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Abstract
This paper investigates how to factorize a class ofmultivariate polynomialmatrices.We prove
that an l × m multivariate polynomial matrix admits a matrix factorization with respect to a
given polynomial if the polynomial and all the (l −1)× (l −1) reduced minors of the matrix
generate a unit ideal. This result is a generalization of a theorem in Liu et al. (Circuits Syst
Signal Process 30(3):553–566, 2011). Based on three main theorems presented in the paper
and a constructive algorithm proposed by Lin et al. (Circuits Syst Signal Process 20(6):601–
618, 2001), we give an algorithmwhich can be used to factorizemoremultivariate polynomial
matrices. In addition, an illustrative example is given to show the effectiveness of the proposed
algorithm.

Keywords Multivariate polynomial matrices · Matrix factorization · Reduced minors ·
Reduced Gröbner basis

1 Introduction

The study of matrix factorizations for multivariate polynomial matrices began with the devel-
opment of multidimensional systems theory in the late 1970s (Youla and Gnavi 1979), and
the existence problem of matrix factorizations for multivariate polynomial matrices was con-
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sidered to be one of the basic problems of this subject. Since then, great progress has been
achieved.

Bose (1982) introduced some basic concepts of multivariate polynomial matrices. After
that, Bose et al. (2003) proposed several algorithms to factorize bivariate polynomialmatrices,
and introduced the latest research trends of matrix factorizations with three or more variables.
The existence problem of matrix factorizations for bivariate polynomial matrices has been
completely solved in Guiver and Bose (1982), Liu and Wang (2013), Morf et al. (1977), but
for the case of more than two variables is still open.

Charoenlarpnopparut and Bose (1999) used Gröbner bases of modules to compute zero
prime matrix factorizations of multivariate polynomial matrices. For some multivariate poly-
nomial matrices with special properties, Lin (1999a, 2001) proposed some methods to
compute zero prime matrix factorizations of the matrices. Meanwhile, Lin and Bose (2001)
presented the Lin-Bose’s conjecture: a multivariate polynomial matrix admits a zero prime
matrix factorization if its all maximal reduced minors generate a unit ideal. This conjecture
was proved in Liu et al. (2014), Pommaret (2001), Wang and Feng (2004), so the existence
problemof zero primematrix factorizations has been solved. Subsequently,Wang andKwong
(2005) put forward an effective algorithm based onmodule theory to solve the existence prob-
lem of minor prime matrix factorizations. Guan et al. (2019) studied the existence problem
of minor prime matrix factorizations under the condition that matrices are not of full rank,
and they generalized the main results inWang and Kwong (2005). So far, some achievements
have been made on the existence problem of factor prime matrix factorizations (Guan et al.
2018; Liu and Wang 2010, 2015; Wang 2007). However, the general case is unsolved.

As far as we know, there is a class of multivariate polynomial matrices that has always
attracted attention. That is,

S = {F ∈ k[z]l×m : d = z1 − f (z2) is a divisor of dl(F) with f (z2) ∈ k[z2]},
where z2 = {z2, . . . , zn} and dl(F) is the GCD of all the l × l minors of F. For the existence
problem of matrix factorizations for multivariate polynomial matrices in S, many people
tried to solve it.

From the 1990s to the present, Lin and coauthors have done a lot of basic work on the
existence problem of amatrix factorization forF ∈ S. Lin first studied the case forF ∈ S with
n = 3, and then he successfully extended the main results in Lin (1992) to the case of n > 3
(Lin 1993). Let dl(F) = d , Lin et al. (2005) obtained a necessary and sufficient condition for
F ∈ S to admit a minor prime matrix factorization. Moreover, Lin et al. (2006) showed that a
square matrix F ∈ k[z]l×l with dl(F) = d is equivalent to diag(1, . . . , 1, d). For the general
case of d | dl(F), Lin et al. (2001) proved that F ∈ S admits a matrix factorization w.r.t. d
if the rank of F( f , z2) is (l − 1) for every (z2) ∈ k1×(n−1). Furthermore, they proposed a
constructive algorithm to factorize F.

After that, Liu et al. (2011) obtained that F ∈ S has a matrix factorization w.r.t. d if d
and all the (l − 1) × (l − 1) minors of F generate k[z]. This result is a generalization of the
previous result in Lin et al. (2001). However, we find that there are still many of multivariate
polynomial matrices in S that can be factorized without satisfying the result in Liu et al.
(2011). So, in this paper we continue to study the existence problem of a matrix factorization
for F ∈ S.

This paper is organized as follows. In Sect. 2, we fist outline some knowledge about
multivariate polynomial matrices, and then propose two problems that we shall consider.
Main results and some generalizations are presented in Sect. 3. A multivariate polynomial
matrix factorization algorithm is given in Sect. 4, and we use an example to illustrate the
calculation process of the algorithm. Further remarks are provided in Sect. 5.
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2 Preliminaries and problems

In this section we first introduce some basic notions which will be used in the following
sections, and then present two problems we are going to consider.

2.1 Basic notions

We denote by k an algebraically closed field, z the n variables z1, z2, . . . , zn , z2 the (n − 1)
variables z2, . . . , zn , where n ≥ 3. Let k[z] and k[z2] be the ring of polynomials in variables
z and z2 with coefficients in k, respectively. Let k[z]l×m be the set of l × m matrices with
entries in k[z]. Without loss of generality, we assume that l ≤ m, and for convenience we
use uppercase bold letters to denote polynomial matrices.

Let F ∈ k[z]l×m . Assume that f ∈ k[z2], then F( f , z2) denotes a polynomial matrix in
k[z2]l×m which is formed by transforming z1 in F into f . If l = m, we denote by det(F) the
determinant of F, and if F is of full rank, we use F−1 to represent the invertible matrix of F.
Moreover, FT represents the transposed matrix of F.

Assume that f1, . . . , fs ∈ k[z], we use 〈 f1, . . . , fs〉 to denote the ideal generated by
f1, . . . , fs in k[z]. Let g, h ∈ k[z], then g | h means that g is a divisor of h. In addition,
“w.r.t.” and “GCD” stand for “with respect to” and “greatest common divisor”, respectively.

We first introduce two basic concepts in matrix theory.

Definition 1 Let F ∈ k[z]l×m , and given 2r positive integers arbitrarily such that 1 ≤ i1 <

· · · < ir ≤ l and 1 ≤ j1 < · · · < jr ≤ m. Let F
(

i1···ir
j1··· jr

)
denotes an r × r matrix consisting

of the i1, . . . , ir rows and j1, . . . , jr columns of F, then det
(
F

(
i1···ir
j1··· jr

))
is called an r × r

minor of F.

Definition 2 Let F ∈ k[z]l×m , then the rank of F is r (1 ≤ r ≤ l) if there exists a nonzero
r × r minor of F, and all the i × i (i > r) minors of F vanish identically. For convenience,
we denote the rank of F by rank(F).

Then, we recall the concept of zero left prime matrix from multidimensional systems
theory.

Definition 3 (Bose 1982; Youla and Gnavi 1979) Let F ∈ k[z]l×m be of full row rank. If all
the l × l minors of F generate k[z], then F is said to be a zero left prime (ZLP) matrix.

Let I be an ideal generated by all the l × l minors of F, then we can compute a reduced
Gröbner basis G of I w.r.t. a monomial order to check I = k[z]. That is, if G = {1}, then
I = k[z]. The definition of the reduced Gröbner basis and how to compute a reduced Gröbner
basis of an ideal can be found in Buchberger (1965), Cox et al. (2007).

Serre (1955) raised the question whether any finitely generated projective module over a
polynomial ring is free. This question was solved positively and independently by Quillen
(1976) and Suslin (1976), and the result is called Quillen-Suslin theorem. For Quillen-Suslin
theorem, there are two equivalent descriptions as follows.

Lemma 1 Let w ∈ k[z]1×l be a ZLP vector and M be a module generated by all vectors in
{q ∈ k[z]l×1 : wq = 0}, then M is free.

Lemma 2 Let w ∈ k[z]1×l be a ZLP vector, then a unimodular matrix U ∈ k[z]l×l can be
constructed such that w is its first row.

123



Multidimensional Systems and Signal Processing

In Lemma 1,M is called the syzygy module of w. Fabiańska and Quadrat (2006) gave an
algorithm to compute free bases of free modules over polynomial rings, and the algorithm
was implemented in QuillenSuslin package (Fabiańska et al. 2007). In Lemma 2, U is a
unimodular matrix if and only if det(U) is a nonzero constant in k. There are many methods
to construct U such that w is its first row, we refer to Logar and Sturmfels (1992), Lu et al.
(2017), Park (1995), Youla and Pickel (1984) for more details.

Throughout the paper, we use the following notation conventions.

Convention 1 Let F ∈ k[z]l×m. We use dl(F) and dl−1(F) to denote the GCD of all the l × l
minors and all the (l − 1) × (l − 1) minors of F, respectively.

Convention 2 Let F ∈ k[z]l×m. We use a1, . . . , aη to denote all the l × l minors of F, where
η = (m

l

)
. Extracting dl(F) from a1, . . . , aη yields

ai = dl(F) · bi , i = 1, . . . , η,

then b1, . . . , bη are called the l × l reduced minors of F.

Convention 3 Let F ∈ k[z]l×m. We use c1, . . . , cγ to denote all the (l − 1) × (l − 1) minors
of F, where γ = ( l

l−1

) · ( m
l−1

)
. Extracting dl−1(F) from c1, . . . , cγ yields

ci = dl−1(F) · hi , i = 1, . . . , γ,

then h1, . . . , hγ are called the (l − 1) × (l − 1) reduced minors of F.

Remark 1 The ideal generated by all the i × i minors of F is called the i-th determinantal
ideal of F for i = 1, . . . , l (this notion is from Brown 1993). Moreover, it is related to the i-th
Fitting ideal of a k[z]-module. We refer to Eisenbud (2013) for more details. In this paper
we focus on reduced minors rather than minors of F.

Next, we introduce three important lemmas in matrix theory.

Lemma 3 (Binet-Cauchy formula, Strang 2010) Let F = G1F1, where G1 ∈ k[z]l×l and
F1 ∈ k[z]l×m. Then an r × r (r ≤ l) minor of F is

det
(
F

(
i1···ir
j1··· jr

))
=

∑
1≤s1<···<sr≤l

det
(
G1

(
i1···ir
s1···sr

)) · det
(
F1

( s1···sr
j1··· jr

))
. (1)

In particular, when r = l, we have

det
(
F

(
1 ··· l
j1··· jl

))
= det(G1) · det

(
F1

(
1 ··· l
j1··· jl

))
. (2)

Lemma 4 (Lin 1993, 1999b) Let F1 = [F11,F12] ∈ k[z]l×(m+l) be of full row rank and
F2 = [FT

21,−FT
22]T ∈ k[z](m+l)×m be of full column rank, where F11,F22 ∈ k[z]l×m, F12 ∈

k[z]l×l and F21 ∈ k[z]m×m. If F1F2 = 0l×m, then det(F12) �= 0 if and only if det(F21) �= 0.

Lemma 5 (Lin 1988) Assume that F−1
12 F11 = F22F

−1
21 , where F11,F22 ∈ k[z]l×m, F−1

12 ∈
k(z)l×l and F−1

21 ∈ k(z)m×m. Let p̄1, . . . , p̄ξ1 be all the l × l reduced minors of [F11,F12],
and p1, . . . , pξ2 be all the m × m reduced minors of [FT

21,−FT
22]T, where ξ1 = (m+l

l

) =
ξ2 = (m+l

m

)
. Then, p̄i = ±pi for i = 1, . . . , ξ1, and the sign depends on the index i .

123



Multidimensional Systems and Signal Processing

2.2 Problems

Now, the definition of the matrix factorization is as follows.

Definition 4 Let F ∈ k[z]l×m and d | dl(F). We say that F admits a matrix factorization w.r.t.
d if F can be factorized as

F = G1F1

such that G1 ∈ k[z]l×l , F1 ∈ k[z]l×m , and det(G1) = d .

As we mentioned in Sect. 1, we consider the existence problem of a matrix factorization
for F ∈ S w.r.t. d = z1 − f (z2), where f (z2) ∈ k[z2]. For this problem, Liu et al. (2011)
got an important result.

Lemma 6 (Liu et al. 2011) Let F ∈ S. If 〈d, c1, . . . , cγ 〉 = k[z], then F admits a matrix
factorization w.r.t. d.

Obviously, 〈d, c1, . . . , cγ 〉 ⊆ 〈d, dl−1(F)〉 ⊆ k[z]. If d | dl−1(F), then 〈d, c1, . . . , cγ 〉 ⊆
〈d〉 �= k[z] and Lemma 6 is invalid. Therefore, the prerequisite for the establishment of
Lemma 6 is that d � dl−1(F). Based on this phenomenon, we now construct a subset of S:

S1 = {F ∈ S : d � dl−1(F)}.
Then, F ∈ S1 admits a matrix factorization w.r.t. d if 〈d, c1, . . . , cγ 〉 = k[z], and Lemma 6
is invalid for any F ∈ S \ S1.

Although d � dl−1(F) for any F ∈ S1, d and dl−1(F) may have common zeros. It follows
that Lemma 6 is invalid if 〈d, dl−1(F)〉 �= k[z]. However, we find that there exists F ∈ S1
which satisfies 〈d, dl−1(F)〉 �= k[z], still admits a matrix factorization w.r.t. d .

Example 1 Let

F =
⎡
⎣

z1z2 − z1 − z22 − z2z3 z1z3 + z1 − z2z3 − z2 − z23 − z3 F[1, 3]
−z1z2 − z1z3 + z2 + z3 z2 + z3 z1z2 + z1z3

z1 −z1 + z2 + z3 −2z1 + z2 + z3 + 1

⎤
⎦

be a multivariate polynomial matrix in C[z1, z2, z3]3×3 with z1 > z2 > z3, where F[1, 3] =
−z1z2 + z1z3 + 2z1 + z22 − z2 − z23 − 2z3 − 1 and C is a complex field.

It is easy to compute that d3(F) = (z1 − z2)(z2 + z3)2 and d2(F) = z2 + z3. Let
d = z1 − z2, then d | d3(F) but d � d2(F). This implies that F ∈ S1. Since the reduced
Gröbner basis of 〈d, d2(F)〉 w.r.t. the lexicographic order is {z1 + z3, z2 + z3}, we have
〈d, c1, . . . , c9〉 ⊆ 〈d, d2(F)〉 �= k[z], where c1, . . . , c9 are all the 2 × 2 minors of F. Then,
Lemma 6 is invalid.

However, we can get a matrix factorization of F w.r.t. d:

F =
⎡
⎣
d 0 −z3 − 1
0 1 0
0 0 1

⎤
⎦

⎡
⎣

z2 + z3 0 −z2 − z3
−z1z2 − z1z3 + z2 + z3 z2 + z3 z1z2 + z1z3

z1 −z1 + z2 + z3 −2z1 + z2 + z3 + 1

⎤
⎦ .

Example 1 shows that Lemma 6 is only a sufficient condition for F ∈ S1 admitting
a matrix factorization w.r.t. d . This implies that it would be significant to propose a new
criterion for factorizing F ∈ S1 w.r.t. d . In Example 1, we find that the reduced Gröbner
basis of 〈d, h1, . . . , h9〉 w.r.t. the lexicographic order is {1}. In spire of it, we consider the
following problem.

123



Multidimensional Systems and Signal Processing

Problem 1 Let F ∈ S1. If 〈d, h1, . . . , hγ 〉 = k[z], does F have a matrix factorization w.r.t.
d?

Aswementioned above, Lemma 6 is invalid for anyF ∈ S \S1. Then, we consider another
problem as follows.

Problem 2 Let F ∈ S \ S1. Is there a way to solve the existence problem of a matrix
factorization for F?

3 New criteria for factorizing polynomial matrices inS
The main objective of this section is to solve Problems 1 and 2.

3.1 The case for F ∈ S1

Before giving the main theorem, we introduce three important lemmas.

Lemma 7 (Lin et al. 2001) Let g ∈ k[z] and f (z2) ∈ k[z2]. If g( f , z2) is a zero polynomial
in k[z2], then (z1 − f (z2)) is a divisor of g.

Lemma 8 Let F ∈ S1, then rank(F( f , z2)) = l − 1.

Proof For simplicity of presentation, let F̂ = F( f , z2). Then, F̂ ∈ k[z2]l×m . Let â1, . . . , âη ∈
k[z2] and ĉ1, . . . , ĉγ ∈ k[z2] be all the l × l minors and (l − 1) × (l − 1) minors of F̂,
respectively. Then,

âi = ai ( f , z2) and ĉ j = c j ( f , z2), where i = 1, . . . , η and j = 1, . . . , γ .

Since d | dl(F), we have âi = 0 for i = 1, . . . , η. This implies that rank(F̂) ≤ l − 1. If
rank(F̂) < l − 1, then c j ( f , z2) = 0 for j = 1, . . . , γ . It follows from Lemma 7 that d is a
common divisor of c1, . . . , cγ . Thus d | dl−1(F), which contradicts the fact that d � dl−1(F)

for F ∈ S1. Therefore, rank(F̂) = l − 1. 	

The following lemma is a non-trivial generalization of Lemma 2 in Lin et al. (2001).

Although the proof of the lemma is similar to that of Theorem 1 in Lin (1993), for the sake
of the rigor of the argument and the ease of understanding we still give a detailed proof here.

Lemma 9 Let F ∈ k[z]l×m with rank(F) = l −1. If 〈h1, . . . , hγ 〉 = k[z], then there is a ZLP
vector w ∈ k[z]1×l such that wF = 01×m.

Proof In viewof rank(F) = l−1,we could assume that thefirst (l−1) rowvectors f1, . . . , fl−1

of F are k[z]-linearly independent. This implies that f1, . . . , fl−1 and fl are k[z]-linearly
dependent. Thus wF = 01×m for some nonzero row vector w = [w1, . . . , wl ] ∈ k[z]1×l ,
where wl �= 0 and GCD(w1, . . . , wl) = 1. Obviously, w1, . . . , wl are all the 1 × 1 reduced
minors of w.

The next thing is to prove thatw1, . . . , wl generate k[z]. LetF1, . . . ,Fβ be all the l×(l−1)
sub-matrices of F, where β = ( m

l−1

)
. For each 1 ≤ i ≤ β, let ci1, . . . , cil and hi1, . . . , hil be

all the (l−1)× (l−1)minors and all the (l−1)× (l−1) reduced minors of Fi , respectively.
Then ci j = dl−1(Fi ) · hi j , where i = 1, . . . , β and j = 1, . . . , l. Let w = [w1, wl ] and Fi =
[FT

i1,−FT
i2]T, where w1 = [w1, . . . , wl−1], Fi1 ∈ k[z](l−1)×(l−1) and Fi2 ∈ k[z]1×(l−1). If

123



Multidimensional Systems and Signal Processing

Fi is not of full column rank, then ci j = 0 and hi j = 0, j = 1, . . . , l. If Fi is of full column
rank, then it follows from wF = 01×m that

[
w1, wl

] [
Fi1

−Fi2

]
= 01×(l−1). (3)

Since wl �= 0, det(Fi1) �= 0 by Lemma 4. From Eq. (3) we have

w−1
l w1 = Fi2F

−1
i1 . (4)

According to Lemma 5, all the 1×1 reduced minors ofw are equal to all the (l−1)× (l−1)
reducedminors ofFi without considering the sign, i.e.,w j = hi j for j = 1, . . . , l. Therefore,
all the (l − 1) × (l − 1) minors of F are as follows:

dl−1(F1) · w1, . . . , dl−1(F1) · wl , · · · , dl−1(Fβ) · w1, . . . , dl−1(Fβ) · wl .

Let d̄ ∈ k[z] be the GCD of dl−1(F1), . . . , dl−1(Fβ), then there exists d̄i ∈ k[z] such that
dl−1(Fi ) = d̄ · d̄i , where i = 1, . . . , β. In the following we prove that the polynomials

d̄1w1, d̄1w2, · · · d̄1wl ,

d̄2w1, d̄2w2, · · · d̄2wl ,
...

...
. . .

...

d̄βw1, d̄βw2, · · · d̄βwl ,

are all the (l − 1) × (l − 1) reduced minors of F. It follows from GCD(w1, . . . , wl) = 1 and
GCD(d̄1, · · · , d̄β) = 1 that

GCD(d̄1w1, . . . , d̄1wl , · · · , d̄βw1, . . . , d̄βwl)

= GCD(GCD(d̄1w1, . . . , d̄1wl), · · · ,GCD(d̄βw1, . . . , d̄βwl))

= GCD(d̄1, · · · , d̄β)

= 1.

Therefore, d̄1w1, . . . , d̄1wl , · · · , d̄βw1, . . . , d̄βwl are all the (l−1)×(l−1) reduced minors
of F, i.e., they are equal to h1, . . . , hγ . Since 〈h1, . . . , hγ 〉 = k[z], w1, . . . , wl generate
k[z]. 	


Combining the above three lemmas, we can solve Problem 1.

Theorem 4 Let F ∈ S1. If 〈d, h1, . . . , hγ 〉 = k[z], then F admits a matrix factorization w.r.t.
d.

Proof Let F̂ = F( f , z2), then rank(F̂) = l − 1 by Lemma 8. We first prove that all the
(l − 1) × (l − 1) reduced minors of F̂ generate k[z2]. Let h̄ ∈ k[z2] be the GCD of
h1( f , z2), . . . , hγ ( f , z2), then there exist ĥ1, . . . , ĥγ ∈ k[z2] such that

h j ( f , z2) = h̄ · ĥ j for j = 1, . . . , γ and GCD(ĥ1, . . . , ĥγ ) = 1.

Let g = dl−1(F) and ĉ1, . . . , ĉγ ∈ k[z2] be all the (l − 1) × (l − 1) minors of F̂. It follows
from c j = dl−1(F) · h j that

ĉ j = g( f , z2) · h j ( f , z2),
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where j = 1, . . . , γ . Thus dl−1(F̂) = g( f , z2) · h̄ and ĥ1, . . . , ĥγ are all the (l −1)× (l −1)
reduced minors of F̂. Assume that 〈ĥ1, . . . , ĥγ 〉 �= k[z2], then there exists (α2, . . . , αn) ∈
k1×(n−1) such that ĥ j (α2, . . . , αn) = 0, where j = 1, . . . , γ . Let α1 = f (α2, . . . , αn), then

h j (α1, α2, . . . , αn) = h̄(α2, . . . , αn) · ĥ j (α2, . . . , αn) = 0, j = 1, . . . , γ .

This implies that (α1, α2, . . . , αn) ∈ k1×n is a common zero of d, h1, . . . , hγ , which contra-
dicts the fact that 〈d, h1, . . . , hγ 〉 = k[z].

Now, we remark that F admits a matrix factorization w.r.t. d . Using Lemma 9, we get
wF̂ = 01×m , where w ∈ k[z2]1×l is a ZLP vector. Meanwhile, according to Lemma 2, a
unimodular matrixU ∈ k[z2]l×l can be constructed such thatw is its first row. Let F0 = UF,
then the first row of F0( f , z2) = UF̂ is a zero vector. By Lemma 7, d is a common divisor
of the polynomials in the first row of F0, thus

F0 = UF = DF1 =

⎡
⎢⎢⎢⎣

d
1

. . .

1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f̄11 · · · f̄1m
f21 · · · f2m
...

. . .
...

fl1 · · · flm

⎤
⎥⎥⎥⎦ .

Consequently, we can now derive the matrix factorization of F w.r.t. d:

F = G1F1,

where G1 = U−1D ∈ k[z]l×l , F1 ∈ k[z]l×m and det(G1) = d . 	

Theorem 4 presents a new criterion to factorize F ∈ S1 w.r.t. d , and it is a generalization

of Lemma 6.
Let F ∈ k[z]l×m and d0 = ∏s

t=1(z1 − ft (z2)) be a divisor of dl(F), where
f1(z2), . . . , fs(z2) ∈ k[z2]. Liu et al. (2011) proved that if 〈d0, c1, . . . , cγ 〉 = k[z], then
F admits a matrix factorization w.r.t. d0. It would be interesting to know whether Theorem 4
can be generalized to the case for s > 1. Without loss of generality, we consider the case for
s = 2.

Theorem 5 Let F ∈ k[z]l×m and d0 = (z1 − f1(z2))(z1 − f2(z2)) be a divisor of dl(F). If
GCD(d0, dl−1(F)) = 1 and 〈d0, h1, . . . , hγ 〉 = k[z], then F admits a matrix factorization
w.r.t. d0.

Proof Let d1 = z1 − f1(z2) and d2 = z1 − f2(z2). Obviously, d1 � dl−1(F) and
〈d1, h1, . . . , hγ 〉 = k[z]. By Theorem 4, there exist G1 ∈ k[z]l×l and F1 ∈ k[z]l×m such
that

F = G1F1,

where G1 = U−1
1 D1 with D1 = diag(d1, 1, . . . , 1), and U1 ∈ k[z2]l×l is a unimodular

matrix. According the Eq. (2) in Lemma 3, d2 = z1 − f2(z2) is a divisor of dl(F1). Next we
prove that F1 admits a matrix factorization w.r.t. d2.

We first prove that d2 � dl−1(F1). Otherwise, it follows from dl−1(F1) | dl−1(F) that
d2 | dl−1(F), which contradicts the fact that GCD(d0, dl−1(F)) = 1. This implies that
F1 ∈ S1.

Second, we prove that d2 and all the (l − 1) × (l − 1) reduced minors of F1 generate
k[z]. Let Fi1 ∈ k[z](l−1)×m be a sub-matrix obtained by removing the i-th row of F1,
and c̄i1, . . . , c̄iβ be all the (l − 1) × (l − 1) minors of Fi1, where i = 1, . . . , l. Then,
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c̄11, . . . , c̄1β, . . . , c̄l1, . . . , c̄lβ are all the (l − 1) × (l − 1) minors of F1. Extracting dl−1(F1)

from each c̄i j yields c̄i j = dl−1(F1) · h̄i j , then h̄11, . . . , h̄1β, . . . , h̄l1, . . . , h̄lβ are all the
(l−1)×(l−1) reducedminors ofF1. Hence, we only need to prove that 〈d2, h̄11, . . . , h̄lβ〉 =
k[z].

Since D1 = diag(d1, 1, . . . , 1), all the (l − 1) × (l − 1) minors of D1F1 are

c̄11, . . . , c̄1β, d1c̄21, . . . , d1c̄2β, . . . , d1c̄l1, . . . , d1c̄lβ .

Then, there is at least one integer j ∈ {1, . . . , β} such that d1 � c̄1 j . Otherwise, d1 |
dl−1(D1F1). It follows form F = U−1

1 D1F1 and the Eq. (1) in Lemma 3 that dl−1(D1F1) |
dl−1(F). Thus d1 | dl−1(F), which leads to a contradiction. Since d1 = z1 − f1(z2) is an
irreducible polynomial, we have

GCD(c̄11, . . . , c̄1β, d1c̄21, . . . , d1c̄2β, . . . , d1c̄l1, . . . , d1c̄lβ)

= GCD(c̄11, . . . , c̄1β, c̄21, . . . , c̄2β, . . . , c̄l1, . . . , c̄lβ).

Therefore, dl−1(D1F1) = dl−1(F1). It follows fromU1F = D1F1 that dl−1(F) | dl−1(D1F1).
This implies that dl−1(F) = dl−1(F1).

The Eq. (1) in Lemma 3 implies that each ci0 is a k[z]-linear combination of c̄11, . . . , c̄lβ ,
where 1 ≤ i0 ≤ γ . Since dl−1(F) = dl−1(F1), we get that each hi0 is a k[z]-linear com-
bination of h̄11, . . . , h̄lβ , where 1 ≤ i0 ≤ γ . Since 〈d0, h1, . . . , hγ 〉 = k[z], we have
〈d2, h1, . . . , hγ 〉 = k[z]. If 〈d2, h̄11, . . . , h̄lβ〉 �= k[z], then there exists (α1, . . . , αn) ∈ k1×n

such that α1 = f2(α2, . . . , αn) and h̄i j (α1, . . . , αn) = 0, where i = 1, . . . , l and
j = 1, . . . , β. This implies that (α1, . . . , αn) is a common zero of d2, h1, . . . , hγ , which
leads to a contradiction.

According to Theorem 4 again, there exist G2 ∈ k[z]l×l and F2 ∈ k[z]l×m such that
F1 = G2F2, where G2 = U−1

2 D2 with D2 = diag(d2, 1, . . . , 1), and U2 ∈ k[z2]l×l is a
unimodular matrix.

Finally, we get a matrix factorization of F w.r.t. d0:

F = G0F2,

where G0 = G1G2 with det(G0) = d0. 	


Remark 2 In Theorem 5, GCD(d0, dl−1(F)) = 1 implies that d1 � dl−1(F) and d2 � dl−1(F).
The most important thing is that we can factorize F1 w.r.t. d2 without checking d2 � dl−1(F1)

and the ideal generated by d2 and all the (l − 1) × (l − 1) reduced minors of F1 is equal to
k[z], which can help us improve the computational efficiency of matrix factorizations.

It is worth noting that if f1(z2) = f2(z2) in Theorem 5, we have the following corollary.

Corollary 1 Let F ∈ k[z]l×m and d0 = (z1 − f1(z2))r be a divisor of dl(F). If
GCD(d0, dl−1(F)) = 1 and 〈d0, h1, . . . , hγ 〉 = k[z], then F admits a matrix factorization
w.r.t. d0.

Further, if f1(z2) �= f2(z2) in Theorem 5, we have another corollary.

Corollary 2 Let F ∈ k[z]l×m and d0 = ∏s
t=1(z1 − f j (z2))qt be a divisor of dl(F). If

GCD(d0, dl−1(F)) = 1 and 〈d0, h1, . . . , hγ 〉 = k[z], then F admits a matrix factorization
w.r.t. d0.
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3.2 The case for F ∈ S \ S1

LetF ∈ k[z]l×m , we denote by di (F) the GCD of all the i×i minors ofF, where i = 1, . . . , l.
For convenience, let d0(F) = 1. According to the basic property of matrix theory, we have
d0(F) | d1(F) | · · · | dl−1(F) | dl(F).

Let F ∈ S \ S1. Since d is a divisor of dl−1(F), there is a unique integer i such that
d | dl−i+1(F) but d � dl−i (F), where 2 ≤ i ≤ l. Based on this phenomenon, we construct
l − 1 subsets of S \ S1:

Si = {F ∈ S \ S1 : d | dl−i+1(F) but d � dl−i (F)}, i = 2, . . . , l.

Then, For any given F ∈ S \S1 and d = z1 − f (z2), there exists a unique integer i such that
F ∈ Si with 2 ≤ i ≤ l. Therefore, Problem 2 is equivalent to the problem: is there a way to
solve the existence problem of a matrix factorization for F ∈ Si with 2 ≤ i ≤ l?

We first solve the case of F ∈ Sl .

Theorem 6 Let F ∈ Sl , then F admits a matrix factorization w.r.t. dl .

Proof Let F = [
fi j

]
l×m , where fi j ∈ k[z]. It follows from F ∈ Sl that d | fi j , where

i = 1, . . . , l and j = 1, . . . ,m. Then, we can extract d from each fi j and obtain a matrix
factorization of F w.r.t. dl . That is, there exists G1 ∈ k[z]l×l and F1 ∈ k[z]l×m such that
F = G1F1 with G1 = diag(d, . . . , d). 	


In the following, we consider the case of F ∈ Si with 2 ≤ i < l. We can generalize
Theorem 4 to the case of F ∈ Si . A proof can be given similarly as the proof for Theorem 4,
thus it is omitted here.

Theorem 7 Let F ∈ Si with 2 ≤ i < l and h(l−i),1, . . . , h(l−i),γ(l−i) be all the (l − i) ×
(l − i) reduced minors of F. If 〈d, h(l−i),1, . . . , h(l−i),γ(l−i)〉 = k[z], then F admits a matrix
factorization w.r.t. di .

Remark 3 The proof of Theorem 7 can show that we extract di by only once matrix factor-
ization. Moreover, Theorem 7 is a generalization of Theorem 3.3 in Lu et al. (2017).

In summary, for each i with 2 ≤ i ≤ l, we propose a new criterion to factorizeF ∈ Si w.r.t.
di . This implies that there is a way to solve the existence problem of a matrix factorization
for F ∈ S \ S1. Therefore, we solve Problem 2.

3.3 Generalizations of the type of polynomial matrices

Let f (z\z j ) be a polynomial in k[z1, . . . , z j−1, z j+1, . . . , zn], where 1 ≤ j ≤ n. Then, we
can get the following corollaries.

Corollary 3 Let F ∈ k[z]l×m and d0 = (z j − f (z\z j ))r be a divisor of dl(F). If
GCD(d0, dl−1(F)) = 1 and 〈d0, h1, . . . , hγ 〉 = k[z], then F admits a matrix factorization
w.r.t. d0.

Corollary 4 Let F ∈ k[z]l×m and d0 = ∏n
j=1

∏s j
t=1(z j − ft (z\z j ))q jt be a divisor of dl(F).

If GCD(d0, dl−1(F)) = 1 and 〈d0, h1, . . . , hγ 〉 = k[z], then F admits a matrix factorization
w.r.t. d0.
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Corollary 5 Let F ∈ k[z]l×m and d j = z j − f (z\z j ) be a divisor of dl(F). For any given i
with 1 ≤ i < l, let h(l−i),1, . . . , h(l−i),γ(l−i) be all the (l − i) × (l − i) reduced minors of F.
Assume that d j | dl−i+1(F) but d j � dl−i (F). Then F admits a matrix factorization w.r.t. dij
if 〈d j , h(l−i),1, . . . , h(l−i),γ(l−i)〉 = k[z].

Corollary 6 Let F ∈ k[z]l×m and d j = z j − f (z\z j ) be a divisor of d1(F), where 1 ≤ j ≤ n.
Then F admits a matrix factorization w.r.t. dlj .

4 Algorithm and example

According to the main results presented in Sect. 3, there is a way to solve the existence
problem of a matrix factorization for F ∈ S. Combining the constructive algorithm proposed
by Lin et al. (2001), we get the following algorithm for computing a matrix factorization of
F ∈ S.

Algorithm 1: multivariate polynomial matrix factorization
Input : F ∈ S, d = z1 − f (z2) and a monomial order ≺z.
Output: a matrix factorization of F w.r.t. dr , where r is an integer with 1 ≤ r ≤ l.

1 begin
2 for i from 1 to l do
3 compute dl−i (F) and (l − i) × (l − i) reduced minors h(l−i),1, . . . , h(l−i),γ(l−i)

;

4 if d � dl−i (F) then
5 r := i ;
6 break;

7 if r = l then
8 extract d from each row of F, i.e., F = diag(d, . . . , d) · F1;
9 return diag(d, . . . , d) and F1.

10 compute a reduced Gröbner basis G of 〈d, h(l−r),1, . . . , h(l−r),γ(l−r)
〉 w.r.t. ≺z;

11 if G = {1} then
12 compute a ZLP matrix w ∈ k[z2]r×l such that wF( f , z2) = 0r×m ;

13 construct a unimodular matrix U ∈ k[z2]l×l such that w is its first r rows;
14 extract d from the first r rows of UF, i.e., UF = diag(d, . . . , d, 1, . . . , 1) · F1;
15 return U−1 · diag(d, . . . , d, 1, . . . , 1) and F1.

16 else
17 return unable to judge.

In Algorithm 1, we use Step 4 to verify F ∈ Sr . Step 7 shows that F ∈ Sl and we can
extract d directly from each row of F by Theorem 6. Then, it is easy to obtain a matrix
factorization of F w.r.t. dl . When 1 ≤ r < l, we use Theorems 4 and 7 to verify whether
there is a matrix factorization of F ∈ Sr w.r.t. dr . Step 16 tells us that G �= {1}. This implies
that Theorems 4 and 7 are invalid at this time. Thus, we return “unable to judge”. In the
following, we show how to compute Step 12 and Step 13 for the case of F ∈ S1.

Let F̂ = F( f , z2) and Syz1(F̂) be a module generated by all vectors in {p ∈ k[z2]1×l :
pF̂ = 01×m}. Since rank(F̂) = l − 1, we have rank(Syz1(F̂)) = 1. Then, we compute
a reduced Gröbner basis of Syz1(F̂) and select a nonzero vector from the Gröbner basis.
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Let w1 = [w11, . . . , w1l ] ∈ k[z2]1×l be the nonzero vector and w ∈ k[z2] be the GCD of
w11, . . . , w1l , then w = w1

w
.

According to Theorem 4, w is a ZLP vector. Then there exists a column vector q1 ∈
k[z2]l×1 such thatwq1 = 1. This calculation problem is equivalent to a lifting homomorphism
problem in Decker and Lossen (2006) (see Problem 4.1, page 129), and the command “lift”
of the computer algebra system Singular in Decker et al. (2016) can help us compute q1. Let
Syz2(w) be a module generated by all vectors in {q ∈ k[z2]l×1 | wq = 0}, then Syz2(w)

is a free module with rank(Syz2(w)) = l − 1 by Lemma 1. Let q2, . . . ,ql ∈ k[z2]l×1 be
a free basis of Syz2(w), then V = [q1,q2, . . . ,ql ] ∈ k[z2]l×l is a unimodular matrix and
U = V−1 is one that we want by Theorem 4.4 in Lu et al. (2017).

According to the above calculations, we obtainw and U in Step 12 and Step 13. Since the
calculation process of Step 12 and Step 13 for the case of F ∈ Sr with 1 < r < l is similar
to that of F ∈ S1, we refer to Lu et al. (2017) for more details.

Now, we use an example to illustrate the calculation process of Algorithm 1. We return to
Example 1.

Example 2 Let

F =
⎡
⎣

z1z2 − z1 − z22 − z2z3 z1z3 + z1 − z2z3 − z2 − z23 − z3 F[1, 3]
−z1z2 − z1z3 + z2 + z3 z2 + z3 z1z2 + z1z3

z1 −z1 + z2 + z3 −2z1 + z2 + z3 + 1

⎤
⎦

be a multivariate polynomial matrix in C[z1, z2, z3]3×3 and ≺z be the lexicographic order
with z1 > z2 > z3, where F[1, 3] = −z1z2 + z1z3 + 2z1 + z22 − z2 − z23 − 2z3 − 1 and C is
a complex field.

It is easy to compute that d3(F) = (z1− z2)(z2 + z3)2. Let d1 = z1− z2 and d2 = z2 + z3.
In the following, we first compute a matrix factorization of F w.r.t. d1 and obtain F = G1F1

with det(G1) = d1. Second, we compute a matrix factorization of F1 w.r.t. d22 . Finally, we
have a matrix factorization of F w.r.t. d3(F).

Now, the input of Algorithm 1 are F, d1 and ≺z.
As already noted in Example 1, F ∈ S1 and 〈d1, h1, . . . , h9〉 = C[z1, z2, z3], where

h1, . . . , h9 are all the 2 × 2 reduced minors of F. This implies that F admits a matrix
factorization w.r.t. d1.

Step 1: Let F̂ = F(z2, z2, z3). We compute a ZLP vector w ∈ k[z2, z3]1×3 such that
wF̂ = 01×3, where

F̂ =
⎡
⎣

−z2(z3 + 1) −z3(z3 + 1) −(z3 − z2 + 1)(z3 + 1)
(1 − z2)(z2 + z3) z2 + z3 z2(z2 + z3)

z2 z3 z3 − z2 + 1

⎤
⎦ .

Then, we use Singular command “syz” to compute a reduced Gröbner basis of Syz1(F̂) and
obtain w = [1, 0, z3 + 1].

Step 2: Construct a unimodular matrix U ∈ k[z2, z3]3×3 such that w is its first row.
According to the instruction of the construction for U below Algorithm 1, we divide it into
three small steps.

Step 2.1: Using Singular command “lift” to compute q1 ∈ k[z2, z3]3×1 such thatwq1 = 1,
we get q1 = [1, 0, 0]T.

Step 2.2: Using QuillenSuslin package to compute a free basis of Syz2(w), we have
q2 = [0, 1, 0]T and q3 = [−(z3 + 1), 0, 1]T.
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Step 2.3: Let V = [q1,q2,q3], then

U = V−1 =
⎡
⎣
1 0 z3 + 1
0 1 0
0 0 1

⎤
⎦ .

Step 3: Extracting d1 from the first row of UF, we get UF = DF1, where D =
diag(d1, 1, 1) and

F1 =
⎡
⎣

z2 + z3 0 −z2 − z3
−z1z2 − z1z3 + z2 + z3 z2 + z3 z1z2 + z1z3

z1 −z1 + z2 + z3 −2z1 + z2 + z3 + 1

⎤
⎦ .

Then, we obtain a matrix factorization of F w.r.t. d1:

F = G1F1 =
⎡
⎣
d1 0 −z3 − 1
0 1 0
0 0 1

⎤
⎦

⎡
⎣

z2 + z3 0 −z2 − z3
−z1z2 − z1z3 + z2 + z3 z2 + z3 z1z2 + z1z3

z1 −z1 + z2 + z3 −2z1 + z2 + z3 + 1

⎤
⎦ ,

where G1 = U−1D and det(G1) = d1.
At this point, the input of Algorithm 1 are F1, d2 and ≺z.
It is easy to compute that d3(F1) = (z2 + z3)2, d2(F1) = z2 + z3 and d1(F1) = 1. Since

d2 | d2(F1) and d2 � d1(F1), we have F1 ∈ S2. It follows from d1(F1) = 1 that the entries in
F1 are all the 1× 1 reduced minors of F1. Let h1,1, . . . , h1,9 be all the 1× 1 reduced minors
of F1, then a reduced Gröbner basis of 〈d2, h1,1, . . . , h1,9〉 w.r.t. ≺z is G = {1}. Thus, F1

admits a matrix factorization w.r.t. d22 .
Similarly, we obtain a matrix factorization of F1 w.r.t. d22 :

F1 = G2F2 =
⎡
⎣
d2 0 0
0 d2 0
0 0 1

⎤
⎦

⎡
⎣

1 0 −1
−z1 + 1 1 z1

z1 −z1 + z2 + z3 −2z1 + z2 + z3 + 1

⎤
⎦ ,

where det(G2) = d22 .
In summary, we have a matrix factorization of F w.r.t. d3(F):

F = GF2,

where G = G1G2 and det(G) = d3(F).

Remark 4 In Example 2, we can first inputs F, d2 and ≺z. Then we can verify that F ∈ S2
and F admits a matrix factorization w.r.t. d22 . Assume that F = G′

1F
′
1 with det(G′

1) = d22 .
Second, we inputs F′

1, d1 and ≺z. Then we can check that F′
1 ∈ S1 and F′

1 admits a matrix
factorization w.r.t. d1. Assume that F′

1 = G′
2F

′
2 with det(G′

2) = d1. Therefore, we obtain a
matrix factorization of F w.r.t. d3(F): F = G′F′

2, where G
′ = G′

1G
′
2 and det(G′) = d3(F).

The detailed calculation process is similar to that of Example 2, thus it is omitted here.

5 Conclusions

In this paper, it is shown that polynomial matrices in S can be factorized under satisfying
some new criteria. Based on the condition d � dl−1(F), we divide S into two parts: S1 and
S\S1.WhenF ∈ S1, we focus on the relationship among d and all the (l−1)×(l−1) reduced
minors of F, and get a new criterion to judge whether F admits a matrix factorization w.r.t.
d . Then, we successfully extend this result to the case of F ∈ S \ S1. Some generalizations
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about the type of polynomial matrices have been presented, and the implementation of our
algorithm has been illustrated by a non-trivial example.

The main contributions of this paper include: (1) three main theorems (Theorems 4, 6
and 7) propose some new criteria to factorize polynomial matrices in S, as a consequence, the
application range of the constructive algorithm in Lin et al. (2001) has been greatly extended;
(2) for the case of F ∈ S1, a nice property about reducing the amount of calculation has been
presented (Theorem 5).

If G �= {1} , then Algorithm 1 returns “unable to judge”. At this moment, how to establish
a necessary and sufficient condition for F ∈ Si (1 ≤ i < l) admitting a matrix factorization
w.r.t. di is the question that remain for further investigation.
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