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Abstract This paper proves three statements of Schubert about cuspal cubic curves in a plane by

using the concept of generic point of Van der Waerden and Weil and Ritt-Wu methods. They are

relations of some special lines: 1) For a given point, all the curves containing this point are considered.

For any such curve, there are five lines. Two of them are the tangent lines of the curve passing through

the given point. The other three are the lines connecting the given point with the cusp, the inflexion

point and the intersection point of the tangent line at the cusp and the inflexion line. 2) For a given

point, the curves whose tangent line at the cusp passes through this point are considered. For any

such curve, there are four lines. Three of them are the tangent lines passing through this point and

the other is the line connect the given point and the inflexion point. 3) For a given point, the curves

whose cusp, inflexion point and the given point are collinear are considered. For any such curve, there

are five lines. Three of them are tangent lines passing through the given point. The other two are the

lines connecting the given point with the cusp and the intersection point of the tangent line at the cusp

and the inflexion line.

Keywords Cubic curves with cusp, Hilbert problem 15, Ritt-Wu method.

1 Introduction

This paper is a subsequent one to [1].
For any planar cubic curves with cusp in CP 3, there are three special points, the first is the

cusp point, the second is the inflexion point, the third is the intersection point of the inflexion
tangent line and the tangent line at the cusp point. The triangle decided by these three points
are called singular triangle.
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In [1], we let

f = (a3(x − a1) + (y − a2))2 + a4(x − a1)3 + a5(x − a1)2(y − a2)

+a6(x − a1)(y − a2)2 + a7(y − a2)3

with ai ∈ C, then f = 0 defines a curve in C2 ⊂ CP 2.
In this paper, we always assume that the point S has the projective coordinate [0, 1, 0] in

CP 2. A line in CP 2 is define by
ax + by + cz = 0,

with a, b, c not all being zero. So it passes through [0, 1, 0] if and only if b = 0. If a = 0, then
c �= 0. The line must be the infinity line z = 0. Now, if it is not the infinity line, a must be
nonzero. So the line can be represented by

x + cz = 0.

Thus, in the affine space with z = 1, it can be represented by x equals a constant in C.
In [2], 129–130, there are four theorems about the relation of the position of the three special

points: I, II, III, IV. The proof of Theorem I has been given in [1]. In this paper, we will give
the proofs of Theorem II-IV by using the concept of generic point of Van der Waerden[3] and
Weil[4] and Ritt-Wu methods.

2 Theorem II

Theorem II For a given point S in this curve, we can draw five lines passing though S,
the first is the tangent line at S and the second is another tangent line of the curve which
passes through S. The other three lines can be drawn by connecting S with the three special
points. These five lines all passing through point S form a group and they have the following
relationship: If three lines are given, then all the five lines are decided uniquely.

Proof In this theorem, S is a point in this curve. The homogeneous equation of the curve
in CP 2 is

f([x, y, z]) =(a3(x − a1z) + (y − a2z))2z + a4(x − a1z)3 + a5(x − a1z)2(y − a2z)

+ a6(x − a1z)(y − a2z)2 + a7(y − a2z)3.

It is easy to verify that f([x, y, z]) = 0 has the solution [0, 1, 0] if and only if a7 = 0. That is to
say the curve passes S if and only if a7 = 0.

As in [1], the line passing through the cusp and S is defined by x = c4, the line passing
through the inflexion point and S will be defined by x = c5, and the line pass passing through
S and the intersection point of the inflexion tangent line and the tangent line at the cusp will
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be defined by x = c6. c4, c5 and c6 are given by the following formula:

c4 = a1,

c5 =
C50

C51
,

c6 =
C60

C61
,

where the expression of C50, C51, C60, C61 can be found in [1] for generic a7:

C50 = 27a1a
3
3a4a

2
7 − 9a1a

3
3a5a6a7 + 2a1a

3
3a

3
6 − 27a5

3a
2
7 − 27a1a

2
3a4a6a7 + 18a1a

2
3a

2
5a7

− 3a1a
2
3a5a

2
6 + 45a4

3a6a7−27a1a3a4a5a7+18a1a3a4a
2
6−3a1a3a

2
5a6−36a3

3a5a7−18a3
3a

2
6

+ 27a1a
2
4a7 − 9a1a4a5a6 + 2a1a

3
5 + 27a2

3a4a7 + 27a2
3a5a6 − 18a3a4a6 − 9a3a

2
5 + 9a4a5,

C51 = 27a3
3a4a

2
7 − 9a3

3a5a6a7 + 2a3
3a

3
6 − 27a2

3a4a6a7 + 18a2
3a

2
5a7 − 3a2

3a5a
2
6 − 27a3a4a5a7

+ 18a3a4a
2
6 − 3a3a

2
5a6 + 27a2

4a7 − 9a4a5a6 + 2a3
5,

C60 = 3a1a
2
3a5a7−a1a

2
3a

2
6−9a1a3a4a7+a1a3a5a6+3a3

3a7+3a1a4a6−a1a
2
5−3a2

3a6+3a3a5−3a4,

C61 = 3a2
3a5a7 − a2

3a
2
6 − 9a3a4a7 + a3a5a6 + 3a4a6 − a2

5.

Here, let a7 = 0 and we get:

C50 = (2a3a6 − a5)(a1a
2
3a

2
6 − a1a3a5a6 + 9a1a4a6 − 2a1a

2
5 − 9a2

3a6 + 9a3a5 − 9a4),

C51 = (2a3a6 − a5)(a2
3a

2
6 − a3a5a6 + 9a4a6 − 2a2

5),

C60 = −(a1a
2
3a

2
6 − a1a3a5a6 − 3a1a4a6 + a1a

2
5 + 3a2

3a6 − 3a3a5 + 3a4),

C61 = −(a2
3a

2
6 − a3a5a6 − 3a4a6 + a2

5).

The common factor between C50 and C51 can be deleted without changing the value of c5, so
in this paper we let

C50 = a1a
2
3a

2
6 − a1a3a5a6 + 9a1a4a6 − 2a1a

2
5 − 9a2

3a6 + 9a3a5 − 9a4,

C51 = a2
3a

2
6 − a3a5a6 + 9a4a6 − 2a2

5,

and this will not cause any confusion.
There are two tangent lines passing through S. One is tangent at S, the other is not. From

the above, the two lines should be x = c1 and x = c2. In order to compute the two tangent
lines, we need to compute the resultant of f and f1 = ∂f

∂y w.r.t. variable y.

resultant(f, f1, y) =(x − a1)3(a1a6 − a6x − 1)

(4a1a4a6 − a1a
2
5 − 4a2

3a6 − 4a4a6x + a2
5x + 4a3a5 − 4a4).

Then, c1 is the solution of a1a6−a6x−1 = 0 and c2 is the solution of 4a1a4a6−a1a
2
5−4a2

3a6−
4a4a6x + a2

5x + 4a3a5 − 4a4 = 0.
Now we get all the expressions of ci for i = 1, 2, 4, 5, 6. All of them are expressed as

rational functions on the variables a1, a3, a4, a5, a6. In other words, (a1, a3, a4, a5, a6) →
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(c1, c2, c4, c5, c6) gives a rational map. This theorem says that the image of this map is a
variety of dimension three in C5, and for any three coordinates, the other two are rational
functions of them.

We use “wsolve”[5] and get

wsolve(PS, [a6, a5, a1, c5, c6], {C61, C51, a6, a
2
5 − 4a4a6}) = [[A1, A2, A3, A4, A5]],

where PS = [a1a6 − a6c1 − 1, 4a1a4a6 − a1a
2
5 − 4a2

3a6 − 4a4a6c2 + a2
5c2 + 4a3a5 − 4a4, c4 − a1,

C51c5 − C50, C61c6 − C60] and

A1 = a6c1 − a6c4 + 1,

A2 = a2
5c1c2 − a2

5c1c4 − a2
5c2c4 + a2

5c
2
4 + 4a3a5c1 − 4a3a5c4 + 4a2

3 − 4a4c1 + 4a4c2,

A3 = −c4 + a1,

A4 = 9c1c2 − c1c4 − 8c1c5 − 8c2c4 − c2c5 + 9c4c5,

A5 = 3c1c2 + c1c4 − 4c1c6 − 4c2c4 + c2c6 + 3c4c6.

Since A4 = 0, A5 = 0 are linear equations for c5 and c6, it is seen that c5, c6 are decided
uniquely if c1, c2, c4 are algebraically independent. And hence the lines x = c5 and x = c6 are
uniquely determined by the other three lines x = c1, x = c2 and x = c4, i.e., the last three
generically uniquely determine the previous two. Here, we treat c1, c2, c4, a3, a4 as algebraically
independent variables. Thus, A1, A2, A3 indicate that the inverse image of the above rational
map of a point (c1, c2, c4, c5, c6) is a Zariski closed set of dimension two over the field C(c1, c2, c4).

To see that any three of c1, c2, c4, c5, c6 are given the other two are rational functions of
the three, we need to consider C3

5 = C2
5 = 10 cases. One of them is given as above, and the

remaining nine cases are treated as follows (the variables indicated are regarded as functions of
the unindicated)

1) Case {c1, c2}. We get

wsolve([A5, A4], [c1, c2], {−4c1 + c2 + 3c4,−8c1 − c2 + 9c4}) = [[B(1)
1 , B

(1)
2 ]],

where

B
(1)
1 = c1c4 + 2c1c5 − 3c1c6 − 3c4c5 + 2c4c6 + c5c6,

B
(1)
2 = 4c2c4 − c2c5 − 3c2c6 − 3c4c5 − c4c6 + 4c5c6.

2) Case {c1, c4}. We have

wsolve([A5, A4], [c1, c4], {−4c1 + c2 + 3c4,−8c1 − c2 + 9c4}) = [[B(2)
1 , B

(2)
2 ]],

where

B
(2)
1 = 3c1c2 − 2c1c5 − c1c6 − c2c5 − 2c2c6 + 3c5c6,

B
(2)
2 = 4c2c4 − c2c5 − 3c2c6 − 3c4c5 − c4c6 + 4c5c6.
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3) Case {c1, c5}. We obtain

wsolve([A5, A4], [c1, c5], {−4c1 + c2 + 3c4,−8c1 − c2 + 9c4}) = [[B(3)
1 , B

(3)
2 ]],

where

B
(3)
1 = 3c1c2 + c1c4 − 4c1c6 − 4c2c4 + c2c6 + 3c4c6,

B
(3)
2 = 4c2c4 − c2c5 − 3c2c6 − 3c4c5 − c4c6 + 4c5c6.

4) Case {c1, c6}. We have

wsolve([A5, A4], [c1, c6], {−4c1 + c2 + 3c4,−8c1 − c2 + 9c4}) = [[B(4)
1 , B

(4)
2 ]],

where

B
(4)
1 = 9c1c2 − c1c4 − 8c1c5 − 8c2c4 − c2c5 + 9c4c5,

B
(4)
2 = 4c2c4 − c2c5 − 3c2c6 − 3c4c5 − c4c6 + 4c5c6.

5) Case {c2, c4}. Using “wsolve”, we get

wsolve([A5, A4], [c2, c4], {−4c1 + c2 + 3c4,−8c1 − c2 + 9c4}) = [[B(5)
1 , B

(5)
2 ]],

where

B
(5)
1 = 3c1c2 − 2c1c5 − c1c6 − c2c5 − 2c2c6 + 3c5c6,

B
(5)
2 = c1c4 + 2c1c5 − 3c1c6 − 3c4c5 + 2c4c6 + c5c6.

6) Case {c2, c5}. Using “wsolve”, we obtain

wsolve([A5, A4], [c2, c5], {−4c1 + c2 + 3c4,−8c1 − c2 + 9c4}) = [[B(6)
1 , B

(6)
2 ]],

where

B
(6)
1 = 3c1c2 + c1c4 − 4c1c6 − 4c2c4 + c2c6 + 3c4c6,

B
(6)
2 = c1c4 + 2c1c5 − 3c1c6 − 3c4c5 + 2c4c6 + c5c6.

7) Case {c2, c6}. We also find out that

wsolve([A5, A4], [c2, c6], {−4c1 + c2 + 3c4,−8c1 − c2 + 9c4}) = [[B(7)
1 , B

(7)
2 ]],

where

B
(7)
1 = 9c1c2 − c1c4 − 8c1c5 − 8c2c4 − c2c5 + 9c4c5,

B
(7)
2 = c1c4 + 2c1c5 − 3c1c6 − 3c4c5 + 2c4c6 + c5c6.

8) Case {c4, c5}. “wsolve” will lead to

wsolve([A5, A4], [c4, c5], {−4c1 + c2 + 3c4,−8c1 − c2 + 9c4}) = [[B(8)
1 , B

(8)
2 ]],
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where

B
(8)
1 = 3c1c2 + c1c4 − 4c1c6 − 4c2c4 + c2c6 + 3c4c6,

B
(8)
2 = 3c1c2 − 2c1c5 − c1c6 − c2c5 − 2c2c6 + 3c5c6.

9) Case {c4, c6}. Using “wsolve”, we get

wsolve([A5, A4], [c4, c6], {−4c1 + c2 + 3c4,−8c1 − c2 + 9c4}) = [[B(9)
1 , B

(9)
2 ]],

where

B
(9)
1 = 9c1c2 − c1c4 − 8c1c5 − 8c2c4 − c2c5 + 9c4c5,

B
(9)
2 = 3c1c2 − 2c1c5 − c1c6 − c2c5 − 2c2c6 + 3c5c6.

From the above we see that the theorem is correct.
Figure 1 is an example for the curve described by this theorem, where a1 = 0, a2 = 0, a3 =√

2, a4 = 1, a5 = 0, a6 = −1, a7 = 0 and the curve f = 0 is x3 − xy2 + 2
√

2xy + 2x2 + y2 = 0.
The real part of the curve is shown by the curve with label 1. Here, S = [0, 1, 0] is an infinity
point which the straight lines parallelled to the y-axis pass through. The origin is the cusp
point. We can see that the straight line with label 2 is a tangent line of the curve which passes
through S. The straight line with label 3 is the tangent line at S. The straight line with label 4
is the inflexion tangent line and the straight line with label 5 is the tangent line at the cusp.
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3 Theorem III

Theorem III For a planar cubic curve with a cusp and a point S on the tangent line at
the cusp which is not on the inflexion tangent line, two other tangent lines of the curve can be
drawn from S. Another line can be drawn by connecting S and the inflexion point. The above
four lines all pass through the point S and form a group. The position of the four lines are
relevant: If three lines are given, then the group is determined completely.

Proof In this case, since S is on the tangent line at the cusp (a1, a2), the curve f = 0 can
be given by

f = (x − a1)2 + a3(x − a1)3 + a4(x − a1)2(y − a2) + a5(x − a1)(y − a2)2 + a6(y − a2)3.

Here x = a1 is the tangent line at the cusp. We let B1 = c1 − a1.
Now, we use the same method in [1] to get the x-coordinate of the inflexion point c5.

Consider those f = 0 which have inflexion tangent lines in the form y = ax + b, a, b ∈ C. Let

g(x) � f(x, ax + b),

= b3x
3 + b2x

2 + b1x + b0,

where

b3 =a3a6 + a2a5 + aa4 + a3,

b2 =1 − 3a3a1 − 2a4a1a + a4(−a2 + b) − a5a1a
2 + 2a5(−a2 + b)a + 3a6(−a2 + b)a2,

b1 = − 2a1+3a3a
2
1+a4a

2
1a−2a4a1(−a2+b)−2a5a1(−a2 + b)a + a5(−a2 + b)2+3a6(−a2 + b)2a,

b0 =a2
1 − a3a

3
1 + a4a

2
1(−a2 + b) − a5a1(−a2 + b)2 + a6(−a2 + b)3.

Then f = 0 having such inflexion tangent lines with tangent points in C2 implies b3(a, b, a1, · · · , a6)
�= 0 and g(x) = b3(x− v)3 = b3(x3 − 3x2v + 3xv2 − v3) for some v ∈ C. The latter is equivalent
to

−3b3v = b2,

3b3v
2 = b1,

−b3v
3 = b0,

and equivalent further to g1 � b2
2 − 3b1b3 = 0, g2 � b3

2 − 27b0b
2
3 = 0. Thus, use “wsolve”, we get

wsolve([g1, g2], [b, a], {b3}) = [[C1b + C0, A1a + A0]],

where

A0 :=27a3a
2
6 − a3

5,

A1 :=9a6(3a4a6 − a2
5),

C0 :=27a1a3a
2
6 − a1a

3
5 + 27a2a4a

2
6 − 9a2a

2
5a6 − 27a2

6,

C1 := − 9a6(3a4a6 − a2
5).
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Then, we substitute the values of a and b in g(x), and find out the c5 satisfies B2 = 0, where

B2 = (27a3a
2
6 − 9a4a5a6 + 2a3

5)c5 − (27a1a3a
2
6 − 9a1a4a5a6 + 2a1a

3
5 − 27a2

6).

To give the tangent lines passing through S, we need to compute the resultant of f and f1 = ∂f
∂y

with respective to the variable y:

resultant(f, f1, y) = a6(x − a1)4R,

where R = r2x
2 + r1x + r0, and

r2 = 27a2
3a

2
6 − 18a3a4a5a6 + 4a3a

3
5 + 4a3

4a6 − a2
4a

2
5,

r1 = −54a1a
2
3a

2
6 + 36a1a3a4a5a6 − 8a1a3a

3
5 − 8a1a

3
4a6 + 2a1a

2
4a

2
5 + 54a3a

2
6,

− 18a4a5a6 + 4a3
5,

r0 = 27a2
1a

2
3a

2
6 − 18a2

1a3a4a5a6 + 4a2
1a3a

3
5 + 4a2

1a
3
4a6 − a2

1a
2
4a

2
5 − 54a1a3a

2
6,

+ 18a1a4a5a6 − 4a1a
3
5 + 27a2

6.

Because x = a1 is one of the three tangent lines passing through S, other two tangent lines
must be given by the solutions of the equation R = 0. Let x = c2 and x = c3 be the other
two tangent lines, then R can be rewritten as R = r2(x − c2)(x − c3). Comparing the two
representation of R, we get B3 = 0, B4 = 0 where

B3 = −54a1a
2
3a

2
6 + 36a1a3a4a5a6 − 8a1a3a

3
5 − 8a1a

3
4a6 + 2a1a

2
4a

2
5 + 27a2

3a
2
6c2

+ 27a2
3a

2
6c3 − 18a3a4a5a6c2 − 18a3a4a5a6c3 + 4a3a

3
5c2 + 4a3a

3
5c3 + 4a3

4a6c2

+ 4a3
4a6c3 − a2

4a
2
5c2 − a2

4a
2
5c3 + 54a3a

2
6 − 18a4a5a6 + 4a3

5,

B4 = 27a2
1a

2
3a

2
6 − 18a2

1a3a4a5a6 + 4a2
1a3a

3
5 + 4a2

1a
3
4a6 − a2

1a
2
4a

2
5 − 27a2

3a
2
6c2c3

+ 18a3a4a5a6c2c3 − 4a3a
3
5c2c3 − 4a3

4a6c2c3 + a2
4a

2
5c2c3 − 54a1a3a

2
6

+ 18a1a4a5a6 − 4a1a
3
5 + 27a2

6.

The four lines passing through S are x = c1, x = c2, x = c3 and x = c5, and c1, c2, c3, c5

satisfy the equations B1 = 0, B2 = 0, B3 = 0 and B4 = 0. If the leading coefficient of
resultant(f, f1, y) is zero, at least one of the tangent lines will be the infinity line, so in the
generic case, a6r2 �= 0.

Now we will find the relationship among the variables c1, c2, c3, c5 under the conditions
B1 = 0, B2 = 0, B3 = 0, B4 = 0 and a6r2 �= 0. We get

wsolve([B1, B2, B3, B4], [a1, a3, a4, c5], {a6r2,−27a3a
2
6 + 9a4a5a6 − 2a3

5}) = [[C1, C2, C3, C4]],

where C1 = a1 − c1,

C2 = (54a2
6c

2
1 − 54a2

6c1c2 − 54a2
6c1c3 + 54a2

6c2c3)a3 − 18a4a5a6c
2
1 + 18a4a5a6c2c1

+ 18a4a5a6c3c1 − 18a4a5a6c2c3 + 4a3
5c

2
1 − 4a3

5c2c1 − 4a3
5c3c1 + 4a3

5c2c3

− 54c1a
2
6 + 27a2

6c2 + 27a2
6c3,

C3 = c33a
3
4 + c32a

2
4 + c31a4 + c30,

C4 = c1c2 + c1c3 − 2c1c5 − 2c2c3 + c2c5 + c3c5,
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and

c33 = 432a3
6(c1 − c3)2(c1 − c2)2,

c32 = −432a2
5a

2
6(c1 − c3)2(c1 − c2)2,

c31 = 144a4
5a6(c1 − c3)2(c1 − c2)2,

c30 = −(4a3
5c

2
1 − 4a3

5c1c2 − 4a3
5c1c3 + 4a3

5c2c3 + 27a2
6c2 − 27a2

6c3)

(4a3
5c

2
1 − 4a3

5c1c2 − 4a3
5c1c3 + 4a3

5c2c3 − 27a2
6c2 + 27a2

6c3).

From C4 = 0, we know that c5 is uniquely determined by the values of c1, c2, c3 since C4 is
degree one on c5.

To see that any three of c1, c2, c3, c5 are given the other one is a rational function of the three,
we need to consider C3

4 = C1
4 = 4 cases. One of them is given as above, and the remaining three

cases are treated as follows (the variable indicated is regarded as functions of the unindicated)
1) Case {c1}. We get

wsolve([C4], [c1], {c2 + c3 − 2c1}) = [[C(1)]],

where

C(1) = c1c2 + c1c3 − 2c1c5 − 2c2c3 + c2c5 + c3c5.

2) Case {c2}. We have

wsolve([C4], [c2], {c2 + c3 − 2c1}) = [[C(2)]],

where

C(2) = c1c2 + c1c3 − 2c1c5 − 2c2c3 + c2c5 + c3c5.

3) Case {c3}. We obtain

wsolve([C4], [c3], {c2 + c3 − 2c1}) = [[C(3)]],

where

C(3) = c1c2 + c1c3 − 2c1c5 − 2c2c3 + c2c5 + c3c5.

From the above we see that the theorem is correct.
Figure 2 is an example for this kind of curve, where a1 = 0, a2 = 0, a3 = − 1

2 , a4 = 0, a5 =
3
2

3
√

3, a6 = 1 and the curve f = 0 is x2 − 1
2x3 + 3

2
3
√

3xy2 + y3 = 0. The real part of the curve
is shown by the curve with label 1. The origin is the cusp point. The y-axis is the tangent line
at the cusp. The straight line with label 2 and the the one with label 3 are tangent lines of
the curve passing through S. The straight line with label 4 is the inflexion tangent line. The
straight line with label 5 is the straight line connecting S and the inflexion point.
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4 Theorem IV

Theorem IV For a planar cubic curve with a cusp and a point S on the line connecting
the cusp and the inflexion point, three tangent lines of the curve can be drawn from S, another
line can be draw by connecting S and the intersection point of the inflexion tangent line and
the tangent line at the cusp point. The above five lines all pass through the point S and form a
group. The position of the five lines are relevant.

1) If the three tangent lines are given, then there are two possibilities.
2) If two tangent lines and the line connecting S and the intersection point of the inflexion

tangent line and the tangent line at the cusp point are given, there are two possibilities.
3) If two tangent lines and the line connecting the cusp and the inflexion point are given,

then there are two possibilities.
4) If one tangent line, the line connecting S and the intersection point of the inflexion

tangent line and the tangent line at the cusp point and the line connecting the cusp and the
inflexion point are given, then there is only one possibilities.

Proof Here, we also use the

f = (a3(x − a1) + (y − a2))2 + a4(x − a1)3 + a5(x − a1)2(y − a2)

+a6(x − a1)(y − a2)2 + a7(y − a2)3 = 0

to represent this curve as in [1].
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In [1], Theorem I says that the image of the map (a1, a3, a4, a5, a6, a7) → (c1, c2, · · · , c6) is
a variety of four dimension. For this theorem, point S is on the line connecting the cusp and
the inflexion point implies that c5 − a1 = 0. c5 is a rational function of a1, a3, · · · , a7, i.e.,

c5 =
C50

C51
.

Thus, the parameters of the curve f = 0 must lie in the hyper-surface given by the equation

C50 − a1C51 = 0.

The image is included in the hyperplane c4 − c5 = 0. We use c1, c2, c3, c4, c6 as the parameters
of the hyperplane. Using Maple,

factor(C50 − a1C51) = D1D2,

where

D1 = a3
3a7 − a2

3a6 + a3a5 − a4,

D2 = 3a2
3a7 − 2a3a6 + a5.

Thus, the hyper-surface C50 − a1C51 = 0 can be decomposed into two irreducible hyper-
surfaces, which are represented by D1 = 0 and D2 = 0, respectively. What we get from Maple
only tell us that C50 − a1C51 = D1D2 in the field Q. However, as there is only one linear item
of a5 in D1 and there is only one linear item of a4 in D2, we can conclude that both D1 and
D2 are indecomposable in the field C.

Lemma The parameters of the curve f = 0 satisfy the equation

D1 = 0,

if and only this curve is degenerate into a conic plus a line tangent to it.
The lemma is proved as follows. The generic case of a conic plus a line tangent to it at

(a1, a2) can be represented by

(d0(x− a1) + y − a2)(d0(x− a1) + y − a2 + d1(x− a1)2 + d2(x− a1)(y − a2) + d3(y − a2)2) = 0.

If the curve f = 0 is in this case, comparing the coefficients of the two equations, we get

a4 = d0d1,

a5 = d1 + d2d0,

a6 = d0d3 + d2,

a7 = d3.

By Maple,

simplify(subs([a4 = d0d1, a5 = d1 + d2d0, a6 = d0d3 + d2, a7 = d3], D1)) = 0.
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This shows that the parameters in the degenerate case is on the surface D1 = 0. Now we consider
the map from C6 to the hyper-surface D1 = 0, (a1, a2, d0, d1, d2, d3) �→ (a1, a2, a3, a4, a5, a6, a7)
defined by

a1 = a1,

a2 = a2,

a3 = d0,

a4 = d0d1,

a5 = d1 + d2d0,

a6 = d0d3 + d2,

a7 = d3.

Using Maple,

solve([a7 − d3,−d0d3 + a6 − d2,−d0d2 + a5 − d1,−d0d1 + a4, a3 − d0], [a4, d0, d1, d2, d3]),

we get the inverse map from D1 = 0 to C6.

a1 = a1,

a2 = a2,

d0 = a3,

d1 = a2
3a7 − a3a6 + a5,

d2 = −a3a7 + a6,

d3 = a7.

This indicates that the map (a1, a2, d0, d1, d2, d3) �→ (a1, a2, a3, a4, a5, a6, a7) defined before is
an isomorphism between C6 and the hyper-surface D1 = 0. This shows that all the points on
the hyper-surface represents a degenerate curve. The proof for the lemma is complete.

The isomorphism between C6 and the hyper-surface D1 = 0 is consistent with the Jacobian
conjecture as the case of polynomials with degree two which has been already proved to be
true.

Now we return to the proof of the theorem. As in [1], to find the x-coordinate of the tangent
lines of f = 0 passing through S, c1, c2, c3, we need to calculate

resultant(f, f1, y) = a7(x − a1)3f2(a1, a3, · · · , a7, x),

where f2 = F3x
3 +F2x

2 +F1x+F0. Please see paper [1] for the details of F3, F2, F1, F0. Then,
c1, c2, c3 be the three solutions of f2 = 0. We have f2 = F3(x−c1)(x−c2)(x−c3). Comparing the
two representation of f2, we have the following equations for c1, c2, c3. F3p1−F2 = 0, F3p2−F1 =
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0, F3p3 − F0 = 0 where

p1 = −(c1 + c2 + c3),

p2 = c1c2 + c1c3 + c2c3,

p3 = −c1c2c3.

As in [1], c4 = a1, c6 = C60
C61

. We have

wsolve([C61c6 − C60, D2, c4 − a1, F3p1 − F2, F3p2 − F1, F3p3 − F0],

[a7, a6, a5, a1, c6, c4], {C61, C51, F3, a7}) = [α7, α6, α5, α1, γ6, γ4],

where

γ6 = 3c4c6 + c4p1 + c6p1 + p2,

γ4 = c2
4p

2
1 − 3c2

4p2 + c4p1p2 − 9c4p3 − 3p1p3 + p2
2.

Here, we regard a3, a4, p1, p2, p3 as independent variables. Given p1, p2, p3 is equivalent to given
c1, c2, c3. Note that from γ4 = 0 and γ6 = 0, for fixed p1, p2, p3 we can only have two possible
c4, c6. This means that there are two possibilities for the group of five lines passing through S

if three tangent lines are given. This proves Case 1).
For Case 2), we use

wsolve([γ4, γ6], [c4, c3], (c1 + c2 + c3)2−3(c1c2+c1c3+c2c3),−c1 −c2 −c3 + 3c4)=[D(2)
4 , D

(2)
3 ],

where

D
(2)
4 =c1c2 + c1c3 − c1c4 − c1c6 + c2c3 − c2c4 − c2c6 − c3c4 − c3c6 + 3c4c6,

D
(2)
3 =c2

1c
2
2 − c2

1c2c3 − c2
1c2c6 + c2

1c
2
3 − c2

1c3c6 + c2
1c

2
6 − c1c

2
2c3

− c1c
2
2c6 − c1c2c

2
3 + 6c1c2c3c6 − c1c2c

2
6 − c1c

2
3c6 − c1c3c

2
6 + c2

2c
2
3 − c2

2c3c6

+ c2
2c

2
6 − c2c

2
3c6 − c2c3c

2
6 + c2

3c
2
6.

Here, we regard c1, c2, c6 as independent variables. From D
(2)
4 = 0 and D

(2)
3 = 0, for fixed

c1, c2, c6 we can only have two possible c3, c4. This proves Case 2).
For Case 3), we use

wsolve([γ4, γ6], [c6, c3], (c1 + c2 + c3)2 − 3(c1c2 + c1c3 + c2c3),−c1 − c2 − c3 + 3c4) = [D(3)
6 , D

(3)
3 ],

where

D
(3)
6 =c1c2 + c1c3 − c1c4 − c1c6 + c2c3 − c2c4 − c2c6 − c3c4 − c3c6 + 3c4c6,

D
(3)
3 =c2

1c
2
2 − c2

1c2c3 − c2
1c2c4 + c2

1c
2
3 − c2

1c3c4 + c2
1c

2
4 − c1c

2
2c3

− c1c
2
2c4 − c1c2c

2
3 + 6c1c2c3c4 − c1c2c

2
4 − c1c

2
3c4 − c1c3c

2
4 + c2

2c
2
3

− c2
2c3c4 + c2

2c
2
4 − c2c

2
3c4 − c2c3c

2
4 + c2

3c
2
4.
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Here, we regard c1, c2, c4 as independent variables. From D
(3)
6 = 0 and D

(3)
3 = 0, for fixed

c1, c2, c4 we can only have two possible c3, c6. This proves Case 3).
For Case 4), we use wsolve([γ4, γ6], [c3, c2], (c1 + c2 + c3)2 − 3(c1c2 + c1c3 + c2c3),−c1 − c2

−c3 + 3c4) = [D(4)
3 , D

(4)
2 ], where

D
(4)
3 = c1c2 + c1c3 − c1c4 − c1c6 + c2c3 − c2c4 − c2c6 − c3c4 − c3c6 + 3c4c6,

D
(4)
2 = 3c2

1c
2
2 − 3c2

1c2c4 − 3c2
1c2c6 + c2

1c
2
4 + c2

1c4c6 + c2
1c

2
6 − 3c1c

2
2c4

− 3c1c
2
2c6 + c1c2c

2
4 + 10c1c2c4c6 + c1c2c

2
6 − 3c1c

2
4c6 − 3c1c4c

2
6 + c2

2c
2
4

+ c2
2c4c6 + c2

2c
2
6 − 3c2c

2
4c6 − 3c2c4c

2
6 + 3c2

4c
2
6.

Here, we regard c1, c4, c6 as independent variables. From D
(4)
3 = 0 and D

(4)
2 = 0, for fixed

c1, c4, c6 we can only have two possible c2, c3. However, there is only one possibility for the
unordered pair {c1, c2}. This proves Case 4).

Figure 3 shows an example of this curve, where a1 = 0, a2 = 0, a3 = 0, a4 = 1, a5 =
0, a6 = 1, a7 = 1 and the curve f = 0 is x3 + xy2 + y3 + y2 = 0. The real part of the
curve is shown by the curve with label 1. The origin is the cusp point. The y-axis is the
straight line connecting the cusp point and the inflexion point. The straight line with label
2 is one of the tangent lines passing through S. The line with label 3 is the straight line
connecting S and the intersection point of the inflexion tangent line and the tangent line
at the cusp point. The straight line with label 4 is the inflexion tangent line. Two other
tangent lines passing through S are x = 9

62
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2)i and
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2)i, which are not real lines.
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