Remark In an autoreduced set A, there may be two
S-publics whose leaders are definitives of the same
$$\gamma_i$$
.
Example $(m=2)$: $A = S_i(\gamma_i), S_2(\gamma_i)$.

We now give &- Reduction algo/ithms. Lemma 6.1 Let A be an autoreduced set. There is a mechanical procedure to compute, for any FEKETI..., Yn?, the partial remainder F of F with respect to A, and SAEIN (AEA) such that the vanle of F is lower than or equal to that of F and Moveover, TISAF-F can be whitten as a linear compination over KEY...., Yn } of derivatives O(A) such that O(ld(A)) is lower than or equal to the leader of F. Woof. If F is partially reduced w.r.t. A, set F = Fand Sq=0 Obviously, F and the numbers sa have the desired properties.

We suppose that F is not partially reduced w.r.t. A. Let $D(F, A) = \{ O(U_A) \mid O \in \mathcal{O}(S_i), A \in A, deg(F, O(U_A)) > 0 \}. (U_A = ld(A))$ Then D(F,A)\$\$\$. Let V=V(F,A)=max D(F,A) (unique) and let $C \triangleq \max \{A \in A \mid O(U_A) = V\}$ (unique). Since O(C)=S:V-T for TEKSY3 and the ramb of T is lower than V. Letting e = deg(F, v), we may write F = $\frac{2}{1-0} J_i V^i$, where $J_i \in K \{1, ..., Y_n\}$ are free of V. Then $S_c^e F = \sum_{i=0}^{e} S_c^{e-i} J_i (\xi_c v)^i = \sum_{i=0}^{e-i} S_c^{e-i} J_i T^i \mod (O(c)).$ Obviously, the s-poly $G = \sum_{i=0}^{e} S_c^{e-i} J_i T^i$ cannot involve a proper derivative of any UA as high as V, O(UC)=V< UF, and the rank of G is no higher than that of F. Then either D(G, A=\$ or V(G, A) < V(F, A). Perform the above proceeding for G. Since a strictly deerleasing sequence of derivatives in (B(Y) is finite, this procedure terminates with D(F,A)=\$ And the obtained F satisfies the desided properties.

Then perform this pseudo reduction proceeding for
$$\overline{F}^{(2)}$$

and continuing in this way, we can successively
compute in, $\overline{F}^{(2+1)}$, its, $\overline{F}^{(1+2)}$,..., ir, $\overline{F}^{(1)}$ where
 $\overline{F}^{(k)}$ is partially reduced with A , is reduced with
 A_{k} ,..., A_{k} , and has rank lower than or equal to
the rank of \overline{F} and I_{k}^{in} . $I_{k}^{it} \overline{F} = \overline{F}^{(k)}$ mod $(A_{k}...,A_{k})$
Take $\overline{F_{0}} = \overline{F}^{(1)}$ which sutisfies the desired property. \overline{k} ?

 $\underline{Coherence of Autoreduced Sets}$
In the ordinary doff case, an autoreduced set
is a characteristic set of a prime S-ideal if
and only if it is infleducible. In the partial diff
 $Case$, infleducible outoreduced set might be contradiately
as shown in the following example:

 $\underline{Example I}$ let $K = (C(x_{k}, x_{k}), \{\frac{2\pi}{2x_{k}}, \frac{\pi}{2x_{k}}\})$ and $[A_{k}, A_{k}] \leq K_{k} X_{k} X_{k}^{2}]$
 $A_{1} = \frac{2}{2X_{k}}(X_{k}) + \frac{2}{2X_{k}}(Y_{k}) - Y_{k}$

Take the elimination ranking
$$1/2$$
 with
 $\frac{\delta H_{2}(Y)}{\delta X_{1}^{1/2} + X_{2}^{1/2} + K_{1}^{1/2} + K_{2}^{1/2} +$

Two derivatives
$$U, V \in \mathbb{D}(r)$$
 have a common
derivative $vf \equiv \phi, \varphi \in \mathbb{D}$ s.t. $\phi(u) = \varphi(v)$. This happens
when u and v are derivatives of the same χ_i .
Assume $u = S_i^{e_1} \cdots S_m^{e_m}(\chi)$ and $v = S_i^{t_1} \cdots S_m^{t_m}(\chi_i)$. Then
any $S_i^{e_1} \cdots S_m^{s_m}(\chi_i)$ with $g_i \ge \max\{e_i, t_i\}$ is a common
derivative of u and v . If we take $g_i = \max\{e_i, t_i\}$.
we obtain the lowest common derivative of u and v
and denote it by $lcd(u,v)$.
Def 6.3 Let a ranking be fixed. An autoreduced
set $A \subseteq K \ge Y_{1,...,}$ is called coherent if whenever A, A'
 CA and v is a common derivative of $u_{and} u_{a'}$, say
 $v = O(u_{A}) = O'(u_{A'})$, then
 $S_{A'}(OA) - S_{A}(OA') \in (IDA_{\times v})$: the
where $IDA_{\times v} = \{T(A) \mid T \in ID, At \le T, T(U_{A}) < v\}$.

Testing coherence can be done with finitely many

test. For each pair of
$$\leq$$
-polys A, A' in an autoreduced
set, it is sufficient to look at the \leq -poly corresponding
to the howest common derivative between U4 and U4'.
Def 6.4 Let A and B be two \leq -polys in
an autoreduced set. We define the \leq -polynomial
of A and B, $\leq(A, B)$, as follows:
 $\leq(a, b) = \begin{cases} S_B \cdot O(A) - S_A \cdot T(B), & \text{if lcd}(U_A, U_B) = O(U_A) = T(U_B); \\ O, & \text{if } U_A and U_B have no common derivatives}. \end{cases}$

Lemma 6.5 If a, b are etts of a sing
R. For any
$$O \in \mathbb{D}$$
 with $ord(O)=e$,
 $a^{e+1}o(b) \in (\tau(ab) | \tau \in \mathbb{D}, \tau|O)$.
Proof. If $e=o$, it is trivial. Sps the property
is true for all O of order $\leq e$. Let $o \in \mathbb{D}$ with
 $ord(O)=e+1$. Then $\exists S_{i} \in S_{i}$ and $O' \in \mathbb{D}$ s.t. $O=S_{i}O'$.
Since $ord(O')=e$, $a^{e+1}o'(b) \in (\tau(ab) | \tau/O')$. That is,

 $\begin{aligned} \alpha^{e+1}O'(b) &= \sum_{t|0'} C_{\tau} \cdot I(ab) = \sum_{s_i} (\alpha^{e+1}O'(b)) = \alpha^{e+1}O(b) + \\ (e+1)\alpha^{e} \cdot S_i(a)O'(b) &= \sum_{t|0'} S_i(C_{\tau}) \tau(ab) + C_{\tau} \cdot S_i \tau(ab)]. Thus, \\ \alpha^{e+2}O(b) &\in (\tau(ab)(\tau(0)). \end{aligned}$

Mop 6.6 Let A be an autoreduced set. If for all A. BEA, we have $\Delta(A, B) \in (DA_{xy}): H_{A}^{\infty}$ where V=lcl(UA, UB), then A is coherent. Moof. First we show for any V∈ ⊕(Y), if ff (DALV):HA, then OFE (DA<ON): HA for any DED. Indeed, if fE(DAW): HA, then I MEN S.E. H_{A}^{m} , $f\in(\mathbb{D}A_{<\vee})$, i.e. H_{A}^{m} , $f=\sum_{\mathcal{U}_{A}}C_{\mathcal{U}_{A}}\mathcal{I}(A)$. By Lemma 6.5, $(H_{A}^{m})^{\circ rd(0)+1} \circ O(f) \in (O'(H_{A}^{m} f): O'|0).$ For any $\partial' \left[\partial, \partial' (H_{A}) = \sum_{\alpha u_{A} \neq v} \partial' (C_{\tau,A} \tau(A)) \in (\partial'(A) \left| \partial''(u_{A} < \partial(v)) \right|_{A \in \mathcal{A}} + H_{A} + \partial(v_{A}) \right]$ Hence, $\partial(f) \in (\mathcal{D}_{A} < \partial(v_{A})) : H_{A} = 0$

NOW, Sps $\Delta(A, B) \in (DA_{< V}): H_{O}^{\infty}(V=lcd(u, u))$ to show A is cohevent. Let $W = O_1(V)$ for some $O_1 \in OD$ be a common derivative of Up and Up. That is, W=0,0'(Up)=0,0'(Up) and $\Delta(A,B) = S_BO'(A) - S_AO''(B) \in (DA_{<V}): H_A^{\infty}$. $\partial_1(\Delta(A,B)) \in (\mathbb{D}_{A < 0,V}) : H_A^{\infty}$. So Thus, S_{B} . $\partial_{1}\partial'(A) - S_{A}\partial_{1}\partial''(B)$ $= \Theta_{I}\left(S_{B}\cdot O'(A) - S_{A}O''(B)\right) - \sum_{\tau \mid O_{I}} \binom{O_{I}}{\tau} \stackrel{P}{=} \binom{S_{B}}{\tau} \cdot \tau O'(A)$ $f \sum_{\substack{I \mid 0, \\ I \mid 0}} \left(\begin{array}{c} Q_{I} \\ D_{I} \end{array} \right) \begin{array}{c} Q_{I} \\ D_{I} \\ D_{I} \end{array} \left(\begin{array}{c} Q_{I} \\ D_{I} \end{array} \right) \begin{array}{c} Q_{I} \\ D_{I} \\ D_{I} \\ D_{I} \end{array} \left(\begin{array}{c} Q_{I} \\ D_{I} \end{array} \right) \begin{array}{c} Q_{I} \\ D_{I} \\ D_{I} \\ D_{I} \\ D_{I} \end{array} \left(\begin{array}{c} Q_{I} \\ D_{I} \\ D_{I} \\ D_{I} \end{array} \right) \left(\begin{array}{c} Q_{I} \\ D_{I} \\ D_{I} \\ D_{I} \\ D_{I} \\ D_{I} \end{array} \right) \left(\begin{array}{c} Q_{I} \\ D_{I} \\ D_{I}$ $\left(\begin{array}{c} \mathcal{TO}'(\mathcal{U}_{A}) < \mathcal{W} = \mathcal{O}_{i}(\mathcal{V}) \\ \mathcal{TO}'(\mathcal{U}_{B}) < \mathcal{W} = \mathcal{O}_{i}(\mathcal{V}) \end{array} \right)$ $\mathcal{E}\left(\mathcal{BA}_{<0,V}\right): \mathcal{H}_{A}^{\infty}$. E. So A is coherent. The simplest test for where is thus the following. It gives only a sufficient condition.

Plop 6.7 Let A be an autoreduced set. If for all A, BEA, Δ -rem $(\Delta(A, B), A) = 0$, then A is otherent. Proof. Note that $ld(S(A, B)) < V = lcd(U_A, U_B)$. BY Prop 6.2, = HE HA s.t. $H \cdot \Delta(A, B) \in (BA \leq Id(\Delta(A, B)))$ $\subseteq (DA_{<\vee}).$ Thm 6.8 (Rosenfeld's Cemma) Let A be a cohevent autoreduced set in KEYS. Let fE[A]: HA. If f is partially reduced wirth A, then f E (A): Ho. proof. Since fE [A]:H&, there exists a finite subset D of @ * x A s.t. for some HEHA we an

Write
$$Hf = \sum_{(0,A)\in D} C_{0,A} \partial(A) + \sum_{AtA} g_{A}A$$
 (1)
for some C_{0,A} and $g_A \in K_1^{Y}$, where $\mathfrak{D}^+ = \{\partial \in \mathfrak{O} | \sigma d(\partial) > o\}$.
Assume f is partially veduced with A . If $D = \phi$, then
 $f \in (A)$: H_A^{∞} . Assume, for contributive tion, that there is
no velation of type (1) with $D = \phi$ for f . And for each
relation of type (1), set V to be the hilfhest derivative
in $\mathfrak{D}^+(IdA)$) that appears effectively in the right
hand side. Among all the possible relationships (1)
that can be written take one for which V is minimal
Let $E = \{(0,A)\in D \mid O(U_A)=V\}$ and select one, say
 $(0', A')\in E$. Then
 $S_{A'} \cdot Hf = \sum_{(0,A)\in D} C_{0,A} \cdot g_{(A)} + S_{A} \cdot \sum_{(0,A)\in D} C_{0,A} \cdot g_{(A)} + \sum_{AtA} \cdot g_{A} \cdot A$
 $= \sum_{(0,A)\in E} C_{0,A} (S_{A'} \cdot \partial(A) - S_{A} \cdot \partial(A)) + (\sum_{(0,A)\in C} C_{0,A} \cdot g_{(A)}) \cdot \partial(A')$
 $+ S_{A'} \cdot \left(\sum_{(0,A)\in D} C_{0,A} \cdot g_{(A)} + \sum_{AtA} \cdot g_{A} \cdot A \right].$ (2)
Since A is coherent, $S_{A'} \cdot \partial(A) - S_{A} \cdot \partial(A) \in (\mathfrak{D} \cdot A < v)$: $H_{A'}^{\infty}$.

So from (2), there exist
$$H_1 \in H_{A}^{\infty}$$
, $B_{0,A}'$, g'_{A} ,
 $B_{0,A} \in K_{1}^{1}Y]$ s.t.
 $H_{1}f = B_{0,A'} \cdot O'(A') + \sum_{\substack{(O,A) \in (D+XA) \\ O(A) < V}} B_{0,A'} \cdot O(A) + \sum_{\substack{(A) < V \\ A \in A}} g'_{A}A$.
 $O(U_{A}) < V$ (3)
Note that $O'(A') = S_{A'} \cdot V + T$ with T free of V .
Substituting $V = -\frac{T}{S_{A'}}$ in (3) and multiplying a
Suitable power of $S_{A'}$ to clear denominators, we have
 $H_{2}f = \sum_{\substack{(O,A) \in (D+XA) \\ O(U_{A}) < V}} B'_{O,A} \cdot O(A) + \sum_{\substack{(A+A) \\ A \in A}} g'_{A'}A,$
 $O(U_{A}) < V$
for some $H_{2} \in H_{A}^{\infty}$, $B'_{O,A} \cdot O(A) + \sum_{\substack{(A+A) \\ A \in A}} g'_{A'}A,$
which is a velation of type (1) for f
in which either $D = \phi$ or V is replaced by a derivative
lower than V . This condicadiction completes the
ploof. \underline{B} .

Theorem 6.9 Let A be an autokedused set in KYS. If A is a characteristic set of a prime sideal $P \subseteq K \{Y\}$, then $P = [A] : H_{\Phi}^{\infty}$, A is where f, and (A): Ho is a prime ideal not containing a nonzero ett reduced W.Y.t. A. Conversely, if A is a coberent autoreduced set s.t. (A)=HA is prime and doesn't contain a nonzero element reduced w.r.t. A, then A is a characteristic set of a prime Δ -ideal of Kirs. Ploof. Filst, suppose A is a s-charl set of a pline sideal P. Then HAEP and P=[A]: Ho follows Since $\Delta(A, B) \in P$ for any $A, B \in A, \Delta - Vem(\Delta(A, B), A) = 0$ and by prop 6.7, A is cohevent. Let V be the minimal subset of OD(Y) s.t. $A \subseteq K[V]$. Then by Rosenfeld's lemma [A]: Ho AK[V] = (A): Ho AK[V], which is prime. Thus, (A): Ha = ((A): HA NKEV]) KIYS is prime und (A): HA contains no nonzero elt reduced w.r.t. A.

Conversely, Sps A is a coherent curtoreduced set and (A)=Hot is prime which doesn't contain a run 2er/o ett veduled w.v.t. A. To show Sat(A)=[A]: HA is prime and A is a char set of sat(A). For fi, f2 EK/K) with fifst sat(A), let $V_1 = \Delta - \operatorname{Vem}(f_1, A)$ and $V_2 = \Delta - \operatorname{Vem}(f_2, A)$. Then Y, Y2E Sat(A). Since Y, Y2 is partially reduced W.Y.G.A, Vitze (A): Ho by Rosenfeld's lemma. Since (A): Ho is prime, r, E (A)= HA or 12t (A)= HA. So f, Esot(A) or fit Sat(A). Thus, sat(A) is a prime &-ideal. Given any fc sould), let $\gamma = \Delta - \gamma em(f, A)$. Since $\gamma \in SoulfA)$ is Veduced W.Y.I.A., $V \in (A)$: H_{0}^{∞} and thus $\gamma = 0$. Thus, A is a charl set of sat(A), a prime s-ideal. Remark: An autoreduced set A is a char set of a plime s-ideal () A is itteducible and coherent. $\Sigma \subseteq K\{Y\}$: a finite set of nonzero Δ -polys. Well-oldering principle

$$\begin{split} \overline{Z}_{0} &= \overline{Z} \qquad \overline{Z}_{1} = \overline{Z}_{0} \cup R_{0} \qquad \cdots \qquad \overline{Z}_{e} = \overline{Z}_{e-1} \cup R_{e-1} \\ A_{o} = b.S(\overline{Z}_{0}) > A_{1} = b.S(\overline{Z}_{1}) > \cdots > A_{e} \\ R_{o} \neq \phi \qquad R_{1} \neq \phi \qquad \cdots \qquad R_{e} = \phi \\ \text{Hele. A i is a minimal autoledweed set contained in } \overline{Z}_{i}, \\ R_{i} &= \left\{ \Delta - \text{lem}(g, A_{i}) \middle| g \in \Sigma_{i} \setminus A_{i} \text{ of } g = S(A, B) \text{ for } A, B \in A_{i} \right\} \Big| fo]. \\ \text{Sinke } A_{0} > A_{1} > A_{2} > \cdots, \qquad \exists e \in \mathcal{N} \text{ s.t. } R_{e} = \phi, \\ A = A_{e} \text{ is a coherent autoredweed set in } [\overline{Z}_{i}] \\ \text{Subjeffing } \Delta - \text{lem}(\overline{Z}, A) &= \{o\}. \\ \text{As in the Oldinary diff (ase, we have the following } \\ \text{Zerb decomposition theorems:} \end{split}$$

Theotem 6.10 (Zero decomposition theorem: Weak form)
There is an algorithmic procedure to compute for any finite

$$Z \subseteq KiY$$
? a finite set of coherent autoreduced sets $A_{1,...}$ Ar
such that $W(Z) = \bigcup_{i=1}^{U} W(A_i/H_{A_i})$,
there Δ -rem $(Z, A_i) = \{o\}$ for each i .

Theorem 6.11 (Inveducible Decomposition Theorem: partial diff
(ase) There is an algorithmic procedure which permits
to defect whether
$$W(Z) = \phi$$
 for any finite subset
 $Z \subseteq KiYI$ of in the nonempty case, to decompose
 $W(Z) = \bigcup_{i=1}^{N} W(Ai/H_{Ai})$
 $= \bigcup_{i=1}^{N} W(Sat(Ai))$

in which each Ai is an inveducible coherent autoreduced set.