chapter 6 Decomposition Algorithons for Algebraic partial Differential Equations
Recall that a partial diff ting (R, Δ) is a commutative ring R with unity together with a finite set $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ of mutually commuting derivation operators (i.e., $\forall a \in R, \delta_{i}\left(\delta_{j}(a)\right)=\delta_{j}\left(\delta_{i}(a)\right)$)
Example: $\left(\mathbb{C}\left(x_{1}, \ldots, x_{m}\right),\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m}}\right\}\right)$
Notation. $\left(\mathbb{H}=\left\{\delta_{i}^{i_{1}} \delta_{2}^{i_{2}} \ldots \delta_{m}^{i_{m}} \mid i_{j} \in \mathbb{N}, j=1, \ldots, m\right\}\right.$.
Let (K, Δ) be a diff field of char 0 with $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$.
We consider the doff poly ring

$$
K\left\{y_{1}, \ldots, y_{n}\right\}=K\left[\left(\mathbb{H}\left(Y_{i}\right): i=1, \ldots, n\right] .\right.
$$

($K\left\{y_{1}, \ldots, y_{n}\right\}$ is $R_{i} t t$-Noetherian, i.e., for every radical Δ-ideal

$$
\left.J \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}, \exists f_{1}, \ldots, f_{l} \text { s.t. } J=\left\{f_{1}, \ldots, f_{l}\right\} .\right)
$$

A doff ramping R on $K\left\{y_{1}, \cdots, y_{n}\right\}$ is a total order on

$$
(1)(Y)=\left\{\theta\left(y_{j}\right) \mid \theta \in(\mathbb{B}, j=1, \ldots, n\}\right. \text { s.t. }
$$

(1) $u<\theta(u), \forall \theta \in(A) S\}$
(2) $u<v \Rightarrow \theta(u)<\theta(v)$ for $\forall \theta \in \oplus$.

Remark: In the ordinary diff case $(m=1)$, there is a unique ranking on $K\{Y\}$; but here even for $n=1$ and $m=2$, there are uncountable number of rankings on $K\{y\}$.

For example, we can define $R_{1} \delta_{1}^{i_{1}} \delta_{2}^{i_{2}}(y)<\delta_{1}^{i} \delta_{2}^{j}(y) \Leftrightarrow\left(i_{1}, i_{2}\right)<$ lex $\left(j_{i}, j\right)$ and $R_{2}: \delta_{1}^{i_{1}} \delta_{2}^{i_{2}}(y)<\delta_{1}^{j_{1}} \delta_{2}^{j_{2}}(y) \Leftrightarrow i_{1}+i_{2}<j_{1}+j_{2}$ or $i_{1}+i_{2}=j_{1}+j_{2}$ \& $\left(i, i, i_{2}\right) \operatorname{sex}_{\text {ex }}\left(j_{1}, j_{2}\right)$

Fix a ranking R. Given a Δ-poly $f \in K\left\{y_{1}, \ldots, y_{n}\right\} \backslash K$,

$$
\operatorname{ld}(f)=\max \{u \in \oplus(Y) \mid \operatorname{deg}(f, u)>0\} .
$$

Rewrite $f=I_{0}(l d(f))^{d}+I_{1}(l d(f))^{d-1}+\ldots+I_{d-} l d(f)+I_{0}$,

$$
\begin{aligned}
& I_{f}:=I_{0} \\
& S_{f}:=\frac{\partial f}{\partial l(d f)} \\
& r k(f):=(l d(f), d) \quad\left(\text { or } l d(f)^{d}\right)
\end{aligned}
$$

Concerning autorechueed sets, in the partial doff case hare, we need Dicksoris lemma to prove
i) Every auboredureed set is finite.
ii) Every nonempty set of autoreduced set has a minimal element.
iii) A strictly decreasing sequence of auboteduced sets has finite terms.
$A: A_{1}<A_{2}<\cdots<A_{l} \quad\left(\right.$ ie.,$\left.\gamma k\left(A_{1}\right)<_{\text {lex }} y_{k}\left(A_{2}\right)<\operatorname{lex}<y_{k}\left(A_{l e}\right)\right)$

Remark In an curboreduced set A, there may be two Δ-pulps whose leaders are derivatives of the same Y_{i}.

$$
\text { Example }(m=2): A=\delta_{1}\left(y_{1}\right), \delta_{2}\left(y_{1}\right)
$$

We now give Δ-Reduction algorithms.
Lemma 6.1 Let A be an autoreduced set. There is a mechanical procedure to compute, for any $F \in K\left\{y_{1}, \ldots, y_{n}\right\}$, the partial remainder \tilde{F} of F with respect to A, and $S_{A} \in I N(A \in A)$ such that the rank of \widetilde{F} is lower than or equal to that of F and

$$
\pi_{A C A} S_{A}^{S_{A}} \cdot F \equiv \widetilde{F} \bmod [A]
$$

Moreover, $\prod_{A \in A_{A}}^{s_{A}} F-\widetilde{F}$ can be witter as a linear combination over $K\left\{y_{1}, \ldots, y_{n}\right\}$ of derivatives $\theta(A)$ such that $\theta(l d(A))$ is lower than or equal to the leacher of F.
Proof. If F is partially reduced w.r.t. A, set $\tilde{F}=$ and $s_{A}=0$. obviously, \tilde{F} and the numbers S_{A} have the desired properties.

We suppose that F is not partially reduced w.v.t. A. Let $D(F, A)=\left\{\theta\left(u_{A}\right) \mid \theta \in \mathcal{A}\{1\}, A \in A, \operatorname{deg}\left(F, \theta\left(u_{A}\right)\right)>0\right\}$. $\left(u_{A}=\operatorname{ld}(A)\right)$ Then $D(F, A) \neq \phi$. Let $v=V(F, A)=\max D(F, A)$ (unique) and let

$$
C \triangleq \max \left\{A \in A \mid \theta\left(u_{A}\right)=v\right\} \text { (unique). }
$$

Since $\theta(C)=S_{c} \cdot V-T$ for $T \in K\{Y\}$ and the tank of T is lover then V. Letting $e=\operatorname{deg}(F, V)$, we max write

$$
F=\sum_{i=0}^{e} J_{i} \cdot v^{i} \text {, where } J_{i} \in K\left\{y_{1}, \ldots, y_{n}\right\} \text { are free of } v \text {. }
$$

Then $S_{c}^{e} F=\sum_{i=0}^{e} S_{c}^{e-i} J_{i}\left(S_{c} v\right)^{i} \equiv \sum_{i=0}^{e} S_{c}^{e-i} J_{i} T^{i} \bmod (\theta(1))$. obviously, the Δ-poly $G=\sum_{i=0}^{e} S_{c}^{e-i} J_{i} T^{i}$ cannot involve a proper derivative of amy u_{A} as ling as $v, \theta\left(u_{C}\right)=v \leqslant u_{F}$, and the rank of G is no higher than that of F. Then either $D(G, A)=\phi$ or $V(G, A)<V(F, A)$. perform the above procedure for G. Since a strictly decreasing sequence of derivatives in $(Q(Y)$ is finite, this procedure terminates with $D(\tilde{F}, *)=\phi$. And the obtained \widetilde{F} satisfies the desired properties.
prop 6.2 Let A be an autoredweed set in $K\{Y 3$ and $F \in K\{Y\}$. There is a mechanical procedure to compute the remainder Fo of F w.r.t. A, and $i_{A}, S_{A} \in \mathbb{N}(A \in A)$ s.t. the rave of F_{0} is lower than or equal to that of F, and $\prod_{A \in A_{A}}^{I_{A} S_{A}} S_{A} \cdot F \equiv F_{0} \bmod [A]$.
pore precisely, $\prod_{A \in A} I_{A}^{i_{A}} S_{A}^{s_{A}} \cdot F-F_{0}$ can be written as a linear combination over $K\{Y\}$ of derivatives $\theta(A)$ such that $A \in A$ and $\theta\left(u_{A}\right) \leq l d(F)$.
proof. Let \tilde{F} be the partial remainder of F w.r.t. A as computed in lama 6.1. Let $A=A_{1}, \ldots, A l$ and $A_{k}=I_{k} u_{A_{k}}^{d_{k}}+I_{k 1} U_{A_{k}-1}^{d_{k}}+\cdots+I_{k d_{k}}$.
Let $i_{l}= \begin{cases}\operatorname{deg}\left(F, u_{\text {se }}\right)-\operatorname{de}+1 & \operatorname{deg}\left(F, u_{z_{l}}\right) \geqslant \operatorname{de} . \\ 0 & \text { otherwise }\end{cases}$
Then $I_{A_{l}}^{i_{l}} \tilde{F} \equiv \tilde{F}^{(l)} \bmod \left(A_{l}\right)$ where $\tilde{F}^{(l)}$ is partiallediced w.r.t. A, is reelueed w.r.t. $A l$, and has rank lower than or equal to the rank of \tilde{F}.

Then perform this pseudo reduction procedure for $\tilde{F}^{(l)}$ and contiming in thus way，we can sueeessively compute $i_{t-1}, \widetilde{F}^{(l-1)}, i_{l-2}, \widetilde{F}^{(l-2)}, \ldots, i_{1}, \widetilde{F}^{(1)}$ where $\widetilde{F}^{(k)}$ is partially reduced w．r．t． \mathcal{A} ，is reduced w．r．t． $A_{k}, \ldots, A l$ ，and has rank lower than or equal to the rank of \widetilde{F} and $I_{k}^{i_{k}} \cdots I_{l}^{i l} \widetilde{F} \equiv \widetilde{F}^{(k)} \bmod \left(A_{k}, \cdots A_{l}\right)$ Take $F_{0}:=\tilde{F}^{(1)}$ which satisfies the desired property．国．

Coherence of Autoreduesed sets
In the ordinary doff case，an autorecheled set is a characteristic set of a prime s－ideal if and only if it is irreducible．In the partial doff case，irfeducible autoredueed set might be conttadicby as shown in the following example：
Example 1 Let $K=\left(\mathbb{C}\left(x_{1}, x_{2}\right),\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial}\right\}\right)$ and $\left(A_{1}, A_{2}\right\} \subseteq K\left\{x_{1}, y_{2}\right\}$

$$
\begin{aligned}
& A_{1}=\frac{\partial}{\partial x_{1}}\left(y_{2}\right)+\frac{\partial}{\partial x_{1}}\left(y_{1}\right), \\
& A_{2}=\frac{\partial}{\partial x_{2}}\left(y_{2}\right)+\frac{\partial}{\partial x_{2}}\left(y_{1}\right)-y_{1}
\end{aligned}
$$

Take the elimination ranking $Y_{1}<Y_{2}$ with

$$
\frac{\partial_{1}+l_{2}\left(y_{1}\right)}{\partial x_{1}^{l_{1}^{\prime}} \partial x_{2}^{l_{2}}}<\frac{\partial_{1}^{l_{1}^{\prime}+l_{2}^{\prime}}\left(x_{1}\right)}{\partial x_{1}^{l_{j}^{\prime}} \partial x_{2}^{l_{2}^{\prime}}} \Leftrightarrow \begin{aligned}
& l_{2}>l_{2}^{\prime} \text { or } \\
& l_{2}=l_{2}^{\prime} \& l_{1}>l_{1}^{\prime}
\end{aligned}
$$

So A_{1}, A_{2} is an infedueible autoredueced set.
But $\left\{A_{1}, A_{2}\right\}$ has no solutions. (For, $\frac{\partial A_{1}}{\partial x_{2}}-\frac{\partial A_{2}}{\partial x_{1}}=1$)
A necessary and sufficient condition for the existence of a solution to a system of diff equations such as

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial x_{1}}=f\left(x_{1}, x_{2}\right) \\
\frac{\partial y}{\partial x_{2}}=g\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

is that $\frac{\partial f}{\partial x_{2}}=\frac{\partial g}{\partial x_{1}}$.
Coherence is a property that generalities this condition for systems given by autoredueed sets. Coherence implies formal integrability and is a cousin concept of Riquier's passivity (Riquier-Janet approach). Informally speaking, Coherence \longleftrightarrow passivity Groibner basis \leftrightarrow Inolutive/Riquier bases.

Two derivatives $u, v \in(A)(Y)$ have a common derivative of $\exists \phi, \varphi \in \mathbb{H}$ sit. $\phi(u)=\varphi(v)$. This happens when u and v are derivatives of the same Y_{i}. Assume $u=\delta_{1}^{e_{1}} \delta_{m}^{e_{m}}\left(y_{i}\right)$ and $v=\delta_{1}^{t_{1}} \cdots \delta_{m}^{t_{m}}\left(Y_{i}\right)$. Then any $\delta_{1}^{g_{1}} \ldots \delta_{m}^{g_{m}}\left(Y_{i}\right)$ with $g_{i} \geqslant \max \left\{e_{i}, t_{i}\right\}$ is a common derivative of u and v. If we take $g_{i}=\max \left\{e_{i}, t_{i}\right\}$, we obtain the lowest common derivative of u and v and denote it by $\operatorname{lcd}(u, v)$.
Def 6.3 Lot a ranking be fixed. An auboreduced set $A \subseteq K\left\{Y_{1}, \ldots, Y_{n}\right\}$ is called coherent if whenever A, A^{\prime} $\in A$ and V is a common derivative of U_{A} and $U_{A^{\prime}}$, say $V=\theta\left(u_{A}\right)=\theta^{\prime}\left(u_{A^{\prime}}\right)$, then

$$
S_{A^{\prime}}(\theta A)-S_{A}\left(\theta^{\prime} A^{\prime}\right) \in\left(\left(\oplus A_{<\nu}\right): H_{A^{\prime}}^{\infty}\right.
$$

where $\oplus \nmid A<V=\left\{\tau(A) \mid \tau \in \mathbb{D}, A \in A, \tau\left(u_{A}\right)<V\right\}$.
Testing coherence cam be done with finitely many
test. For each pair of s-polys A, A' in an cuubreduad set, it is sufficient to look at the Δ-poly corresponding to the lowest common derivative between U_{A} and U_{A}.
Def 6.4 Let A and B be two x-polys in an auboreduced set. We define the s-polynomial of A and $B, \triangle(A, B)$, as follows:

$$
\Delta(a, b)=\left\{\begin{array}{l}
S_{B} \cdot \theta(A)-S_{A} \cdot \tau(B), \text { if } \operatorname{lcd}\left(u_{A}, u_{B}\right)=\theta\left(u_{A}\right)=\tau\left(u_{B}\right) ; \\
0, \text { if } u_{A} \text { and } u_{B} \text { have no common detivataties. }
\end{array}\right.
$$

Lemma 6.5 If a, b are ebbs of $a \Delta$-ring R. For any $\theta \in(\mathbb{H}$ with ord $(\theta)=e$,

$$
a^{e+1} \theta(b) \in(\tau(a b)|\tau \in \oplus, \tau| \theta) \text {. }
$$

proof. If $e=0$, it is trivial. Sps the property is true for all θ of order $\leq e$. Let $\theta \in \mathbb{\otimes}$ wish $\operatorname{ord}(\theta)=e+1$. Then $\exists \delta_{i} \in \Delta$ and $\theta^{\prime} \in \oplus$ sit. $\theta=\delta_{i} \theta^{\prime}$. since $\operatorname{ord}\left(\theta^{\prime}\right)=e, a^{e+1} \theta^{\prime}(b) \in\left(\tau(a b) \mid \tau\left(\theta^{\prime}\right)\right.$. That is,

$$
\begin{align*}
& a^{e+1} \theta^{\prime}(b)=\underset{\tau \mid \theta^{\prime}}{7} c_{\tau} \cdot \tau(a b) \Rightarrow \delta_{i}\left(a^{e+1} \theta^{\prime}(b)\right)=a^{e+1} \theta(b)+ \\
& (e+1) a^{e} \cdot \delta_{i}(a) \theta^{\prime}(b)=\sum_{\tau \theta^{\prime}}\left[\delta_{i}\left(c_{\tau}\right) \tau(a b)+c_{\tau} \delta_{i} \tau(a b)\right] . \text { Thus, } \\
& a^{e+2} \theta(b) \in(\tau(a b)(\tau \mid \theta) .
\end{align*}
$$

Prop 6.6 Let A be an autorediced set. If for all $A, B \in A$, we have $\Delta(A, B) \in\left((A) A_{<v}\right): H_{\infty}^{\infty}$ where $v=\operatorname{lcd}\left(U_{A}, U_{B}\right)$, then A is coherent.
proof. First we show for any $V \in \oplus(Y)$,
if $f \in(\mathbb{H} \mid A<V): H_{A}^{\infty}$, then
$\theta f \in(\mathbb{P} \neq A<\theta V): H_{A}^{\infty}$ for any $\theta \in \mathbb{\otimes}$.
Indeed, if $f \in(\mathbb{A} A<v): H_{A}^{\infty}$, then $\exists m \in \mathbb{N}$ sit.

$$
H_{A}^{m} \cdot f \in\left((\mathbb{H} \nrightarrow<v) \text {, i.e. } H_{A}^{m} \cdot f=\sum_{\tau\left(U_{A}\right)<V} C_{\tau, A} \tau(A)\right. \text {. }
$$

By Lemma 6.5, $\left(H_{A}^{m}\right)^{\text {ord(}(\theta+1}+1 \theta(f) \in\left(\theta^{\prime}\left(H_{A}^{m} \cdot f\right): \theta^{\prime}(\theta)\right.$.
 Hence, $\theta(f) \in\left(\oplus A_{<}<\theta(v)\right): H_{\infty}^{\infty}$.

Now, $\operatorname{sps} \triangle(A, B) \in\left(\oplus \rightarrow A_{<V}\right): H_{\infty}^{\infty}(V=l c d(u, b, 4)$ to show A is coherent.

Let $w=\theta_{1}(v)$ for some $\theta_{1} \in \oplus$ be a common derivative of U_{A} and u_{B}. That $\nu S, w=\theta_{1} \theta^{\prime}\left(u_{A}\right)=\theta, \theta^{\prime \prime}\left(w_{B}\right)$. and $\Delta(A, B)=S_{B} \theta^{\prime}(A)-S_{A} \theta^{\prime \prime}(B) \in((B) A<V): H_{A}^{\infty}$.
So $\quad \theta_{1}(\triangle(A, B)) \in\left(\oplus \nmid><Q_{1}\right): H_{A}^{\infty}$.
Thus, $S_{B} \theta_{1} \theta^{\prime}(A)-S_{A} \theta_{1} \theta^{\prime \prime}(B)$

$$
\begin{aligned}
& =\theta_{1}\left(S_{B^{\prime}} \theta^{\prime}(A)-S_{A} \theta^{\prime \prime}(B)\right)-\underset{\substack{z \mid \theta_{2} \\
\tau+\theta_{1}}}{>}\left(\theta_{2}\right) \frac{\theta_{\tau}\left(S_{B}\right) \tau \theta^{\prime}(A)}{} \\
& +\sum_{\substack{\tau \mid \theta_{1} \\
\tau+\theta_{1}}}\left(\frac{\theta_{1}}{\tau}\right) \frac{\theta_{2}}{\tau}\left(S_{A}\right) \cdot \tau \theta^{\prime \prime}(B) \\
& \in\left(\left(\mathbb{A} \neq A<\theta_{2}\right): H_{A}^{\infty}\right. \text {. }
\end{aligned}
$$

So A is coherent.
The simplest test for coherence is thus the following. It gives only a sufficient condition.
plop 6.7 Let A be an autoredueed set. If for all $A, B \in A, \Delta-\operatorname{rem}(\Delta(A, B), A)=0$, then A is coherent.
proof. Note that $l d\left((\Delta(A, B))<v=\operatorname{lcd}\left(U_{A}, u_{B}\right)\right.$. By prop 6.2, ヨ $H \in H_{A}$ s.t.

$$
\begin{gathered}
H \cdot \Delta(A, B) \in(\oplus \mathcal{A} \leq l d(\Delta A, B))) \\
\subseteq(\mathbb{H} \mathcal{A}<V) .
\end{gathered}
$$

The 6.8 (Rosenfeld's Lemma)
Let A be a coherent auboreduced set in $K\ulcorner Y\}$. Let $f \in[A]: H_{\infty}^{\infty}$. If f is partially reduced w.r.t. A, then $f \in(A): H_{\infty}^{\infty}$.
proof. Since $f \in[A]: H_{4}^{\infty}$, there exists a finite subset D of $\oplus^{+} \times \not$ sit. for some $H \in H_{\infty}^{\infty}$ we an

Write $\quad H f=\sum_{\left(\theta, A \mid \in D \subseteq \Theta_{A}^{+} \times A\right.} C_{Q A} \theta(A)+\sum_{A \in A} g_{A} \cdot A$
for some $C_{B, A}$ and $g_{A} \in K\{Y\}$ ，where $\left(\mathbb{A}{ }^{+}=\{\theta \in \oplus \mid O d(\theta)>0\}\right.$ ．
Assume f is partially reduced writ．办．If $D=\phi$ ，then $f \in(A): H_{\infty}^{\infty}$ ．Assume，for contradiction，that there is no relation of type（1）with $D=\varnothing$ for f ．And for each relation of type (1) ，set V to be the highest derivative in $(\theta+(P d(A))$ that appears effectively in the right hand side．Among all the possible relationships（1） that can be written，take one for which V is minimal．

Let $E=\left\{(\theta, A) \in D \mid \theta\left(U_{A}\right)=V\right\}$ and select one，say $\left(\theta^{\prime}, A^{\prime}\right) \in E$ ．Then

$$
\begin{align*}
S_{A^{\prime}} \cdot H f & =\sum_{(\theta, A) \in E} C_{\theta, A} S_{A^{\prime}} \theta(A)+S_{(A, A \mid \in D} \sum_{(\theta, E} C_{\theta, A} \theta(A)+\sum_{A \in A^{\prime}} S_{i} g_{A} \cdot A \\
& =\sum_{(\theta, A) \in E} C_{\theta, A}\left(S_{A^{\prime}} \theta(A)-S_{A} \theta^{\prime}\left(A^{\prime}\right)\right)+\left(\sum_{(\theta, A) \in E} C_{\theta, A} S_{A}\right) \cdot \theta^{\prime}\left(A^{\prime}\right) \\
+ & S_{A^{\prime}}\left[\sum_{(\theta, A) \in D \mid E} C_{\theta, A} \theta(A)+\sum_{A \in A} g_{A} \cdot A\right] . \tag{2}
\end{align*}
$$

Since A is coherent，$S_{A^{\prime}} \theta(A)-S_{A} \theta^{\prime}\left(A^{\prime}\right) \in\left((1) A_{<V}\right): H_{A}^{\infty}$ ．

So from (2), there exist $H_{1} \in H_{\infty}^{\infty}, \beta_{\theta^{\prime}, A^{\prime}}, g_{A}^{\prime}$,
$\left.\beta_{Q, A} \in K \ Y\right\}$ s.t.

$$
\left.H_{1, f}=\beta_{\theta^{\prime}, A^{\prime}} \cdot \theta^{\prime}\left(A^{\prime}\right)+\frac{\Sigma}{(Q, A) \in\left(Q^{+} \times \neq A\right.}\right) \beta_{\theta, A^{\prime}} \cdot \theta(A)+\sum_{A \in A} g_{A}^{\prime} \cdot A .
$$

Note that $\theta^{\prime}\left(A^{\prime}\right)=S_{A^{\prime}} \cdot V+T$ with T free of V.
Substituting $V=-\frac{T}{S_{A^{\prime}}}$ in
(3) and multiplying a
suitable power of $S_{A^{\prime}}$ to clear denominator's, we have

$$
H_{2} f=\sum_{\substack{(\theta, A) \in \oplus A^{+} \times A \\ \theta\left(u_{A}\right)<V}} \beta_{\theta, A}^{\prime} \theta(A)+\sum_{A \in A} g_{A}^{\prime \prime} \cdot A,
$$

for some $H_{2} \in H_{A}^{\infty}, \beta_{Q, A}^{\prime}$ and $g_{A}^{\prime \prime} \in K\{Y\}$, which is a relation of type (1) for f in which either $D=\phi$ or v is replaced by a derivative lower than U. This contradiction completes the proof.

Theorem 6.9 Let A be an autbleduced set in $K[Y\}$. If A is a characteristic set of a prime Δ-ideal $P \subseteq K S Y\}$, then $P=[A]: H_{\infty}^{\infty}, A$ is wherent, and (A): H_{∞}^{∞} is a prime ideal not containing a nonzero eft reduced w.r.t. A. Conversely, if A is a coherent curboreduced set s.t. (A): the is prime and doesn't contain a nonzero element reduced w.r.t. A, then s is a charieberistic set of a prime \triangle-ideal of $K I Y\}$.
Proof. First, suppose A is a Δ-char set of a prime Δ-ideal P. Then $H_{A} \notin P$ and $P=[A]: H_{\infty}^{\infty}$ follows. Since $\triangle(A, B) \in P$ for any $A, B \in A, \Delta \operatorname{rem}(\Delta(A, B), B)=0$ and by prop 6.7, A is coherent. Let V be the minimal subset of $(\mathbb{H}(Y)$ s.t. $A \subseteq K[V]$. Then by Rosenfeld's lemmas
$[A]: H_{\&}^{\infty} \cap K[V]=(A): H_{\infty}^{\infty} \cap K[V]$, which is prime. Thus. $(A): H_{A}^{\infty}=\left((A): H_{A}^{\infty} \cap K[V]\right)_{\text {KiYs }}$ is prime and $(A): H_{x}$ contains no nonzero et reduced w.r.t. A.

Conversely, $S_{P S} A$ is a coherent curtoreduced set and (A):HA is prime which doesri't contain a nonzero et reduced w.r.t. A. To show $S a t(A)=[A] \cdot H_{A}^{\infty}$ is prime and A is a char set of $\operatorname{sat}(A)$. For $f_{1}, f_{2} \in K_{[}^{[}[]$ with $f_{1} f_{2} \in \operatorname{Sat}(A)$, Let $r_{1}=\Delta-\operatorname{rem}\left(f_{1}, A\right)$ and $r_{2}=\Delta-\operatorname{rem}\left(f_{2}, A\right)$. Then $r_{1} r_{2} \in \operatorname{Sat}(A)$. Since $r_{1} r_{2}$ is partially reduced w.r.t. A, $\gamma_{1} \gamma_{2} \in(A): H_{A}^{\infty}$ by Rosenfeld's lemma. Since $(A) H_{1}^{\infty}$ is prime, $\gamma_{1} \in(A)=H_{\infty}^{\infty}$ or $\gamma_{2} \in(A)=H_{\infty}^{\infty}$. So $f_{1} \in$ Sat (A) or $f_{2} \in \operatorname{Sat}(A)$. Thus, sat (A) is a prime Δ-ideal. Given any $f \in \operatorname{sot}(A)$, let $r=\Delta-\operatorname{rem}(f, A)$. Since $\gamma \in \operatorname{sat}(A)$ is reduced w.r.t. $A, r \in(A): H_{\infty}^{\infty}$ and thus $r=0$. Thus, A is a char set of $\operatorname{Sat}(A)$, a prime Δ-ideal. Remark: An cutboedused set A is a char set of a prime Δ-ideal $\Leftrightarrow A$ is irteclucible and coherent.
$\Sigma \subseteq K\{Y\}$: a finite set of nonzero Δ-polys. Well-oideling principle

$$
\begin{array}{lccc}
\Sigma_{0}=\Sigma & \Sigma_{1}=\Sigma_{0} \cup R_{0} & \cdots & \Sigma_{e}=Z_{e-1} \cup R_{e-1} \\
A_{0}=b \cdot s \cdot\left(Z_{0}\right)> & A_{1}=b . s .\left(Z_{1}\right)> & \cdots & >A_{e} \\
R_{0} \neq \phi & R_{1} \neq \phi & \cdots & R_{e}=\phi
\end{array}
$$

Here, A_{i} is a minimal auboledueed set contained in Σ_{i},

$$
\left.R_{i}=\left\{\Delta-\operatorname{rem}\left(g, A_{i}\right)\left|g \in \Sigma_{i}\right| A_{i} \text { or } g=\Delta(A, B) \text { for } A, B \in \mathbb{A}_{i}\right\} \backslash \int_{0}\right\} \text {. }
$$

Since $A_{0}>A_{1}>A_{2}>\cdots, \exists e \in \mathbb{N}$ sit. $\operatorname{Re}=\varnothing$,
$\mathcal{A}=A_{e}$ is a coherent autorecluced set in [$\left.\Sigma\right]$ satisfying $\Delta-\operatorname{rem}(I, A)=\{0\}$.
As in the ordinary diff case, we have the following zero decomposition theorems:

Theorem 6.10 (Zero decomposition theorem: weak form) There is an algorithmic procedure to compute for any finite $\Sigma \subseteq K S Y\}$ a finite set of coherent autoreduced sots $A_{1} \ldots$.. Ae such that $\mathbb{V}(Z)=\bigcup_{i=1}^{\ell} \mathbb{V}\left(\mathcal{A}_{i} / H_{\alpha_{i}}\right)$, there $\Delta \operatorname{rrm}\left(\bar{\Sigma}, A_{i}\right)=\{0\}$ for each i.

Theorem 6.11 (Irreducible Decomposition Theorem: partial diff case) There is an algorithmic procedure which permits to detect whether $W(\Sigma)=\phi$ for any finite subset $\Sigma \subseteq K I Y\}$ of in the nonempty case, to decompose

$$
\begin{aligned}
V(Z) & =\bigcup_{i=1}^{l} V\left(A_{i} / H_{A_{i}}\right) \\
& =\sum_{i=1}^{l} V\left(\operatorname{Sat}\left(A_{i}\right)\right)
\end{aligned}
$$

in which eel A_{i} is an irreducible coherent autoreduced set.

