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Abstract This paper investigates the equivalence problem of bivariate polynomial matrices. A nec-

essary and sufficient condition for the equivalence of a square matrix with the determinant being some

power of a univariate irreducible polynomial and its Smith form is proposed. Meanwhile, the authors

present an algorithm that reduces this class of bivariate polynomial matrices to their Smith forms, and

an example is given to illustrate the effectiveness of the algorithm. In addition, the authors generalize

the main result to the non-square case.
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1 Introduction

The equivalence of multivariate polynomial matrices is an important aspect in the theory of
multidimensional systems with wide applications in areas of image processing, multidimensional
signal analysis, iterative learning control systems, and so on (see [1, 2] and the references
therein), as a multidimensional system is often represented by a multivariate polynomial matrix
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by means of the polynomial approach to system theory. One motivation for transforming a
multivariate polynomial matrix to its Smith form is to reduce a multidimensional system to an
equivalent system containing fewer equations and unknowns.

For univariate polynomial matrices, the equivalence problem has been solved[3, 4]. As we
all know, a univariate polynomial matrix is always equivalent to its Smith form since the
univariate polynomial ring is a principal ideal domain with the Euclidean division property. For
multivariate polynomial matrices with two or more variables, however, the equivalence problem
is still open. There exist some results on the equivalence research of bivariate polynomial
matrices (see, e.g., [5–9]). Meanwhile, for the case of more than two variables, the equivalence
problem has only been investigated for some special cases (see, e.g., [10–12]).

Lin, et al.[13] generalized the result in [8] to the case with more than two variables and
posed that the equivalence of polynomial matrices is closely related to a unimodular matrix
completion. Furthermore, they showed that a square matrix F with det(F ) = x1−f(x2, · · · , xn)
can be reduced to its Smith form. After that, Li, et al.[14] proved that a square matrix F with
det(F ) = (x1 − f(x2, · · · , xn))t is equivalent to diag{1, · · · , 1, det(F )} if and only if the ideal
generated by det(F ) and all the minors of lower one order of F is a unit ideal. Recently, Li, et
al.[15–17] and Lu, et al.[18] also presented some new results on the equivalence of several classes
of multivariate polynomial matrices and obtained some criteria for these matrices to equivalent
to their Smith forms, respectively. These criteria are easily checked by the existing Gröbner
basis algorithm.

In this paper, we shall concentrate on the equivalence problem of bivariate polynomial
matrices. Li, et al.[19] proved that a square matrix F ∈ K[x, y]l×l with det(F ) being an
irreducible polynomial in K[x] and its Smith form are equivalent. Inspired by the work in [19],
we mainly investigate the Smith forms of a special type of polynomial matrices. That is,
F ∈ K[x, y]l×l with det(F ) = pt, where p ∈ K[x] is an irreducible polynomial and t is a positive
integer. We consider the problem that what is the necessary and sufficient condition for the
equivalence of F and its Smith form. By establishing a homomorphic mapping from K[x, y] to
Rp[y] and using elementary transformations in the Euclidean ring Rp[y] to reduce a matrix in
Rp[y]l×m to an upper triangular matrix, by means of the Quillen-Suslin Theorem we obtain the
desired results, where Rp = K[x]/(p) is a field. Moreover, we present an algorithm for reducing
this class of bivariate polynomial matrices to their Smith forms and extended this result to the
non-square case.

The rest of the paper is organized as follows. We present preliminary knowledge and basic
concepts for the equivalence of polynomial matrices, and two problems that we shall consider in
Section 2. A necessary and sufficient condition for the equivalence of polynomial matrices and
their Smith forms are showed in Section 3. An algorithm and an example are established to
illustrate our results in Section 4. Section 5 is the extension of the main theorem to non-square
case. The paper contains a summary of contributions and some remarks in Section 6.
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2 Preliminaries

Let K be a field, L be the algebraic closed field containing K, K[x, y] be the polynomial
ring in the variables x and y over K, and K[x, y]l×m be the set of l×m matrices with entries in
K[x, y]. Throughout this paper, we for convenience use diag{f1, · · · , fl} to denote the diagonal
matrix in K[x, y]l×l whose diagonal elements are f1, · · · , fl, where f1, · · · , fl ∈ K[x, y].

Let F ∈ K[x, y]l×m. For any given s+t positive integers arbitrarily with 1 ≤ i1 < · · · < is ≤ l

and 1 ≤ j1 < · · · < jt ≤ m, let F
(

i1···is
j1···jt

)
be an s × t matrix consisting of the i1-th, · · · , is-th

rows and the j1-th, · · · , jt-th columns of F . We use rank(F ) to denote the rank of F , and
det(F ) to be the determinant of F if l = m. For each integer i with 1 ≤ i ≤ rank(F ), let Ii(F )
be the ideal generated by all the i × i minors of F , and di(F ) be the greatest common divisor
of all the i × i minors of F . Here, we make the convention that d0(F ) ≡ 1 and di(F ) ≡ 0 for
i > rank(F ).

We first introduce a basic formula in matrix theory.

Lemma 2.1 (Binet-Cauchy Formula, [20]) Let F = G1F1, where G1 ∈ K[x, y]l×k and
F1 ∈ K[x, y]k×m. Then an r × r (1 ≤ r ≤ min{l, k, m}) minor of F is

det

⎛
⎝F

⎛
⎝i1 · · · ir

j1 · · · jr

⎞
⎠

⎞
⎠ =

∑
1≤s1<···<sr≤k

det

⎛
⎝G1

⎛
⎝ i1 · · · ir

s1 · · · sr

⎞
⎠

⎞
⎠ · det

⎛
⎝F1

⎛
⎝s1 · · · sr

j1 · · · jr

⎞
⎠

⎞
⎠ .

Then, we recall some important concepts and results from multidimensional systems theory.

Definition 2.2 ([21]) Let F ∈ K[x, y]l×m be of normal full rank with l ≤ m, then F is
said to be zero left prime (ZLP) if all the l × l minors of F generate K[x, y].

Definition 2.3 Let U ∈ K[x, y]l×l, then U is said to be unimodular if det(U) is a unit in
K.

In 1976, Quillen[22] and Suslin[23] solved a famous conjecture proposed by Serre[24] positively
and independently, and established a relationship between a ZLP matrix and a unimodular
matrix.

Theorem 2.4 (Quillen-Suslin Theorem) Let F ∈ K[x, y]l×m be a ZLP matrix with l < m,
then a unimodular matrix U ∈ K[x, y]m×m can be constructed such that F is its first l rows.

There are many methods for the Quillen-Suslin Theorem, we refer to [25–27] for more
details. In 2007, Fabiańska and Quadrat[28] first designed a Maple package QUILLENSUSLIN
to implement the Quillen-Suslin Theorem.

Definition 2.5 ([29]) Let F ∈ K[x, y]l×m with rank r, where 1 ≤ r ≤ min{l, m}. For
any given integer i with 1 ≤ i ≤ r, let a1, · · · , aβ be all the i× i minors of F , where β =

(
l
i

)(
m
i

)
.

Extracting di(F ) from a1, · · · , aβ yields

aj = di(F ) · bj, j = 1, · · · , β.

Then, b1, · · · , bβ are called the i × i reduced minors of F . For convenience, we use Ji(F ) to
denote the ideal in K[x, y] generated by b1, · · · , bβ .
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In 2001, Lin and Bose[30] proposed the Lin-Bose conjecture. After that, Pommaret[31], Wang
and Feng[32] used the Quillen-Suslin Theorem to solve the Lin-Bose conjecture, independently.
This result is as follows.

Lemma 2.6 Let F ∈ K[x, y]l×m with l ≤ m and rank(F ) = r, all the r×r reduced minors
of F generate K[x, y], where 1 ≤ r ≤ l. Then there exist G1 ∈ K[x, y]l×r and F1 ∈ K[x, y]r×m

such that F = G1F1 with F1 being a ZLP matrix.

Now, we present the concept of matrix equivalence.

Definition 2.7 Let F, Q ∈ K[x, y]l×m, then F is said to be equivalent to Q if there are
two unimodular matrices U ∈ K[x, y]l×l and V ∈ K[x, y]m×m such that F = UQV .

For convenience, F being equivalent to Q is denoted by F ∼ Q. Given two polynomial
matrices F1 and F2 with F1 ∼ F2, we have the following result by the Binet-Cauchy Formula.

Lemma 2.8 Let F1, F2 ∈ K[x, y]l×m with l ≤ m. If F1 ∼ F2, then di(F1) = di(F2),
Ii(F1) = Ii(F2) and Ji(F1) = Ji(F2), where i = 1, · · · , l.

In a univariate polynomial ring, there is the concept of Smith form for a univariate polyno-
mial matrix. We can use the same method to define the Smith form for a bivariate polynomial
matrix in K[x, y].

Definition 2.9 Let F ∈ K[x, y]l×m with rank r, and Φi be a polynomial defined as
follows,

Φi =

⎧⎪⎨
⎪⎩

di(F )
di−1(F )

, 1 ≤ i ≤ r;

0, r < i ≤ min{l, m}.
Moreover, Φi satisfies the divisibility property

Φ1 |Φ2 | · · · |Φr.

Then the Smith form of F is given by

S =

⎛
⎝diag{Φ1, · · · ,Φr} 0r×(m−r)

0(l−r)×r 0(l−r)×(m−r)

⎞
⎠ .

In this paper, we focus on the following two problems.

Problem 2.10 Let F ∈ K[x, y]l×l with det(F ) = pt, where p ∈ K[x] is an irreducible
polynomial and t is a positive integer. What is the necessary and sufficient condition for the
equivalence of F and its Smith form?

Problem 2.11 Assume that F is equivalent to its Smith form S. Constructing an algo-
rithm to compute two unimodular matrices U, V ∈ K[x, y]l×l such that F = USV .

3 Necessary and Sufficient Condition

The main objective of this section is to solve Problem 2.10.



EQUIVALENCE OF BIVARIATE MATRICES 81

Let F ∈ K[x, y]l×l with det(F ) = pt, where p ∈ K[x] is an irreducible polynomial and t is
a positive integer. We first analyze the specific form of Smith form of F .

It follows from di−1(F ) | di(F ) and di(F ) | det(F ) that there are l integers r1, · · · , rl with
0 ≤ r1 ≤ · · · ≤ rl ≤ t such that di(F ) = pri , where i = 1, · · · , l. Let s1 = r1 and sj = rj − rj−1,
where j = 2, · · · , l. By Definition 2.9, the Smith form of F is

S = diag{ps1 , ps2 , · · · , psl},

where s1 ≤ s2 ≤ · · · ≤ sl.
Now, we give the main result in the paper.

Theorem 3.1 Let F ∈ K[x, y]l×l with det(F ) = pt, where p ∈ K[x] is an irreducible
polynomial and t is a positive integer. Then F is equivalent to its Smith form if and only if
Ji(F ) = K[x, y] with i = 1, · · · , l.

The description of the main result is brief, but the proof is complicated. In order to under-
stand the whole proof, we use a simple example to illustrate our idea.

Example 3.2 Let F ∈ K[x, y]3×3 with det(F ) = p3, where p ∈ K[x] is an irreducible
polynomial. Assume that the Smith form of F is S = diag{1, p, p2}.

The first thing we want to do is to prove that there exist two unimodular matrices U, V ∈
K[x, y]3×3 such that UFV = diag{1, p, p} · G, where G ∈ K[x, y]3×3.

Second, we want to propose a condition such that U1GV1 = diag{1, 1, p}·G1, where U1, V1 ∈
K[x, y]3×3 are two unimodular matrices, and G1 ∈ K[x, y]3×3. It is easy to verify that G1 is
also a unimodular matrix. Now, we have

F = U−1 · diag{1, p, p} · U−1
1 · diag{1, 1, p} · G1V

−1
1 V −1.

The third thing is to prove that diag{1, p, p}·U−1
1 ·diag{1, 1, p} is equivalent to diag{1, p, p2}

under the same condition.
Then, we can derive the conclusion: F is equivalent to S.

According to Example 3.2, we divide our proof into three steps. In the following, we explain
them step by step.

Step 1 Let Rp = K[x]/(p). Since p is irreducible, Rp is a field. We consider the following
homomorphism

φ : K[x, y] −→ Rp[y]
n∑

i=1

ciy
i −→

n∑
i=1

ciy
i,

where c1, · · · , cn are polynomials in K[x]. This homomorphism can extend canonically to the
homomorphism φ : K[x, y]l×l → Rp[y]l×l by applying φ entry-wise. Let F ∈ K[x, y]l×l, we use
F to denote the polynomial matrix φ(F ) in Rp[y]l×l.
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Lemma 3.3 Let F ∈ K[x, y]l×l and p ∈ K[x] be an irreducible polynomial. If rank(F ) ≤
k, then there exist two unimodular matrices U, V ∈ K[x, y]l×l such that

UFV = diag{1, · · · , 1︸ ︷︷ ︸
k

, p, · · · , p} · G,

where G ∈ K[x, y]l×l.

Proof Note that Rp[y] is an Euclidean ring. We can transform F to the following upper
triangular matrix

F1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ · · · ∗
. . . . . .

...

∗ ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

only by using the first kind (interchanging the rows or columns) and third kind (adding multiple
of one row or column to another) of elementary transformations in Rp[y]. Therefore, there exist
a finite number of the first and third kinds of elementary matrices U1, · · · , Us, V1, · · · , Vt ∈
Rp[y]l×l such that

Us · · ·U1 · F · V1 · · ·Vt = F1. (1)

For each entry of Ui and Vi, we take the representation element whose degree with respect to x is
less than degx(p). By this way, we have unimodular matrices U1, · · · , Us, V1, · · · , Vt ∈ K[x, y]l×l

which satisfy Equation (1). Let U = Us · · ·U1 and V = V1 · · ·Vt, then U ·F ·V = F1. It follows
from rank(F ) ≤ k that the last l− k rows of F1 are zero vectors. This implies that all elements
of the last l − k rows of UFV are divisible by p. Consequently,

UFV = diag{1, · · · , 1︸ ︷︷ ︸
k

, p, · · · , p} · G

and the proof is completed.
Based on Lemma 3.3, we have the following corollary.

Corollary 3.4 Let F ∈K[x, y]l×l and p∈K[x] be an irreducible polynomial. If p | dk+1(F ),
then there exist two unimodular matrices U, V ∈K[x, y]l×l such that

UFV = diag{1, · · · , 1︸ ︷︷ ︸
k

, p, · · · , p} · G,

where G ∈ K[x, y]l×l.

Since p | d2(F ) in Example 3.2, by Corollary 3.4 there exist two unimodular matrices U, V ∈
K[x, y]3×3 such that UFV = diag{1, p, p} · G, where G ∈ K[x, y]3×3. Then, we solve the first
problem proposed in Example 3.2.
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Step 2 According to Lemma 3.3, if we would propose a condition to prove rank(G) = 2,
then we can solve the second problem raised in Example 3.2. Therefore, in this step we focus
on the rank of G.

In the following, we first present some useful lemmas.

Lemma 3.5 Let F ∈ K[x, y]l×l and p ∈ K[x] (not necessarily irreducible). Assume
that the Smith form of F is diag{ps1 , · · · , psl} with s1 ≤ · · · ≤ sl, and Ji(F ) = K[x, y] with
i = 1, · · · , l. If F ∼ diag{ps1 , · · · , psk , ps, · · · , ps} · G, then di(G) = 1 and Ji(G) = K[x, y],
where G ∈ K[x, y]l×l and i = 1, · · · , k.

Proof Let D = diag{ps1 , · · · , psk , ps, · · · , ps}, then di(D) = di(F ) = ps1+···+si , where
i = 1, · · · , k. Let A = DG, then F ∼ A. By Lemma 2.8, we have dj(F ) = dj(A) and
Jj(A) = K[x, y], where j = 1, · · · , l. Hence, di(D) = di(A) for 1 ≤ i ≤ k. For any given integer
i with 1 ≤ i ≤ k and an i × i minor h of A, according to the Cauchy-Binet Formula we get
h =

∑β
j=1 fjgj , where fj is an i× i minor of D and gj is an i× i minor of G. Divide both sides

of the above equation by di(A), we obtain

h

di(A)
=

β∑
j=1

fj

di(D)
gj . (2)

Obviously, the left side of Equation (2) is an i×i reduced minor of A. Moreover, Ji(A) ⊆ Ii(G).
It follows from Ji(A) = K[x, y] that Ii(G) = K[x, y]. Therefore, di(G) = 1 and Ji(G) = K[x, y],
where i = 1, · · · , k.

Lemma 3.6 Let G ∈ K[x, y]l×l and p ∈ K[x] be an irreducible polynomial. If there exist
two subsets {i1, · · · , ik} and {j1, · · · , jk} of {1, · · · , l} such that p � det

(
G

(
i1 ··· ik
j1 ··· jk

))
, and for

any integer ik+1 ∈ {1, · · · , l}\{i1, · · · , ik} and any subset {q1, · · · , qk+1} ⊂ {1, · · · , l} such that
p | det

(
G

(
i1 ··· ik ik+1
q1 ··· qk qk+1

))
, then rank(G) = k.

Proof Let G =
(
αT

1 , · · · , αT
l

)T
and

h = det

⎛
⎝G

⎛
⎝i1 · · · ik

j1 · · · jk

⎞
⎠

⎞
⎠ .

Since p � h, we have h 
= 0 in Rp[y]. It follows that αi1 , · · · , αik
are Rp[y]-linearly independent,

and rank(G) ≥ k. As for any ik+1 ∈ {1, · · · , l} \ {i1, · · · , ik} and {q1, · · · , qk+1} ⊂ {1, · · · , l}
such that

p | det

⎛
⎝G

⎛
⎝ i1 · · · ik ik+1

q1 · · · qk qk+1

⎞
⎠

⎞
⎠ ,

αi1 , · · · , αik
, αik+1 are Rp[y]-linearly dependent. This implies that there are hik+11, · · · , hik+1k ∈

Rp(y) such that
αik+1 = hik+11αi1 + · · · + hik+1kαik

, (3)

where Rp(y) is the rational fraction field of Rp[y]. For any given subset {t1, · · · , tk, tk+1} of
{1, · · · , l}, we next prove that αt1 , · · · , αtk

, αtk+1 are Rp[y]-linearly dependent.
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According to Equation (3), we have
⎛
⎜⎜⎜⎜⎜⎜⎝

αt1

...

αtk

αtk+1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ht11 · · · ht1k

...
. . .

...

htk1 · · · htkk

htk+11 · · · htk+1k

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

αi1

...

αik

⎞
⎟⎟⎟⎠ , (4)

where htrn ∈ Rp(y), 1 ≤ r ≤ k + 1 and 1 ≤ n ≤ k. For convenience, we write Equation (4)
as A = HB, where H ∈ Rp(y)(k+1)×k. Obviously, rank(H) ≤ k in Rp(y). Then there exists
a nonzero vector w ∈ Rp(y)1×(k+1) such that wH = 0. Combining this equation and A =
HB, we have wA = 0. Assume that w = (w1, · · · , wk, wk+1), where w1, · · · , wk, wk+1 ∈
Rp(y). Multiplying both sides of the equation wA = 0 by the least common multiple of the
denominators of w1, · · · , wk, wk+1, we obtain w′

1αt1 + · · · + w′
kαtk

+ w′
k+1αtk+1 = 0, where

w′
1, · · · , w′

k, w′
k+1 ∈ Rp[y] and are not all zeros.

As a consequence, rank(G) = k.
Now, we propose the most important result in this step.

Lemma 3.7 Let F ∈ K[x, y]l×l with det(F ) = pt, where p ∈ K[x] is an irreducible
polynomial and t is a positive integer. Assume that the Smith form of F is diag{ps1 , · · · , psl}
with s1 ≤ · · · ≤ sl. If F ∼ diag{ps1 , · · · , psk , ps, · · · , ps} ·G and sk ≤ s < sk+1, then rank(G) =
k, where G ∈ K[x, y]l×l.

Proof According to Lemma 3.5, we have dk(G) = 1. Then, there exists a k × k minor h of
G such that p � h. This implies that rank(G) ≥ k. Next, we prove that rank(G) = k. Let

A = diag{ps1 , · · · , psk , ps, · · · , ps} · G,

then F ∼ A. In the following, we consider three cases.
1) s1 = · · · = sk = s. Then for all subsets {i1, · · · , ik, ik+1} and {j1, · · · , jk, jk+1} of

{1, · · · , l} we have

det

⎛
⎝A

⎛
⎝i1 · · · ik ik+1

j1 · · · jk jk+1

⎞
⎠

⎞
⎠ = p(k+1)s · det

⎛
⎝G

⎛
⎝i1 · · · ik ik+1

j1 · · · jk jk+1

⎞
⎠

⎞
⎠ .

By F ∼ A and Lemma 2.8, we get dk+1(A) = dk+1(F ) = pks+sk+1 . As sk+1 > s and dk+1(A)
is a divisor of any (k + 1) × (k + 1) minor of A, we have

p | det

⎛
⎝G

⎛
⎝i1 · · · ik ik+1

j1 · · · jk jk+1

⎞
⎠

⎞
⎠ .

It follows that p | dk+1(G). Hence, rank(G) = k.
2) There exists an integer m with m < k such that s1 ≤ · · · ≤ sm < sm+1 = · · · = sk = s.
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Let

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

g11 · · · g1l

...
. . .

...

gl1 · · · gll

⎞
⎟⎟⎟⎟⎟⎟⎠

,

then

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ps1g11 · · · ps1g1k · · · ps1g1l

...
. . .

...
. . .

...

psmgm1 · · · psmgmk · · · psmgml

psgm+1,1 · · · psgm+1,k · · · psgm+1,l

...
. . .

...
. . .

...

psgl1 · · · psglk · · · psgll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Let e =
∑m

i=1 si, then

det

⎛
⎝A

⎛
⎝ 1 · · · m im+1 · · · ik

j1 · · · jm jm+1 · · · jk

⎞
⎠

⎞
⎠ = pe+(k−m)s · det

⎛
⎝G

⎛
⎝ 1 · · · m im+1 · · · ik

j1 · · · jm jm+1 · · · jk

⎞
⎠

⎞
⎠ .

We assert that there exist two sets {im+1, · · · , ik} ⊂ {m+1, · · · , l} and {j1, · · · , jk} ⊂ {1, · · · , l}
such that

p � det

⎛
⎝G

⎛
⎝ 1 · · · m im+1 · · · ik

j1 · · · jm jm+1 · · · jk

⎞
⎠

⎞
⎠ .

If the assertion would not hold, then we have

pe+(k−m)s+1 | det

⎛
⎝A

⎛
⎝ 1 · · · m im+1 · · · ik

j1 · · · jm jm+1 · · · jk

⎞
⎠

⎞
⎠

for all {im+1, · · · , ik} ⊂ {m + 1, · · · , l} and {j1, · · · , jk} ⊂ {1, · · · , l}. From Equation (5), it is
easy to check that any other k×k minor of A is also divisible by pe+(k−m)s+1. This contradicts
the fact that dk(A) = pe+(k−m)s.

For any given ik+1 ∈ {m + 1, · · · , l} \ {im+1, · · · , ik} and {q1, · · · , qk+1} ⊂ {1, · · · , l}, we
have

det

⎛
⎝A

⎛
⎝ 1 · · · m im+1 · · · ik+1

q1 · · · qm qm+1 · · · qk+1

⎞
⎠

⎞
⎠ = pe+(k−m+1)s·det

⎛
⎝G

⎛
⎝ 1 · · · m im+1 · · · ik+1

q1 · · · qm qm+1 · · · qk+1

⎞
⎠

⎞
⎠ .
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Since dk+1(A) = pe+(k−m)s+sk+1 and sk+1 > s, we get

p | det

⎛
⎝G

⎛
⎝ 1 · · · m im+1 · · · ik+1

q1 · · · qm qm+1 · · · qk+1

⎞
⎠

⎞
⎠ .

Based on Lemma 3.6, we obtain rank(G) = k.
3) s1 ≤ · · · ≤ sk < s. We can use the same method to prove that rank(G) = k.
Therefore, rank(G) = k and the proof is completed.

Remark 3.8 Combining Lemma 3.3 and Lemma 3.7, there exist two unimodular matrices
U1, V1 ∈ K[x, y]l×l such that

U1GV1 = diag{1, · · · , 1︸ ︷︷ ︸
k

, p, · · · , p} · G1,

where G1 ∈ K[x, y]l×l.

By Remark 3.8, we solve the second problem proposed in Example 3.2.
Step 3 In this step, we will prove that

diag{ps1 , · · · , psk , ps, · · · , ps} · U · diag{1, · · · , 1︸ ︷︷ ︸
k

, p, · · · , p}

is equivalent to diag{ps1 , · · · , psk , ps+1, · · · , ps+1} under the condition which proposed in Lemma
3.10, where U ∈ K[x, y]l×l is a unimodular matrix.

First, we propose a lemma.

Lemma 3.9 Let F ∈ K[x, y]l×l and p ∈ K[x] (not necessarily irreducible). Assume
that the Smith form of F is diag{ps1 , · · · , psl} with s1 ≤ · · · ≤ sl, and Ji(F ) = K[x, y] with
i = 1, · · · , l. Let

B = diag{ps1 , · · · , psk , ps, · · · , ps} · U · diag{1, · · · , 1︸ ︷︷ ︸
k

, p, · · · , p},

where U ∈ K[x, y]l×l (not necessarily unimodular). If F ∼ BG, then di(B) = ps1+···+si and
Ji(B) = K[x, y], where G ∈ K[x, y]l×l and i = 1, · · · , k.

The proof of Lemma 3.9 is basically the same as that of Lemma 3.5, except that we focus
on B. Hence, the proof is omitted here.

Now, we solve the problem proposed in this step.

Lemma 3.10 Let

B = diag{ps1 , · · · , psk , ps, · · · , ps} · U · diag{1, · · · , 1︸ ︷︷ ︸
k

, p, · · · , p},

where s1 ≤ · · · ≤ sk ≤ s, p ∈ K[x] is an irreducible polynomial and U ∈ K[x, y]l×l is a
unimodular matrix. If di(B) = ps1+···+si and Ji(B) = K[x, y] with i = 1, · · · , k, then

B ∼ diag{ps1 , · · · , psk , ps+1, · · · , ps+1}.
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Proof We consider the following three cases.
1) If s1 = · · · = sk = s, then the conclusion is obvious.
2) There exists an integer m with m < k such that s1 ≤ · · · ≤ sm < sm+1 = · · · = sk = s.

Let U =
(

U1 U2
U3 U4

)
, where U1 ∈ K[x, y]m×k, U2 ∈ K[x, y]m×(l−k), U3 ∈ K[x, y](l−m)×k and

U4 ∈ K[x, y](l−m)×(l−k). Let a1, · · · , aβ be all the m × m minors of (U1, U2). Since U is
a unimodular matrix, a1, · · · , aβ have no common zeros in L2. By the computation, all the
m × m minors of (U1, pU2) are

a1, · · · , aβ0 , paβ1 , · · · , p2aβ2 , · · · , p3aβ3 , · · · , ptaβ ,

where t = min{m, l − k}. We claim that (U1, pU2) is a ZLP matrix. Otherwise, a1, · · · , aβ0 , p

have common zeros. We compute all the m × m reduced minors of B, and these reduced
minors can be classified into two types: The m× m reduced minors of diag{ps1 , · · · , psm} · U1,
and other m × m reduced minors. Since dm(B) = ps1+···+sm , the m × m reduced minors of
diag{ps1 , · · · , psm} · U1 are exactly a1, · · · , aβ0 , and other m × m reduced minors are divisible
by p. Therefore, all the m × m reduced minors of B have common zeros, which contradicts to
Jm(B) = K[x, y].

According to the Quillen-Suslin Theorem, there exists a unimodular matrix P ∈ K[x, y]l×l

such that
(U1, pU2)P = (Em, 0m×(l−m)),

where Em is the m × m identity matrix. Hence,

BP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ps1

. . .

psm

psvm+1,1 · · · psvm+1,m psvm+1,m+1 · · · psvm+1,l

...
. . .

...
...

. . .
...

psvl,1 · · · psvl,m psvl,m+1 · · · psvl,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

(U3, pU4)P =

⎛
⎜⎜⎜⎜⎜⎜⎝

vm+1,1 · · · vm+1,l

...
. . .

...

vl,1 · · · vl,l

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If vi,j is divisible by p for all i with m + 1 ≤ i ≤ l and j with k + 1 ≤ j ≤ l, we get

BP = Q · diag{ps1 , · · · , psm , ps, · · · , ps

︸ ︷︷ ︸
k−m

, ps+1, · · · , ps+1}.
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It is easy to compute that det(Q) ∈ K \ {0}. Therefore, we have

B ∼ diag{ps1 , · · · , psk , ps+1, · · · , ps+1}.
Otherwise, by elementary transformations we have

B ∼ C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ps1

. . .

psm

psV

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

vm+1,m+1 · · · vm+1,l

...
. . .

...

vl,m+1 · · · vl,l

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In the following, we prove that there are two unimodular matrices P1, Q1∈K[x, y](l−m)×(l−m)

such that

V = P1

⎛
⎝Ek−m

pEl−k

⎞
⎠ GQ1, (6)

where G ∈ K[x, y](l−m)×(l−m). It suffices to prove that rank(V ) ≤ k − m.
Let e =

∑m
i=1 si + (k − m + 1)s + 1. Since pe | dk+1(B) and B ∼ C, we have pe | dk+1(C).

Let V ′ be an arbitrary (k − m + 1) × (k − m + 1) submatrix of V , then

C′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ps1

. . .

psm

psV ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a (k + 1)× (k + 1) submatrix of C. Therefore, pe | det(C′) implies that p | det(V ′). It follows
that p | dk−m+1(V ). Then, rank(V ) ≤ k − m. Based on Lemma 3.3, Equation (6) holds.
Through some simple elementary transformations, we have

C ∼ diag{ps1 , · · · , psm , ps, · · · , ps

︸ ︷︷ ︸
k−m

, ps+1, · · · , ps+1} ·
⎛
⎝Em

G

⎞
⎠ .

By computing the determinant of
(

Em

G

)
we find that it is a unimodular matrix. Therefore,

B ∼ C ∼ diag{ps1 , · · · , psk , ps+1, · · · , ps+1}.
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3) If s1 ≤ · · · ≤ sk < s, then we obtain the same conclusion by the above method.
Therefore, the proof is completed.
Based on Lemma 3.10, we solve the third problem proposed in Example 3.2.

Proof of the Main Theorem

With all the above results, we now prove Theorem 3.1.

Proof Necessity. Assume that F ∼ S = diag{ps1 , · · · , psl}. By Lemma 2.8, it is easy to
compute that Ji(F ) = Ji(S) = K[x, y], where i = 1, · · · , l.

Sufficiency. Since d1(F ) = ps1 , we have F = diag{ps1 , · · · , ps1} · G1. If s2 = s1, then
F = diag{ps1 , ps2 , · · · , ps2}·G2, where G2 = G1. If s2 > s1, then by Lemma 3.7 and Remark 3.8
we have G1 = U21 · diag{1, p, · · · , p} · G21V21, where U21, V21 ∈ K[x, y]l×l are two unimodular
matrices, and G21 ∈ K[x, y]l×l. Then, we get

F ∼ diag{ps1 , ps1 , · · · , ps1} · U21 · diag{1, p, · · · , p} · G21.

According to Lemmas 3.9 and 3.10, there exist two unimodular matrices U ′
21, V

′
21 ∈ K[x, y]l×l

such that

diag{ps1 , ps1 , · · · , ps1} · U21 · diag{1, p, · · · , p} = U ′
21 · diag{ps1 , ps1+1, · · · , ps1+1} · V ′

21.

Let G′
21 = V ′

21G21, then F ∼ diag{ps1 , ps1+1, · · · , ps1+1}G′
21. Repeat this process for s2 − s1

times, we obtain
F ∼ diag{ps1 , ps2 , · · · , ps2} · G2.

We can use the same method to get F ∼ diag{ps1 , ps2 , · · · , psl} ·Gl. It is easy to check that Gl

is a unimodular matrix. Therefore, we have

F ∼ diag{ps1 , ps2 , · · · , psl},

and the proof is completed.

4 Algorithm and Illustrative Example

In this section, we first propose an algorithm to solve Problem 2.11, and then use an example
to show the effectiveness of the algorithm.

According to the proof of Theorem 3.1, we can construct the following algorithm to com-
pute the Smith form of F ∈ K[x, y]l×l with det(F ) = pt, where p ∈ K[x] is an irreducible
polynomial and t is a positive integer. We have implemented the algorithm on Maple with K

of characteristic zero. For interested readers, more examples can be generated by the codes at:
http://www.mmrc.iss.ac.cn/ dwang/software.html.

Theorem 4.1 Algorithm 1 outputs as specified within a finite number of steps.

Proof The correctness and termination follow directly from Theorem 3.1.
We now use an example to illustrate the calculation process of Algorithm 1.
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Algorithm 1: Smith Form(F )

Input: F ∈ K[x, y]l×l with det(F ) = pt, where p ∈ K[x] is irreducible.
Output: S, U, V ∈ K[x, y]l×l, where S is the Smith form of F , and U, V are two

unimodular matrices such that F = USV .
Compute di(F ) and Ji(F ), where i = 1, · · · , l;
if there exists some integer i with 1 ≤ i ≤ l such that Ji(F ) 
= K[x, y] then

return F is not equivalent to its Smith form.
S := diag{ps1 , ps2 , · · · , psl};
Extract ps1 from each row of F and obtain a matrix G which satisfies
F = diag{ps1 , · · · , ps1} · G;
Let U, V be two identity matrices;
for i from 2 to l do

if si 
= si−1 then
for j from 1 to si − si−1 do

compute a matrix G′ and two unimodular matrices U ′, V ′ such that
G = U ′ · diag{1, · · · , 1︸ ︷︷ ︸

i−1

, p, · · · , p} · G′ · V ′;

compute a matrix G′′ and two unimodular matrices U ′′, V ′′ such that
diag{ps1 , · · · , psi−1 , psi−1+j−1, · · · , psi−1+j−1} · U ′ · diag{1, · · · , 1︸ ︷︷ ︸

i−1

, p, · · · , p} =

U ′′ · diag{ps1 , · · · , psi−1 , psi−1+j , · · · , psi−1+j} · V ′′;
G := V ′′ · G′, U := U · U ′′ and V := V ′ · V ;

V := G · V ;
return S, U, V .

Example 4.2 Let

F =

⎛
⎜⎜⎜⎜⎝

−y2 + 1 + (x − y − 1)(x2 + 1)2y x − y − 1 −y + (x − y − 1)(x2 + 1)2

x(x + 1)(−y2 + 1) + y(x2 + 1)2 −(x + 1)(xy + x + 1) x4 − x2y + 2x2 − xy + 1

x(y2 − 1) x(y − x + 1) + x2 + 1 xy

⎞
⎟⎟⎟⎟⎠

be a bivariate polynomial matrix in Q[x, y]3×3, where Q is the rational number field.
It is easy to compute that d1(F ) = 1, d2(F ) = x2 + 1, d3(F ) = (x2 + 1)3. Then, the Smith

form of F is
S = diag{1, x2 + 1, (x2 + 1)2}.

We compute the reduced Gröbner basis Gi of all the i × i reduced minors of F and obtain
Gi = {1}, where i = 1, 2, 3. Based on Theorem 3.1, F is equivalent to S. In the following, we
compute two unimuodular matrices U, V ∈ Q[x, y]3×3 such that F = USV .

Let p = x2+1. As p | d2(F ), we have rank(F ) ≤ 1. By Lemma 3.3, there are two unimodular



EQUIVALENCE OF BIVARIATE MATRICES 91

matrices

U1 =

⎛
⎜⎜⎜⎜⎝

1 0 0

−x + 1 1 0

x 0 1

⎞
⎟⎟⎟⎟⎠

and V1 =

⎛
⎜⎜⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎟⎟⎠

such that U1FV1 = diag{1, p, p} · G1, where

G1 =

⎛
⎜⎜⎜⎜⎝

x − y − 1 G1[1, 2] G1[1, 3]

−y − 2 G1[2, 2] G1[2, 3]

1 xy(x2 + 1)(x − y − 1) x(x2 + 1)(x − y − 1)

⎞
⎟⎟⎟⎟⎠

with G1[1, 2] = −y2 + 1 +(x− y − 1)(x2 +1)2y, G1[1, 3] = −y +(x− y − 1)(x2 +1)2, G1[2, 2] =
−x4y +x3y2 +2x3y−x2y2 −x2y +xy2 +2xy− 2y2 +1 and G1[2, 3] = −x4 +x3y +2x3 −x2y−
x2 +xy +2x− 2y. It follows from Lemma 3.7 that rank(G) = 2. Using Lemma 3.3 again, there
exist two unimodular matrices

U2 =

⎛
⎜⎜⎜⎜⎝

0 0 1

0 1 y + 2

1 −1 −x − 1

⎞
⎟⎟⎟⎟⎠

and V2 =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎟⎟⎟⎠

such that U2G1V2 = diag{1, 1, p} · G2, where

G2 =

⎛
⎜⎜⎜⎜⎝

1 x(x2 + 1)(x − y − 1) xy(x2 + 1)(x − y − 1)

0 G2[2, 2] G2[2, 3]

0 −1 −y

⎞
⎟⎟⎟⎟⎠

with G2[2, 2] = x4y − x3y2 + x4 − 2x3y −xy2 +x2 − 2xy− 2y and G2[2, 3] = −x4 + x3y + 2x3 −
x2y − x2 + xy + 2x − 2y. Since det(G2) = 1, we have that G2 is a unimodular matrix. So,

F = U−1
1 · diag{1, p, p} · U−1

2 · diag{1, 1, p} · G2V
−1
2 V −1

1 .

Let

B = diag{1, p, p} · U−1
2 · diag{1, 1, p} =

⎛
⎜⎜⎜⎜⎝

x − y − 1 1 x2 + 1

(x2 + 1)(−y − 2) x2 + 1 0

x2 + 1 0 0

⎞
⎟⎟⎟⎟⎠

.

It is easy to see that the first row of U−1
2 ·diag{1, 1, p} is a ZLP vector. Then, we can construct
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a unimodular matrix

P =

⎛
⎜⎜⎜⎜⎝

0 1 0

1 −x + y + 1 −x2 − 1

0 0 1

⎞
⎟⎟⎟⎟⎠

such that

BP =

⎛
⎜⎜⎜⎜⎝

1 0 0

x2 + 1 −(x + 1)(x2 + 1) −(x2 + 1)2

0 x2 + 1 0

⎞
⎟⎟⎟⎟⎠

.

Since the last column of BP is divisible by p2, we obtain

BP = U3 · diag{1, p, p2} =

⎛
⎜⎜⎜⎜⎝

1 0 0

x2 + 1 −(x + 1) −1

0 1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0

0 p 0

0 0 p2

⎞
⎟⎟⎟⎟⎠

,

where U3 is a unimodular matrix. Let U = U−1
1 U3 and V = P−1G2V

−1
2 V −1

1 , then

F = USV.

5 Non-Square Case

In this section, we extend Theorem 3.1 to the case of non-square matrices.

Corollary 5.1 Let F ∈ K[x, y]l×m with l < m and dl(F ) = pt, where p ∈ K[x] is an
irreducible polynomial and t is a positive integer. Then F is equivalent to its Smith form if and
only if Ji(F ) = K[x, y] with i = 1, · · · , l.

Proof The Smith form of F is S = (diag{ps1 , · · · , psl}, 0l×(m−l)).
Necessity. Assume that F ∼ S. By Lemma 2.8, it is easy to verify that Ji(F ) = Ji(S) =

K[x, y], where i = 1, · · · , l.
Sufficiency. Since Jl(F ) = K[x, y], by Lemma 2.6 there exist G1 ∈ K[x, y]l×l and F1 ∈

K[x, y]l×m such that F = G1F1 with F1 being a ZLP matrix. According to the Quillen-Suslin
Theorem, there is a unimodular matrix P ∈ K[x, y]m×m such that F1P = (El, 0l×(m−l)).
Multiplying both sides of the equation F = G1F1 by P , we obtain FP = (G1, 0l×(m−l)). As
P is a unimodular matrix, we have F ∼ (G1, 0l×(m−l)). Using Lemma 2.8, di(G1) = di(F )
and Ji(G1) = Ji(F ) = K[x, y], where i = 1, · · · , l. According to Theorem 3.1, there are two
unimodular matrices U, V ∈ K[x, y]l×l such that G1 = U · diag{ps1 , · · · , psl} · V . Therefore,

F = US

⎛
⎜⎝

V

Em−l

⎞
⎟⎠P−1.
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The proof is completed.

Remark 5.2 Li, et al.[19] also considered the non-square case. They proved that F and

(diag{1, · · · , 1︸ ︷︷ ︸
l−1

, pt}, 0l×(m−l))

are equivalent if and only if the (l − 1)× (l − 1) minors of F generate the unit ideal K[x, y]. It
is easy to check that this result is a special case of Corollary 5.1.

Corollary 5.3 Let F ∈ K[x, y]l×m with rank r, where 1 ≤ r ≤ l < m. Assume that
dr(F ) = pt, where p ∈ K[x] is an irreducible polynomial and t is a positive integer. Then F is
equivalent to its Smith form if and only if Ji(F ) = K[x, y] with i = 1, · · · , r.

The proof of Corollary 5.3 is the same as that of Corollary 5.1, and is omitted here.

6 Conclusions

A necessary and sufficient condition for the equivalence of a bivariate polynomial matrix
and its Smith form has been proposed. We establish a homomorphic mapping from K[x, y] to
Rp[y], where p ∈ K[x] is an irreducible polynomial and Rp = K[x]/(p) is a field. Then we can
use elementary transformations in the Euclidean ring Rp[y] to reduce a matrix in Rp[y]l×m to
an upper triangular matrix. This implies that we can extract p from some rows of a matrix in
K[x, y]l×m after multiplying by some unimodular matrices in K[x, y]l×m. The Quillen-Suslin
Theorem plays an important role in the proof of Theorem 3.1, which helps us eliminate the
influence of a unimodular matrix and obtain the Smith form of a bivariate polynomial matrix.

In this paper we solve the equivalence problem of a special bivariate polynomial matrix
and its Smith form, but the following problem arises naturally. If F ∈ K[x1, · · · , xn]l×l and
det(F ) = pt, where p ∈ K[x1] is an irreducible polynomial, is F equivalent to its Smith
form? Although K[x1]/(p) is a field, K[x1]/(p)[x2, · · · , xn] is just a quotient ring and no
longer has the Euclidean division property. This shows that we cannot directly extend the
research method of Theorem 3.1 to the n-dimensional case. The authors in [29, 33, 34] studied
algebraic invariants of multidimensional (n-D) systems and used them to transform multivariate
polynomial matrices to some simpler but equivalent forms. We expect that the method will
provide us with new ideas for solving the above problem and obtain the desired result.
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Processing, Radon Series on Computational and Applied Mathematics, Walter de Gruyter, 2007,

3: 23–106.

[29] Lin Z, On matrix fraction descriptions of multivariable linear n-D systems, IEEE Transactions

on Circuits and Systems, 1988, 35(10): 1317–1322.

[30] Lin Z and Bose N, A generalization of serre’s conjecture and some related issues, Linear Algebra

and Its Applications, 2001, 338: 125–138.

[31] Pommaret J F, Solving bose conjecture on linear multidimensional systems, Proceedings of Eu-

ropean Control Conference, IEEE, Porto, Portugal, 2001, 1653–1655.

[32] Wang M and Feng D, On Lin-Bose problem, Linear Algebra and Its Applications, 2004, 390(1):

279–285.

[33] Pugh A C, McInerney S J, and El-Nabrawy E M O, Zero structures of n-D systems, International

Journal of Control, 2005, 78(4): 277–285.

[34] Li L, Li X, and Lin Z, Stability and stabilisation of linear multidimensional discrete systems in

the frequency domain, International Journal of Control, 2013, 86(11): 1969–1989.


