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starting point of this GCRD algorithm is the free property of 
submodules over univariate polynomial rings. We convert the 
computation of GCRDs to that of free basis for modules and prove 
that a free basis of the submodule generated by row vectors of 
input matrices forms just a GCRD of these matrices. The GCRD 
algorithm is obtained by computing a minimal Gröbner basis for 
the corresponding submodule since a minimal Gröbner basis of 
submodules is a free basis for univariate cases. While the key idea 
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the unit vectors which can record the representation coefficients. 
This method based on modules can be naturally generalized to the 
parametric case because of the comprehensive Gröbner systems 
for modules. As a consequence, we obtain an extended GCRD 
algorithm for parametric univariate polynomial matrices. More 
importantly, we apply the proposed extended GCD algorithm for 
univariate polynomials (as a special case of matrices) to the 
computation of Smith normal form, and give the first algorithm 
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for reducing a univariate polynomial matrix with parameters to its 
Smith normal form.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

It is a basic problem in matrix theory to calculate common divisors or greatest common divisors 
(GCDs) of univariate polynomial matrices, which is widely used in linear system theory and dynamic 
system modeling (Beckermann and Labahn, 2000; Kailath, 1980; Rosenbrock, 1970). In contrast to 
common divisors of polynomials, multiplication of matrices is not commutative, so the left and right 
common divisors of a matrix are different. We focus on the greatest common right divisor (GCRD), 
and the results of the left common divisor (GCLD) can be obtained by similar generalization.

For non-parametric univariate matrices, the methods of solving matrix GCRDs are very mature 
(Hippe and Deutscher, 2009). The most common method is to merge matrices into a large matrix 
vertically, and then transform it into Hermite form or Popov form by row transformation. The top 
non-zero part of the matrix is one of GCRDs.

In addition, by Bezout identity for right coprime polynomial matrices (Kailath, 1980), GCRDs of 
matrices can be linearly represented by matrices with extend GCRDs. Wolovich (1974) based on the 
well-known extended Euclidean algorithm presented a method for solving the extended GCRD prob-
lem. Emre and Silverman (1976) gave some criteria for relatively prime polynomial matrices based on 
matrix fraction descriptions; Kung et al. (1976) proposed an efficient algorithm for calculating GCRDs 
by using the resultant matrix and Beckermann and Labahn (2000) used the interpolation algorithm to 
improve the calculation of extended GCRDs.

However, both the GCRD algorithm and the extended GCRD algorithm are only suitable for the 
case without parameters, and can not be simply extended to the case with parameters from non-
parameters.

In this paper, we start from the perspective of modules and present an algorithm for computing 
the extended GCRD of parametric univariate polynomial matrices. We begin to present our key idea 
from the non-parametric case, then extend the method for computing the extended GCRD of univari-
ate polynomial matrices to the parametric case. Unlike previous studies, we give a more strict defini-
tion of GCRD of matrices. We prove that the GCRD D of univariate polynomial matrices M1, . . . , Mp
can be obtained by computing the minimal Gröbner basis of the submodule generated by all row vec-
tors {m1, . . . , ms} of these matrices. To get the representation coefficients (or multipliers) U1, . . . , Up
for the GCRD expressed as a combination: D = U1M1 + · · · + UpMp , we construct a module generated 
by s row vectors (m1, e1), . . . , (ms, es), where {e1, . . . , es} is the standard basis for s-dimensional vec-
tor space, which can record the representation coefficient matrices. Under the special block order, one 
computes a minimal Gröbner basis of this module in which there exists some elements (g′, u′

1, . . . , u
′
s)

such that g′ is nonzero. The matrix consisting of g′ is exactly what we want. Most importantly, using 
comprehensive Gröbner systems for modules which presented by Nabeshima (2010) as the general-
ization of comprehensive Gröbner systems for polynomial rings studied by Weispfenning (1992), this 
method can be naturally extended to the parametric case. Meanwhile, we also get a free basis for the 
syzygy module of given polynomials M1, . . . , Mp as a by-product.

In addition, our algorithm can also be applied to the computation of polynomial greatest common 
divisor (GCD), which is one of the most primitive computations in computer algebra with a wide range 
of applications that include simplifying rational expressions, partial fraction expansions, canonical 
transformations, mechanical geometry theorem proving, hybrid rational function approximation, and 
decoder implementation for error-correction (Geddes et al., 1992; Brent and Kung, 1984; Chou, 1988; 
Kai and Noda, 2000; Zippel, 1993). As we all know, the GCD computation for polynomials has been 
extensively studied and many algorithms have been constructed (Brown, 1971; Zippel, 1979; Gianni 
and Trager, 1985; Moses and Yun, 1973; Sasaki and Suzuki, 1992). As for parametric GCDs, there 
are also many researchers focusing on it and they have achieved some good results (Abramov and 
249



D. Wang, H. Wang, J. Wei et al. Journal of Symbolic Computation 115 (2023) 248–265
Kvashenko, 1993; Ayad, 2010; Nagasaka, 2017; Kapur et al., 2018; Chen and Maza, 2012; Bächler et 
al., 2012). However, to our knowledge, there are two kinds of algorithms to compute the extended 
GCD for non-parametric univariate polynomials, but there is currently no algorithm for computing the 
extended parametric polynomial GCD.

In the rest of this paper, we will apply the proposed extended GCD algorithm (as a special case 
of matrices) to the computation of the Smith normal form together with transforming matrices. The 
reduction of univariate polynomial matrices to the Smith normal form is very useful in many areas 
of system theory (Rosenbrock, 1970; Brent and Kung, 1984; Barnett, 1971). A constructive proof of 
the uniqueness of the Smith form was given by Gantmacher (1959). This construction gives a basic 
algorithm for Smith form reduction and many other algorithms (Bradley, 1971; Pace and Barnett, 
1974) based on this have been proposed with the view to improving efficiency. Moreover, Insua (2005)
have presented a Gröbner basis based algorithm for the computation of Smith normal form of a matrix 
with entries in the univariate polynomial ring.

An essential step in the calculation of the Smith normal form is the calculation of the GCD and 
multipliers for each of its rows and columns. In order to get the GCD of each column (row), the 
algorithms in Bradley (1971); Pace and Barnett (1974) have to subtract multiples of the least degree 
polynomial in the corresponding column (row) of matrices, at any instant, from the others, until only 
one non-zero polynomial remains. The proposed extended GCD algorithm in this paper, however, can 
give the GCD and multipliers directly. What’s more, our algorithm can be extended to the parametric 
case naturally, which is, to our knowledge, the first algorithm for computing the Smith normal form of 
polynomial matrices with parameters. Also, it’s worth mentioning that Corless et al. (2017) presented 
an algorithm for computing the Jordan canonical form of a matrix in Frobenius (rational) canonical 
form where entries are polynomials with parameters.

This paper is an extension of Wang et al. (2020), and new contributions are as follows. 1) Unlike 
previous studies, we give a more strict definition of GCRD of matrices and convert the computation 
of GCRDs to that of free basis for modules. 2) Based on the construction of special modules related to 
matrices, we give a new method to compute the extended GCRD for univariate polynomial matrices. 
3) The algorithm for computing the extended GCRDs of parameter univariate matrices is presented 
for the first time. The computation of polynomial GCD can be regarded as a special case of that of 
matrix GCRD, so the results on polynomials in (Wang et al., 2020) are corollaries of this paper.

The rest of the paper is organized as follows. In Section 2, we introduce some notations and 
definitions. The main results are presented in Section 3 and Section 4. In Section 3 we focus on 
the non-parametric case, discuss and give the method for computing GCRDs and extended GCRDs of 
univariate polynomial matrices. In Section 4 we extend the non-parametric results to the parametric 
case. Consequently the extended GCRD algorithm for parametric univariate polynomial matrices is 
presented. In Section 5, we apply the proposed algorithm to the computation of Smith normal form. 
We end with some concluding remarks in Section 6.

2. Preliminaries

In this section we will introduce some notations and definitions to prepare for the discussion of 
this article.

Let k be a field, L be an algebraically closed field containing k, R = k[x] be the polynomial 
ring in the variable x (or R = k[U ][x] be the parametric polynomial ring with the parameters 
U = {u1, . . . , um} and variable x), Rl×r be the set of l × r matrices with entries in R . Generally, we use 
the letters f , g, h for single polynomials (or elements of the ring k[x]), boldface letters e, f, g, h for 
row vectors (that is, elements of the module k[x]s), capital letters F , G for sets, and boldface capital 
letters U, V for matrices. gT and UT indicate the transposition of g and U, respectively.

First, we introduce the concept of the greatest common right divisor (GCRD) for a matrix. We will 
discuss GCRDs from the case of two matrices, and the case of more than two matrices is just a simple 
extension of it.

Given two matrices 0 �= M1 ∈ Rs1×r and M2 ∈ Rs2×r with the same number of columns, and s =
s1 + s2.
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Definition 1. The matrix D ∈ Rt×r (t ≤ min{s, r}) is said to be a greatest common right divisor (GCRD) 
of M1 and M2 if the following conditions are satisfied.

1. D with full row rank is a common right divisor (CRD) of M1 and M2, i.e., there exist polynomial 
matrices M′

1, M′
2 such that

M1 = M′
1D, M2 = M′

2D.

2. For any common right divisor D′ of M1 and M2, there exists a polynomial matrix S such that

D = SD′.

Obviously, rank(D) ≤ rank(D′), so GCRD D has the minimal rank among CRDs. Further, the defini-
tion can be generalized to the case of more than two matrices.

Next, we review the concepts about modules. In practice, we frequently consider such a very 
important class of modules as follows.

Definition 2. Let (m1, . . . , ms) be an ordered s-tuple with mi ∈ Rr . The set of all (a1, . . . , as) ∈ Rs such 
that a1m1 + · · · + asms = 0 is an R-submodule of Rs , called the syzygy module of (m1, . . . , ms), and 
denoted by Syz(m1, . . . , ms).

Unlike vector spaces, modules need not have any generating set which is linearly independent. If 
a R-module have a module basis, that is, a generating set that is R-linearly independent, it is given a 
special name, free module.

For example, the R-module Rs is free. Let e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . ., es = (0, 0, . . . , 1), 
then {e1, . . . , es} is a free basis of Rs . Since R is a principal ideal domain (PID), then any submodule 
of Rs is a free module.

Now we introduce Gröbner bases and comprehensive Gröbner systems for modules.
Let � be a monomial order on k[x], and �s be a module order by extending � in a position 

over term (POT) fashion to k[x]s (that is, for α, β ∈ N , xαei �s xβe j if i > j, or i = j and xα � xβ ) 
or in a term over position (TOP) fashion to k[x]s (that is, for α, β ∈ N , xαei �s xβe j if xα � xβ or 
xα = xβ and i > j). For f ∈ k[x], g ∈ k[x]s , the leading term, leading coefficient, and leading monomial 
(a power product) of f and g with respect to � and �s respectively are conveniently denoted by 
LT( f ), LC( f ), LM( f ), LT(g), LC(g), and LM(g). We say f � g if LM( f ) � LM(g), or if LM( f ) = LM(g)

and ( f − LT( f )) � (g − LT(g)), and similar to define f � g.
The definition of Gröbner bases for submodules is as follows.

Definition 3. Let R = k[x] and M be a submodule of Rs , and let �s be a monomial order on k[x]s .

1. We will denote by 〈LT(M)〉 the monomial submodule generated by the leading terms of all g ∈ M
with respect to �s .

2. A finite collection G = {g1, . . . ,gt} ⊂ M is called a Gröbner basis for M if 〈LT(M)〉 = 〈LT(g1), . . . ,
LT(gt)〉.

The following are about the definitions of minimal and reduced Gröbner bases for modules.

Definition 4. Let G = {g1, . . . ,gt} be a Gröbner basis for M ⊂ k[x]s with respect to a monomial order 
�s .

1. G is said to be minimal, if LM(g) /∈ 〈LM(G\ {g})〉 for all g ∈ G .
2. G is said to be reduced, if LC(g) = 1 and no monomial of g lies in 〈LM(G\{g})〉.

Besides, we introduce some definitions for parametric univariate polynomials. For g ∈ k[U ][x]s , 
LCx(g) denotes the leading coefficient of g with respect to the variable x under the order �s .
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A specialization of k[U ] is a homomorphism σ : k[U ] → L. In this paper, we only consider the 
specializations induced by the elements in Lm . That is, for α = (α1, . . . , αm) ∈ Lm , the induced spe-
cialization σα is defined as

σα : f → f (α),

where f ∈ k[U ]. Every specialization σ : k[U ] → L extends canonically to a specialization σ : 
k[U ][x]s → L[x]s or k[U ][x]s×r → L[x]s×r by applying σ coefficient-wise.

For an ideal E ⊂ k[U ], the variety defined by E in Lm is denoted by V (E) = {α ∈ Lm | f (α) = 0 for 
all f ∈ E}. A =V (E) \V (N) is an algebraically constructible set, where E, N are ideals in k[U ].

For parametric systems, the definitions of comprehensive Gröbner systems and minimal compre-
hensive Gröbner systems for modules are given below.

Definition 5. Let F be a subset of k[U ][x]s , S be a subset of Lm , G1, . . . , Gl be subsets of k[U ][x]s , 
and A1, . . . , Al be algebraically constructible subsets of Lm such that S = ⋃l

i=1 Ai . A finite set G =
{(A1, G1), . . . , (Al, Gl)} is called a comprehensive Gröbner system (CGS) on S for F if σα(Gi) is a 
Gröbner basis of the submodule 〈σα(F )〉 ⊂ L[x]s with respect to �s for α ∈ Ai and i = 1, . . . , l. Each 
(Ai, Gi) is called a branch of G . In particular, if S = Lm , then G is called a comprehensive Gröbner 
system for F .

Definition 6. A comprehensive Gröbner system G = {(A1, G1), . . . , (Al, Gl)} on S for M ⊂ k[U ][x]s is 
said to be minimal (reduced) under some monomial order �s , if for each i = 1, . . . , l,

1. Ai �= ∅, and furthermore, for each i, j = 1, . . . , l, Ai ∩ A j = ∅ whenever i �= j, and
2. σα(Gi) is a minimal (reduced) Gröbner basis of 〈σα(F )〉 ⊂ L[x]m for α ∈ Ai , and
3. for each g ∈ Gi �= {0}, σα(LCx(g)) �= 0 for α ∈ Ai .

Remark 7. For the computation of CGSs for modules, there exists an algorithm given by Nabeshima 
(2010) which is based on the results proposed by Suzuki and Sato (2006). Moreover, there exist 
various algorithms to compute the minimal CGS for polynomial rings; see (Kalkbrener, 1997; Montes, 
2002; Suzuki and Sato, 2002, 2006; Nabeshima, 2007b,a) and so on. These algorithms can be extended 
to the case of modules. In this paper, we extend the KSW algorithm for computing CGSs over poly-
nomial rings presented by Kapur et al. (2010, 2013) to the case of modules and then compute CGSs 
for modules since the KSW algorithm generates fewer branches and is the most efficient algorithm so 
far.

Finally, we introduce the GCRD systems for parametric univariate polynomial matrices.

Definition 8. Let F = {M1, . . . , Mp} with Mi ∈ k[U ][x]si×r , S be a subset of Lm and D1, . . . , Dl be 
parametric univariate polynomial matrices (where Di ∈ k[U ][x]ti×r ), and A1, . . . , Al be algebraically 
constructible subsets of Lm such that S = ⋃l

i=1 Ai and Ai ∩ A j = ∅ for i �= j. A finite set D =
{(A1, D1), . . . , (Al, Dl)} is called a GCRD system on S for F if σα(Di) is a GCRD of σα(F ) for α ∈ Ai

and i = 1, . . . , l. Each (Ai, Di) is regarded as a branch of D. In particular, D is simply called a GCRD 
system for F if S = Lm .

3. GCRD and extended GCRD

In this section, we study GCRDs for matrices by means of the module.
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3.1. GCRD for univariate polynomial matrices

Set matrix M =
[

M1
M2

]
=

⎡
⎢⎣

m1
.
.
.

ms

⎤
⎥⎦, where M1 ∈ Rs1×r , M2 ∈ Rs2×r and s = s1 + s2. Then consider the 

submodule Me ⊂ Rr generated by matrix row vectors mi , i = 1, . . . , s. Obviously, Me is a free module 
which has a free basis.

Theorem 9. Let G = {g1, . . . , gt} be a free basis of Me. Then the matrix G =

⎡
⎢⎢⎢⎣

g1
g2
.
.
.

gt

⎤
⎥⎥⎥⎦ is a GCRD of M1 and M2 .

Proof. Since G = {g1, . . . , gt} is a free basis of Me , there exist vij ∈ R such that mi = ∑t
j=1 vijg j for 

i = 1, . . . , s. Then 
[

M1
M2

]
= VG =

[
V1
V2

]
G, where V = (vij)s×t , V1 ∈ Rs1×t , V2 ∈ Rs2×t . That is, M1 = V1G

and M2 = V2G, which means G is a CRD of M1 and M2.

For every common right divisor D′ , 
[

M1
M2

]
=

[
M′

1
M′

2

]
D′ . Since Me is generated by mi , there exist 

u ji ∈ R such that g j = ∑s
i=1 u jimi for j = 1, . . . , t . Then G = UM = U 

[
M1
M2

]
= U 

[
M′

1
M′

2

]
D′ , where U =

(u ji)t×s , so G is a GCRD of M1 and M2. �
Moreover, a minimal Gröbner basis under any module order is just a free basis for any submodule 

Me of Rr .

Theorem 10. Let R = k[x] be a univariate polynomial ring and Me be a submodule of Rr . If G = {g1, . . . , gt}
is a minimal Gröbner basis for Me under a module order �r , then G is a free basis of Me.

Proof. We need to prove that the G is linearly independent over R .
Suppose that there exist h1, . . . , ht ∈ R which are not all zero such that 

∑t
i=1 higi = 0. Let 

e1, e2, . . . , er be the standard basis of Rr . Since G is a minimal basis, LT(gi) for all i = 1, . . . , t contain 
different standard basis vectors. That is, assume LT(gi) = ci xαei and LT(g j) = c j xβe j , where ci, c j ∈ k, 
i �= j. Thus LT(

∑t
i=1 higi) = maxi{LT(higi)} = LT(h jg j) for some j satisfying h j �= 0, which contradicts 

that LT(
∑t

i=1 higi) = 0. �
According to Theorems 9 and 10, one can obtain a GCRD of two univariate polynomial matrices 

by computing a minimal Gröbner basis of module generated by their row vectors. Furthermore, this 
approach can be easily extended to the case of more than two univariate polynomial matrices.

3.2. Extended GCRD for univariate polynomial matrices

Let f1, . . . , f s ∈ R . Assume d = GCD( f1, . . . , f s), then there are a1, . . . , as ∈ R such that a1 f1 +· · ·+
as fs = d, and we call a1, . . . , as representation coefficients for the GCD d as a R-linear combination of 
f1, . . . , f s . In this paper we simply regard the GCD d together with the corresponding representation 
coefficients a1, . . . , as as the extended GCD of f1, . . . , f s . Similarly, we can extend this concept to the 
case of univariate polynomial matrices, i.e. extended GCRD. The idea is still stated from the case of 
two matrices to that of a finite number of matrices, then we have to solve the problem: how can we 
get U1, U2 and G simultaneously such that U1M1 + U2M2 = G? Next, we share our approach.

Here we construct a submodule M ′
e ⊂ Rr × Rs(or equivalently, Rr ⊕ Rs) generated by

m′
i = mi ⊕ ei = (mi,ei), i = 1, . . . , s,
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where the unit vector set {e1, . . . , es} is the standard basis of Rs . According to the construction, 
m′

1, . . . , m
′
s are linearly independent over R , which is a free basis of M ′

e . Thus, a minimal Gröbner 
basis G ′ of M ′

e has s elements by Theorem 10.
Let {ε1, ε2, . . . , εr} be the standard basis of Rr . Let ε′

i and e′
j be the extensions of εi and e j on 

Rr+s respectively, i.e., ε′
i = εi ⊕ 0s and e′

j = 0r ⊕ e j , then {ε′
1, . . . , ε

′
r, e′

1, . . . , e
′
s} is the standard basis of 

Rr+s . Fix any monomial order on Rr being �r and any monomial order on Rs being �s , then define 
a block order �′ on Rr+s with �r and �s satisfying:

(1) xαε′
i �′ xβe′

j for 1 ≤ i ≤ r and 1 ≤ j ≤ s. (i.e., ε′
i � e′

j)

(2) xαε′
i �′ xβε′

j , if xαεi �r xβε j .

(3) xαe′
i �′ xβe′

j , if xαei �s xβe j .

Now let’s take a look at some of the properties of this module.

Proposition 11. As above, given a block order �′ with �r and �s on Rr+s . Assume G ′ = {g′
1, . . . , g

′
s} is a 

minimal Gröbner basis for M ′
e under the block order �′ , and g′

i = (gi, ui1, . . . , uis) with 0 �= gi ∈ Rr for 1 ≤
i ≤ t, g′

j = (0r, u j1, . . . , u js) for t + 1 ≤ j ≤ s. Let ui = (ui1, . . . , uis) for 1 ≤ i ≤ s, then

1. If (g, u1, . . . , us) ∈ M ′
e , then g = u1m1 + · · · + usms (i.e., gi = [u1 · · · us]M).

2. M ′
e ∩ ({0r} × Rs) = 0r × Syz(m1, . . . , ms).

3. The set G = {g ∈ Rr | g �= 0 ∧∃ u1, . . . , us ∈ R suchthat (g, u1, . . . , us) ∈ G ′} = {g1, . . . , gt} is a minimal 
Gröbner basis for Me = 〈m1, . . . , ms〉 with respect to �r .

4. The set G0 = {ut+1, . . . , us} defined by {0r} × G0 = G ′ ∩ ({0r} × Rs) is a minimal Gröbner basis for 
Syz(m1, . . . , ms) with respect to �s .

Proof. By the construction of M ′
e , 1 and 2 are obvious. For 3, it follows from Theorem 10 that G ′

is a free basis of M ′
e . Based on the block order �′ , (gi, ui) �′ (0, u j) and LT((gi, ui)) = LT((gi) ⊕ 0s

for 0 �= gi ∈ Me, ui, u j ∈ Rs , then LT(G) × {0s} ⊂ LT(G ′) and 〈LT(G)〉 = 〈LT(Me)〉, which means G is 
a Gröbner basis for Me . According to the definition of the block order: xαε′

i �′ xβε′
j if and only if 

xαεi �r xβε j , LT(G) is a minimal Gröbner basis for Me under �r since G ′ is a minimal Gröbner basis 
for M ′

e under �′ . As for 4, it’s similar to 3. (0, ui) �′ (0, u j) if and only if ui �s u j , so {ut+1, . . . , us} is 
a minimal Gröbner basis for Syz(m1, . . . , ms) with respect to the order �s . �

Based on the above properties, we get the following results.

Theorem 12. Assume G ′ = {g′
1, . . . , g

′
s} is a minimal Gröbner basis for M ′

e under the block order �′ , and 
g′

i = (gi, ui1, . . . , uis) with 0 �= gi ∈ Rr for 1 ≤ i ≤ t, g′
j = (0r, u j1, . . . , u js) for t + 1 ≤ j ≤ s. Let ui =

(ui1, . . . , uis) for 1 ≤ i ≤ s, then

1. G = [
gT

1 · · · gT
t

]T
is a GCRD of M1 and M2 .

2. U1 and U2 are the corresponding representation coefficient matrices for G as a combination of M1 and M2

(i.e., U1M1 + U2M2 = G), where

U1 =
⎡
⎢⎣

u11 · · · u1s1
...

. . .
...

ut1 · · · uts1

⎤
⎥⎦

t×s1

, U2 =
⎡
⎢⎣

u1(s1+1) · · · u1s
...

. . .
...

ut(s1+1) · · · uts

⎤
⎥⎦

t×s2

3. U = (uij)s×s is unimodular, that is, det(U) ∈ k \ {0}. Besides, let Ĝ = [
gT

1 · · · gT
s

]T
, where g j = 0r for 

t + 1 ≤ j ≤ s, then UM = Ĝ.

Proof. (1) According to Proposition 11, G = {g1, . . . , gt} is a minimal Gröbner basis for Me , then it is 
also a free basis, which implies that G = [

gT
1 · · · gT

t

]T
is a GCRD of M1 and M2.
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(2) Let Ĝ = [
gT

1 · · · gT
s

]T
, where g j = 0r for t + 1 ≤ j ≤ s, then

⎡
⎢⎢⎢⎣

g′
1

g′
2
...

g′
s

⎤
⎥⎥⎥⎦ = [

Ĝ U
] = U

[
M Es

]
,

where Es is the s × s identity matrix. So

Ĝ =
[

G
0

]
= UM =

[
U1 U2
U3 U4

][
M1
M2

]
.

Then

G = U1M1 + U2M2,

where U1 ∈ Rt×s1 , U2 ∈ Rt×s2 .
(3) It’s obvious that UM = Ĝ. Since G ′ = {g′

1, . . . , g
′
s} is the minimal Gröbner basis for M ′

e , hence 
these generators m′

1, . . . , m
′
s of M ′

e can be represented by g′
1, . . . , g

′
s . In other words, there exists 

matrix V ∈ k[x]s×s such that

[
M Es

] = V

⎡
⎢⎣

g′
1
...

g′
s

⎤
⎥⎦ = V

⎡
⎢⎣

g1 u1
...

...

gs us

⎤
⎥⎦ = V

[
Ĝ U

]
.

So VU = Es . Thus V and U are unimodular. �
Based on the results of Theorem 12, we can design an algorithm to compute the GCRD of M1 and 

M2, and unimodular matrix U, where the first t row submatrices U1 ∈ Rt×s1 , U2 ∈ Rt×s2 of U are the 
representation coefficient matrices. That is, we only need to construct the module M ′

e by inputting 
polynomial matrices M1, M2 and then compute a minimal Gröbner basis for M ′

e with respect to �′ . 
Moreover, the computation of the extended GCRD for a finite number of matrices follows by it.

4. Extended GCRD systems for parametric univariate polynomial matrices

As stated in the introduction, there is currently no algorithm for computing extended GCRD of 
parametric univariate polynomial matrices. In this section, we are devoted to giving an extended 
GCRD algorithm for parametric univariate polynomial matrices.

Now we are ready to generalize the above method to the parametric case by means of the CGS for 
modules.

Given M1, . . . , Mp with Mi ∈ k[U ][x]si×r and s1 +· · ·+ sp = s for 1 ≤ i ≤ p. Let R = k[U ][x], Me ⊂ Rr

be the submodule generated by all row vectors m j of Mi for all i = 1, . . . , p, M ′
e ⊂ Rr × Rs be the 

submodule generated by m′
j = m j ⊕ e j for j = 1, . . . , s. We get the following result.

Theorem 13. Given a subset S ⊂ Lm. Let G = {
(Ai, G ′

i)
}l

i=1 be a minimal comprehensive Gröbner system of 
the module M ′

e ⊂ Rr × Rs on S with respect to the block order �′. For each branch (Ai, G ′
i), |G ′

i | = s, where 
“| · |” represents the number of elements in the set. And we have the following results.

1. Let Gi = {g ∈ Rr | g �= 0 ∧∃ u1, . . . , us ∈ R suchthat (g, u1, . . . , us) ∈ G ′
i}, then σα(Gi) �= ∅ is a minimal 

Gröbner basis of σα(Me) = 〈σα(m1), . . . , σα(ms)〉 with respect to �r for any α ∈ Ai .
2. Let G0i be a set defined by {0r} × G0i = G ′

i ∩ ({0r} × Rs), then σα(G0i) is a minimal Gröbner basis of 
Syz(σα(m1), . . . , σα(ms)) with respect to �s for any α ∈ Ai .
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Algorithm 1: Parametric extended GCRD algorithm.
Input : M1, . . . , Mp with Mi ∈ k[U ][x]si ×r and s1 + · · · + sp = s for 1 ≤ i ≤ p, a constructible set S ⊂ Lm , and a block 

order �′ .
Output: an extended GCRD system {(Ai, Ui , Gi)

l
i=1}, where σα(Ui) is unimodular and 

GCRD(σα(M1), . . . , σα(Mp)) = σα(Gi) for any α ∈ Ai .
1 begin
2 compute a minimal CGS {(Ai, G ′

i)
l
i=1} for the module M ′

e = 〈m′
1, . . . , m′

s〉 w.r.t. �′;
3 for i from 1 to l do
4 G ′

i = {(g1, u1), . . . , (gti , uti ), (0, uti+1), . . . , (0, us)};
5 Ui := (

u� j
)

s×s , where u� = (u�1, u�2, . . . , u�s) for 1 ≤ �, j ≤ s;

6 Gi := [
gT

1 · · · gT
ti

]T
;

7 return {(Ai , Ui , Gi)}l
i=1;

3. Assume G ′
i = {g′

1, . . . , g
′
s} and g′

� = (g�, u�1, . . . , u�s) with 0 �= g� ∈ Rr for 1 ≤ � ≤ ti , g′
j = (0r, u j1, . . . ,

u js) for ti + 1 ≤ j ≤ s. Then σα(Gi) is a GCRD of σα(M1), . . . , σα(Mp) and σα(Ui1), . . . , σα(Uip) are 
the representation coefficient matrices for σα(Gi) as a combination of σα(M1), . . . , σα(Mp). Moreover, 
assume Ui = (

u� j
)

s×s , then σα(Ui)σα(M) = σα(Ĝi) and σα(Ui) is unimodular for any α ∈ Ai , where 
Uiν ∈ Rti×sν for ν = 1, . . . , p,

Gi =
⎡
⎢⎣

g1
...

gti

⎤
⎥⎦ , Ĝi =

[
Gi
0

]
s×r

, Ui =
⎡
⎢⎣

u11 · · · u1s
... · · · ...

us1 · · · uss

⎤
⎥⎦ =

[
Ui1 · · · Uip
U′

i1 · · · U′
ip

]
, M =

⎡
⎢⎣

M1
...

Mp

⎤
⎥⎦ .

Particularly, for the branch (Ai, G ′
i) with Gi = ∅, σα(Gi) = 0 and σα(Ui) = Es for α ∈ Ai . In this case, the 

corresponding syzygy module Syz(σα(m1), . . . , σα(ms)) is k[x]s .

Proof. Since G is a minimal comprehensive Gröbner system, in each branch (Ai , G ′
i), σα(G ′

i) is a 
minimal Gröbner basis of σα(M ′

e) for any α ∈ Ai . Besides, there is no element in G ′
i specializing to 

0 because the leading coefficients of all elements in G ′
i are non-zero under specialization. Thus, it is 

easy to derive the results from Theorem 10, Proposition 11 and Theorem 12. �
4.1. Algorithm

Based on Theorem 13, we are ready to give an algorithm to compute the extended GCRD system 
for parametric univariate polynomial matrices.

Theorem 14. Algorithm 1 works correctly and terminates.

Proof. The correctness of Algorithm 1 directly follows from Theorem 13, and the termination of Al-
gorithm 1 fully depends on that of the algorithm for computing CGSs of the module M ′

e which is 
obviously derived from the termination of the KSW algorithm as mentioned in Remark 7. �
Remark 15. For each (Ai, Ui, Gi), the first ti row submatrices Ui1 ∈ Rti×s1 , Ui2 ∈ Rti×s2 , . . . , Uip ∈ Rti×sp

in Ui are the representation coefficient matrices of Gi under the specialization.

Here a simple example is presented to illustrate the steps in Algorithm 1.

Example 16. Let M1, M2 ∈C[U ][x]2×2 be as follows:

M1 =
[
(x − a) 0

0 x(x − b)

]
=

[
m1
m2

]
, M2 =

[
x(x − b) 0

0 (x − a)2

]
=

[
m3
m4

]

where U = {a, b} and � is a lexicographic order with respect to x � a � b.
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Table 1
A minimal CGS G for the module M ′

e .

No. Ai G ′
i

1 C2\V (a(a − b)) G ′
1

2 V (a)\V (b) G ′
2

3 V (a − b)\V (ab) G ′
3

4 V (a,b) G ′
4

Table 2
The extended GCRD system of {M1, M2}.

No. Ai [Ui1,Ui2] Di

1 C2\V (a(a − b)) [U11,U12] D1

2 V (a)\V (b) [U21,U22] D2

3 V (a − b)\V (ab) [U31,U32] D3

4 V (a,b) [U41,U42] D4

Step 1: we compute a minimal CGS G for the module M ′
e = 〈m1 ⊕e1, m2 ⊕e2, m3 ⊕e3, m4 ⊕e4〉 ⊂

C[a, b][x]6 with a block order �′ with �2 and �4 where �2 is POT extension of � on C[a, b][x]2

with standard basis ε1 �2 ε2 and �4 is POT extension of � on C[a, b][x]4 with e1 �4 e2 �4 e3 �4 e4
(Table 1).

G ′
1 ={(a2 − ab)ε′

1 + (−x − a + b)e′
1 + e′

3,

(a4 − 2a3b + a2b2)ε′
2 + (3a2 − 2ab − 2ax + xb)e′

2 + (a2 − 2ab + 2ax + b2 − bx)e′
4,

(−bx + x2)e′
1 + (a − x)e′

3, (a2 − 2ax + x2)e′
2 + (bx − x2)e′

4};
G ′

2 ={xε′
1 + e′

1, xbε′
2 − e′

2 + e′
4, (x − b)e′

1 − e′
3, xe′

2 + (b − x)e′
4};

G ′
3 ={(x − b)ε′

1 + e′
1, (−b2 + bx)ε′

2 + e′
2 − e′

4, xe′
1 − e′

3, (x − b)e′
2 − xe′

4};
G ′

4 ={xε′
1 + e′

1, x2ε′
2 + e′

4,e′
1 − e′

3,e′
2 − e′

4}.
Step 2: according to G ′

i in the minimal CGS for module M ′
e , we obtain the following extended 

GCRD system of {M1, M2}. Where Ui1M1 + Ui2M2 = Gi = Di for i = 1, 2, 3, 4 (Table 2),

U11 =
[ −a + b − x 0

0 u114

]
, U12 =

[
1 0
0 u124

]
, D1 =

[
a2 − ab 0

0 a4 − 2a3b + a2b2

]
,

U21 =
[

1 0
0 −1

]
, U22 =

[
0 0
0 1

]
, D2 =

[
x 0
0 xb

]
,

U31 =
[

1 0
0 1

]
, U32 =

[
0 0
0 −1

]
, D3 =

[
x − b 0

0 −b2 + bx

]
,

U41 =
[

1 0
0 0

]
, U42 =

[
0 0
0 1

]
, D4 =

[
x 0
0 x2

]
,

u114 = 3a2 − 2ab − 2ax + bx,

u124 = a2 − 2ab + 2ax + b2 − bx.

In summary, parametric GCRDs are expressed as the combinations of M1, M2 as follows.
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if a �= b and b �= 0, U11M1 + U12M2 = D1;
if a = 0 and b �= 0, U21M1 + U22M2 = D2;
if a = b and ab �= 0, U31M1 + U32M2 = D3;
if a = 0 and b = 0, U41M1 + U42M2 = D4.
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4.2. Extended GCD system for parametric univariate polynomials

Similar to GCRD systems for parametric univariate polynomial matrices, the definition of GCD sys-
tems for parametric univariate polynomials is as follows.

Definition 17. Let F = { f1, . . . , f s} be a subset of k[U ][x], S be a subset of Lm and d1, . . . , dl be para-
metric univariate polynomials in k[U ][x], and A1, . . . , Al be algebraically constructible subsets of Lm

such that S = ⋃l
i=1 Ai and Ai ∩ A j = ∅ for i �= j. A finite set D = {(A1, d1), . . . , (Al, dl)} is called a

GCD system on S for F if σα(di) is a GCD of σα(F ) ⊂ L[x] for α ∈ Ai and i = 1, . . . , l. Moreover, for 
each di �= 0, σα(LCx(di)) �= 0 for α ∈ Ai . Each (Ai, di) is regarded as a branch of D. In particular, D is 
simply called a GCD system for F if S = Lm .

Actually, GCDs (GCD systems) for non-parametric (parametric) univariate polynomials is a special 
case of GCRDs (GCRD systems) for non-parametric (parametric) univariate polynomial matrices, i.e., 
r = si = t j = 1 for 1 ≤ i ≤ p, 1 ≤ j ≤ l in Definition 8. So the computing idea of (extended) GCRDs and 
GCRD systems by means of the module, as well as Gröbner basis and CGS for modules, is suitable for 
the polynomial case (1-dimensional case for modules).

Given f1, . . . , f s ∈ k[x], then M ′
e = 〈( f1, e1), . . . , ( f s, es)〉. The block order �′ can be adapted to 

�s+1 which is a POT order on k[x]s+1 by regarding f i in the 0-th component with e′
0 � e′

i for 1 ≤ i ≤ s, 
where unit vector set {e′

0, e
′
1, . . . , e

′
s} is the standard basis of k[x]s+1.

Consequently, we have the following corollaries (of Theorem 12 and Theorem 13).

Corollary 18. Assume G ′ = {g′
1, . . . , g

′
s} is a minimal Gröbner basis for M ′

e ⊂ k[x]s+1 under the order �s+1

with e′
0 � e′

i for 1 ≤ i ≤ s, and g′
1 = (d, u11, . . . , u1s), g′

j = (0, u j1, . . . , u js), 2 ≤ j ≤ s. Then d is a GCD of 
f1, . . . , f s and u11, . . . , u1s are the corresponding representation coefficients for d as a k[x]-linear combination 
of f1, . . . , f s . Further, the matrix U = (

u� j
)

s×s ∈ k[x]s×s is unimodular, that is, det(U) ∈ k \ {0}, and UF = D, 
where

U =

⎡
⎢⎢⎢⎣

u11 · · · u1s

u21 · · · u2s
... · · · ...

us1 · · · uss

⎤
⎥⎥⎥⎦ , F =

⎡
⎢⎢⎢⎣

f1
f2
...

f s

⎤
⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎣

d
0
...

0

⎤
⎥⎥⎥⎦ .

Naturally, we obtain an algorithm to compute the GCD of f1, . . . , f s and unimodular matrix U by 
computing a minimal Gröbner basis for M ′

e with respect to �s+1, where the first row u11, . . . , u1s of 
U are the representation coefficients.

Corollary 19. Given f1, . . . , f s ∈ k[U ][x] and a subset S ⊂ Lm. Let G = {
(Ai, G ′

i)
}l

i=1 be a minimal compre-

hensive Gröbner system of the module M ′
e = 〈 f1e′

0 + e′
1, . . . , f se′

0 + e′
s〉 ⊂ k[U ][x]s+1 on S with respect to an 

order �s+1 with e′
0 � e′

i for 1 ≤ i ≤ s. For each branch (A′
i, G

′
i), |G ′

i | = s, and we have the following results.

1. Let Gi = {g ∈ k[U ][x]| g �= 0 ∧ ∃ h1, . . . , hs ∈ k[U ][x] suchthat (g, h1, . . . , hs) ∈ G ′
i}, then σα(Gi) is a 

minimal Gröbner basis of the ideal 〈σα( f1), . . . , σα( f s)〉 with respect to � on k[x] for any α ∈ Ai , and 
|Gi | = 1.

2. Let G0i be a set defined by {0} × G0i = G ′
i ∩ ({0} × k[U ][x]s), then σα(G0i) is a minimal Gröbner basis of 

the syzygy module Syz(σα(f1), . . ., σα(fs)) with respect to �s for any α ∈ Ai , and |G0i | = s − 1.
3. Assume G ′

i = {g′
1, . . . , g

′
s} and g′

1 = (di, u11, . . . , u1s), g′
j = (0, u j1, . . . , u js) for 2 ≤ j ≤ s. Then σα(di)

is a GCD of σα( f1), . . . , σα( f s) and σα(u11), . . . , σα(u1s) are the representation coefficients for σα(di)

as a k[x]-linear combination of σα( f1), . . . , σα( f s). Moreover, assume the matrix Ui = (
u� j

)
s×s , then 

σα(Ui)σα(F) = σα(Di) and σα(Ui) is unimodular for any α ∈ Ai , where
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U =

⎡
⎢⎢⎢⎣

u11 · · · u1s

u21 · · · u2s
... · · · ...

us1 · · · uss

⎤
⎥⎥⎥⎦ , F =

⎡
⎢⎢⎢⎣

f1
f2
...

f s

⎤
⎥⎥⎥⎦ , Di =

⎡
⎢⎢⎢⎣

di
0
...

0

⎤
⎥⎥⎥⎦ .

Particularly, for the branch (Ai, G ′
i) with Gi = ∅, σα(di) = 0 and σα(Ui) = Es for α ∈ Ai . In this case, the 

corresponding syzygy module Syz(σα(f1), . . ., σα(fs)) is k[x]s .

Remark 20. For polynomial cases, since k[x] is a principal ideal domain (PID), a minimal Gröbner basis 
of any ideal on k[x] has only one element. As a result, |Gi | = s − 1, |G0i | = s − 1.

Similarly, Algorithm 1 is also suitable for computing an extended GCD system of parametric 
univariate polynomials. One inputs f1, . . . , f s ∈ k[U ][x], a constructible set S ⊂ Lm , and a POT or-
der �s+1 with e′

0 � e′
i, 1 ≤ i ≤ s, then an extended GCD system {(Ai, Ui, di)

l
i=1} is output, where 

GCD(σα( f1), . . . , σα( f s)) = σα(di), σα(Ui) is unimodular and the components of the first row vector 
in σα(Ui) are the representation coefficients of σα(di) for any α ∈ Ai .

5. Application to Smith normal form

5.1. Notations and definitions

In this subsection, we give some definitions and notations related to the Smith normal form. A 
matrix is called non-parametric (parametric) univariate polynomial matrix if its entries belong to k[x]
(k[U ][x]).

Definition 21. Let D be an s × t matrix over k[x] such that

1. all (i, j)-entries in D are zero for i �= j, that is, D is a diagonal matrix;
2. each (i, i)-entry di in D is either monic or zero;
3. di | di+1 for 1 ≤ i < min{s, t}.

Then D is said to be in Smith normal form.

In addition, we give the following theorem appearing in Norman (2012) which shows that any 
univariate polynomial matrix B can be reduced to its Smith normal form S(B).

Theorem 22. Let B be an s × t matrix over k[x], then there is a sequence of elementary operations over k[x]
which changes B into S(B) that is in Smith normal form, i.e., the Smith normal form of B.

That is, there exist unimodular matrices U ∈ k[x]s×s , V ∈ k[x]t×t such that UBV = S(B).

5.2. The Smith normal form of parametric univariate polynomial matrix

For the non-parametric case, as stated in Theorem 22 any univariate polynomial matrix can be 
reduced to its Smith normal form under the elementary operations. As for the parametric case, 
corresponding to each algebraically constructible subset Ai ⊂ Lm , the parametric univariate polyno-
mials matrix under the specialization σα can be reduced to its Smith normal form by elementary 
operations, i.e., there exist parametric unimodular matrices U ∈ k[U ][x]s×s , V ∈ k[U ][x]t×t such that 
σα(U)σα(B)σα(V) = S(σα(B)) for α ∈ Ai . Now we discuss how to reduce a univariate polynomials 
matrix to its Smith normal form.

In the above section, we have proposed an extended GCD algorithm which not only can output 
the GCD, but also gives a unimodular matrix U. In particular, U[ f1, f2, . . . , f s]T = [d, 0, . . . , 0]T , where 
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f1, . . . , f s are given polynomials and d is the GCD of these polynomials. Then, we can apply the 
extended GCD algorithm to the calculation of the Smith normal form, and the actual practice is as 
follows.

Given B ∈ k[x]s×t (without loss of generality, assume s ≤ t), we first call the extended GCD algo-
rithm on the first column of B and obtain the unimodular matrix U ∈ k[x]s×s . Then U acts on B, and 
the first column of UB are zeros except for the first element. Next, do the same operation for the 
first row of the UB, we still get a unimodular matrix V ∈ k[x]t×t such that the first row in UBV are 
zeros except for the first element, but note that the first column of UBV are not necessarily zeros. 
So we repeatedly perform the above operation in order to get a matrix in which the first column 
and row are zeros except for the (1,1)-component. This is the first step. If all other elements in the 
new obtained matrix can be divisible by the (1,1)-element, then we only need to conduct the same 
step as the first step on the lower right submatrix of this matrix. Otherwise, we need an extra step 
to ensure the divisibility relation between (1,1)-element and other elements. Finally we will get the 
Smith normal form of B. Most importantly, these can be naturally extended to the parametric case.

Here we will give the algorithm for the parametric case. Before discussing the algorithm, we would 
like to introduce some useful propositions which are related to the termination of the algorithm.

As known to all, currently the algorithms are all computing the minimal CGS. Here we show that 
the minimal CGS for modules over parametric univariate polynomial rings can always be reduced to 
the reduced CGS.

Proposition 23. A minimal CGS G = {(A1, G1), . . . , (Al, Gl)} for module M ⊂ k[U ][x]s with respect to the 
POT order �s can be reduced to a reduced CGS.

Proof. By Definition 6, we only need to prove that for each branch (Av , G v) of G where v = 1, . . . , l, 
the parametric minimal Gröbner basis G v for M can be reduced to the parametric reduced Gröb-
ner basis on Av . For any gi, gj ∈ G v , suppose that LM(gi) = g1ei and LM(gj) = ge j . Without loss of 
generality, one can assume ei � e j and the j-th component of gi is f , then the i-th component of 
gj must be zero. If f is reduced with respect to g (i.e., no monomial of f is divisible by LM(g)), 
there is nothing to do. Otherwise do pseudo division to f by g , then one get hf = qg + r where h
is the power of the leading coefficient of g with respect to the main variable x and σα(h) �= 0 for 
any α ∈ Av . Thus, hgi − qgj = ḡi where ḡi is reduced with respect to gj . We replace gi with ḡi and 
repeat the above process. Moreover, according to the definition of minimal CGS, σα(LCx(g)) �= 0 for 
any g ∈ G v and α ∈ Av , then we can divide the coefficient such that σα(LCx(g)) = 1. Thus, σα(G v ) is 
reduced. This proves the proposition. �

By the above proposition, we can get a new version of Algorithm 1 by computing a reduced CGS 
instead of a minimal CGS for M , denoted by Algorithm 1∗ .

Proposition 24. Given f1, . . . , f s ∈ k[U ][x], a constructible set S ⊂ Lm and a POT order �s+1 with e′
0 �

e′
s � · · · � e′

1 . By Algorithm 1∗ we will get a reduced CGS {(Ai, G ′
i)}l

i=1 and an extended GCD system 
{(Ai, Ui, di)}l

i=1 , where G ′
i = {g′

1, . . . , g
′
s}, g′

1 = (di, u11, . . . , u1s), g′
j = (0, u j1, . . . , u js) for 2 ≤ j ≤ s. 

Then for any α ∈ Ai , under the specialization σα , ui = (u11, . . . , u1s) is the minimal element in Mi =
{(h1, . . . , hs)|h1 f1 + · · · + hs fs = di} with respect to �s being the restriction of �s+1 on k[x]s .

Proof. Assume that under σα , ui is not minimal, then there exists u′
i ∈ Mi and σα(ui) �s σα(u′

i). By 
the definition of Mi , we have σα(ui − u′

i) ∈ Syz(σα( f1), . . . , σα( f s)). Thus LM(σα(ui)) = LM(σα(ui −
u′

i)) ∈ LM(Syz(σα( f1), . . . , σα( f s))). By Corollary 19, it implies that some term of σα(g′
1) is divisible 

by one of LM(σα(g′
2)), . . . , LM(σα(g′

s)), which contradicts that σα(G ′
i) is reduced. �

Now we give the algorithm for computing the Smith normal form of univariate polynomial matri-
ces with parameters, and prove the termination of the algorithm.

In Algorithm 2, Reduce2Zero(A0, S0) stands for repeatedly calling Algorithm 1∗ on the first column 
and row of the matrix (matrices) for each algebraically constructible subset and the details is as 
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Algorithm 2: Parametric Smith normal form algorithm.
Input : B ∈ k[U ][x]s×t , a constructible set A ⊂ Lm , and a POT order �s+1 with e′

0 � e′
s � · · · � e′

1.
Output: {[Ai , Bi , Ui , Vi ]}l

i=1, where σα(Ui)σα(B)σα(Vi) = σα(Bi) and σα(Bi) is in Smith normal form for any α ∈ Ai .
1 begin
2 G := {}; G1 := {[A, B, Es, Et , B]}; d := 0;
3 while G1 is not empty do
4 [A0, B0, U0, V0, S0]:=G1[1]; G1 := G1 \ {G1[1]};
5 H1 := Reduce2Zero(A0, S0);
6 for [Ai , Bi , Ui , Vi ] in H1 do
7 H2 := Divisible(Ai , Bi);
8 for [A j , B j, U j , V j ] in H2 do
9 U1 := diag(Ed, U j Ui);

10 V1 := diag(Ed, Vi V j);
11 B1 := U1B0V1; U := U1U0; V := V0V1;
12 if d = s − 1 then
13 G := G ∪ {[A j , B1, U, V]};
14 else
15 d := d + 1;
16 G1 := G1 ∪ {[A j , B1, U, V, SubMatrix(B1, d)]};

17 return G;

Algorithm 3: Reduce2Zero.
Input : B ∈ k[U ][x]s×t , a constructible set A ⊂ Lm , and a POT order �s+1 with e′

0 � e′
s � · · · � e′

1.
Output: {[Ai , Bi , Ui , Vi ]}l

i=1, where σα(Ui)σα(B)σα(Vi) = σα(Bi) for any α ∈ Ai and the first column and row of Bi are 
zeros except for the (1,1)- element on Ai .

1 begin
2 G := {}; G1 := {[A, B, Es, Et ]};
3 while G1 is not empty do
4 [A0, B0, U0, V0] := G1[1]; G1 := G1 \ {G1[1]};
5 H1 := CEGCD(A0, B0);
6 for [Ai , Ui , di ] in H1 do
7 Bi := Ui B0; Ui := Ui U0;
8 H2 := REGCD(Ai , Bi);
9 for [Ai j , Vi j , di j ] in H2 do

10 Bi j := Bi VT
i j

; Vi j := V0VT
i j

;

11 if IsZero(Ai j , Bi j ) then
12 G := G ∪ {[Ai j , Bi j , Ui , Vi j ]};

13 else
14 G1 := G1 ∪ {[Ai j , Bi j , Ui , Vi j ]};

15 return G;

follows. Divisible(Ai, Bi) is used to check whether all other elements in Bi can be divisible by (1,1)-
element on Ai , if not, we need the extra step: adding the corresponding column in which the element 
which isn’t divisible by (1,1)-element of Bi is to the first column of Bi and getting B′

i , then performing 
Reduce2Zero(Ai, B′

i). SubMatrix(B1, d) denotes the lower right submatrix of B1 which consists of the 
last s − d rows and t − d columns.

In Algorithm 3, CEGCD(A, B) and REGCD(A, B) stand for calling Algorithm 1∗ on the first column 
and row of matrix B on the constructible set A, respectively. IsZero(Ai j , Bi j ) is a subroutine to de-
termine if the first column and row of Bi j are zeros except for the (1,1)-element on algebraically 
constructible subset Ai j .

Proposition 25. Algorithm 2 terminates in finitely many steps.
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Table 3
Output of Reduce2Zero(A, B).

No. Ai Bi Ui Vi

1 C\V (a) B1 U1 V1

2 V (a)\V (b) B2 U2 V2

3 V (a,b) B3 U3 V3

Proof. According to the design of the algorithm and above explain, we only need to prove that 
Algorithm 3 (Reduce2Zero(A, B)) terminates within finite steps. Since the original (1,1)-element of 
univariate polynomial matrix B has a definite degree and since the process of reducing the degree 
for the (1,1)-element cannot be continued indefinitely, after a finite number of loops the degree of 
(1,1)-element with respect to main variable x is stable and assume at the moment we get Bi of which 
the first column are zeros except for the (1,1)-element on Ai . Then H2 := REGCD(Ai, Bi), and we get 
a unimodular matrix VT

i j
which can reduce the first row of Bi to be zeros on new algebraically con-

structible subset Ai j . Since under the specialization, the degree of b11 (i.e., (1,1)-element of Bi ) is 
stable, b11 is the GCD of the first row elements of Bi . We claim that VT

i j
has the following form:

VT
i j

=

⎡
⎢⎢⎢⎣

v11 v12 . . . v1t

0 v11 . . . v2t
...

...
...

...

0 vt2 . . . vtt

⎤
⎥⎥⎥⎦ .

Otherwise, assume that for some α ∈ Ai j , there exists at least one σα(vl1) �= 0, 2 ≤ l ≤ t . Obviously, 
σα(v1) = (σα(v11), . . . , σα(vt1))

T �t (σα(v11), 0, . . . , 0) under the POT order �t being the restriction 
of �t+1 with e′

0 � e′
t � · · · � e′

1 on k[x]t , which contradicts that σα(v1) should be minimal by Propo-
sition 24.

Thus, Bi j = BiVT
i j

satisfies that the first column and row are zeros except for the (1,1)-element on 
Ai j . Consequently, Algorithm 3 terminates. �

We use a simple example to illustrate Algorithm 2.

Example 26. Given a matrix B ∈C[a, b][x]3×2 and a constructible set S =C as follows:

B =
⎡
⎣ ax x + 1

x2 bx
0 1

⎤
⎦ .

Step 1: perform the routine Reduce2Zero(A, B), that is, repeatedly call Algorithm 1∗ on the first 
column and row of the matrix, then we get the matrices in which the first column and row are zeros 
except for the (1,1)-component. Where UiBVi = Bi for i = 1, 2, 3 (Table 3),

B1 =
⎡
⎣ 1 0

0 ax
0 ax2(ab − x − 1)

⎤
⎦ , B2 =

⎡
⎣ 1 0

0 0
0 bx2

⎤
⎦ , B3 =

⎡
⎣ x2 0

0 x + 1
0 1

⎤
⎦ ,

U1 =
⎡
⎣ 1 0 0

−1 0 1
x2 − abx a 0

⎤
⎦ , U2 =

⎡
⎣ 0 0 1

1 0 −x − 1
0 −1 bx

⎤
⎦ , U3 =

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦ .

V1 =
[ −1/a −x − 1

1 ax

]
, V2 =

[
0 −b
1 0

]
, V3 =

[
1 0
0 1

]
.

Step 2: perform the subroutine Divisible(Ai, Bi) to check if all elements in Bi are divisible by the 
(1,1)-element.
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Table 4
Output of Divisible(Ai , Bi).

No. A′
i B′

i U′
i V′

i

1 C\V (a) B′
1 U′

1 V′
1

2 V (a)\V (b) B′
2 U′

2 V′
2

3 V (a,b) B′
3 U′

3 V′
3

Table 5
Output of SubMatrix(B′

i , 1).

No. A′′
i B′′

i U′′
i V′′

i

1 C\V (a) B′′
1 U′′

1 V′′
1

2 V (a)\V (b) B′′
2 U′′

2 V′′
2

3 V (a,b) B′′
3 U′′

3 V′′
3

Table 6
Recover Smith normal forms.

No. A′′′
i B′′′

i U′′′
i V′′′

i

1 C\V (a) B′′′
1 U′′′

1 V′′′
1

2 V (a)\V (b) B′′′
2 U′′′

2 V′′′
2

3 V (a,b) B′′′
3 U′′′

3 V′′′
3

Obviously, B1 and B2 satisfy the divisibility relation between the (1,1)-element and other elements, 
but B3 doesn’t satisfy the divisibility relation. Where A′

i = Ai, B′
i = Bi, U′

i = Ui, V′
i = Vi for i = 1, 2

(Table 4),

B′
3 =

⎡
⎣ 1 0

0 −x2

0 −x2

⎤
⎦ , U′

3 =
⎡
⎣ 0 0 1

0 −1 0
−1 −1 x + 1

⎤
⎦ , V′

3 =
[

0 1
1 0

]
.

Step 3: repeat the Step 1 and Step 2 on the lower right submatrices of B′
1, B′

2 and B′
3. We obtain 

the following result (Table 5). Where

B′′
1 =

[
x
0

]
, B′′

2 =
[

x2

0

]
, B′′

3 =
[

x2

0

]
,

U′′
1 =

[
1 0

x2 + x − abx 1

]
, U′′

2 =
[

0 1
1 0

]
, U′′

3 =
[ −1 0

−1 1

]
,

V′′
1 = [ −1/a

]
, V′′

2 = [
1/b

]
, V′′

3 = [
1

]
.

Step 4: recover the Smith normal forms (Table 6). Where

B′′′
1 =

⎡
⎣ 1 0

0 x
0 0

⎤
⎦ , B′′′

2 =
⎡
⎣ 1 0

0 x2

0 0

⎤
⎦ , B′′′

3 =
⎡
⎣ 1 0

0 x2

0 0

⎤
⎦ ,

U′′′
1 =

[
1 0
0 U′′

1

]
U1, U′′′

2 =
[

1 0
0 U′′

2

]
U2, U′′′

3 =
[

1 0
0 U′′

3

]
U′

3,

V′′′
1 = V1

[
1 0
0 V′′

1

]
, V′′′

2 = V2

[
1 0
0 V′′

2

]
, V′′′

3 = V′
3

[
1 0
0 V′′

3

]
.

6. Concluding remarks

An algorithm for computing extended GCRD systems of parametric univariate polynomial matrices 
has been proposed. We can see that this algorithm simultaneously gives the GCRD and the repre-
sentation coefficient matrices (or multipliers) by computing the CGS of a constructed module, which 
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adds the unit vectors to record the representation coefficients (as mentioned in Beckermann et al. 
(1999)). As for polynomial cases, it can be regarded as a special case of matrices, so we also have 
the extended GCD algorithm for parametric univariate polynomials. Meanwhile, this CGS for M ′

e also 
gives a set of free bases for the parametric syzygy module of input polynomial matrices. It is worth 
noting that we get a stronger result: the unimodular matrix U. Therefore, we can apply the pro-
posed extended GCD algorithm for univariate polynomials to the computation of the Smith normal 
form and present the first algorithm for computing the Smith normal form of univariate polyno-
mial matrices with parameters. In addition, the proposed algorithms have been implemented on 
the computer algebra system Maple, and the codes and examples are available on the web: http://
www.mmrc .iss .ac .cn /~dwang /software .html.
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