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This paper is concerned with Smith forms of bivariate polynomial 
matrices. For a bivariate polynomial square matrix with the 
determinant being the product of two distinct and irreducible 
univariate polynomials, we prove that it is equivalent to its Smith 
form. We design an algorithm to reduce this class of bivariate 
polynomial matrices to their Smith forms, and an example is given 
to illustrate the algorithm. Furthermore, we extend the above class 
of matrices to a more general case, and derive a necessary and 
sufficient condition for the equivalence of a matrix and one of its 
all possible existing Smith forms.
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1. Introduction

It is well known that many multidimensional systems such as iterative learning control systems 
and multidimensional finite-impulse response (FIR) filter banks may be represented by multivari-
ate polynomial matrices (see Bose (1982); Bose et al. (2003) and the references therein). We can 
obtain many important properties such as controllability, stability and solvability of a multidimen-
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sional system by studying the corresponding multivariate polynomial matrix. It is often necessary to 
transform a given matrix into an equivalent but simpler form to reduce the number of equations 
and unknowns. Consequently, the equivalence and reduction of multivariate polynomial matrices are 
important research problems in the multidimensional systems theory. Symbolic computation provides 
many effective tools such as Euclidean division (Cox et al., 2005, 2007) and Gröbner basis (Buchberger, 
1965, 2001) for related research.

For a univariate polynomial matrix, it is always equivalent to its Smith form since the univari-
ate polynomial ring has the Euclidean division property (Rosenbrock, 1970; Kailath, 1980), and many 
algorithms for reducing matrices to their Smith forms have already been implemented in computer 
algebra systems such as Maple, Singular, Magma and so on. Meanwhile, many researchers studied the 
equivalence and reduction of bivariate polynomial matrices to their Smith forms, and obtained some 
judgment conditions (see, e.g., Morf et al. (1977); Frost and Storey (1978); Lee and Zak (1983); Frost 
and Boudellioua (1986)). Due to the lack of mature multivariate (more than one variable) polyno-
mial matrix theory, there are still challenging open problems on the equivalence and reduction of 
multivariate polynomial matrices.

Recently, the equivalence and reduction for different types of multivariate polynomial matrices 
have been widely investigated. For instance, Lin et al. (2006) showed that a square matrix F with 
det(F ) = x1 − f (x2, . . . , xn) is equivalent to its Smith form by using the Quillen-Suslin theorem 
(Quillen, 1976; Suslin, 1976), where x1, x2, . . . , xn are variables, f ∈ K [x2, . . . , xn] and K is a field. 
After that, Li et al. (2017, 2022) and Lu et al. (2020) generalized the above result to the case of 
det(F ) = (x1 − f (x2, . . . , xn))k , where k is a positive integer. In addition, Boudellioua (2012, 2013)
and Cluzeau and Quadrat (2013, 2015) used computer algebra and homological algebra to study the 
equivalence of other classes of multivariate polynomial matrices, and designed several algorithms for 
reducing matrices to their Smith forms.

In this paper, we focus on the equivalence and reduction of a class of bivariate polynomial ma-
trices. Li et al. (2019) proved that a square matrix F ∈ K [x, y]l×l with det(F ) being an irreducible 
polynomial in K [x] and its Smith form are equivalent, where x, y are variables. The main idea is to 
establish a homomorphic mapping from K [x, y] to K [x]/(det(F ))[y]. Since det(F ) is an irreducible 
polynomial in K [x], K [x]/(det(F )) is a field. This implies that K [x]/(det(F ))[y] is a principal ideal 
domain and has the Euclidean division property. Then they used elementary transformations over the 
Euclidean ring K [x]/(det(F ))[y] to reduce F and obtained the above result. Inspired by their work, 
we first consider whether a square matrix F ∈ K [x, y]l×l with det(F ) = pq is equivalent to its Smith 
form, where p, q are two distinct and irreducible polynomials in K [x]. Noting that K [x]/(pq) is not a 
field, K [x]/(pq)[y] is just a quotient ring. It follows that we need further processing to get the desired 
result. The next thing is how to reduce F to its Smith form. Furthermore, we will extend the above 
class of matrices to the more general case of F ∈ K [x, y]l×m with dl(F ) = pr1 qr2 , where dl(F ) is the 
greatest common divisor of all the l × l minors of F , r1, r2 are two positive integers and l ≤ m.

The rest of the paper is organized as follows. In Section 2, we introduce some basic concepts and 
present three major problems that we shall consider. The main aim of Section 3 is to present the 
proof for the equivalence of a square matrix F ∈ K [x, y]l×l with det(F ) = pq and its Smith form. In 
Section 4, we construct an algorithm to reduce F to its Smith form and use an example to illustrate 
the effectiveness of the algorithm. In Section 5, we propose a necessary and sufficient condition for 
the equivalence of F ∈ K [x, y]l×m with dl(F ) = pr1 qr2 and one of its all possible existing Smith forms. 
Some concluding remarks are provided in Section 6.

2. Preliminaries and problems

Let K be a field, K [x, y] be the polynomial ring in variables x, y over K , and K [x, y]l×m be the 
set of l × m matrices with entries in K [x, y]. Without loss of generality, we assume that l ≤ m. Let 
h ∈ K [x, y], the leading coefficient of h with respect to y is denoted by lcy(h). Moreover, we use 
degx(h) and degy(h) to denote the degree of h with respect to x and y, respectively. Let F ∈ K [x, y]l×l , 
we use det(F ) to denote the determinant of F . Let f1, . . . , fl ∈ K [x, y], we use diag{ f1, . . . , fl} to 
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denote the l × l diagonal matrix whose diagonal elements are f1, . . . , fl . Throughout this paper, we 
write diag{1, . . . ,1︸ ︷︷ ︸

l−1

, g} as diag{1, . . . , 1, g} unless otherwise specified, where g ∈ K [x, y].

2.1. Basic notions

We first introduce a concept which plays an important role in the equivalence of multivariate 
polynomial matrices.

Definition 1. Let U ∈ K [x, y]l×l , then U is said to be unimodular if det(U ) is a nonzero constant in K .

Now, we present the concepts of equivalence and Smith forms for bivariate polynomial matrices.

Definition 2. Let F , Q ∈ K [x, y]l×m , then F is said to be equivalent to Q if there are two unimodular 
matrices U ∈ K [x, y]l×l and V ∈ K [x, y]m×m such that F = U Q V .

For convenience, F being equivalent to Q is denoted by F ∼ Q .

Definition 3. Let F ∈ K [x, y]l×m with rank r, and �i be a polynomial defined as follows:

�i =
⎧⎨⎩

di(F )
di−1(F )

, 1 ≤ i ≤ r;
0, r < i ≤ l,

where di(F ) is the greatest common divisor of all the i × i minors of F . Here, we make the convention 
that d0(F ) ≡ 1 and di(F ) ≡ 0 for i > r. Moreover, �i satisfies the divisibility property

�1 | �2 | · · · | �r .

Then the Smith form of F is given by

S =
(

diag{�1, . . . ,�r} 0r×(m−r)

0(l−r)×r 0(l−r)×(m−r)

)
.

2.2. Problems

We construct a subset of bivariate polynomial matrices as follows:

F := {F ∈ K [x, y]l×l | det(F ) = pq with p,q ∈ K [x] being distinct and irreducible}.
In the above set, p, q are irreducible polynomials over K . This paper first focus on the equivalence of 
polynomial matrices in F and their Smith forms.

Let F ∈ F . It follows from di(F ) | det(F ) that di(F ) is equal to 1, or p, or q, or pq, where i =
1, . . . , l. As di−1(F ) | di(F ) and �i−1 | �i by Definition 3, it is easy to verify that the Smith form of F
is

S = diag{1, . . . ,1, pq}.
Then, we address the following two specific problems.

Problem 4. Let F ∈ F . Is F equivalent to its Smith form S?

Problem 5. If F ∼ S , how to reduce F to S? That is to design an algorithm to construct two unimod-
ular matrices U , V ∈ K [x, y]l×l such that S = U F V .
3
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When p or q is a nonzero constant, the above two problems have been solved by Li et al. (2019). 
In the following, we assume that p, q are two non-trivial polynomials in K [x].

We now construct another subset of bivariate polynomial matrices:

F ∗ := {F ∈ K [x, y]l×m | dl(F ) = pr1qr2 with r1, r2 being two positive integers}.
It is obvious that F ⊂ F ∗ . Let F ∈ F ∗ . According to Definition 3, the following matrix

S∗ = (
diag{1, . . . ,1, pr1qr2} 0l×(m−l)

)
is one of all the possible existing Smith forms of F . Then we consider the following problem.

Problem 6. Let F ∈ F ∗ . What is the necessary and sufficient condition for the equivalence of F and 
S∗?

3. Matrix equivalence theorem

In this section, we will solve Problem 4. First, we give the main result in the paper.

Theorem 7. Let F ∈ F , then F is equivalent to its Smith form S.

Although the description of Theorem 7 is brief, the proof process is very complicated. Before giving 
a detailed proof, we show the difficulty for proving Theorem 7.

Let h ∈ K [x] be a nonzero polynomial and Rh = K [x]/(h). If h is an irreducible polynomial, then 
Rh is a field; otherwise, it is a quotient ring. We consider the following homomorphism

φh : K [x, y] → Rh[y]∑n
i=0 ci yi 	→ ∑n

i=0 ci yi,

where c0, . . . , cn ∈ K [x] and c0, . . . , cn ∈ Rh . This homomorphism can extend canonically to the homo-
morphism φh : K [x, y]l×l → Rh[y]l×l by applying φh entry-wise.

Lemma 8. Let F ∈ K [x, y]l×l and h ∈ K [x] be an irreducible polynomial. If h | det(F ), then there is a unimod-
ular matrix U ∈ K [x, y]l×l such that U F = diag{1, . . . , 1, h} · G, where G ∈ K [x, y]l×l .

Proof. Since Rh is a field, Rh[y] is an Euclidean ring. Let F be the polynomial matrix φh(F ) in 
Rh[y]l×l . As h | det(F ), the rank of F is less than l. Then, we can transform F into the following 
matrix

F1 =

⎛⎜⎜⎜⎜⎜⎜⎝
∗ ∗ · · · ∗
...

...
. . .

...

∗ ∗ · · · ∗
0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠
only by the first kind (interchanging two rows) and third kind (adding multiple of one row to another) 
of elementary transformations in Rh[y]. This implies that there exist a finite number of the first and 
third kinds of elementary matrices U1, . . . , Us ∈ Rh[y]l×l such that

Us · · · U1 · F = F1. (1)

For each entry of Ui with 1 ≤ i ≤ s, we take the representation element whose degree with respect 
to x is less than degx(h). Then, we have unimodular matrices U1, . . . , Us ∈ K [x, y]l×l which satisfy 
4
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Equation (1). Let U = Us · · · U1, then U · F = F1. Note that the last row of F1 is zero vector. It follows 
that all elements of the last row of U F are divisible by h. Consequently,

U F = diag{1, . . . ,1,h} · G

with G ∈ K [x, y]l×l and the proof is completed. �
Let F ∈ F . Using Lemma 8 twice, we have

F ∼ diag{1, . . . ,1, p} · U ′ · diag{1, . . . ,1,q}, (2)

where U ′ ∈ K [x, y]l×l is a unimodular matrix. It follows from Equation (2) that the difficulty for prov-
ing Theorem 7 is to prove

diag{1, . . . ,1, p} · U ′ · diag{1, . . . ,1,q} ∼ diag{1, . . . ,1, pq}. (3)

By mathematical induction, we should prove that when Equation (3) for any l ≤ n − 1 is correct, 
then it is correct for l = n, where n is a positive integer greater than 2. But in order to enable everyone 
to understand the proof process more intuitively, we will prove the correctness of Equation (3) when 
l = 2 and l = 3, and then the detailed reduction process for l = 2 and l = 3 can be easily generalized 
to the case of l ≥ 4.

Lemma 9. Let A = diag{1, p} · H · diag{1, q}, where p, q ∈ K [x] \ K are two distinct and irreducible polyno-
mials, and H ∈ K [x, y]2×2 (not necessarily unimodular). Then there exists G ∈ K [x, y]2×2 such that

A ∼ diag{1, pq} · G.

The main idea of the proof of Lemma 9 is to apply Euclidean division over the quotient ring R pq[y], 
where R pq = K [x]/(pq). Since R pq is not a field, the reductions of polynomials over R pq[y] are more 
complicated. To achieve reductions, we will frequently use the following operations in R pq[y]:

1. construct some special polynomials (monic, or leading coefficient divided by p or q with respect 
to y) by using the irreducibility of p and q;

2. reduce the degree of a polynomial with respect to y by using special polynomials;
3. perform elementary row and column transformations simultaneously to reduce the entry at the 

upper left corner of a matrix each time.

Proof. For convenience, we use A to denote the polynomial matrix φpq(A) in R pq[y]2×2. In addition, 
we denote the i-th row and j-th column element of A by A[i, j], where 1 ≤ i, j ≤ 2. We assume that 
there exist v11, v21, v12 ∈ K [x, y] such that

A =
(

v11 v12q

v21 p 0

)
with degx(v11) < degx(pq), degx(v21) < degx(q) and degx(v12) < degx(p).

Without loss of generality, we assume that A[1, 1] �= 0, A[2, 1] �= 0 and A[1, 2] �= 0. Now, we divide 
our proof into three steps.

Step 1. We first need to verify that there exists a polynomial matrix A′ ∈ K [x, y]2×2 such that

A ∼ A′ and A′ =
(

v ′
11 v ′

12q

v ′
21 p 0

)
,

where degy(A′[1, 1]) < degy(A[1, 1]), or A′[2, 1] = 0, or A′[1, 2] = 0.

Proof of Step 1. Let d = degy(A[1, 1]), d1 = degy(A[2, 1]), d2 = degy(A[1, 2]) and d0 = max{d1, d2}. 
There are four cases.
5
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(1.1) If d ≥ d0, then

A[1,1] = ad yd + · · · + ad0 yd0 + · · · + a1 y + a0

= (ad yd−d0 + · · · + ad0)yd0 + · · · + a1 y + a0

= f yd0 + · · · + a1 y + a0.

As degx(v21) < degx(q) and degx(v12) < degx(p), we have

gcd(lcy(v21),q) = 1 and gcd(lcy(v12), p) = 1.

It follows that

gcd(lcy(A[2,1]), lcy(A[1,2])) = gcd(lcy(v21)p, lcy(v12)q)

= gcd(lcy(v21), lcy(v12)).

In addition,

degx

(
gcd(lcy(v21), lcy(v12))

)
< min{degx(p),degx(q)}.

This implies that gcd(lcy(v12), lcy(v21)) and pq are relatively prime. Then there exist polynomials 
s, u, v ∈ K [x] such that

s · (u · lcy(A[2,1]) + v · lcy(A[1,2])) = s · gcd(lcy(v21), lcy(v12)) ≡ 1 mod pq.

Therefore, s · (u · A[2, 1]yd0−d1 + v · A[1, 2]yd0−d2 ) is monic in R pq[y]. Let

U =
(

1 − f suyd0−d1

0 1

)
and V =

(
1 0

− f sv yd0−d2 1

)
.

Obviously, U and V are two unimodular matrices. Let A′ = U AV , then

degy(A′[1,1]) < d, A′[2,1] = v21 p, A′[1,2] = v12q, A′[2,2] = 0.

(1.2) If d < d0, p � lcy(A[1, 1]) and q � lcy(A[1, 1]), then lcy(A[1, 1]) is reversible in R pq . There is a 
polynomial s′ ∈ K [x] such that s′ · lcy(A[1, 1]) ≡ 1 mod pq. Note that d0 = max{d1, d2} > d. Without 
loss of generality, we assume that d1 > d. Constructing the following unimodular matrix

U1 =
(

1 0
−s′ · lcy(A[2,1]) · yd1−d 1

)
.

Let A2 = U1 A, then degy(A2[2, 1]) < d1. It is obvious that A2[1, 1] = A[1, 1] and A2[1, 2] = v12q. 
Since p | lcy(A[2, 1]), we have p | A2[2, 1] and A2[2, 2] = 0. Repeat this process and there is a positive 
integer n1 such that

An1 [1,1] = A[1,1], degy(An1 [2,1]) ≤ d and p | An1 [2,1],
An1 [1,2] = v12q, An1 [2,2] = 0.

If d2 > d at this moment, let

V 1 =
(

1 −s′ · lcy(An1 [1,2]) · yd2−d

0 1

)
and An1+1 = An1 V 1,

then degy(An1+1[1, 2]) < d2. It is obvious that An1+1[1, 1] = An1 [1, 1] and An1+1[2, 1] = An1 [2, 1]. 
Since q | lcy(An1 [1, 2]), we have q | An1+1[1, 2] and An1+1[2, 2] = 0. Repeat this process and there is a 
positive integer n2 such that
6
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An2 [1,1] = An1 [1,1], An2 [2,1] = An1 [2,1],
degy(An2 [1,2]) ≤ d and q | An2 [1,2], An2 [2,2] = 0.

If An2 [2, 1] �= 0 or An2 [1, 2] �= 0, then we perform the calculation process of the case (1.1) and 
obtain a polynomial matrix A′ ∈ K [x, y]2×2 such that A′ ∼ An2 with

degy(A′[1,1]) < degy(An2 [1,1]) = d, A′[2,1] = An2 [2,1],
A′[1,2] = An2 [1,2], A′[2,2] = 0,

where p | A′[2, 1] and q | A′[1, 2].
(1.3) If d < d0 and p | lcy(A[1, 1]). It follows from q � lcy(A[1, 1]) that

gcd
(

p · lcy(A[1,1]), pq
) = p.

Hence, there exists a polynomial s′ ∈ K [x] such that s′ · p · lcy(A[1, 1]) ≡ p mod pq. If d1 > d, then let

U1 =
⎛⎝ 1 0

−s′ · p · lcy(A[2,1])
p · yd1−d 1

⎞⎠ and A2 = U1 A.

In this case, we have degy(A2[2, 1]) < d1. Obviously, A2[1, 1] = A[1, 1] and A2[1, 2] = v12q. Since 
p | U1[2, 1], we have p | A2[2, 1] and A2[2, 2] = 0. Repeat this process and there is a positive integer 
n1 such that

An1 [1,1] = A[1,1], degy(An1 [2,1]) ≤ d and p | An1 [2,1],
An1 [1,2] = v12q, An1 [2,2] = 0.

If An1 [2, 1] �= 0 at this moment, then let

d′
1 = degy(An1 [2,1]), U1 =

⎛⎝ 1 −s′′ · lcy(An1 [1,1])
p · yd−d′

1

0 1

⎞⎠ and A′ = U1 An1 ,

where s′′ ∈ K [x] satisfies s′′ · lcy(An1 [2, 1]) ≡ p mod pq. Then

degy(A′[1,1]) < degy(An1 [1,1]) = d, A′[2,1] = An1 [2,1],
A′[1,2] = An1 [1,2], A′[2,2] = 0,

where p | A′[2, 1] and q | A′[1, 2].
(1.4) If d < d0 and q | lcy(A[1, 1]), then we use the calculation process similar to that of the case 

(1.3) to reduce A. The details are omitted here.
Step 2. The next thing to do is to prove that there exists a polynomial matrix A′′ ∈ K [x, y]2×2 such 

that A ∼ A′′ and

A′′ =
(

v ′′
11 v ′′

12q

0 0

)
, or A′′ =

(
0 v ′′

12q

v ′′
21 p 0

)
, or A′′ =

(
v ′′

11 0

v ′′
21 p 0

)
.

Proof of Step 2. Repeat Step 1 and we can get the result. This process will stop in finite steps since 
the degrees of entries in A are strictly decreasing in the whole reduction process.

Step 3. Finally, we have to show that there exists a polynomial matrix G ∈ K [x, y]2×2 such that 
A ∼ diag{1, pq} · G .

Proof of Step 3. According to Step 2, there are three cases.
7
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(3.1) If A′′ =
(

v ′′
11 v ′′

12q
0 0

)
, then there exists a polynomial matrix G ∈ K [x, y]2×2 such that

A ∼ A′′ = diag{1, pq} · G.

(3.2) If A′′ =
(

0 v ′′
12q

v ′′
21 p 0

)
, then let A′′′ =

(
1 0

−s′′′ · p 1

)
·
(

1 1

0 1

)
· A′′ , where s′′′ ∈ K [x] satisfies 

s′′′ · p2 ≡ p mod pq. It is easy to compute that A′′′ =
(

v ′′
21 p v ′′

12q

0 0

)
. Then there exists a polynomial 

matrix G ∈ K [x, y]2×2 such that

A ∼ A′′′ = diag{1, pq} · G.

(3.3) If A′′ =
(

v ′′
11 0

v ′′
21 p 0

)
, then we discuss it in the following three situations.

(a) If p | v ′′
11, then we repeat the calculation process of the four cases in Step 1 to reduce A′′ until one 

of the elements in the first column is 0. Thus, we can obtain a polynomial matrix G ∈ K [x, y]2×2

such that A ∼ diag{1, pq} · G .

(b) If q | v ′′
11, then let A′′′ = A′′ ·

(
1 s′′′ · q
0 1

)
·
(

1 0
−1 1

)
, where s′′′ ∈ K [x] satisfies s′′′ · q2 ≡ q

mod pq. It is easy to see that A′′′ =
(

0 v ′′
11s′′′q

v ′′
21 p 0

)
. Based on the case (3.2), we have 

A ∼ A′′′ ∼ diag{1, pq} · G , where G ∈ K [x, y]2×2.

(c) If p � v ′′
11 and q � v ′′

11, then let B = A′′ ·
(

1 q
0 1

)
. We get B[1, 1] = A′′[1, 1] and degy(B[1, 1]) =

degy(B[1, 2]). We repeat the calculation process of Step 2 and Step 3 alternately to reduce B until 
case (3.1) or case (3.2) or case (3.3.a) or case (3.3.b) occurs. This process will stop in finite steps 
since the degrees of the first column entries in B are strictly decreasing.

The proof is completed. �
It follows from Lemma 9 that Equation (3) is correct for the case of l = 2. Next, we will focus on 

the case of l ≥ 3.

Lemma 10. Let A = diag{1, . . . , 1, p} · H · diag{1, . . . , 1, q}, where p, q ∈ K [x] \ K are two distinct and irre-
ducible polynomials, H ∈ K [x, y]l×l (not necessarily unimodular) and l ≥ 3. Then there exists G ∈ K [x, y]l×l

such that

A ∼ diag{1, . . . ,1, pq} · G.

Proof. We first consider the case of l = 3. We assume that there exist vij ∈ K [x, y] with 1 ≤ i, j ≤ 3
such that

A =

⎛⎜⎜⎝
v11 v12 v13q

v21 v22 v23q

v31 p v32 p 0

⎞⎟⎟⎠ ,

where degx(vij) < degx(pq) with i = 1, 2 and j = 1, 2, degx(v3 j) < degx(q) with j = 1, 2, and 
degx(vi3) < degx(p) with i = 1, 2.
8
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Without loss of generality, we assume that A[3, 1] �= 0 and A[3, 2] �= 0. Let

Ar =
(

v22 v23q

v32 p 0

)
,

then we use the method in Lemma 9 to reduce Ar . In the following, we will explain an invariant 
property in the whole reduction process.

First, we use Ar[2, 1] and Ar[1, 2] to reduce Ar[1, 1]. Let

U =
⎛⎝ 1 0 0

0 1 g
0 0 1

⎞⎠ , V =
⎛⎝ 1 0 0

0 1 0
0 h 1

⎞⎠ and A1 = U AV ,

where g, h ∈ K [x, y] satisfy some conditions, then

A1 =

⎛⎜⎜⎝
v11 v∗

12 v13q

v∗
21 v∗

22 v23q

v31 p v32 p 0

⎞⎟⎟⎠ .

It is obvious that p | A1[3, j] for j = 1, 2, 3 and q | A1[i, 3] for i = 1, 2, 3.
Second, we use A1[2, 2] to reduce A1[3, 2] and A1[2, 3]. According to the three cases of Lemma 9, 

we add f ′ · p multiple of the second row of A1 to the third row of A1, and add f ′′ · q multiple of the 
second column of A1 to the third column of A1, where f ′, f ′′ ∈ K [x, y] satisfy some conditions. Let

U1 =
⎛⎝ 1 0 0

0 1 0
0 f ′ · p 1

⎞⎠ , V 1 =
⎛⎝ 1 0 0

0 1 f ′′ · q
0 0 1

⎞⎠ and A2 = U1 A1 V 1,

then

A2 =

⎛⎜⎜⎝
v11 v∗

12 (v13 + f ′′v∗
12)q

v∗
21 v∗

22 (v23 + f ′′v∗
22)q

(v31 + f ′v∗
21)p (v32 + f ′v∗

22)p 0

⎞⎟⎟⎠ .

Obviously, p | A2[3, j] for j = 1, 2, 3 and q | A2[i, 3] for i = 1, 2, 3.
Repeat the above process and there is a positive integer nk such that

A ∼ Ank =

⎛⎜⎜⎝
h11 h12 h13q

h21 h22 h23q

h31 p 0 0

⎞⎟⎟⎠ .

If q | h22, then we use Lemma 9 again to reduce Ank and obtain the result, that is, there exists G ∈
K [x, y]3×3 such that

A ∼ diag{1,1, pq} · G.

Otherwise, let B =
(

h12
h22

)
. Then φq(B) is a polynomial matrix in Rq[y]2×1. It is easy to see that 

rank(φq(B)) ≤ 1. This implies that there is a unimodular matrix C ∈ K [x, y]2×2 such that

C · B = diag{1,q} ·
(

h∗
12

h∗
22

)
.

Let
9
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U2 = diag{C,1} and A3 = U2 Ank ,

then

A3 =

⎛⎜⎜⎝
h∗

11 h∗
12 h∗

13q

h∗
21 h∗

22q h∗
23q

h∗
31 p 0 0

⎞⎟⎟⎠ .

We use the method in Lemma 9 again to reduce A3. Similarly, in finite steps we get the result

A ∼ diag{1,1, pq} · G,

where G ∈ K [x, y]3×3.
Using the same procedure as above, we can easily carry out the proof for the case of l ≥ 4. Conse-

quently, we derive that A ∼ diag{1, . . . , 1, pq} · G for l ≥ 3. �
Based on Lemma 10, Equation (3) is correct for the case of l ≥ 3. Thus, we give a complete proof 

of Theorem 7 and solve Problem 4.
Before proceeding further, let us remark on Theorem 7. We first introduce a lemma, which can be 

easily proved by Binet-Cauchy formula. Thus, the proof is omitted here.

Lemma 11. Suppose F = F1 F2 , where F , F2 ∈ K [x, y]l×m and F1 ∈ K [x, y]l×l . If all the (l − 1) × (l − 1)

minors of F generate K [x, y], then all the (l − 1) × (l − 1) minors of Fi generate K [x, y] for i = 1, 2.

Remark 12. If l = m, then the above lemma is the same as Lemma 3.4 in Li et al. (2022). In addition, 
the lemma still holds when F1 ∈ K [x, y]l×m and F2 ∈ K [x, y]m×m .

Let F ∈ F . According to Theorem 7, there exist two unimodular matrices U , V ∈ K [x, y]l×l such 
that S = U F V . Since S = diag{1, . . . , 1, pq}, it is easy to see that all the (l − 1) × (l − 1) minors of S
generate K [x, y]. By Lemma 11, we have that all the (l − 1) × (l − 1) minors of F generate K [x, y]. 
Therefore, Theorem 7 implies the following corollary.

Corollary 13. Let F ∈ F , then all the (l − 1) × (l − 1) minors of F generate K [x, y].

4. Algorithm and example

According to the proofs of Lemmas 8 and 10, it is easy to construct the following algorithm to 
solve Problem 5.

Algorithm 1: Smith Form.
Input : F ∈ F .
Output : two unimodular matrices U and V such that U F V is the Smith form of F .

1 begin
2 compute the determinant pq of F ;
3 based on Lemma 8, compute three unimodular matrices U1, U2, U3 such that 

U1 F U2 = diag{1, . . . , 1, p} · U3 · diag{1, . . . , 1, q};
4 use Lemma 10 to compute two unimodular matrices U4, U5 such that 

U4 · diag{1, . . . , 1, p} · U3 · diag{1, . . . , 1, q} · U5 = diag{1, . . . , 1, pq};
5 set U = U4U1 and V = U2U5;
6 return U and V .

Theorem 14. Algorithm 1 outputs as specified within a finite number of steps.

Proof. The correctness and termination follow directly from Lemmas 8 and 10. �

10
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We now use an example to illustrate the calculation process of Algorithm 1.

Example 15. Let

F =

⎛⎜⎜⎝
xy4 + y5 + 1 xy3 xy2 + y3

F [2,1] x4 y5 + x4 y4 + 1 x3 y3(y + 1)(y + x)

F [3,1] (y + x)xy3 x2 y2 + 2xy3 + y4 + x3 − x2 + x − 1

⎞⎟⎟⎠
be a bivariate polynomial matrix in Q[x, y]3×3, where F [2, 1] = x4 y6 + x3 y7 + x4 y5 + x3 y6 + x3 y2 +
x3 y, F [3, 1] = x2 y4 + 2xy5 + y6 + x3 y2 − x2 y2 + xy2 − y2 + x + y, and Q is the rational number field.

It is easy to compute that det(F ) = (x − 1)(x2 + 1). Based on Theorem 7, F is equivalent to its 
Smith form S , where

S = diag{1,1, (x − 1)(x2 + 1)}.
Let p = x − 1 and q = x2 + 1. According to Lemma 8, there is a unimodular matrix

U1 =

⎛⎜⎜⎝
−y2 − y 1 0

y5 + y4 + 1 −y3 0

−y − 1 0 1

⎞⎟⎟⎠
such that

U1 F =
⎛⎜⎝1 0 0

0 1 0

0 0 p

⎞⎟⎠ G1,

where

G1 =

⎛⎜⎜⎝
G1[1,1] x4 y5 + x4 y4 − xy5 − xy4 + 1 G1[1,3]
G1[2,1] −x4 y8 − x4 y7 + xy8 + xy7 + xy3 − y3 G1[2,3]
G1[3,1] xy3 G1[3,3]

⎞⎟⎟⎠
with G1[1, 1] = x4 y6 + x3 y7 + x4 y5 + x3 y6 − xy6 − y7 − xy5 − y6 + x3 y2 + x3 y − y2 − y, G1[1, 3] =
x4 y4 + x3 y5 + x4 y3 + x3 y4 − xy4 − y5 − xy3 − y4, G1[2, 1] = −x4 y9 − x3 y10 − x4 y8 − x3 y9 + xy9 +
y10 + xy8 + y9 − x3 y5 − x3 y4 + xy4 + 2y5 + y4 + 1, G1[2, 3] = −x4 y7 − x3 y8 − x4 y6 − x3 y7 + xy7 +
y8 + xy6 + y7 + xy2 + y3, G1[3, 1] = xy4 + y5 + x2 y2 + y2 + 1 and G1[3, 3] = xy2 + y3 + x2 + 1.

Using Lemma 8 again, there exists a unimodular matrix

U2 =

⎛⎜⎜⎝
0 0 1

1 0 xy2 + xy + y2 + y

y3 1 −1

⎞⎟⎟⎠
such that

U2G1 =
⎛⎜⎝1 0 0

0 1 0

0 0 q

⎞⎟⎠ G2,

where
11
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G2 =

⎛⎜⎜⎝
xy4 + y5 + x2 y2 + y2 + 1 xy3 xy2 + y3 + x2 + 1

G2[2,1] x4 y5 + x4 y4 + x2 y5 + x2 y4 + 1 G2[2,3]
−y2 0 −1

⎞⎟⎟⎠
with G2[2, 1] = x4 y6 + x3 y7 + x4 y5 + x3 y6 + x2 y6 + xy7 + x3 y4 + x2 y5 + xy6 + x3 y3 + x2 y4 + x3 y2 +
x2 y3 + xy4 + x3 y + xy3 + y4 + xy2 + y3 + xy and G2[2, 3] = x4 y4 + x3 y5 + x4 y3 + x3 y4 + x2 y4 + xy5 +
x3 y2 + x2 y3 + xy4 + x3 y + x2 y2 + x2 y + xy2 + xy + y2 + y.

It follows that

U1 F =
⎛⎜⎝1 0 0

0 1 0

0 0 p

⎞⎟⎠ U−1
2

⎛⎜⎝1 0 0

0 1 0

0 0 q

⎞⎟⎠ G2.

Since U1, U2 are unimodular matrices and det(F ) = pq, G2 is a unimodular matrix. Let

A =
⎛⎜⎝1 0 0

0 1 0

0 0 p

⎞⎟⎠ U−1
2

⎛⎜⎝1 0 0

0 1 0

0 0 q

⎞⎟⎠ =

⎛⎜⎜⎝
−xy2 − xy − y2 − y 1 0

xy5 + xy4 + y5 + y4 + 1 −y3 q

p 0 0

⎞⎟⎟⎠ .

Now, we use Lemma 10 to reduce A. The first thing is to reduce A to satisfy q | A[2, 2]. Let

U3 =
⎛⎜⎝ 1 0 0

y3 1 0

0 0 1

⎞⎟⎠ ,

then U3 is a unimodular matrix. Hence,

U3 A =
⎛⎜⎝−xy2 − xy − y2 − y 1 0

1 0 q

p 0 0

⎞⎟⎠ .

Let

U4 =
⎛⎜⎝1 0 0

0 1 0

0 −p 1

⎞⎟⎠ ,

then U4 is a unimodular matrix and

U4U3 A =
⎛⎜⎝−xy2 − xy − y2 − y 1 0

1 0 q

0 0 −pq

⎞⎟⎠ = S · G3.

It is obvious that G3 is a unimodular matrix. Let U = U4U3U1 and V = G−1
2 G−1

3 , then S = U F V .

5. Necessary and sufficient condition

In order to solve Problem 6, we first introduce some useful concepts and conclusions which will 
be used to prove our results.

Definition 16 (Youla and Gnavi (1979)). Let F ∈ K [x, y]l×m be of full row rank. F is said to be a zero 
left prime (ZLP) matrix if the l × l minors of F generate K [x, y].
12
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Lemma 17 (Quillen-Suslin theorem, Quillen (1976); Suslin (1976)). If F ∈ K [x, y]l×m is a ZLP matrix, then 
there is a unimodular matrix U ∈ K [x, y]m×m such that F U = (

Il 0l×(m−l)
)
, where Il is the l × l identity 

matrix.

The above Quillen-Suslin theorem has an important effect on the development of multidimen-
sional systems. We now use it to prove the following case for the equivalence of bivariate polynomial 
matrices.

Lemma 18. Let U ∈ K [x, y]l×l be a unimodular matrix, H1 = diag{1, . . . , 1, h1} and H2 = diag{1, . . . , 1, h2}, 
where h1, h2 ∈ K [x, y] satisfy h2 | h1 . Then diag{1, . . . , 1, h1h2} is equivalent to H1U H2 if and only if all the 
(l − 1) × (l − 1) minors of H1U H2 generate K [x, y].

This lemma is a generalization of Lemma 2.3 in Li et al. (2019). Although the proof of the lemma is 
similar to that of Lemma 2.3, for the sake of the rigor of the argument and the ease of understanding 
we still give a detailed proof here.

Proof. Necessity. It is straightforward from Lemma 11 that all the (l − 1) × (l − 1) minors of H1U H2
generate K [x, y].

Sufficiency. Suppose h1=gh2, where g∈K [x, y]. Let U=
(

U11 U12
U21 U22

)
, where U11∈K [x, y](l−1)×(l−1) , 

U12 ∈ K [x, y](l−1)×1, U21 ∈ K [x, y]1×(l−1) and U22 ∈ K [x, y]1×1. Then

H1U H2 =
(

U11 h2U12

gh2U21 gh2
2U22

)
.

We next prove that 
(

U11 h2U12
)

is a ZLP matrix. Note that U is unimodular, 
(

U11 U12
)

is a ZLP 
matrix. Let c1, c2, . . . , cγ ∈ K [x, y] be all the (l − 1) × (l − 1) minors of 

(
U11 U12

)
, then the ideal 

generated by c1, c2, . . . , cγ is K [x, y]. Without loss of generality, we assume that det(U11) = c1. It is 
easy to see that c1, h2c2, . . . , h2cγ are all the (l − 1) × (l − 1) minors of 

(
U11 h2U12

)
. We assert that 

the ideal generated by c1, h2c2, . . . , h2cγ is K [x, y]. If otherwise, c1, h2c2, . . . , h2cγ have a common 
zero (α1, α2) ∈ K̂ 2, where K̂ is the algebraic closure of K . This implies that c1 and h2 have the 
common zero (α1, α2). Since the polynomials in the last row of H1U H2 have the common factor h2, 
all the (l − 1) × (l − 1) minors of H1U H2 have the common zero (α1, α2). This contradicts the fact 
that all the (l − 1) × (l − 1) minors of H1U H2 generate K [x, y]. Therefore, 

(
U11 h2U12

)
is a ZLP 

matrix. Based on the Quillen-Suslin theorem, there is a unimodular matrix N ∈ K [x, y]l×l such that (
U11 h2U12

) · N = (
Il−1 0(l−1)×1

)
. It follows that

H1U H2 · N =
(

Il−1 0(l−1)×1

R1 R2

)
,

where R1 ∈ K [x, y]1×(l−1) and R2 ∈ K [x, y]1×1. Using elementary row transformations, we have

H1U H2 · N ∼
(

Il−1 0(l−1)×1

01×(l−1) R2

)
.

It is easy to check that R2 = (
h1h2

)
. Thus, diag{1, . . . , 1, h1h2} is equivalent to H1U H2. �

Remark 19. When h1 | h2, the above lemma still holds.

Based on Lemma 18, we can solve the special case of Problem 6 where F is a square matrix.

Theorem 20. Let F ∈ K [x, y]l×l with det(F ) = pr1 qr2 , where r1, r2 are positive integers. F is equivalent to 
diag{1, . . . , 1, pr1 qr2} if and only if all the (l − 1) × (l − 1) minors of F generate K [x, y].
13
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Proof. Necessity. If F is equivalent to diag{1, . . . , 1, pr1 qr2}, then there exist two unimodular matrices 
U , V ∈ K [x, y]l×l such that diag{1, . . . , 1, pr1 qr2 } = U F V . It follows from Lemma 11 that all the (l −
1) × (l − 1) minors of F generate K [x, y].

Sufficiency. Without loss of generality, we assume that 1 ≤ r1 ≤ r2. Using Lemma 8 repeatedly we 
have

F ∼ S1 V 1 S2U1 S1 V 2 S2U2 · · · S1 Vr1 S2Ur1 S2Ur1+1 S2Ur1+2 S2 · · · Ur2−1 S2,

where S1 = diag{1, . . . , 1, p}, S2 = diag{1, . . . , 1, q}, and V i, U j ∈ K [x, y]l×l are unimodular matrices. 
According to Lemma 10, we get

F ∼ SŨ1 SŨ2 · · · SŨr1 S2Ur1+1 S2Ur1+2 S2 · · · Ur2−1 S2,

where S = diag{1, . . . , 1, pq} and Ũ j ∈ K [x, y]l×l is a unimodular matrix, j = 1, . . . , r1. If all the (l −
1) × (l − 1) minors of F generate K [x, y], then by Lemmas 11 and 18 repeatedly we obtain

F ∼ diag{1, . . . ,1, pr1qr2}.
The proof is completed. �

Definition 21 (Lin (1988); Sule (1994)). Let F ∈ K [x, y]l×m be of full row rank, and a1, . . . , aβ denote 
all the l × l minors of F , where β = (m

l

)
. Extracting dl(F ) from a1, . . . , aβ yields ai = dl(F ) · bi , where 

i = 1, . . . , β . Then b1, . . . , bβ are called the reduced minors of F .

Lemma 22 (Wang and Feng (2004)). Let F ∈ K [x, y]l×m be of full row rank. If the reduced minors of F generate 
K [x, y], then there exist a matrix G1 ∈ K [x, y]l×l and a ZLP matrix F1 ∈ K [x, y]l×m such that F = G1 F1 and 
det(G1) = dl(F ).

With the help of the above conclusions, we can now give the necessary and sufficient condition 
for the equivalence of F and S∗ , where F ∈ F ∗ .

Theorem 23. Let F ∈ F ∗ , then F is equivalent to S∗ if and only if both the ideals generated by the reduced 
minors and (l − 1) × (l − 1) minors of F respectively are K [x, y].

Proof. Necessity. If F is equivalent to S∗ , then there are two unimodular matrices U ∈ K [x, y]l×l and 
V ∈ K [x, y]m×m such that S∗ = U F V . Based on Lemma 11, all the (l −1) × (l −1) minors of F generate 
K [x, y]. Since V is a unimodular matrix, we have U F = S∗V −1. Without loss of generality, we assume 
that V −1

l ∈ K [x, y]l×m is the matrix composed of the first l rows of V −1 and

V −1
l =

⎛⎜⎜⎜⎝
v11 · · · v1m

...
. . .

...

vl1 · · · vlm

⎞⎟⎟⎟⎠ ,

where vij ∈ K [x, y], 1 ≤ i ≤ l and 1 ≤ j ≤ m. Obviously, V −1
l is a ZLP matrix. Let e1, . . . , eη ∈ K [x, y]

be all the l × l minors of V −1
l , then the ideal generated by e1, . . . , eη is K [x, y], where η = (m

l

)
. It 

follows from U F = S∗V −1 that

U F =

⎛⎜⎜⎜⎜⎜⎝
v11 · · · v1m

...
. . .

...

v(l−1)1 · · · v(l−1)m

pr1 qr2 v · · · pr1 qr2 v

⎞⎟⎟⎟⎟⎟⎠ .
l1 lm

14
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Since det(U ) is a nonzero constant in K , we can derive that pr1 qr2 e1, . . . , pr1 qr2 eη are all the l × l
minors of F up to multiplication by a nonzero constant. Combining the fact that e1, . . . , eη generate 
K [x, y], we get that e1, . . . , eη are the reduced minors of F . Therefore, the reduced minors of F
generate K [x, y].

Sufficiency. If the reduced minors of F generate K [x, y], then by Lemma 22 there exist a matrix 
G1 ∈ K [x, y]l×l and a ZLP matrix F1 ∈ K [x, y]l×m such that F = G1 F1 and det(G1) = dl(F ) = pr1 qr2 . 
Using the Quillen-Suslin theorem, there exists a unimodular matrix V ∈ K [x, y]m×m such that F1 V =(

Il 0l×(m−l)
)
. Then F V = (

G1 0l×(m−l)
)
. If all the (l − 1) × (l − 1) minors of F generate K [x, y], 

then all the (l − 1) × (l − 1) minors of G1 generate K [x, y] by Lemma 11. By Theorem 20, there exist 
two unimodular matrices U1, V 1 ∈ K [x, y]l×l such that diag{1, . . . , 1, pr1 qr2} = U1G1 V 1. Combining 
the above two equations we get

U1 F V

(
V 1 0l×(m−l)

0(m−l)×l Im−l

)
= U1

(
G1 0l×(m−l)

)(
V 1 0l×(m−l)

0(m−l)×l Im−l

)
= S∗.

Therefore, F is equivalent to S∗ . �
Theorem 23 gives a positive answer to Problem 6. Let F ∈ F ∗ . If F satisfies the sufficient condition 

of Theorem 23, then we can use Algorithm 1 to reduce F to its Smith form S∗ . Of course, some simple 
modifications need to be made to Algorithm 1, and they are omitted here.

6. Concluding remarks

In general, a bivariate polynomial matrix is not equivalent to its Smith form. Naturally, there comes 
the problem that under what conditions is a bivariate polynomial matrix equivalent to its Smith form. 
Moreover, if a matrix and its Smith form are equivalent, how to reduce it to its Smith form? In this 
paper, we are devoted to studying the equivalence and reduction of a class of bivariate polynomial 
matrices to their Smith forms.

Let F ∈ F , we prove that F and its Smith form S = diag{1, . . . , 1, pq} are equivalent. The main idea 
is to extend the Euclidean division of a univariate polynomial ring to R pq[y], where R pq = K [x]/(pq). 
Although R pq is just a quotient ring, we can use the irreducibility of p and q to construct some 
special polynomials in R pq[y]. Based on the Euclidean division in R pq[y], we can reduce the degrees 
of entries in F with respect to y. Since the degrees are strictly descending, the reduction process 
stops in finite steps. Then, we solved the considering problem (Problem 4) and designed an algorithm 
(Algorithm 1) for reducing the matrix to its Smith form. Finally, we extend the main theorem (The-
orem 7) to the case of F ∈ F ∗ , and obtain a necessary and sufficient condition (Theorem 23) for the 
equivalence of F and S∗ .

With the resolution of the problem (Problem 6), the following problems will naturally be con-
sidered. Let F ∈ K [x, y]l×m be of full row rank and dl(F ) = pr1

1 pr2
2 · · · prs

s , where s ≥ 3, p1, . . . , ps are 
distinct and irreducible polynomials in K [x] and r1, . . . , rs are positive integers. What is the necessary 
and sufficient condition for the equivalence of F and its Smith form? If p1, . . . , ps ∈ K [x, y], what will 
be the conclusion? How to reduce F to its Smith form? We hope the results provided in the paper 
will motivate further research in the area of the equivalence and reduction of bivariate polynomial 
matrices.
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