geometric statement is true on components under A, and A is the com-
plementary condition such that the geometric statement becomes true on components.

��
Based on the Theorem 4.3, we give an Algorithm 2 to discover reducible geometric

statement.

Algorithm 2 Discovering Reducible Geometric Theorem Automatically
Require: Given a geometric statement, assume f1 = 0, . . . , fs = 0 are the hypotheses equations, and f = 0

is the conclusion equation, where f1, . . . , fs , f ∈ K [U ][X ];
Ensure: Discover the complementary conditions such that the geometric statement becomes true or true on

component.
Step 1:Computing aminimal comprehensive Gröbner systemsG for H = F∪{ f y−1}w.r.t. an admissible
block term order such that y > X > U , where F = { f1, . . . , fn}. For any branch (A,G) of G, assume
A = V(E)\V(N ).
Step 2: If there is a polynomial g(U ) ∈ K [U ] in G, then the geometric statement is true under A, and the
algorithm is terminated. What’s more, A is the complementary condition such that the geometric statement
becomes true. Else, go to Step 3.
Step 3: Let G∞ = G ∩ K [U, X ]. If there is a polynomial h in G∞ but not in

√
Ĩ , where Ĩ =

〈 f1, . . . , fn , E〉 ⊂ K [U, X ], then the geometric statement is true on components under A, and A is
the complementary condition such that the geometric statement becomes true on components.

4.3 Application to Reducible Geometric Theorem Discovery

In this part, we apply Algorithm 2 to discover a geometry theorem which is true on compo-
nents.

Example 4.4 Let �ABC be a triangle. The line AE bisects the angle 	 A, and BF bisects
the angle 	 B. Lines AE and BF intersect at a point O . In what cases, |AO| = |BO| holds?

Let A = (0, 0), B = (u1, 0),C = (u2, u3), where U = {u1, u2, u3} are parameters. If
u1 or u3 is zero, then the �ABC degenerates to a line segment. So we assume u1u3 	= 0
in this example. Since every angle has two angular bisectors (exterior angle bisector and
interior angle bisector), there are four points where the angular bisectors of angles 	 A and
	 B intersect (see Fig. 3).

In Fig. 3, AE (or AE ′) is the interior (or exterior) angle bisector of angle 	 A, and BF (or
BF ′) is the interior (or exterior) angle bisector of angle 	 B. The two interior angle bisector
AE and BF intersect at the point O , and AE ′ and BF ′, AE and BF ′, BF and AE ′ intersect at
the point O1, O2, O3 respectively. Thus, we need to check whether |AO| = |BO|, |AO1| =
|BO1|, |AO2| = |BO2| and |AO3| = |BO3| hold or not.

Let O = (x1, x2), where X = {x1, x2} are variables. The hypotheses of the statement can
be expressed as:

f1 = (u22 + u23)x
2
2 − (u3x1 − u2x2)2, (AE or AE ′ bisects 	 A).

f2 = ((u22 − u21) + u23)x
2
2 − (u3x1 + (u1 − u2)x2 − u1u3)2, (BF or BF ′ bisects 	 B).

The conclusion to be proved is

f = (x21 + x22 ) − ((x1 − u1)2 + x22 ) = 2u1x1 − u21.
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Fig. 3 Example 4.4

Step 1. Computing a minimal comprehensive Gröbner system G on V(∅)\V(u1u3) for
{ f1, f2, f y − 1}, we get G = {(A1,G1), (A2,G2), (A3,G3)}, where Ai ,Gi are as follows:

A1 = C
3 \ V(u1u3(u1 − 2u2)),

G1 = {4x41u23 − 8x31u1u
2
3 + 4x21u

2
1u

2
3 + 4x21u1u2u

2
3 − 4x21u

2
2u

2
3 − 4x21u

4
3

−4x1u
2
1u2u

2
3 + 4x1u1u

2
2u

2
3

+4x1u1u
4
3 − u21u

4
3, x2u1u

3
3 − 2x2u2u

3
3 − 2x31u

2
3 + 2x21u1u

2
3

+2x21u2u
2
3 − 2x1u1u2u

2
3 + 2x1u

4
3

−u1u
4
3, yu

4
1u

2
3 − 2yu31u2u

2
3 + 4x2u

3
3 − 4x21u

2
3 + 2x1u1u

2
3

+4x1u2u
2
3 + u21u

2
3 − 2u1u2u

2
3},

A2 = V(u22 + u23, u1 − 2u2) \ V(u2u3),

G2 = {1},
A3 = V(u1 − 2u2)\V(u2u3(u

2
2 + u23)),

G3 = {x21u23 − 2x1u2u
2
3 − u43, x2u3 − u23, 4yu

3
2u

2
3 + 4yu2u

4
3 − x1u

2
3 + u2u

2
3},

where C is the complex field.
In the branch (A1,G1), since there is no polynomial g(U ) ∈ K [U ] in G1, the geometric

statement is not true under A1. LetG∞
1 = G1∩K [U, X ] = {

4x41u
2
3−8x31u1u

2
3+4x21u

2
1u

2
3+

4x21u1u2u
2
3 − 4x21u

2
2u

2
3 − 4x21u

4
3 − 4x1u21u2u

2
3 + 4x1u1u22u

2
3 + 4x1u1u43 − u21u

4
3, x2u1u

3
3 −

2x2u2u33 − 2x31u
2
3 + 2x21u1u

2
3 + 2x21u2u

2
3 − 2x1u1u2u23 + 2x1u43 − u1u43

}
. Since there is no

polynomial g ∈ G∞
1 such that g /∈

√
Ĩ1, where Ĩ1 = 〈 f1, . . . , fn〉 ⊂ K [U, X ], the geometric

statement is not true on components under A1.
In the branch (A2,G2), since there is a polynomial 1 ∈ K [U ] in G2, the geometric

statement is true under A2. Note that there is no real solution of {u22 +u23 = 0, u1 −2u2 = 0}
when u2u3 	= 0. It has no geometric meaning in the real geometry.
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The branch (A3,G3) is interesting, since the equation constraint u1 − 2u2 = 0 in A3

means that the triangle �ABC is an isosceles triangle, i.e., |AC | = |BC |. In the following,
we only focus on the branch (A3,G3).
Step 2. Since there is no polynomial g ∈ G3 such that g ∈ K [U ], the geometric statement
is not true under A3.
Step 3. Let G∞

3 = G3 ∩ K [U, X ] = {x21u23 − 2x1u2u23 − u43, x2u3 − u23}. Since there is a
polynomial h = x2u3 − u23 in G∞

3 but not in
√
Ĩ3, where Ĩ3 = 〈 f1, . . . , fn, u1 − 2u2〉 ⊂

K [U, X ], the geometric statement is true on components under A3. Moreover, u1 − 2u2 = 0
and u2u3(u22 + u33) 	= 0 are the complementary conditions such that the geometric statement
becomes true on components.

5 Conclusions

In this paper,we give an algorithm to prove the reducible geometric statement automatically. It
can not only decide whether a geometric statement is generally true, but also decide whether
the geometric statement is generally true on components. This method can be naturelly
extended to parametric case for discovering geometric theorem automatically. The only dif-
ference is computing a minimal CGS instead of computing a Gröbner basis.

ComparingwithWu’smethod, ourmethod does not need to decompose a variety.Although
we need to checkwhether the conclusion is a zero divisor in a quotient ring, it is more efficient
than decomposing a variety.

Acknowledgements The authors are grateful to ProfessorsD.Kapur andB.C.Xia for their helpful discussions
and suggestions.
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