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Abstract This paper studies the problem of constructing lightweight involutory maximal distance

separable (MDS) matrices. The authors find the exact lower bound of the XOR counts for 4 × 4

involutory MDS matrices over F24 . Further, some new structures of 4 × 4 involutory MDS matrices

over F2m are provided to construct involutory MDS matrices and the authors constructed the lightest

4 × 4 involutory MDS matrices over F28 so far by using these structures.

Keywords Diffusion layer, involutory MDS matrix, lightweight.

1 Introduction

With the development of science and technology, we have entered the information age. A
large number of data provide convenient services to our lives, but at the same time information
security has become particularly important. Symmetric ciphers have become the first choice
to encrypt a large number of data for their fast speed. Confusion and diffusion are two basic
methods to design symmetric ciphers[1]. In order to perform better against linear and differential
attacks, the linear branching number and differential branch number of the diffusion matrix
should be as large as possible. A matrix which achieves the maximum branch number is an
maximal distance separable (MDS) matrix. These matrices ensure the designers perfect linear
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diffusion layers, but the implementation cost can be heavy. Since the inverse of an MDS matrix
is required to be implemented in most cases of decryption, one way to save area is to use an
involutory MDS matrix.

The general method to construct involutory MDS matrices over finite fields is based on
special matrices, such as Hadamard matrices and Cauchy matrices. In 2012, Sajadieh, et al.[2]

proposed a method to construct involutory MDS matrices by multiplying one Vandermonde ma-
trix and the inverse of another Vandermonde matrix. Gupta and Ray[3] in 2013 used Cauchy
matrices to construct involutory MDS matrices. They both constructed involutory Hadamard
MDS matrices over finite fields in different ways. Further, Gupta and Ray provided an equiva-
lence of Cauchy-Hadamard involutory MDS matrices and Vandermonde-Hadamard involutory
MDS matrices.

Circulant matrices are often used to construct MDS matrices, but Nakahara and Abrahão[4]

found that 4×4 circulant matrices over any finite field could never be involutory MDS matrices.
In 2014, Gupta and Ray[5] proved that circulant matrices of arbitrary order over finite fields must
not be both involutory and MDS. In 2016, Liu and Sim[6] generalized the circulant structures
and constructed involutory MDS matries over finite fields with left-circulant matrices. However,
they found that any 2d × 2d left-circulant matrix over finite fields is not an involutory MDS
matrix.

There are mainly two kinds of methods to reduce the number of XOR operations. First,
Beierle, et al.[7] and Jean, et al.[8] have relooked at the XOR count of an element and allowed
reuse of repeating terms in the product vector. Second, by applying the heuristic algorithms to
find a short linear straight-line program to the case of MDS matrices, Kranz, et al.[9] optimized
the previous constructions globally. They found that the known constructions, such as Cauchy
matrices, circulant matrices and Hadamard matrices, seem to be the same for all randomized
constructions. However, we do not consider such optimization and regard XOR count in its
simplified form as given by [10] and many subsequent works[11–13].

In this paper, we study the constructions of involutory MDS matrices and present some
new results on the lower bound of the XOR counts for the 4 × 4 involutory matrices. First,
we prove for the first time that 16 + 4 × 3 × 8 is the exact lower bound of the XOR counts
of 4 × 4 involutory matrices over F24 . Second, we propose some new approaches to construct
lightweight involutory MDS matrices over F2m and find the lightest involutory MDS matrices
with 44 + 4× 3× 8 XOR counts so far. Our method can also provide new structures to search
for global optimization MDS matrices using the way in [9].

We first give some necessary notations in Section 2. A way to search for the lightest 4× 4
involutory MDS matrices over F24 is given in Section 3. In Section 4, we give some theoretical
results on constructing involutory MDS matrices. In Section 5, we construct some involutory
MDS matrices over F28 . The conclusion comes in Section 6.
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2 Preliminaries

Let F2m be the finite field of 2m elements. Let Ei,j , i, j = 1, 2, · · · , n be the n × n matrix
over F2m whose entries are all zeros except that the i-th row and the j-th column is 1. Denote
by GL(F2m , n) the set of all the n×n non-singular matrices with entries in the finite field F2m .
A matrix L ∈ GL(F2m , n) is called involutory, if L = L−1. A matrix L ∈ GL(F2m , n) is called
MDS, if all the minors of L are nonzero.

We aim to search the involutory MDS matrices over F2m and we define the following notation
to decrease the complexity.

Definition 2.1 Let L ∈ GL(F2m , n). For any permutation matrix P such that P ∈
GL(F2m , n) and ω(P ) = n, we call L is equivalent to PLP−1.

Proposition 2.2 Under Definition 2.1, if two matrices are equivalent, their involutory
property, MDS property and XOR counts are all invariant.

It is easy to verify this property by the definition and this property will be used throughout
this paper.

Particularly, we denote P (i, j) ∈ GL(F2m , n) the permutation matrix acquired from the
identity matrix by swapping the i-th row and the j-th row, and we call it the elementary
permutation transformation. It is obvious that P (i, j)−1 = P (i, j). We can prove the following
proposition by using the elementary permutation transformations.

Proposition 2.3 Let L, L′ ∈ GL(F2m , n). If L is equivalent to L′, then there exists
i ∈ {1, 2, · · · , n} such that L′

1,1 = Li,i and the other entries of the first row of L′ is a permutation
of the other entries of the i-th row of L.

Proof Since L is equivalent to L′, there exists a permutation matrix P s.t. PLP−1 = L′.
Let P =

∑n
i=1 Ei,σ(i), where σ is a permutation of 1, 2, · · · , n. Then L′

1,1 = Lσ(1),σ(1). The
equivalent transformation does not change entries of one whole row for any matrix, therefore
the other entries of the first row of L′ is a permutation of the other entries of the σ(1)-th of L.
The proof is finished.

Remark 2.4 Under a well order in the finite field F2m , we can choose the largest element
Li,j among all the non-diagonal entries of a matrix L ∈ GL(F2m , n). By Proposition 2.3, there
exists a matrix L′ which is equivalent to L satisfied L′

1,2 = Li,j . It is obvious that L′
1,2 is the

largest non-diagonal entry of L′. In this way, we can save the searching time by only considering
the matrices with the largest entry located at position (1, 2).

2.1 XOR Counts of MDS Matrices

It is easy to see that, F2m is also an m-dimensional vector space over the field F2. If a linear
basis of F2m over F2 is fixed, the linear map σa : F2m → F2m , σa(x) = ax, a ∈ F

∗
2m , x ∈ F2m can

always be equivalently described as X �→ AX , where A ∈ GL(F2, m) and X ∈ F
m
2 .

The XOR count of an element a ∈ F2m is the number of XOR operations needed to be
implement the multiplication of a with arbitrary element x ∈ F2m . Theoretically, choose any
linear basis of the field F2m , the representation matrix of a ∈ F2m could implement its multipli-
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cation. For A ∈ GL(F2, m), we denote ω(A) the number of nonzero entries in A. It is easy to
know that the number of XOR operations that required to evaluate AX is ω(A)−m, denoted
by #A. For example,

AX =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2

x3

x4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x4

x1 + x4

x2

x3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Hence, #A = 1 = ω(A)− 4. For briefness, we write down the nonzero positions in each row of
A. We view [4, [1, 4], 2, 3] as A.

The XOR counts of an MDS matrix is the total number of the XOR operations needed
to be implemented. Such a matrix L can be implemented in a straightforward way with
∑n

i,j=1(#Li,j) + m × (m − 1) × n XOR operations. In this paper, we mainly consider the
MDS matrices for the case n = 4.

3 The Lower Bound of the XOR Counts of Involutory MDS Matries

over F24

In this section, we prove for the first time that the lower bound of the XOR counts of invo-
lutory MDS matries over F24 is 16+4×3×4. This lower bound can be found by Algorithm3.3.

Theorem 3.1 The lightest 4 × 4 involutory MDS matrix over F24 has 16 + 4 × 3 × 4
XOR operations. Furthermore, all the involutory MDS matrices with XOR counts F24 must be
equivalent to one of the following three matrices:

A1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 α α3 α2

1 1 α α3

α2 α 1 α

1 α2 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

α α3 1 α

α2 α 1 1

1 α α α3

1 1 α2 α

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, A3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 α α α3

1 1 α2 α

α α3 1 α

α2 α 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where α is a root of the irreducible polynomial X4 + X + 1.

Remark 3.2 Sarkar and Syed[12] constructed a matrix which is equivalent to A3. But
the above theorem shows that there are no involutory MDS matrices with fewer XOR counts
and every lightest involutory MDS matrices must be equivalent to one of A1, A2 and A3.

The polynomial x4 + x + 1 is primitive over F2. Let α be a root of x4 + x + 1 = 0, then any
element of F24 can be represented as the power of α. During the search, we find that choosing
a basis first and then traversing matrices is much faster than traversing matrices over the field
F2m directly. In this way, we enumerate all the bases to search for all the involutory MDS
matrices whose XOR count is at most 16 + 4 × 3 × 4. It takes only in a few minutes. During
the search, we also find the following facts:

1) There are 216 matrices of 4 × 4 over F2. Among them, there are 1344 matrices whose
minimal polynomial is x4 + x + 1. For A ∈ GL(F2, 4) with minimal polynomial x4 + x + 1, we
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call (#A, #A2, · · · , #A15) an XOR count sequence of the whole field. Then there are only 35
different XOR counts sequences of the whole field.

2) Assume that L is an involutory matrix to search. If we know the values of L1,1, L1,2, L1,3,
L1,4, L2,1, L2,2, L3,1, L3,2, then the other 8 entries of L can be derived by the involutory and
MDS property. First, L4,1 is obtained since the product of first row and the first column equals
one. Second, L4,2 is obtained since the first row is orthogonal to the second column. Because L

is an MDS matrix, L3,1L4,2+L3,2L4,1 is invertible. Then the other six entries can be obtained by
the involutory property. Finally, L3,3 and L3,4 can be obtained by solving two linear equations,
these equations are obtained by products of the third row of L and the first two columns of L.
L4,3 and L4,4 are computed similarly. L2,3 and L2,4 can be computed directly.

Algorithm 3.3 (The 4× 4 Searching Algorithm)
Input The finite field F24 with a primitive element α s.t. α4 + α = 1.
Output The set of 4× 4 involutory MDS matrices L ∈ GL(F24 , 4).

begin
LS ←− ∅, S ←− ∅

for every matrix A ∈ GL(4, F2) do
if the minimal polynomial of A is x4 + x + 1 then

S ←− S ∪ (#A, #A2, · · · , #A15)

for L1,1, L1,2, L1,3, L1,4, L2,1, L2,2, L3,1, L3,2 ∈ F
∗
24 do

L4,1 ←− L−1
1,4(L

2
1,1 + L1,2L2,1 + L1,3L3,1 + 1) (∗)

L4,2 ←− L−1
1,4(L1,1L1,2 + L1,2L2,2 + L1,3L3,2) (∗)

if L3,1L4,2 equals L3,2L4,1 then
continue to the next loop of for

M ←− (L3,1L4,2 + L3,2L4,1)−1 (∗∗)
L3,3 ←−M(L4,2(L1,1L3,1 + L2,1L3,2) + L4,1(L1,2L3,1 + L2,2L3,2)) (∗∗)
L3,4 ←−M(L3,2(L1,1L3,1 + L2,1L3,2) + L3,1(L1,2L3,1 + L2,2L3,2)) (∗∗)
L4,3 ←−M(L4,2(L1,1L4,1 + L2,1L4,2) + L4,1(L1,2L4,1 + L2,2L4,2)) (∗∗)
L4,4 ←−M(L3,2(L1,1L4,1 + L2,1L4,2) + L3,1(L1,2L4,1 + L2,2L4,2)) (∗∗)
L2,3 ←− L−1

1,2(L1,1L1,3 + L1,3L3,3 + L1,4L4,3) (∗∗)
L2,4 ←− L−1

1,2(L1,1L1,4 + L1,3L3,4 + L1,4L4,4) (∗∗)

L←−
(

L1,1 L1,2 L1,3 L1,4
L2,1 L2,2 L2,3 L2,4
L3,1 L3,2 L3,3 L3,4
L4,1 L4,2 L4,3 L4,4

)

(∗ ∗ ∗)

for every sequence seq ∈ S do
compute #L with XOR counts in seq

if the minimum value of #L is less than 16 then
continue to the next loop of for

if L is involutory and MDS then
LS ←− LS ∪ {L}

return LS
end
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3.1 Algorithm

As we know that, there are many matrix representations of elements in a finite field. when
searching for light MDS matrices, it is difficult to traverse all the matrix representation. In
fact, the searching depends only on the XOR counts of elements in the given finite field rather
than a specific matrix representation. Thus, we compute all the XOR count sequences in the
begining. Our algorithm only searches for involutory MDS matrices, not non-involutory MDS
matrices. We can only loop half of the entries in the matrix while the others can be computed
directly due to the property of involutory. In lines marked (∗) of Algorithm 3.3, L4,1 and
L4,2 are obtained since the product of the first row of the involutory matrix L and the first
two columns of L are 1 and 0 respectively. Since L is an MDS matrix, the 2 × 2 submatrix
(

L3,1 L3,2
L4,1 L4,2

)

is invertible, that is L3,1L4,2 �= L3,2L4,1. Once L3,1L4,2 �= L3,2L4,1 is satisfied, we
can obtain L3,3, L3,4, L4,3 and L4,4 by solving the linear equation system, which are concluded
from the product of the last two rows of the involutory matrix L and the first two columns of
L. So far every entry of L has been determined except L2,3 and L2,4. They can be computed
directly by the product of the the first row of L and the last two columns of L. In lines marked
(∗∗) of Algorithm 3.3, we show the exact formula to compute all the entries mentioned above.
The lightest involutory MDS matrix L must satisfy that #L ≤ 16 from [12]. Comparing with
verifying the MDS property of L, verifying the XOR counts is much faster. There are still a
lot of MDS matrices after the line marked (∗ ∗ ∗), while few of them are lighter than 17 in a
certain matrix representation. And verifying the XOR counts is much faster than verifying the
MDS property of L. Thus, we decide to verify the XOR counts first.

4 New Approaches to Construct Involutory MDS Matrices

In this section we present some theoretical results on constructing involutory MDS matri-
ces. Unlike the common used circulant matrix and the Hadamard matrix, we find some new
structures to obtain new lightweight involutory MDS matrices.

Theorem 4.1 Let L ∈ GL(F2m , n). If L is involutory, then

Trace(L) =

⎧

⎨

⎩

1, if n is odd,

0, if n is even.

Proof Let L′ = L2. Because L is involutory, we have L′
i,i =

∑n
k=1 Li,kLk,i = 1. Then

n
∑

i=1

L′
i,i =

⎧

⎨

⎩

1, if n is odd,

0, if n is even.
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On the other hand,

n
∑

i=1

L′
i,i =

n
∑

i,k=1

Li,kLk,i =
∑

1≤k<i≤n

Li,kLk,i +
∑

1≤i<k≤n

Li,kLk,i +
∑

1≤k=i≤n

Li,kLk,i

=
∑

1≤k<i≤n

Li,kLk,i +
∑

1≤k<i≤n

Lk,iLi,k +
∑

1≤i≤n

L2
i,i

=
∑

1≤k<i≤n

(Li,kLk,i + Lk,iLi,k) +
(

∑

1≤i≤n

Li,i

)2

= Trace(L)2.

Therefore,

Trace(L)2 =

⎧

⎨

⎩

1, if n is odd,

0, if n is even.

This means Trace(L) ∈ F2 and then

Trace(L) = Trace(L)2 =

⎧

⎨

⎩

1, if n is odd,

0, if n is even.

By Theorem 4.1, we make a more detailed analysis on the structure of involutory MDS
matrices in the following theorem.

Theorem 4.2 Let L ∈ GL(F2m , 4). If L is an involutory MDS matrix, then

(L1,1 + L3,3)(L1,1 + L4,4) = L1,2L2,1 + L3,4L4,3.

Further, given L1,1, L1,2, L2,1, L2,2, L3,3, L3,4, L4,3, L4,4, then

(L1,3, L1,4, L2,3, L2,4)Tand (L4,2, L3,2, L4,1, L3,1)T

are solutions of a linear equation system M ˜X = 0, where

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

L1,1 + L3,3 L4,3 L1,2 0

L3,4 L1,1 + L4,4 0 L1,2

L2,1 0 L1,1 + L4,4 L4,3

0 L2,1 L3,4 L1,1 + L3,3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (�)

and

X =

⎛

⎝

x1 x2

x3 x4

⎞

⎠ , ˜X = (x1, x2, x3, x4)T ∈ F
4
2m .

And the Rank of M is 2.
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Proof For simplicity, we set

A =

⎛

⎝

L1,1 L1,2

L2,1 L2,2

⎞

⎠ , B =

⎛

⎝

L1,3 L1,4

L2,3 L2,4

⎞

⎠ , C =

⎛

⎝

L3,1 L3,2

L4,1 L4,2

⎞

⎠ and D =

⎛

⎝

L3,3 L3,4

L4,3 L4,4

⎞

⎠ .

Let L′ = L2, since L is involutory, L′
1,3 = L′

1,4 = L′
2,3 = L′

2,4 = L′
3,1 = L′

3,2 = L′
4,1 = L′

4,2 = 0.
Then we have

AB = BD (1)

and
CA = DC. (2)

Since L is an MDS matrix and C is a submatrix of L, then C is invertible. From (2), we have
AC−1 = C−1D. Define

C∗ = |C| · C−1 =

⎛

⎝

L4,2 L3,2

L4,1 L3,1

⎞

⎠ .

It is easy to see that AC∗ = C∗D. Thus, we only need to consider AX = XD, that is,
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

L1,1x1 + L1,2x3 = L3,3x1 + L4,3x2,

L1,1x2 + L1,2x4 = L3,4x1 + L4,4x2,

L2,1x1 + L2,2x3 = L3,3x3 + L4,3x4,

L2,1x2 + L2,2x4 = L3,4x3 + L4,4x4.

By Theorem 4.1, we have L1,1 + L2,2 + L3,3 + L4,4 = 0. Thus, we rewrite the above equations
as M ˜X = 0, where M is consistent with (�) and ˜X = (x1, x2, x3, x4)T.

Define ˜B = (L1,3, L1,4, L2,3, L2,4)T and ˜C∗ = (L4,2, L3,2, L4,1, L3,1)T, they must be the
solutions of M ˜X = 0.

Since L is an MDS matrix, M ˜X = 0 have nonzero solutions, that is to say |M | = 0. Set
E = (L1,1 + L3,3)(L1,1 + L4,4) + L1,2L2,1 + L3,4L4,3, it is easy to see that |M | = E2 = 0, i.e.,
E = 0. Further, by straight calculations, we find that E divides all the minors of order 3 of M .
Thus, all the minors of order 3 of M are zero. From this, we obtain that the rank of M is at
most 2. Then the rank of M is exactly 2 due to the fact that the first two rows of M are linear
independent.

If all the diagonal entries are equal, we have the following corollary.

Corollary 4.3 Let L ∈ GL(F2m , 4) and all the diagonal entries are equal. L is an invo-
lutory MDS matrix if and only if there exist p1, p2, p3, p4, p5, p6, p7, p8 ∈ F

∗
2m such that

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

p1 p4 p−1
2 p4p6 p5

p3 p1 p−1
2 p3p5 p6

p8 p7 p1 p2

p−1
2 p3p7 p−1

2 p4p8 p−1
2 p3p4 p1

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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with
p2
1p2 + p2p3p4 + p3p5p7 + p4p6p8 = p2, p5p8 = p6p7

and

p1p7 �= p4p8, p2
1p2 �= p3p5p7, p1p6 �= p3p5, p3p

2
5 �= p4p

2
6,

p1p2 �= p5p8, p2
1 �= p3p4, p2

1p2 �= p4p6p8, p2p4 �= p5p7, p2p3 �= p6p8.

Proof The sufficiency of the corollary can be proved by straight calculations. Here we only
prove the necessity. Since all the diagonal entries of L are equal, the conclusion of Theorem 4.2
that M ˜X = 0 can be rewrite as

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 L4,3 L1,2 0

L3,4 0 0 L1,2

L2,1 0 0 L4,3

0 L2,1 L3,4 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2

x3

x4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0. (3)

Substituting ˜X by (L1,3, L1,4, L2,3, L2,4)T, it is obvious that

L1,3L3,4 = L2,4L1,2, (4)

L1,4L2,1 = L2,3L3,4. (5)

Substituting ˜X by (L4,2, L3,2, L4,1, L3,1)T, it is obvious that

L4,2L3,4 = L3,1L1,2, (6)

L3,2L2,1 = L4,1L3,4. (7)

Further, we also have that

L1,2L2,1 = L3,4L4,3 (8)

by the conclusion of Theorem 4.2 that (L1,1 + L3,3)(L1,1 + L4,4) = L1,2L2,1 + L3,4L4,3.
Set L1,1 = L2,2 = L3,3 = L4,4 = p1, L3,4 = p2, L2,1 = p3, L1,2 = p4, L1,4 = p5, L2,4 =

p6, L3,2 = p7, L3,1 = p8. From (4)–(8), we can obtain

L1,3 = p−1
2 p4p6, L2,3 = p−1

2 p3p5, L4,2 = p−1
2 p4p8, L4,1 = p−1

2 p3p7, L4,3 = p−1
2 p3p4,

respectively.
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At this time, we have

L2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

p1 p4 p−1
2 p4p6 p5

p3 p1 p−1
2 p3p5 p6

p8 p7 p1 p2

p−1
2 p3p7 p−1

2 p4p8 p−1
2 p3p4 p1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f (p4p5p8 + p4p6p7)/p2 0 0

(p3p5p8 + p3p6p7)/p2 f 0 0

0 0 f p5p8 + p6p7

0 0 (p3p4p5p8 + p3p4p6p7)/p2
2 f

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where f = (p2
1p2 + p2p3p4 + p3p5p7 + p4p6p8)/p2.

Because L is an involutory MDS matrix, then
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(p2
1p2 + p2p3p4 + p3p5p7 + p4p6p8)/p2 = 1,

(p4p5p8 + p4p6p7)/p2 = 0,

(p3p5p8 + p3p6p7)/p2 = 0,

p5p8 + p6p7 = 0,

(p3p4p5p8 + p3p4p6p7)/p2
2 = 0.

None of p1, p2, p3, p4, p5, p6, p7, p8 equals 0, thus

p2
1p2 + p2p3p4 + p3p5p7 + p4p6p8 = p2, p5p8 = p6p7.

Since L is an MDS matirx, all the minors of L are invertible. We factorize all the minors of
L and obtain that

p1, p2, p3, p4, p5, p6, p7, p8 ∈ F
∗
2m , p1p7 �= p4p8, p2

1p2 �= p3p5p7, p1p6 �= p3p5,

p3p
2
5 �= p4p

2
6, p1p2 �= p5p8, p2

1 �= p3p4, p2
1p2 �= p4p6p8, p2p4 �= p5p7, p2p3 �= p6p8.

The proof is finished.
If p1 = p3 = 1, p2 = p4 in Corollary 4.3, then we have the following corollary.

Corollary 4.4 Let

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 p2 p6 p5

1 1 p−1
2 p5 p6

p8 p7 1 p2

p−1
2 p7 p8 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ GL(F2m , 4).

Then L is involutory MDS if and only if p2
2 = p5p7 + p2p6p8, p5p8 = p6p7 and

p7 �= p2p8, p2 �= p5p7, p5 �= p6, p2
5 �= p2p

2
6, p2 �= p5p8, p2 �= 1, p6p8 �= 1.
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When we search for involutory MDS matrices in the shape of that in Corollory 4.4, we
only need to loop three entries of that matrix and verify those inequations. This is similar to
searching for involutory matrices in the shape of Hadamard matrices. However, we can find
lighter involutory MDS matrices in the shape of the matrix in Collory 4.4 than Hadamard
matrices. From this perspective, our construction is better than Hadamard matrices.

5 Searching for Involutory MDS Matrices with Minimum XOR Counts

To the best of our knowledge, researchers have searched for lightweight involutory MDS
matrices in the shape of Hadamard matrices[14] or a general case of Hadamard matrices[12].
The latter can be viewed as a special case of L that we presented in Corollary 4.3. They have
found involutory MDS matrices with XOR count 64 + 4× 3× 8 over F28 .

In the past, researchers used to chose the polynomial bases when searching for lightweight
MDS matrices. However, irreducible polynomials with degree 8 over F28 have at least five
terms, leading to that the matrices under the polynomial basis have at least three XOR oper-
ations. Actually, there exist matrices with two XOR operations which can be regarded as the
representation of some elements in F28

[7]. We use these matrices to search for involutory MDS
matrices with the shape in Corollary 4.4 and find involutory MDS matrices with XOR count
44 + 4× 3× 8 over F28 .

Theorem 5.1 Let L1, L2 ∈ GL(F2m , 4), such that

L1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 x 1 x2

1 1 x 1

x(x3 + 1)−1 x3(x3 + 1)−1 1 x

x2(x3 + 1)−1 x(x3 + 1)−1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

L2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 x x 1

1 1 x−1 x

x3(x3 + 1)−1 x2(x3 + 1)−1 1 x

x(x3 + 1)−1 x3(x3 + 1)−1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Then for all x ∈ F2m , L1, L2 are both involutory matrices and the following conditions are
equivalent:

1) L1 is an MDS matrix.

2) L2 is an MDS matrix.

3) The degree of the minimal polynomial of x over F2 is ≥ 4 and x4 + x3 �= 1.

Proof The conclusions in Theorem 5.1 can be obtained by the definition of involutory
matrices and Corollary 4.4 directly.
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Here we give two matrices in the shape of L1 and L2 in Theorem 5.1 with XOR count
44 + 4× 3× 8 below.

Example 5.2 If α is a root of the irreducible polynomial X8 + X5 + X3 + X2 + 1, then
⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 α 1 α2

1 1 α 1

α218 α220 1 α

α219 α218 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 α α 1

1 1 α−1 α

α220 α219 1 α

α218 α220 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

are both involutory MDS matrices over F28 . Choosing the present matrix [[2, 4], 3, 1, 5, 6, [2, 7], 8, 4]
for α under the basis α5+1, α7+α2, α6+α, α4, α3, α2, α, 1, then XOR counts of 1, α, α−1, α2, α218,

α219, α220 are 0, 2, 3, 4, 9, 8, 8, respectively. So the XOR counts of these two matrices are both
44 + 4× 3× 8.

We compare our findings with the previous results in Table 1. For F24 , we achieve the
previously known lower bound. For F28 we present a new lower bound of XOR count of 4× 4
involutory MDS matrices which is 44 + 4 · 3 · 8.

Table 1 Comparison of 4 × 4 involutory MDS matrices over F24 and F28

Matrix Implementation
Ref.

Field/Ring Type XOR

F24/0x13 Arbitrary 20 + 4 · 3 · 4 [8]

F24/0x13 Hadamard-like 16 + 4 · 3 · 4 [12]

F24/0x13 Hadamard 24 + 4 · 3 · 4 Joltik

F24 Arbitrary 16 + 4 · 3 · 4 Theorem 3.1

F28/0x165 Hadamard-like 64 + 4 · 3 · 8 [12]

F28/0x11b Hadamard-Cauchy 216 + 4 · 3 · 8 [15]

F28/0x11b Hadamard-Cauchy 296 + 4 · 3 · 8 [3]

F28/0x11d Hadamard 88 + 4 · 3 · 8 Anubis

F28/0x165 Hadamard 64 + 4 · 3 · 8 [14]

F28 Arbitrary 44 + 4 · 3 · 8 Example 5.2

6 Conclusion

In this paper, we give some theoretical results on 4× 4 involutory MDS matrices over F2m .
These results help us find new structures to construct involutory matrices and improve the
efficiency of searching for involutory MDS matrices. We find that the exact lower bound of the
XOR count of 4× 4 involutory MDS matrices over F24 is 16 + 4× 3× 4. We also improved the
lower bound of XOR counts of involutory MDS matrices over F28 .
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The exact lower bounds of XOR counts of involutory MDS matrices over F28 are still un-
known. We leave it for the future research.
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