following Wu's characteristic methods.
Lemma 5.1.1 Let
$$Z \subseteq KiY$$
 be a finite set of
nonzero S-polys. We can find an autoreduced set $A \subseteq Z$
which is of lowest vank among all autoreduced sets
autoreduced set is called a basic set of Z.
Ploof: Fixet select $A_i \in Z$ which has the lowest vank
in Z. Let $Z_i = f \notin Z \mid f$ is reduced u.r.t. A_i ?.
If $Z_i = \phi$, then A_i satisfies the Condition of the lemma.
Otherwise, choose $A \subseteq Z_i$ of lowest vank.
Let $Z_2 = f \notin Z_i \mid f$ is reduced w.r.t. $A_i A_2$?.
If $Z_i = \phi$, then $A = A_i$, A_2 is a basic set of Z.
Otherwise, let $A_i \in Z_i$ be of lowest vank.
If $Z_i = \phi$, then $A = A_i$, A_2 is a basic set of Z.
Otherwise, let $A_i \in Z_i$ be of lowest vank.
 $Z_i = f \notin Z_i \mid f$ is reduced w.r.t. $A_i A_2$?.
If $Z_i = \phi$, then $A = A_i$, A_2 is a basic set of Z.
Otherwise, let $A_i \in Z_i$ be of lowest vank.
 $Z_i = A_i = A_i$, A_i is a basic set of Z.
 $Z_i = A_i = A_i$, A_i of the desired property. Ξ .

Let $Z \subseteq KSY$ be a finite set of nonzero S-polys. If $N(Z) = \emptyset$, we call Z a contradictory system Given another doff poly set G, we denote $N(Z/G) \triangleq \{ Z \in \mathbb{R}^n \mid Z \in N(Z) \& G(Z) \neq 0 \}$ and call $N(Z/G) \land Grasi-S$ variety.

We now pload to study the structure of N(Z).
First set
$$Z_0 = Z$$
 and take a basic set A_0 of Z.
Let $R_0 = \{ S \text{ Yem}(f, A_0) \mid f \in Z \setminus S_0 \} \setminus \{ 0 \}$.
If $R_0 \neq \emptyset$, set $Z_1 = Z \cup R_0$ and take a basic set A_0 ,
of Z. Let $R_1 = \{ S \text{ Yem}(f, A_0) \mid f \in Z \setminus A_1 \} \setminus \{ 0 \}$.
If $R_1 \neq \emptyset$, set $Z_2 = Z_1 \cup R_1$ and construct a basic set
 A_2 of Z_2 and R_2 accordingly. In this way, we shall
get a strictly indeasing sequence of Spdy sets
 $Z_0 \subseteq Z_1 \subseteq Z_2 \subseteq \cdots$
with a strictly decleasing sequence of autokeduced sets
 $A_0 = A_1 = A_2 > \cdots$.
This decleasing sequence can have only finite terms.
Thus, $\exists P_0 \ge 1$ st. $R_0 = \emptyset$. The above gives an algorithm:
 $\overline{Z_0 = Z_1 = Z_0 \cup R_1} \subseteq \cdots \subseteq Z_{S_0} = \overline{Z_{S_0} \cup Z_{S_0}} \cup X_0$
 $A_0 > A_1 > \cdots > A_{S_0}$
 $R_0 \neq \emptyset$ $R_1 \neq \emptyset$ $\ldots = R_0 = \emptyset$.

where Ai = a basic set of Zi $R_i = S - Iem(Z_i | A_i, A_i) \setminus \{ o \}$ $\mathcal{T}_i = \mathcal{Z}_{i+1} \cup \mathcal{R}_{i+1}$ Definition 5.13 The above obtained Aq is called a characteristic Set of the finite set $Z \subseteq K_{2}Y_{1}^{2}$.

Theorem 5.14 (Ritt-Wu's Well-Ordering Principle) let ZSKSY? be a finite nonempty 8-poly set. There is an algorithm to construct an autoreduced set A, which is a characteristic set of Z, such that either

(1) A consists of a nonzero eft in K; in this Case Z is a contradictory system; (2) A=A,..., Ap with A, EKEY} K such that

 $A_i \in [Z]$ and $\forall f \in Z$, $S^{-i}(em(f, A) = 0;$ in this case, we have $\mathbb{W}(\mathbb{A}/\mathbb{H}_{\mathbb{A}}) \subseteq \mathbb{W}(\mathbb{Z}) \subseteq \mathbb{W}(\mathbb{A})$ and $W(Z) = W(A/HA) \cup \bigcup_{A \in A} (W(Z, I_A) \cup W(Z, S_A)).$ (Wul) the formula for the structure of W(Z) proof. The first assertion has been shown above the scheme (X). That is, I get sit. Rg=\$ and A:= Aq is a charadelistic set of Z. Note that $A = Aq \subseteq Zq$ and $S - Ven(Zq, A) = \{o\}$. So $W(Z_{q_0}) \subseteq W(A)$ and \mathcal{E} -verm $(Z, A) = \{o\}$ for $Z \subseteq Z_m$. For each i, $R_i = S \operatorname{Iem}(Z_i | A_i, A_i) | \{0\}$, we have $R_i \subseteq [Z_i]$ and $Z_{i+1} = Z_i \cup R_i \subseteq [Z_i]$. So $W(Z_i) = W(Z_{i+1})$ Thus, $W(Z) = W(Z_1) = \cdots = W(Z_{q_2}) \subseteq W(A)$ and $A = A_{q_e} \subseteq \mathbb{Z}_{q_e} \subseteq \mathbb{Z}_{q_e}$. If A consists a nonzero eff in K, $W(Z) \leq W(A) = p$, So in this case, $W(z) = \phi$. Otherwise, A=AI,..., Ap for some p and A, EKIY/K.

Since \S -rem $(Z, A) = \S_0 \S_1$, $\forall f \in Z, \exists H_f \in H_A^{\infty}$ s.t. $H_f \in [A]$. So $W(A/H_A) \subseteq W(Z)$. Thus, $W(A/H_A) \subseteq W(Z) \subseteq W(A)$ and $W(A/H_A) = W(Z/H_A)$. Note that a s-zero f of Z which annul $H_A = \prod_{A \in A} is$ necessarily a zero of some I_A or S_A . So $W(Z) = W(A/H_A) \cup \bigcup_{A \in A} U(Z, I_A) \cup W(Z, S_A)$.

Example: let $f = Y_1 + 1$, $g = Y_1 + Y_2$ in $\mathcal{O}(\mathcal{H}_1, Y_2)$. (1) Consider the elimination ranking R, with Y, 7/2. We compute a char set of the set Z= Sf, g? W.r.t. R. following the scheme (x). let Zo = Z. Ao = g is a basic set of Zo compute $\gamma_1 := S \cdot \operatorname{rem}(f, g) = 1 - \gamma_2''$ and $R_0 := \{\gamma_1\}$. Let $Z_1 := Z_0 \cup R_0 = \{f, g, \gamma_i\}$. $A_i := \gamma_i, g$ is a basic set of Z_1 . Compute $Y_2 \stackrel{\scriptscriptstyle d}{=} S - \gamma e_m(f, A_1) = 0$. So $R_1 = \phi$. Thus, A,= 1, 9 is a characteristic set of 2.

(2) Consider the orderly ranking & with Y, 7/2.
(el Z:=Z. A:=9, f is a basic set of Z.
Ro-\$\overline\$. So A=9, f is a char set w.r.t. Rz. Remark To simplify the algorithm, we can Veplace Zi=ZinURing by Zz=ZUBinURin. $(Excertise: show W(Z_i) = W(Z) for \forall i)$. Theorem 5.1.5 (Zero Decomposition Theorem: Weak form) There is a mechanical procedure which permits to compute in a finite number of steps for a given finite system Z of nonzero doff polys, a finite number of autoreduced sets CS1,..., CSm such that $W(Z) = \bigcup_{i} W(CS_{i}/H_{CS_{i}})$ and $S-Vem(\Sigma/CS_j) = \{0\}$. Here, H_{CS_j} is the product of initials and separants of

S-polys in CSj. And each CSj is of rank
less than or equal to that of a basic
set of Z.
ploof. By the Well-ordering Principle,
$$W(Z) = W(CS/H_{CS}) \cup U(N(Z, I_A) \cup W(Z, S_A))$$
,
where CS is a char set of Z, Hos is the
product of initials and separate of CS.
If CS considing of a nonzero ett in K, $W(Z) = W(CS/H_{CS}) = p$.
Otherwise, let $Z_{i_1} = Z \cup \{I_A\} \cup CS$ (resp., $Z \cup \{S_A\} \cup CS\}$).
Since $W(Z) \subseteq W(CS)$, we have
 $W(Z, I_A) = W(Z_{i_1})$ (resp., $W(Z, S_A) = W(Z_{i_1})$).
So $W(Z) = W(CS/H_{CS}) \cup U(Z_{i_n})$.
Using the well-ordering principle and the above
plotted use for Z_{i_n} , we have

 $\begin{cases} W(Z_{i_{1}}) = W(CS_{i_{1}}/H_{CS_{i_{1}}}) \cup \bigcup_{i_{2}} W(Z_{i_{1}i_{2}}) \\ Z_{i_{1}i_{2}} = Z_{i_{1}} \cup \{I_{A}\} \cup CS_{i_{1}} \text{ of } Z_{i_{1}} \cup \{S_{A}\} \cup CS_{i_{1}} \\ a \text{ basic set of } Z_{i,i_{2}} \prec CS_{i_{1}} \preceq a \text{ basic set of } \end{cases}$ Here, CSi, is a char set of Zi, and AE CSi,. Since $Z \subseteq \overline{Z_{i_1}}$, $f = \{e_1, C_{i_1}\} = \{o_1\}$. If for each i_1 , $CS_{i_1} = a \in K \setminus \{o_1, V(Z_{i_1}) = \phi \text{ and }$ we have $V(Z)=V(CS/H_{CS})$. Otherwise, $V(Z) = V(CS/H_{CS}) \cup \bigcup_{\nu_1} V(CS_{\nu_1}/H_{CS_{\nu_1}}) \cup \bigcup_{\nu_1} V(Z_{\nu_1})$ Note that $CS_{i_1} < CS \leqslant a \text{ basic set of } Z$. Perform the above procedures for each Ziris and beep doing in this way, we have $\bigcup \cdots \bigcup_{\dot{i}_{i_{1}}\cdots i_{L}} \bigvee (\vec{Z}_{i_{1}}, \dot{i}_{L}\cdots \dot{i}_{L}).$

Now we have a strictly decreasing sequence of autoreduced sets $CS > CS_{i_1} > CS_{i_1i_2} > \cdots > CS_{i_1i_2\cdots i_{k-1}} > \cdots$ So there exist k st all the $W(Z_{i_r}) = \phi$. Thus, I a finite number of autoreduced sets A_i s.t. $W(Z) = \bigcup_i W(A_i/H_{A_i})$ and by induction S-vern $(Z, A_i) = \{ 0 \}$ for each i. And each A_i is of rank not higher than a basic set of Z. [z]. §5.2 Decomposition algorithms for differential Varieties Problem: Given a finite set Z of nonzero S-polys, whether there exists a mechanical procedure to decompose W(Z) into the related union of illedueible components: $W(Z) = V_1 \cup \dots \cup V_V$. Or equivalently, decompose $\{Z\}$ into an illedundant

intersection of prime doff ideals:

$$\{zz\} = p_1 n \cdots n p_r.$$

Kirl, to determine whether A is a characteristic set of a prime component of $\{Z \}$ or not. Problem 2' Given that A and B are characteristic sets of prime S-ideals P and Q respectively, to determine whether $p \subseteq Q$ or not. Decomposition problem problem 1 + problem 2 Problem 1 + Problem 2'. Remark: 1) problem [has been solved (Wu-Ritt it? decomposition algorithm to be infloduced in this section Deproblem 2 is still not solved in the general case, and we have a complete answer for the special case

that Z consists of a single s-poly given by Ritt's Component theorem and the low power theorem. 3) Although it is trivial to deside whether p=Q, problem 2' is still open, even for the special are below: Ritt's problem Given AEKAYS iv with Ala...oto to determine whether (0,..., 0) is a 2ero of Sut(A). ON aquivalently, hether Sut(A) = [7,...,Yn]. In this section, we fours on a solution to problem !. Question. Given an autoreduced set ASKYS, give a necessary and sufficient condition for A to be a characteristic set of a prime S-ideal PSKIY?? Part I. Rosenfeld's Lemma and the Veduction of Question 1 to an algebraic problem.

Lamma 5.2.1 (Rosenfeld's lemma in Ordinary doff ase)
Let
$$A = A_{i}, ..., Ap$$
 be an autoreduced set in KMS
w.r.t. a vanking and $f \in K\{Y\}$ be partially reduced
w.r.t. A . Then
 $f \in Sat(A) = [SA]: H_A^{\infty} \iff f \in (A): H_A^{\infty}$.
Ploof. "\equiv Trivial.
"\equiv Sps $f \in Sat(A)$. Then $\exists m \in N$ and $g_{ij} \in K\{Y\}$
s.t. $H_A^{m} f = \sum_{i=1}^{P} g_{io} A_i + \sum_{i=1}^{P} \frac{f_{ii}}{g_{ij}} A_i^{(i)}$ (*).
Note that for $j \ge l$, $A_i^{(i)} = S_{A_i} S^i(U(A_i)) + T_{ij}$
for some T_{ij} free of $S^i(U(A_i))$.
Let $\overline{\Phi} = \{S^i(U(A_i)) \mid g_{ij} \neq 0, j \ge l, i=1, ..., p\}$.
If $\overline{\Phi} \neq \phi$, take the greatest $v = S^i(U(A_i))$ in $\overline{\Phi}$,
substitute $S^i(U(A_i)) = -\frac{T_{ij}}{S_{A_i}}$ at both sides of (*),
and set $\overline{\Phi} = \overline{\Phi} \setminus \{V\}$. Continuing this process and successubly
substitute $S^i(U(A_i)) = -\frac{T_{ij}}{S_{A_i}}$ into (*) for all $S^i(U(A_i))$ in $\overline{\Phi}$.

Clearing denominators by multiplying a power product
Sh of SA: at both sides of the obtained equality.
We have
$$S_{A}^{L} \cdot H_{A}^{m} \cdot f = \stackrel{P}{=} \overline{g_{10}} \cdot A_{1} \quad for \quad \overline{g_{10}} \in K^{1}Y_{2}^{T}$$
.
Thus, $f \in (A): H_{A}^{\infty}$.
In the following, we will use "S-characteristic cel"
to distinguish with the algebraic case.
lemma 5.2.2 Let A be an autoreduced set in Kirj
w. Yb. a ranking R. Then A is a S-characteristic set
of a prime S-ideal \iff (A): H_{A}^{∞} is a prime
algebraic ideal in Kirj and (A): H_{A}^{∞} contains no
nonzero element reduced w. Yt. A.
(i.e., A is a characteristic set of (A): H_{A}^{∞} .)
Ploof. "="Take a minimal subst V= O(Y) st. A < K[V].
Let $P_{A} = S f \in K[V] | \exists m \in N \ st. f |_{A}^{\infty} f \in (A)$?.
Then we have $(A): H_{A}^{\infty} = (P_{A})_{KY}^{T}$ and

Remark Given an autoreduced set A = K{Y}, denote V to be the set of all derivatives appearing effectively in A. By the proof of Lema 6.2.2, A is a S-char set of a prime S-ideal (=) A is a char set of a prime algebraic ideal in K[V].