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Abstract The famousRabinowitsch trick forHilbert’sNullstellensatz is generalized
and used to analyze various properties of a polynomial with respect to an ideal.
These properties include, among others, (i) checking whether the polynomial is a
zero divisor in the residue class ring defined by the associated ideal and (ii) checking
whether the polynomial is invertible in the residue class ring defined by the associated
ideal. Just like using the classical Rabinowitsch’s trick, its generalization can also
be used to decide whether the polynomial is in the radical of the ideal. Some of the
byproducts of this construction are that it is possible to be more discriminatory in
determining whether the polynomial is a zero divisor (invertible, respectively) in the
quotient ring defined by the ideal, or the quotient ideal constructed by localization
using the polynomial. This method also computes the smallest integer which gives
the saturation ideal of the ideal with respect to a polynomial. The construction uses
only a single Gröbner basis computation to achieve all these results.

Keywords Rabinowitsch trick · Zero divisor · Invertible · Radical membership

1 Introduction

The classical Rabinowitsch trick was first proposed by J.L. Rabinowitsch in his
1-page paper Zum Hilbertschen Nullstellensatz in 1929 [9]. This ingenious trick was
used to prove the famous Hilbert’s Nullstellensatz theorem. Based on this proof, the
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radical membership problem can be solved. Let k[X ] be a polynomial ring over a
field k, f be a polynomial and I be an ideal in k[X ], where X = [x1, . . . , xn] is a set
of variables. The classical Rabinowitsch trick involves adding f y − 1 for performing
radical membership test of f in I , where y is a new indeterminate different from X .
In 2009, Sato and Suzuki [12] used this trick to compute the inverse of a polynomial
f in the residue class ring k[X ]/(I : f ∞).
A general construction to determinewhether a given polynomial f is a zero divisor

or invertible in the quotient ring k[X ]/I , is proposed. It is proved that all this can be
done using a single Gröbner basis construction of I augmented with a generalization
of the classical Rabinowitsch trick, f y − z, where y, z are new indeterminates not
appearing in X . It is also possible to perform radical membership test on f in I
using the generalized construction. The generalized construction can be also used to
compute theGröbner bases of a family of related ideals–I , I : f , I : f 2, . . . , I : f ∞,
I + 〈 f 〉, I : f + 〈 f 〉, I : f 2 + 〈 f 〉, . . ., or I : f ∞ + 〈 f 〉 simultaneously, where I :
f s = {h | h f s ∈ I }.
These results provide a necessary and sufficient condition for deciding whether f

is invertible in k[X ]/(I : f i ) or whether f is a zero divisor in k[X ]/(I : f i ), where
i is a nonnegative integer.

This paper is organized as follows. We review the properties of the classical
Rabinowitsch trick in Sect. 2; we also relate it to Spear’s trick of introducing a tag
variable for studying properties of polynomial ideals; Bayer’s further exploited the
tag variable construction. In Sect. 3, we give two main results about the structure
of the Gröbner basis of I ∪ { f y − z} and discuss how to check invertibility of f ,
radical membership of f , or f being a zero divisor in the residue class ring defined
by I . An application of the generalized Rabinowitsch trick is presented in Sect. 4.
Section 5 includes concluding remarks; as said there, constructions proposed in this
paper generalize in a natural way to parameterized system using the comprehensive
Gröbner system construction [7, 8].

2 Rabinowitsch Trick and Tag Variables

2.1 The Classical Rabinowitsch Trick

The classical Rabinowitsch trick was proposed to prove the famous Hilbert’s Null-
stellensatz theorem. Given polynomials f, f1, . . . , fs in k[X ], if f vanishes on the
common zeros of f1, . . . , fs , then there exists polynomials a0, a1, . . . , as in k[X, y],
such that

a0( f y − 1) + a1 f1 + · · · + as fs = 1,

where y is an extra variable different from X . Substituting y by 1/ f , there exists an
integer m such that f m in the ideal generated by f1, . . . , fs . For details, the reader
can refer to [4]. The classical Rabinowitsch’s trick can be used to solve the radical
membership problem of an ideal by the following proposition (page 176, [3]).
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Proposition 1 Let k be an arbitrary field and let I = 〈 f1, . . . , fs〉 ⊂ k[X ] be an
ideal. Then f ∈ √

I if and only if the constant polynomial 1 belongs to the ideal
I + 〈 f y − 1〉.

Sato and Suzuki [12] used the classical Rabinowitsch trick to compute the inverse
of a polynomial f in residue class ring k[X ]/(I : f ∞).

Proposition 2 Let I be an ideal and f be a polynomial in k[X ]. If G is a Gröbner
basis of the ideal I + 〈 f y − 1〉 in k[X, y] w.r.t. a term order such that y >> X, then
f is invertible in k[X ]/(I : f ∞) if and only if G has a form G = {y − h, g1, . . . , gl}.
Further, h is an inverse of f in k[X ]/(I : f ∞) and I : f ∞ = 〈g1, . . . , gl〉.

Proposition 2 can only be used to decide whether f is invertible in k[X ]/(I : f ∞)

directly. To decide whether f is invertible in k[X ]/I , however, the equality of the
two ideals I and I : f ∞ needs to be checked.

2.2 Tag Variable

Spear [14] introduced the concept of a tag variable and showed how various ideal
theoretic operations can be performed with Gröbner basis computations using lex-
icographic ordering and the associated elimination ideals; please refer to [10] for
many interesting comments about Spear’s contributions to Gröbner basis theory. In
[13], Shannon, and Sweedler used tag variables to test if a given polynomial g of
k[x1, . . . , xn] lay in k[ f1, . . . , fs].

In [10], Mora credited Bayer [1] for using a tag variable and reverse lexicographic
ordering to analyze the properties of a polynomial f with respect to a polynomial
ideal I = 〈 f1, . . . , fs〉.

If a Gröbner basisG = 〈g1, . . . , gt 〉 of ideal I + 〈 f − z〉 over k[X, z] is computed
w.r.t. a reverse lexicographical ordering such that X >> z, then each gi can be
uniquely expressed as

gi = zdi hi , z � hi , hi ∈ k[X, z],

where di is a nonnegative integer. If z divides gi , let ai (X, z) = gi/z; otherwise,
ai = gi . Substitute z = f into ai and hi , and let

Ai (X) = ai (X, f ), Hi (X) = hi (X, f ).

Proposition 3 [10] Using the above definitions of Ai ’s and Hj ’s,

1. {A1, . . . , At } is a basis of I : f , and
2. {H1, . . . , Ht } is a basis of I : f ∞.

Since the reverse lexicographical (rev-lex) ordering is not a well-ordering, the
procedure of computing a Gröbner basis of an ideal w.r.t. the rev-lex ordering may
not terminate as illustrated by the following example.
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Example 1 Consider I = 〈x1, x22 + x2〉; let f = x1 − x2 be a polynomial.

Bayer’s method advocates computing a Gröbner basis of 〈x1, x2 + x22 , x1 − x2 −
z〉 = 〈 f1, f2, f3〉 w.r.t. the rev-lex ordering x1 > x2 > z. Assuming that the Buch-

berger’s algorithm [2] is used, let f
F
be the remainder on division of f by the ordered

tuple F , and the S − polynomial of f and g is

S( f, g) = xr

lt( f )
f − xr

lt(g)
g,

where lt( f ) is the leading term of polynomial f w.r.t. the rev-lex ordering x1 > x2 >
z, and xr is the least common multiple of lt( f ) and lt(g).

Initial: F = ( f1, f2, f3);

Step1: S( f1, f2) = x2 · f1 − x1 · f2 = −x1x22 := f4, f4
F = 0;

Step2: S( f1, f3) = f1 − f3 = x2 + z := f5.
In F , only the leading term of f2 can divide lt( f5). Let f5 − f2 = −x22 + z, which

is still only reduced by f2. Sequentially, it gives an infinite sequence

x2 + z,−x22 + z, x32 + z, . . . , (−1)k+1xk2 + z, . . . .

The procedure of computing a Gröbner basis of 〈x1, x2 + x22 , x1 − x2 − z〉 w.r.t. the
rev-lex ordering x1 > x2 > z does not terminate. So Bayer’s method can not be used
directly in this case.

Mora claimed a way to overcome this problem by homogenizing an ideal. For
homogeneous ideals, the Gröbner basis of an ideal w.r.t. rev-lex ordering exists.
A nonhomogeneous ideal can thus first be homogenized; use then Proposition 3
on the homogenized ideal basis and then dehomogenize the result. It should be
noted however that the dehomogenization does not produce a Gröbner basis of the
nonhomogeneous ideal. Moreover, we want to emphasize that Proposition 3 only
guarantees as its output, a basis of I : f or I : f ∞, not a Gröbner basis.

Example 2 Let the ideal I = 〈x22 , x1x2 + x23 〉, the polynomial f = x1x2.

The Gröbner basis of I + 〈 f − z〉 w.r.t. the rev-lex ordering x1 > x2 > x3 > z
is G = 〈z2, x2z, x23 + z, x22 , x1x2 − z〉. By the Proposition 3, I1 = {x1x2, x2, x1x2 +
x23 , x

2
2 } is a basis of I : f . It is easy to check x23 is in I : f , but lt(x23 ) = x23 is not

divided by any leading term of polynomials in G. So I1 is not a Gröbner basis.

3 The Generalized Rabinowitsch Trick

In this section, we generalize the Rabinowitsch trick and discuss properties of f
in a quotient ring such as k[X ]/I, k[X ]/(I : f ). Specifically, we provide necessary
and sufficient conditions to check whether f is invertible or a zero divisor in k[X ]/I ,
k[X ]/(I : f ), . . ., k[X ]/(I : f s), . . ., and k[X ]/(I : f ∞).We can also checkwhether
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f is in
√
I , the radical of ideal I , as well as find the smallest integer m such that

I : f m = I : f ∞.
A polynomial f is invertible in k[X ]/I , if f /∈ I and there exists g in k[X ] such

that f g − 1 ∈ I . Moreover, such g is called an inverse of f in k[X ]/I . A polynomial
f is a zero divisor in k[X ]/I , if f /∈ I and there exists h in k[X ] such that h /∈ I and
f h ∈ I .
The generalized Rabinoswitsch’s trick can be interpreted as integration of

Rabinowitsch’s trick with that of tag variable as illustrated below. Consider, the
following ideal

J = I + 〈 f y − z〉 ⊂ k[X, y, z],

associated with I and f , where y and z are two new variables different from X .
Firstly, we analyze some special polynomials in J , which can be expressed

as g = pt yzt + pt−1yzt−1 + · · · + p0y + qr zr + qr−1zr−1 + · · · + q1z + q0, where
p0, . . . , pt , q0, . . . , qr are polynomials in k[X ].
Lemma 1 Let I = 〈 f1, . . . , fs〉 be an ideal, f be a polynomial in k[X ], and J =
I + 〈 f y − z〉be an ideal in k[X, y, z]. Given a polynomial g = pt yzt + · · · + p0y +
qr zr + · · · + q1z + q0 in J , where p0, . . . , pt , q0, . . . , qr ∈ k[X ], then

pi−1 f
i−1 + qi f

i ∈ I,

where i is a nonnegative number, p j = 0 when j > t , and qk = 0 when k > r .
Moreover, pi−1 ∈ I : f i−1 + 〈 f 〉, and when pi−1 = 0, qi ∈ I : f i .

Proof Since g is a polynomial in J , there exists a1, . . . , as, as+1 ∈ k[X, y, z], such
that

pt yz
t + · · · + p0y + qr z

r + · · · + q1z + q0 = a1 f1 + · · · + as fs + as+1( f y − z).
(1)

Now setting z = f y in the above Eq. (1) gives

pt ( f y)
t y + · · · + p0y + qr ( f y)

r + · · · + q1( f y) + q0 = a′
1 f1 + · · · + a′

s fs,

where a j
′ ∈ k[X, y] for j = 1, . . . , s. Viewing the right side of the above equation

as a polynomial in k[X ][y], it is possible to reformulate it as a1′ f1 + · · · + as ′ fs =
bk yk + · · · + b1y + b0, where b0, . . . , bk ∈ k[X ]. Note that each b j can also be
arranged as an expression of the form b j = c1 f1 + · · · + ct ft for some c1, . . . , ct ∈
k[X ], so b0, . . . , bk ∈ I . Thus,

pt ( f y)
t y + · · · + p0y + qr ( f y)

r + · · · + q1( f y) + q0 = bk y
k + · · · + b1y + b0.

Comparing each coefficient of yi , bi = pi−1 f i−1 + qi f i . So pi−i f i−1 + qi f i ∈ I ,
i.e. pi−1 + qi f ∈ I : f i−1. It is obvious that pi−1 in I : f i−1 + 〈 f 〉, and qi ∈ I : f i

when pi−1 = 0. �
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Lemma 2 Let I, J be defined as in Lemma 1. For a polynomial h in k[X ], h f s ∈ I
if and only if hzs ∈ J , where s is any nonnegative integer.

Proof (⇒) : If h f s ∈ I , then hzs = h( f y − ( f y − z))s = h f s ys + hp( f y − z) ∈
J , where p ∈ k[X, y, z]. (⇐) : It is obvious from Lemma 1.

�

We analyze the ideal J by studying its Gröbner basis using a block ordering in
which y � z � X . Using the structure of this Gröbner basis, we give below the
main theoretical result.

Let g be a polynomial in k[X, y, z] and “≺” be an admissible monomial order-
ing on the set of power products of X ∪ {y, z}. We use notations lpp(g) and lc(g)
to represent the leading power product and leading coefficient of g with respect to
“≺,” respectively. The notation “≺y,z” is a restriction of “≺” on the set of power
products of {y, z}. We use the notations lppy,z(g) and lcy,z(g) to represent the lead-
ing power product and leading coefficient of g with respect to “≺y,z” respectively.
The notation tail(g) represents the part of g − lc(g)lpp(g), i.e., g can be expressed
as g = lc(g)lpp(g) + tail(g). For example, let g = 2x2yz + x3z, and “ ≺” be the
lexicographic ordering w.r.t. z > y > x , lpp(g) = x2yz, lc(g) = 2, lppy,z(g) = yz,
lcy,z(g) = 2x2 and tail(g) = x3z. And lcy,z(g) is in k[X ].
Theorem 4 Let I be an ideal and f be a polynomial in k[X ]. Let G be a Gröbner
basis of ideal J = I + 〈 f y − z〉 ⊂ k[X, y, z] with respect to a block ordering “≺”
such that y � z � X.

1. Let Ps = {lcy,z(g) | g ∈ G ∩ k[X ][z], lppy,z(g) = zk and 0 ≤ k ≤ s} ⊂ k[X ].
For any integer s ≥ 0, Ps is a Gröbner basis of I : f s .

2. Let Qs = Ps ∪ {lcy,z(g) | g ∈ G, lppy,z(g) = yzt , and 0 ≤ t ≤ s} ⊂ k[X ]. For
any integer s ≥ 0, Qs is a Gröbner basis of I : f s + 〈 f 〉.

Proof (1) First, we prove Ps ⊂ I : f s . For any q ∈ Ps , by the construction of Ps ,
there exists a polynomial g ∈ G, such that g = qzk + tail(g), where 0 ≤ k ≤ s. From
Lemma 1, we know q f k ∈ I . So q ∈ I : f k ⊂ I : f s . Therefore, we have proved
Ps ⊂ I : f s .

Second, we prove Ps is a Gröbner basis of I : f s , or equivalently, we need to
prove that for any h ∈ I : f s , there exists q ∈ Ps , such that lpp(q) divides lpp(h).
Let h be any polynomial in I : f s , we have h f s ∈ I . Hence, we have hzs ∈ J by
Lemma 2. Since G is a Gröbner basis of J , there exists a polynomial g ∈ G, such
that lpp(g) divides lpp(hzs). So g must have the form of g = qzk + tail(g), where
q ∈ k[X ] and 0 ≤ k ≤ s. Thus, lpp(g) | lpp(hzs)means lpp(q) | lpp(h), and we also
have q ∈ Ps by the construction of Ps .

(2) First, we prove Qs ⊂ I : f s + 〈 f 〉. For any p ∈ Qs ⊂ k[X ], if p ∈ Ps , then
p ∈ I : f s ⊂ I : f s + 〈 f 〉 by (1).Otherwise, if p /∈ Ps , then there exist a polynomial
g ∈ G having the form of g = pyzt + tail(g), where 0 ≤ t ≤ s. By Lemma 1, we
have p ∈ I : f t + 〈 f 〉 ⊂ I : f s + 〈 f 〉. So we have proved Qs ⊂ I : f s + 〈 f 〉.
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Second,we show Qs is aGröbner basis of I : f s + 〈 f 〉. For any h ∈ I : f s + 〈 f 〉,
there exists q ∈ I : f s and a1, a2 ∈ k[X ] such that h = a1q + a2 f by the defi-
nition of I : f s + 〈 f 〉. Since q ∈ I : f s , we have q f s ∈ I , and hence, qzs ∈ J
by Lemma 2. Next, we construct the polynomial T = hyzs − a2zs+1 = (a1q +
a2 f )yzs − a2zs+1 = a1qyzs + a2( f y − z)zs ∈ J . Since G is a Gröbner basis of J
and lpp(T ) = lpp(h)yzs , there exists a polynomial g ∈ G, such that lpp(g) divides
lpp(h)yzs . This g must have the form of g = pykzt + tail(g), where 0 ≤ k ≤ 1
and 0 ≤ t ≤ s. So we have lpp(p) | lpp(h). Due to the form of g we also have
p ∈ Qs . This shows that for any h ∈ I : f s + 〈 f 〉 there exists p ∈ Qs such that
lpp(p) | lpp(h). �

If G is a minimal Gröbner basis1 of J , it is easy to see that I : f i−1 � I : f i if
and only if Pi−1 � Pi , and I : f i−1 + 〈 f 〉 � I : f i + 〈 f 〉 if and only if Qi−1 � Qi .

The following result serves as the basis for checking if a polynomial is invertible
or a zero divisor in a residue class ring as well as for checking its membership in the
radical of an ideal.

Theorem 5 Let I be an ideal and f be a polynomial in k[X ]. Let G be a mini-
mal Gröbner basis of ideal J = I + 〈 f y − z〉 ⊂ k[X, y, z] with respect to a block
ordering “ ≺” such that y � z � X, and Ps, Qs are constructed from G as stated
in Theorem 4. The following properties hold:

1. f is invertible in k[X ]/(I : f s) if and only if 1 ∈ Qs and 1 /∈ Ps+1, i.e., I : f s +
〈 f 〉 = 〈1〉 and f /∈ I : f s . The inverse of f in k[X ]/(I : f s) can be obtained
from G.

2. f is a zero divisor in k[X ]/(I : f s) if and only if Ps � Ps+1 and 1 /∈ Ps+1, i.e.
I : f s � I : f s+1 and f /∈ I : f s .

3. f is in the radical ideal
√
I if and only if there exists an integer s such that

1 ∈ Ps, i.e. I : f s = 〈1〉.
4. m is the smallest integer such that I : f ∞ = I : f m, if and only if Pm−1 � Pm =

Ps for all s > m. Further, Pm is a Gröbner basis of I : f ∞.

Proof (1). (⇒) : If f is invertible in k[X ]/(I : f s), then f /∈ I : f s and there exists
h such that f h − 1 ∈ I : f s . So 1 /∈ I : f s+1 and 1 ∈ I : f s + 〈 f 〉. By Theorem 4
(1) and (2), we have 1 ∈ Qs and 1 /∈ Ps+1.

(⇐) : If 1 /∈ Ps+1 and 1 ∈ Qs , then f /∈ I : f s and there exists g ∈ G hav-
ing the form of g = yzt + pt−1yzt−1 + · · · + p0y + qr zr + · · · + q1z + q0, where
p0, . . . , pt−1, q0, . . . , qr ∈ k[X ] and 0 ≤ t ≤ s. By Lemma 1, 1 + qt+1 f ∈ I : f t ⊂
I : f s , so f is invertible in k[X ]/(I : f s) and −qt+1 is its inverse.

(2). (⇒) : If f is a zero divisor in k[X ]/(I : f s), then f /∈ I : f s and there
exists h /∈ I : f s such that f h ∈ I : f s . So 1 /∈ I : f s+1 and h ∈ (I : f s+1) \ (I :
f s). Then I : f s � I : f s+1. By Theorem 4 (1), Ps, Ps+1 are Gröbner bases of I : f s

and I : f s+1 respectively. So Ps � Ps+1 and 1 /∈ Ps+1.

1A set G is a minimal Gröbner basis of I if (1) G is a Gröbner basis of I , and (2) for each g ∈ G,
lpp(g) is not divisible by any leading power products of G \ {g}.
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(⇐) : If 1 /∈ Ps+1 and Ps � Ps+1, then f /∈ I : f s and there exists h ∈ Ps+1 and
h /∈ Ps . From Theorem 4 (1), there exists g = hzs+1 + tail(g) ∈ G. Then h f s+1 ∈ I
by Lemma 1. So h f ∈ I : f s , and f is a zero divisor in k[X ]/(I : f s).

(3). (⇒) : If f ∈ √
I , then there exists an integer t such that f t ∈ I . So zt ∈ J

from Lemma 2. Since G is a minimal Gröbner basis of J , there exists g ∈ G, such
that lpp(g) | zs . So g must have the form of g = zs + tail(g), where 0 ≤ s ≤ t . By
Theorem 4 (1), 1 ∈ Ps .

(⇐) : If there exists an integer s such that 1 ∈ Ps , then there exists a polynomial
g = zk + tail(g), where 0 ≤ k ≤ s. By Lemma 1, f k ∈ I , and hence, f ∈ √

I .
(4). Since G is a minimal Gröbner basis of J , by Theorem 4 (1), I : f m−1 � I :

f m = I : f ∞ if and only if Pm−1 � Pm = Ps , for all s > m. Since Pm is a Gröbner
basis of I : f m by Theorem 4 (1), Pm is also a Gröbner basis of I : f ∞.

�
In case f is invertible in k[X ]/(I : f s), the above proof shows how to construct

the inverse of f . In particular, f is invertible in k[X ]/I if and only if 1 ∈ Q0, implying
that G contains a polynomial of the form y − h, where h ∈ k[X ]. In that case, h is an
inverse of f in k[X ]/I . Similarly, f is a zero divisor in k[X ]/I if and only if P0 � P1
and 1 /∈ P1.

The following example illustrates Theorems 4 and 5.

Example 3 Let I = 〈x21 (x1x2 − 1)〉 ⊂ Q[x1, x2], and f = x1. Decide the properties
of f in Q[x1, x2]/I , Q[x1, x2]/(I : f ), . . ., and Q[x1, x2]/(I : f ∞).

Aminimal Gröbner basis of I + 〈 f y − z〉 ⊂ Q[x1, x2, y, z] using a lexicographic
ordering with (y > z > x1 > x2) is

G = {x31 x2 − x21 , (x
2
1 x2 − x1)z, (x1x2 − 1)z2, x1y − z, yz2 − x2z

3}.

As per Theorem 4, we construct the following sets:

P0 = {x31 x2 − x21 }, Q0 = P0 ∪ {x1},

P1 = {x31 x2 − x21 , x
2
1 x2 − x1}, Q1 = P1 ∪ {x1},

P2 = {x31 x2 − x21 , x
2
1 x2 − x1, x1x2 − 1}, Q2 = P2 ∪ {x1, 1}.

From Theorems 4 and 5, we have:

1. P0 is a Gröbner basis of I ; P1 is a Gröbner basis of I : f ; P2 is a Gröbner basis
of I : f 2.

2. Q0 is a Gröbner basis of I + 〈 f 〉; Q1 is a Gröbner basis of I : f + 〈 f 〉; Q2 is a
Gröbner basis of I : f 2 + 〈 f 〉.

3. f is invertible in Q[x1, x2]/(I : f 2), and x2 is its inverse.
4. f is a zero divisor in Q[x1, x2]/I and Q[x1, x2]/(I : f ).
5. The integer 2 is the smallest integer m such that I : f ∞ = I : f m , and P2 is a

Gröbner basis of I : f ∞.
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4 Application in Dynamic Evaluation

It is well known that an ideal I can be decomposed using a polynomial f as follows:

I = (I : f ∞) ∩ (I + 〈 f m〉),

where m is the smallest number such that I : f ∞ = I : f m . From Theorem 4,
the smallest m and a Gröbner basis of I : f ∞ = I : f m can be derived from a
Gröbner basis of ideal I + 〈 f y − z〉. This means we get a decomposition of I from
G. Particularly, this decomposition is not trivial if f is a zero divisor in k[X ]/I .

In [11], Noro gave a modular method of decomposing a radical and zero-
dimensional ideal I into I : f and I + 〈 f 〉 to do dynamic evaluation a la Duval
[5], where f is a zero divisor in k[X ]/I . Note that, Noro considered only the case
when m is 1 since I is radical. His method needs to compute Gröbner basis for I : f
and I + 〈 f 〉 separately. In contrast, our approach can produce these two Gröbner
bases simultaneously. The following example is taken from [5].

Example 4 Let Q(a, b, c, d) be ring defined by a, b, c, d, which are the roots of
x2 − 2, x2 + 3, x2 + 6, and x2 + 1 − 2c, respectively. Check whether a + b − d is
invertible in Q(a, b, c, d), and compute an inverse if it exists.

The ring Q(a, b, c, d) is isomorphic to the quotient ring Q[X ]/I where
X = {x1, x2, x3, x4} and I = 〈x21 − 2, x22 + 3, x23 + 6, x24 − 2x3 + 1〉. Note that
Q(a, b, c, d) is not a field since I is not maximal, which means a + b − d may
not be invertible in Q(a, b, c, d).

Let f = x1 + x2 − x4. Compute aminimalGröbner basesG of J = I + 〈 f y − z〉
in Q[x1, x2, x3, x4, y, z] using a lexicographic ordering with y > z > x4 > x3 >
x2 > x1. We get G = {x21 − 2, x22 + 3, x23 + 6, x24 − 2x3 − 1, (x3x4 + x1x2x4 +
x2x3 + x1x3 + 2x2 − 3x1)z, (x3 − x1x2)y + (1/2)(x4 + x2 + x1)z, (x4 − x2 − x1)
y + z, zy + (1/120)(5x1x2x4 + 2x2x3 + 3x1x3 + 16x2 − 21x1)z2}.

As Theorem 4, we construct the following sets:
Q0 := {x21 − 2, x22 + 3, x23 + 6, x24 − 2x3 − 1},
P0 := Q0 ∪ {x3 − x1x2, x4 − x2 − x1},
Q1 := Q0 ∪ {x3x4 + x1x2x4 + x2x3 + x1x3 + 2x2 − 3x1},
P1 := Q1 ∪ {1}.
By Theorem 5, f is a zero divisor in Q[X ]/I and hence, not invertible in Q[X ]/I .
Further, I : f ∞ = I : f . A nontrivial decomposition of I is thus I = (I : f ) ∩ (I +
〈 f 〉) = 〈Q1〉 ∩ 〈P0〉.

Again using Theorem 5 (1), f is in fact invertible inQ[X ]/(I : f ), and an inverse
can be obtained from the polynomial zy + (1/120)(5x1x2x4 + 2x2x3 + 3x1x3 +
16x2 − 21x1)z2, i.e. an inverse of f in Q[X ]/(I : f ) is −(1/120)(5x1x2x4 +
2x2x3 + 3x1x3 + 16x2 − 21x1).
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5 Conclusions

Using a generalization of the classical Rabinowitsch trick, we have proposed a
method for checking whether a given polynomial f is invertible or a zero divi-
sor in a residue class ring k[X ]/I , where I is a polynomial ideal. This check is
performed by computing a Gröbner basis of I ∪ { f y − z} by using a block ordering
in which y � z � X , where y, z are new variables different from the variables in
X . If f is not invertible in k[X ]/I , it can be determined using the same Gröbner basis
construction whether there is an s such that f is invertible in the residue class ring
defined by the colon ideal I : f s on k[X ]. As a byproduct, the smallest number s can
be computed such that I : f s = I : f ∞, the saturation ideal of I with respect to f .
The method can also be used to determine whether f is invertible or a zero divisor
in k[X ]/(I : f ), k[X ]/(I : f 2), k[X ]/(I : f 3), etc.

A nice aspect of the proposed construction is that it naturally generalizes to para-
metric systems using a comprehensive Gröbner system by an algorithm such as
in [7, 8]. A paper on this generalization is under preparation; preliminary results
on the findings were presented as an invited talk at the International Workshop on
Automated Deduction in Geometry (ADG), Coimbra, Portugal, in July 2014.
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