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Preface

It is common knowledge that algebra, including algebraic geometry, his-
torically grew out of the study of algebraic equations with numerical coeffi-
cients. In much the same way, differential algebra sprang from the classical
study of algebraic differential equations with coefficients that are meromorphic
functions in a region of some complex space C™. As a consequence, differential
algebra bears a considerable resemblance to the elementary parts of algebraic
geometry. Indeed, since an algebraic equation can be considered as a differential
equation in which derivatives do not occur, it is possible to consider algebraic
geometry as a special case of differential algebra.!

It is noteworthy that a subject so substantial as differential algebra owes its
existence to one person. J. F. Ritt (1893-1951) was not only its founding father,
but also its principal prophet and practitioner. Today, 22 years after his death,
the majority of the main results, and the deepest ones, are due to him, and
despite a new look, the main lines of the subject today are the same as in 1951.
It had already become clear then that differential algebra is pure algebra, and
although Ritt’s life blood was classical analysis, in his second book? on the
subject [95], he made a great effort to meet the algebraist half way.

1 This can be done in two ways: (1) by thinking of an algebraic equation as a differential
equation of order 0; (2) by allowing the number m to be 0.

2 There are three bibliographies in the present book, the first (and main) one for Chapters
I-1V, the second one for Chapter V, and the third one for Chapter V1. The notation [95],
refers to the work numbered 95 in the first bibliography. Within Chapters I-IV the same work
is referred to simply by [95].
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My main goal in this book is to provide a unified exposition of present-day
differential algebra, in a purely algebraic setting and subject to the constraint
that everything be accessible to the reader who has mastered a standard first
year graduate course in algebra (the material in Lang’s “Algebra” [22],, for
example, being more than enough). This constraint has necessitated a pre-
liminary Chapter 0 containing some algebraic results not likely to be met in
such a course. Differential algebra itself begins in Chapter I, which introduces
the basic concepts (differential rings, differential fields, differential poly-
nomials, ...) and develops some of the basic techniques. Chapter II deals with
differential fields and their extensions, not including the Galois theory.
Chapter III is concerned mainly with differential polynomials; among other
things it contains the basis theorem and some results about differential special-
izations. Chapter IV applies the preceding chapters to the study of algebraic
differential equations; systems of equations and, in greater detail, single
equations are treated. These four chapters make up the Ritt theory, present
version.

The concluding Chapter VI is devoted to the Galois theory of differential
fields. Although it makes use of the Ritt theory, its roots lie elsewhere, namely,
in the late 19th century work of Picard [33, 34]; and his follower Vessiot [40,
413,. This pioneering work suffered somewhat from an incompleteness and a
certain lack of clarity and rigor, imposed in part by the absence of a well-
developed theory of algebraic differential equations and of a theory of algebraic
groups. During the ensuing half century the field lay largely fallow. In addition
to expository articles by Schlesinger [38]s, Picard [37];, and Vessiot [42]s,
and a critical appraisal by Baer [1], there were only a few papers published
that shed new light on the subject (Beke [2, 3];, Picard [35, 361, Marotte
[30]5, Fano [9]s, Loewy [27-29]3). Their chief concern was clarifying the
nature of the group of a homogeneous linear ordinary differential equation,
working out the connection between reducibility of the equation and reduci-
bility of the group, and studying the case in which a fundamental system of
solutions is algebraically dependent over constants.

In the Galois theory as presented here, the emphasis is on extensions as
opposed to equations. The first order of business is to identify the “right’ class
of extensions of a differential field &, namely, the “strongly normal” ones.
After these have been defined and the group G of such an extension has been
defined, it is possible to proceed by either of two routes: (1) to make use of
the existing theory of algebraic groups and to prove that G is isomorphic, in a
certain way, to an algebraic group defined over the field of constants of & ;
(2) to develop anew the theory of algebraic groups along axiomatic lines and
then to show that G satisfies the axioms. My papers [18, 19]; on the Galois
theory followed (1); the present book follows (2). This has the advantage that
now G is not merely isomorphic to an algebraic group, but actually is one.
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The axiomatic development of algebraic groups is carried out in the huge
Chapter V (which unfortunately has grown in size far beyond my original
expectations). More precisely, for any field K the axioms define the notion of
«“K-group.” These K-groups are the objects of a category (this word is not
mentioned in the exposition), the morphisms of which are called **K-homo-
morphisms.” Every algebraic group defined over K has a natural structure of
K-group, and (see Chapter V, Section 16, Corollary to Theorem 11 and the
comment immediately following) every K-group is K-isomorphic to an al-
gebraic group defined over K. A K-homomorphism between algebraic groups
defined over K is a rational homomorphism defined over K. In keeping with
the constraint imposed above, Chapter V does not demand of the reader any
prior knowledge of the theory of algebraic groups; for all but a few exercises
and the concluding Section 24, devoted to Abelian varieties, external refer-
ences are not needed. In Section 24, I did not, unfortunately, find it possible to
meet the constraint; in this section repeated use of external references is made.

Two features of the development of differential algebra in this book may be
worth noting. The first is that there is no special distinction made between
ordinary and partial differential equations. The governing philosophy is that
1 is merely a special case of m, a case neither requiring nor greatly benefitting
from special treatment.

The second feature is that I try to do as much as possible for differential
fields of arbitrary characteristic p. This is at the cost of tougher going at a
number of places, and it is not clear that the results justify the cost. When the
chips are down (namely, in Part B of Chapter IV and in Chapter VI), I am
forced to retreat to the safe ground where p = 0. Perhaps the justification is
that one should try, at least once, to learn just how much can be pushed
through for arbitrary p. That a considerable amount can be was first shown by
Seidenberg [108-110, 112]; (see also Okugawa [67],). Ritt himself had no
use for fields of nonzero characteristic and referred to them as “‘monkey
fields.” .

There is a different approach possible to the case p # 0, namely, to change
the definition of differential ring by replacing the notion of a derivation ¢ by
the notion of a “‘differentiation” (3%), _y in the sense of Helmut Hasse and
E. K. Schmidt. When the underlying ring is an algebra over a field of charac-
teristic 0, then 6™ = (1/k!)8* and the two definitions are equivalent, but in
general neither subsumes the other. This different approach, which has been
explored by Okugawa [68], (see also Nishimura [57];, Jaeger [23-29],,
Kasch [34],), is not included in this book.

Among other significant and interesting results or theories not included are
the following:
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(a) Some analytic results of Ritt [95];, Chapter VI, Strodt [116],, and
Seidenberg [111, 115],. Among Ritt's results are an approximation theorem
and a theorem on the components of an ordinary differential polynomial of
order 1 over a differential field # of meromorphic functions; the latter theorem
makes sense when & is any abstract ordinary differential field of characteristic
0, but a direct proof in this general setting is not known. Seidenberg’s result
is that an abstract finitely generated differential field of characteristic 0 is
isomorphic to a differential field of meromorphic functions, and hence there
is a “differential Lefschetz principle” whereby theorems true in the analytic
case must be true in abstracto. This gives an indirect proof of the result of
Ritt referred to above.

(b) Results of Goldman [10], relating the Galois group of a homogeneous
linear ordinary differential equation to the Galois group of the equation
obtained by differentially specializing differential parameters appearing in the
coefficients of the equation.

(c) Results of Johnson [30-32], on filtered differential modules and their
applications to questions of dimension.

(d) Results of Kovacic [24, 25]5 on the inverse problem of the Galois
theory of differential fields. Given a differential field # of characteristic 0
with field of constants %, and given an algebraic group G defined over €, the
problem is to describe the set of strongly normal extensions of & with Galois
groups isomorphic to G over % (in particular, to tell whether the set is empty
or not). When # is ordinary and G is either a connected solvable linear group
or an Abelian variety, Kovacic’s results are definitive. (For an earlier result
see Bialynicki-Birula [6]3.)

(e) Kovacic’s generalization [26]; of the Galois theory in which a strongly
normal extension need not be finitely generated and its Galois group has a
natural structure of pro-algebraic group.

(f) Cassidy’s launching [10], of a theory of differential algebraic groups.

(g) Recent and current work by Blum [5],, by Cassidy, and by Johnson
on generalizing the concept of “differential algebraic set” (which is a subset
of differential affine space closed in the differential Zariski topology), much as
abstract algebraic varieties and schemes generalize the concept of affine
algebraic variety.

The items on this list, especially the last three, are in areas ready for further
development. To this list should be added a final item, not quite in the main-
stream of differential algebra:

(h) The theory of integration in finite terms, created by Joseph Liouville
in a series of papers between 1833 and 1841. Ritt’s book [94]; summarizes
the theory as of 1948, and contains a bibliography of the important contribu-
tions up to then. The subject has witnessed renewed activity more recently in
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the work of Rosenlicht [106, 1071, (containing simple purely algebraic proofs
of Liouville’s theorem on functions with elementary integrals and related
results), and Risch [76, 773, (containing an algorithm for Liouville’s theorem.)
The paper by Ax [2], has points of contact with the Liouville theory, especially
with the results of Rosenlicht [107],.

A word is in order about the bibliographies. In principle, every work on
algebraic differential equations belongs to differential algebra, but obviously
it would be both impractical and counterproductive to list all such works. The
criterion T have used for selecting a work in the first or third bibliography is
highly subjective: if it looks, sounds, feels, tastes, or smells like differential
algebra it is included, otherwise not. Subject to this vague test, [ have tried to
be complete. As a consequence these two bibliographies include some un-
important or trivial or only marginally relevant papers. Excluded are works
dealing with analogous or more general theories (difference algebra, fields
with various kinds of operators, ...) unless they contribute something new to
differential algebra. Various borderline cases were settled more or less at
random.

By contrast, the criterion used for the second bibliography is fairly precise:
a work is included if it is referred to in the text of Chapter V or was useful in
its preparation.
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CHAPTER 0

Algebraic Preliminaries

In this chapter, we describe the conventions that are in force throughout
this book, and develop various algebraic notions for use in subsequent
chapters. Most of these notions, and the results concerning them, are well
known; they are included for the convenience of the reader and to set the
terminology and notation, and in only a few cases is there some novelty in
the development. A few of these notions and results, while known “in prin-
ciple,” do not seem to be available in the form used here.

The reader is urged not to try to read this chapter as a whole, but rather
to read appropriate parts of it when necessary for the later chapters. For
almost all of Chapter I, Sections 1 and 4 of the present chapter will suffice;
for most of Chapter II, only Sections 2 and 3 need be added, and near the
end, Section 17. For Chapter III, the reader should be familiar with Sections
1-12 and 14. Of the remaining parts, Sections 18 and 19 are not used until
Part B of Chapter IV, and Sections 13, 15, 16 play a serious role in only a
few places in Chapter V.

1 Conventions

The term ring is used exclusively, and without further notice, for com-
mutative ring with unity element. In particular, every field is commutative,
every integral domain has a unity element different from 0, and a prime
ideal of a ring is always different from the ring itself. Correspondingly, every
ring homomorphism is unitary (maps unity onto unity), every subring of a

1



2 0 ALGEBRAIC PRELIMINARIES

ring is unitary (contains the unity of the ring), every module or algebra over
a ring is unitary (multiplication by the unity of the ring is the identity map-
ping of the module or algebra). and every algebra has a unity element. It is
left to the reader to determine, if he or she wishes, which results extend to
the noncommutative or nonunitary cases.

A mapping f of a set A into a set A’ is injective if f(x) # f(y) whenever x
and y are distinct elements of A, and is surjective if the image f(A4) is A’;
fis bijective if it is both injective and surjective.

1f R and R’ are rings, we permit ourselves, when there is no danger of
confusion, to denote a family of indeterminates over R and a family of in-
determinates over R’ by the same symbol, for example (X}, or X If
f:R— R is a mapping such that f(0) = 0, then f extends in a canonical
way to a mappiig R[X]— R'[X] between the polynomiai algebras, the
image of a polynomial P in R[X7] being the polynomial in R'[X] obtained
by applying f to each coefficient in P; we denote this image by P/, and for
any subset £ of R[X] we let T/ denote the set of all polynomials P/ with
PeX. When fis injective (or surjective), then so is its canonical extension
R[X]- R[X]}

We use the following notation of Bourbaki: N is the set of natural num-
bers (including 0); Z is the ring of rational integers; Q is the field of rational
numbers: R is the field of real numbers; C is the field of complex numbers;
F, is the finite field of ¢ elements (¢ being a power of a prime).

If K is a field, then K, denotes the (or an) algebraic closure of K, K denotes
the separable closure of K (that is, the set of all elements of K, that are sep-
arably algebraic over K), and K; denotes the purely inseparable closure of K
{that is, denotes K when the characteristic of K is 0 and denotes K? ~ when
the characteristic of K is p # 0).

If Ris a ring and f is an ideal of Rand Zis a subset of R, then I:Z denotes
the set of all elements x € R such that xs e f for every s€ : t:Zis an ideal
of R. When X consists of a single element s, we write t:s for f:X. The union
Unen £: 5" is denoted by T:5%; it is an ideal of R.

2 Separable dependence

Let K be a subfield of a field L of arbitrary characteristic p. A family
(%)) of elements of L is separably dependen: over K if there exists a poly-
nomial fe K[(X);,] vanishing at (x.)ic; such that at least one of the partial
derivatives gf/dX; does not vanish there, and the family is separably in-
dependent over K in the contrary case. To say that (x,);.; is separably depen-
dent over K is the same as to say that, for some j € /, x; is separably algebraic
over K((x;);cs), J denoting the set of elements of 7 different from j. When
p =0, then separable dependence is the same as algebraic dependence.

2 SEPARABLE DEPENDENCE 3

It is apparent that if (x,,...,x,) is separably dependent over K and x;' =
Y i<icn 6% (1 <i<n), where (¢;) is an invertible matrix over K, then

(xy,...,x,) is separably dependent over K.

Lemmal Let uy, ... u,,0,,...,0; be elements of a field extension of K, and
suppose that r < s and that each v; is separably algebraic over K(uy, ..., u,).
Then (vy, ...,v,) is separably dependent over K.

Proof We may suppose that p 3 0. First let » = 1, and denote by n; the
degree of v; over K(u,). For each j there exists a polynomial f; € K[X,,Y;]
such that degy, f; =n;, fiug,v) =0, and (8f;/0Y;)(u;,v)) # 0. We may
suppose that either u, is transcendental over K or else u, is algebraic over
K of some degree m and degy, f; < m and the coefficient of Y[V in f; as a
polynomial in ¥; is 1. We may suppose, too, that no v, is separably algebraic
over K. Let v be the biggest natural number such that f; e K[X{", Y] for
every j, let ¢; be the polynomial in K[X,, Y;] defined by ¢;(X{",Y) =
£(X,Y), and let t=u{". For some j then ¢; ¢ K[X,”, Y;1; suppose this
happens for j=1, so that 0¢,/0X, # 0. Either t = uf” is transcendental
over K, or u, is of degree m over K and degy, (9¢,/0X)) (X7, Y,) <m; in
either case (0¢,/0X,)(¢,Y,) # 0. In the former case (3¢ /0X,)(#,Y,) fails to
be divisible by ¢, (¢, Y;) in K[t,Y,] and therefore also in K(#}[¥,]; in the
latter case the coefficient of Y™ in ¢, is 1 so that degy, d¢,/0X, < n,, and
again (8¢,/0X,)(t,Y,) fails to be divisible by ¢(s,Y,) in K(t)[Y,]. Hence
(39,/0X,)(t,v,) # 0, so that ¢ is separably algebraic over K(v,). As v, is
separably algebraic over K(z), and therefore over K(¢,v,), it follows that v,
is separably algebraic over K(v;), so that (v, ..., ) is separably dependent
over K.

Now let » > 1 and suppose the lemma proved for lower values of . Then
(v,,...,v;) is separably dependent over K(u;) so that, say, v, is separably
algebraic over K(uy,vy,...,0,_); also, (v1,...,0,-4) is separably dependent
over K(u,) so that, say, v,_, is separably algebraic over K(u;,vy, ..., V5-2)-
Therefore v,_, and v, are both separably algebraic over K(vy, ..., vs_5)(uy),
so that (v,_,,0) is separably dependent over K(vy, ...,Us_2), Whence
(vy, ..., ;) is separably dependent over K.

It is easy to see that for a subset B of L the following two conditions are
equivalent:

(i) Bis a minimal element of the set of all subsets I of L such that L is
separably algebraic over K(Z);

(i) B is separably independent over K and L is separably algebraic
over K(B).
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We shall call a subset B of L having these properties an inseparability
basis of L over K. It is immediate from Lemma | that if there exists a finite
inseparability basis of L over K, then all inseparability bases of L over K
are finite with the same cardinal number. We shall say in this case that L has
finite inseparability degree over K and shall call this cardinal number the
inseparability degree of L over K.

Every finitely generated field extension has finite inseparability degree.

Every family of elements of L that is separably dependent over K is al-
gebraically dependent over K, and, if L is separable over K, conversely. It
is not difficult to see that this is actually a criterion for separability, that is:
a necessary and sufficient condition that L be separable over K is that every
family of elements of L that is algebraically dependent over K be separably
dependent over K. In particular, for finitely generated separable field exten-
sions the inseparability degree coincides with the transcendence degree.

EXERCISES

1. Let M> L> K be a tower of finitely generated field extensions. Prove
that the inseparability degree of M over K is less than or equal to the
sum of the inseparability degrees of L over K and M over L. Give an
example in which the inequality is strict.

2. Prove the above criterion for separability (Hints: (a) A field exten-
sion is separable if and only if every finitely generated subextension is.
(b) A finitely generated extension is separable if and only if it has a
separating transcendence basis.)

3 Let L be a finitely generated field extension of a field K. Show that if
L is separable over K, then every inseparability basis of L over Kis a
separating transcendence basis of L/K. Derive from this the criterion
that L is separable over K if and only if the inseparability degree and
the transcendence degree of L over K are equal.

3 Quasi-separable field extensions

We are going to introduce a condition on field extensions that is weaker
than that of separability. To this end we observe, for a family of elements
(x)ic; of L, that if some subset J of I for which (x);es is @ transcendence
basis of K{((x;);;) over K has the property that /—J is finite, then every
such J has this property, and the cardinal number r of I—J is independent
of J. We say, in this case, that the family (x,);c; has finite algebraic co-
dimension over K, and that r is its algebraic codimension over K.

with this terminology the criterion for separability given in Section 2

2 e A s AR
I
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can be stated as follows: L is separable over K if and only if every family of
e}ements of L that is separably independent over K has algebraic codimen-
sion 0 over K. We now define L as quasi-separable over K if every family of
elements of L that is separably independent over K has finite algebraic co-
dimension over K.

Every separable field extension is quasi-separable; but so is every finitel
generated field extension, since by Lemma 1 in such an extension a se atrably
independent family must be finite. P ’

It is natural to call a field quasi-perfect if every field extension of it is quasi-
§ep§rable. The following two technical lemmas lead to an internal character-
gital;tnerolfl'quaspperfect fields, and are used in an analogous situation in

Lemma 2 I;et ai,...,a, be elements of a field K of characteristic p #0. In
{he polynomial algebra K[ X1, ..., X,] the ideal (X\*—a,, ..., X,? —a,) is prime
if and only if a; ¢ KP(ay,...,a;-) (1 <j<n). ’

. Proof K isisomorphic to K7, and therefore the ideal in question is prime
?fand only if in the ring K?[ X, ..., X,] the ideal a = (X" —a,?, ..., X,F —qa,?)
is prime. The substitution mapping f(Xy,..., X,) — f(a,, ...,,a' ')’ is'I a I;”-
hqmomorphism of K?[X,,....,X,] onto K’[a,,....,a,] = K"(aln.. a,) with
prime kernel, say p, and obviously a < p. If fe p, then f is ’in"thg ideal
(Xl—al,...,Xn—a") of K[X,,...,X,], so that f? € a. Therefore a is prime
if and only if a = p, which happens if and only if K°[X,..., X,]/a has
as a vector space over K7, the same dimension as KP[X, ’ "X 1/p z’
K*(a,,...,a,). Now, a is contained in the ideal ((X; —a,)?, ...,(’X ,—a")”) of
K[X,,..., X,] and therefore cannot contain a nonzero polynomialn of Zlegree
less than p in each X;. Hence the dimension of K”[X}, ..., X,]/a is p". How-
ever [K"(c'zl, @) KP1 =TT << [KP(ay, ...,a;): K¥(ay, ...,a;_,)], and this
equals p" if and only if a; ¢ K%(a,,...,a;_,) (L <j < n). ’ ’

Lemma 3 Let E, K, L be fields of characteristic p # 0 with KP c Ec K< L
and [E: K"} <oo such that I’ E and K are linearly disjoint over E; let (x;);
be a family of elements of L that is separably independent over K. Yi/z':ri
(x,)ics has finite algebraic codimension over K. .

‘ Proof Assume the contrary. Then there is a subset J of I for which (x;);

is a'lgebraically independent over K, and an infinite sequence (i,) “(e);'
distinct elements of /—J, such that x; is algebraic over K((x;);<s,X; ) "ExN )
of degree, say d, (neN). There does not exist a nonzejréaé)bl;’r’x;x:r;ialln_iln
K[(X.j)je,,X,-o,.'..,/\’,-"] vanishing at ((x));,, X;,, ..., X;,) Wwith the property
that its degree in X, is less than 4, (0 < v < n), but th"ere does exist such a
polynomial with the property that its degree in X, equals &, and its degree

In
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in X, is less than d, (0 <v < n). Of these polynomials, let £, denote one of
minir;lal degree. Because (xX)ies 18 separably independent over K, for each
ie I the partial derivative df,/0X; vanishes at (()jes Xigs -+ Xn)s imd be-
cause of the minimality of the degree of f, this implies that ("{f,,/oXi :p;
therefore f, € K[(X)jes> X5, ..., X[]. Because IE and K are lmes'arly dis-
joint over E, this shows that we may suppose that the coefﬁc1§nts in f, are
all in E. Setting m = [E:K"], we know that there exists a basis (e, ...,€m)
of E over KP. Therefore we may write f, = e, flu+t - +emfin, Where
Sun € K[(XDjess X, .- X;,] and the degree of f,, in X, 15 I.ess than or equal
to djp 1<psmOsyvs n). Since Zmuﬁm‘e“f“”,, vanishes at ((x;);cs>
x,-o,...,x,-n), or as an element of E[(X});c;] vanishes at (*iers w'e see tha'Lt
the matrix (f,,,,((x;“-)ie,)”)lSuﬁm,oﬁnq0 has a rank r < m, and obviously ris
also the rank of the matrix (fun((xie )1 <um, 0<n<c0r Therefore there exist
» distinet natural numbers n(1), ...,n(r) such that the r rows

(fl,n(k)((xi)iel)’ ""fm,n(k)((xi)iel))’ l1<k<r,
are linearly independent, and for every ne N the row (fra(xdien)y o

Foa((€ier)) 1s @ linear combination of these r rows. Fixing n bigger than
each n(k) we may therefore write

j;;,n((xi)iel) = Z h((xi)iel)_1gk((xi)ieI)fu,n(k)((xi)iel) (I<u< m),
1<k<r

where h e K[(X));es]; g€ K[(X)jess Xips--n X, ], and the fiegree of g in
X, is less than 4, 0O <v < n). Thus hfﬂn—zlsks,gkf“,,,(k) is a polynomial
ian[(Xj)jE,, X --r X;,] that vanishes at ((x;);es» Xip s Xi) ar_ld that has
degree less than d, in X . It follows that it has the propgrty that if we regard
it as a polynomial in X, , then its coefficients, which are elements of
KI(X)jes» Xigr > Xinoi D> all vanish at ((x))jes» Xip» ...»X;_)- The same must
be true for the polynomial h”f“",,—zl$k<,g,“’fu"_n(k), and therefore for the
polynomial

— _ P
Z e, hP :,. - 9’ up,n(k)> = h'f, ng fu(k)-
1<€usm 1<ksr

Since f, is free of Xi, and vanishes at ((x))jes» Xips ...,'x‘»n(k)) (1§ k < r‘),

we see that A7f, has this property 100. However, each of its coefficients 1s 11

KI(XDjesr Xig - Ki ], and in X; it is of degree less than d, (0 < v <n).
J ’ > ’ n—-14? v

This contradiction completes the proof.

Corollary A field K of characteristic p # 0 is quasi-perfect if and only if
[K:KP] <c0.

Proof 1If the condition is satisfied and L is any field extension of K,
then, by Lemma 3 with E=K, L is quasi-separable over K; thus, K 1s

LY ¢t R ATE A
A
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quasi-perfect. Suppose the condition is not satisfied. Then there exists an
infinite sequence d,dy,...,d,, ... of elements of K such that a,¢ K"
(ag, ..., a,~y). It is an easy consequence of Lemma 2 that the ideal
(X,?—aq, ..., X,”—a,, ...) of the polynomial algebra K[X,,...,X,, ...] is
prime. Therefore if «,, ..., %,, ... are the respective pth roots of ay, ..., q,, ...
in a field extension of K, then («,),.~ is separably independent over K but
not of finite algebraic codimension. Thus K((x,),.n) is not quasi-separable
over K, so that K is not quasi-perfect.

4 Quotients

Let R be a ring. If T is any multiplicatively stable subset of R, then 1€ Z,
and we can form in the usual way the ring of quotients of R over XI; this
ring, often denoted by L™'R, consists of the quotients (or fractions) a/s
with @ € R and se Z, two such fractions a,/s, and a,/s, being equal when
there exists an se T such that a,5,s = a,5,5. The mapping ¢ : R— X7 'R
given by the formula ¢(a) = a/! is a2 homomorphism (called “canonical™)
of R into £~ 'R with kernel consisting of all ¢ € R such that as = 0 for some
se X

An ideal T of R is Z-prime if t:5 = T for every s € Z. For any ideal f of R,
(Usez E:s is the smallest Z-prime ideal of R that contains f. It is easy to see
that the formula f+— £ 'R-@(f) defines a bijection of the set of Z-prime
ideals of R onto the set of all ideals of Z7!R, the inverse of this bijection
being given by the formula ¥+ ¢~ !(f'). We usually denote the ideal
TIR-o(f) by 7L

The canonical homomorphism ¢ : R — £ R is injective if and only if
¥ contains no divisor of 0. When such is the case, ¢ is generally used to
identify R with a subring of Z7'R. A special case in which this happens is
that in which I is the set of all nondivisors of 0 in R; in this case 7R is
called the complete ring of quotients of R and is denoted by Q(R). When R
is an integral domain, then Q(R) is the field of quotients of R.

Another case that has its own terminology is that in which £ = R—p,
where p is a prime ideal in R; in this case 7' R is called the localization of
R at p and is denoted by R,. In R, there is a unique maximal ideal, namely
R,p, so that R, is a local ring.

5 Perfect ideals

An ideal T of a ring R is said to be perfect if T contains an element x € R
whenever x" € T for some ne N; in other words, t is perfect if the residue
ring R/t has no nonzero nilpotent element. A prime ideal is always perfect.
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If x" ¥, then x*" ¢ f for some v e N it follows that to show that ¥ is perfect
it suffices to verify that x>’ e f = xel.

Let f be a perfect ideal of R, and consider the ideal R[X ] generated by
fin the polynomial algebra over Rin a single indeterminate X. If /= Ya X
is not in R[X]f, then there is a smallest he N such that a, ¢; the co-
efficient of X2 in f21is Dt =20 40 = a2 # 0 (mod¥), so that /> ¢ R[X]E
Thus, R[X]tis a perfect ideal of R[X]. An induction argument yields the
same result for any finitely generated polynomial algebra R[X,..., X,]
It is now easy to see that if S = R[(X),..] is any polynomial algebra over R
and ¥ is a perfect ideal of R, then St is a perfect ideal of S.

4
Lemma 4 {(a) The intersection of any set of perfect ideals of R is perfect.
(b) The union of any nonempty set, totally ordered by inclusion, of perfect

ideals of R is perfect.
(c) IfYisa perfect ideal of Rand s € R, then 1.5 is perfect.

The proof is routine.
It follows that if T is a subset of R, then the intersection of all the perfect

ideals of R containing X is the smallest perfect ideal of R containing X. We
call it the perfect ideal of R generated by . It consists, as is easy to see, of all
elements x € R such that x" is in the ideal (¥) of R for some ne N.

6 Separable, quasi-separable, and regular ideals

Let R, be a subring of R. If Ris an integral domain, it is natural to call
R separable (respectively quasi-separable, respectively regular) over R, if
Q(R) is a separable (respectively quasi-separable, respectively regular) field
extension of Q(R,). (We recall that a field extension L of a field K is called
regular if L is separable over K and K is algebraically closed in L.) For our
purposes it is useful to extend the notion “separable” to a more general
situation in the following way. No longer assuming that R is an integral
domain, we define R to be separable over Rq either if R is the zero ring, or
else if R is not the zero ring and the following three conditions are satisfied.

SI The ring R has no nonzero nilpotent element.

S2 Whenever ay € Ry, ag #0,be R, b#0, thenaob # 0 (so that, in particu-
lar, R, is an integral domain).

S3  Either the characteristic p of Rq is 0, or else p # 0 and R” and R, are
linearly disjoint over Ry’
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(Aitention: This definition is not equivalent to one commonly used' even
in the cases in which both are applicable. For example, any algebra over
a fleld K of characteristic O is separable over K in our sense if it is an in-
tegral domain, but if it is also a local ring, then its radical coincides with its
maximal ideal which in general is not (0).)

It is easy to see that if Ry, R, R, arerings with Ry, = R, « R,, R, separable
over R,, and R, separable over R, then R, is separable over R,.

Consider an ideal f of R, and the canonical homomorphism f: R — R/L.
We define the ideal t to be separable (respectively quasi-separable, respectively
regular) over Ry if f(R) is separable (respectively quasi-separable, respectively
regular) over f(R,), it being understood in the quasi-separable and regular
cases that T is prime so that f(R) is an integral domain. Every ideal that is
separable over R, is perfect (see condition S1 above). We frequently say
““Ry-separable” instead of ““separable over R,,” and ““R,-regular” instead
of “regular over Ry,.”

It is easy to see that if Ry, R, R, are rings with R, « R, = R,, and f is
an R,-separable ideal of R, such that I n R, is an R,-separable ideal of R,
then f is an R,-separable ideal of R,. ’

.We remark that if g : R— R’ is a ring homomorphism with kernel con-
tained in f, then f is separable (respectively quasi-separable, respectively
regular) over R, if and only if g (¥} is separable (respectively quasi-separable,
respectively regular) over g(R,). This is a consequence of the fact that if
f' denotes the canonical homomorphism g(R) — g(R)/g (), then g induces
an isomorphism f(R) = f'(g(R)) mapping f(R,) onto f'(g{Ry)).

Lemma 5 (a) The intersection of any set of R,-separable ideals of R, all
of which have the same intersection with R,, is Ry-separable.

(b) The union of any nonempty set, totally ordered by inclusion, of R-
separable ideals of R, all of which have the same intersection with Ry, is Rg-
separable.

(c) Iftis an Ry-separable ideal of R and s € R, then t.s is Ry-separable,
and (£:5) n Ry =1 n R, provided t:5 # R,

' Proof (a) Let[=[)f, with all the ¥ R;-separable and intersecting R,
in b, so that [ n R, = b,. We may suppose that b, 3 R,. By Lemma 4(a),
R/! has no nonzero nilpotent element. If a, € R,, a, ¢ 1, be R, b¢l, then
'(for some f) b¢f, and a, ¢ ho =T n R,, whence a, ¢ I, so that (because f
is Ry-separable) a,b ¢ T whence a, b ¢ 1. Finally, supposing that R,/b, has
characteristic p # 0, let (¢;) be a family of elements of R, linearly indepen-
fient over R, (mod{); since I n Ry =T n R, for every f, (¢;) is also linearly
independent over R,? (modi). If > oc; =0 (modl), where each «; &R,

! See, e.g., N. Bourbaki, “Algeébre,” Chap. 8, §7. Hermann, Paris, 1958.
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then Y a?c; =0 (modf) for every f. Because each f is Ry-separable, this
implies that each «; = 0 (modf) for every t: that is, each ;=0 (mod D).
Thus, (c;) is linearly independent over R? (modl). This shows that [ is R,-
separable.

(b) Let I=1{J [ be the union of a totally ordered set of Ry-separable
ideals all having intersection h, with Ro. We suppose that ho # Ry. By
Lemma 4(b), R/l has no nonzero nilpotent element. If @y € Ry, @ ¢1, beR,
b ¢1, then (for every t) ao ¢ f, b¢tso that ayb ¢, whence ag b ¢ [. Suppos-
ing that Ro/ho has characteristic p # 0, let (¢) be a family of elements of
R, linearly independent over R,? (modl). Since [ n Ry =T n R, for every £,
(c;) is also linearly independent over Ro? (modf); if Y xPc; =0 (modl),
where each ;€ Rythen Yo7 ¢; =0 (modf) for some {, so that each o; = 0
(mod¥) for this T, “and therefore each a; =0 (modl). Thus, (¢) is linearly
independent over RP (modI). This shows that [ is Ry-separable.

(c) We may suppose that f:s # R. By Lemma 4(c), R/(f:s) has no non-
zero nilpotent element. If aye Ry, ap ¢ 1, bER, b ¢ t:s, then s¢f so that
(because fis Ry-separable) @y 5 ¢ f, that is a, ¢ t:s. It follows on the one hand
that (f:5) N Ry =t Ry, and on the other hand that agbs ¢%, that is,
a,b ¢ t:s. Supposing that Ro/(E ~ Ry) has characteristic p # 0, let (¢c;) be a
family of elements of R, linearly independent over Ro” (modfi:s), that is,
since (f:5) N Ry =t Ry, linearly independent over Ry’ (modf); since fis
R,-separable, (c;) is linearly independent over R? (modf). If Safe,=0
(mod f:5), where each ; € R, then 3. (sot)Pc; = 0 (mod ¥), each s¢; =0 (mod?),
whence each «; =0 (modft:s). Therefore (c;) is linearly independent over
R? (mod t:s). This shows that f:sis R,-separable.

7 Conservative systems

Let M be a module over a ring R. A set € of submodules of M will be called
a conservative system of M if the following two conditions are satisfied.

CS1 The intersection of any set of elements of € is an element of €.

CS2 The union of any nonempty sel, totally ordered by inclusion, of elements
of © is an element of €.

We shall be interested primarily in the case in which M = R; in this case
the elements of € are ideals of R, which we call @-ideals.

By CS1, applied to the empty set of submodules of M, M itself is an element
of every conservative system of M. The set of all submodules of M is a con-
servative system of M so is, at the other extreme, the set consisting of the
single element M. By Section 5, Lemma 4, the set of all perfect ideals of R
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is a conservative system of R, and by Section 6, Lemma 5, so is the set con-
sisting of R and of all the Ro-separable ideals of R having a given intersection
with R, (R, being a subring of R).

The intersection of a nonempty set of conservative systems of M is itself a
conservative system of M. Therefore if 9 is any set of submodules of M,
there is a unique smallest conservative system of M containing 9. ’

If € is a conservative system of M and X is a subset of M, the intersection
of all the elements of € that contain I is, by CS1, the smallest element of €
containing I; we call it the submodule of M €-generated by X and denote it
by (£)e. An element of € that is €-generated by a finite set is said to be
finitely §-generated, and any such finite set is called a €-basis of that element
of €.

Lemma 6 Let © be a conservative system of an R-module M, and let X be a
subset of M. If x € (Z)s, then there exists a finite set ® < X such that x € ().

Proof We may suppose that X is infinite. Then there exists a set T of
subsets of ¥ such that ¥ is totally ordered by inclusion, each element of T
has cardinal number strictly smaller than that of X, and (Jy.s T=ZX. By
CS2, Urex (T)g is an element of €, and obviously X < {Jr.z (T¢ = (e,
so that (Z)¢ = Urez (Te- The lemma now follows by induction on the
cardinal number of X.

Now consider a mapping F of the conservative system € of M into a con-
servative system @ of a module M’ over a ring R’, and suppose that F is
intersection preserving in the sense that F((V.em ©) = ( \cem F(c) for every
subset M of €. If a,6e € and a < b, then F(a) = F(a n b) = F(a) n F(b),
so that F(a) = F(b); that is, F is inclusion preserving. If F has the further
property that F({J..x €) = U.ex F(¢) for every nonempty totally ordered
subset T of €, then we call F a conservative mapping, or homomorphism, of
€ into @'. It is easy to see that if Fis bijective, then the inverse mapping F~!
is also conservative; we say in this case that F is an isomorphism of € onto
¢, and that the two conservative systems are isomorphic.
. For a conservative mapping F: € — @ an element ¢’ € F(€) may be the
image of several elements of €; the intersection of all of them is the smallest
element ¢ of € with F(¢) = ¢’. If a’, b’ € F(€) and o’ = ', and if a, respectively
b, denotes the smallest element of € mapped onto o', respectively b’, then
Flanb)=F(@) n F(b) =a" n b =a so that a n b = a; in other words, if
o’ = b, then a = b. Using this fact it is easy to see that F(T) satisfies CS2.
Since F(G) obviously satisfies CS1, we see that F(€) is a conservative system
of M'.

As an example of a conservative mapping, let € be a conservative system
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of R, let v be either a subring or an ideal of R, and consider the mapping
e enr(ce Q) [tis easy to see that this is a homomorphism (called canon-
ical) of € onto a conservative system of r. We denote this conservative system
of r by €fr.

To obtain a second example, consider a ring epimorphism fiR—- R,
and denote the kernel of f by I. The set of all elements of the conservative
-system € of R that contain { is a conservative system of R, and ¢ ~ f(c) defines
an isomorphism of this conservative system onto a conservative system,
which we permit ourselves to denote by f(€), of R. When fis the canonical
ring homomorphism R — R/f, we denote the conservative system f(€) of
R/t by €/ (and call the isomorphism canonical).

For a'third example let £ be a multiplicatively stable subset of R and con-
sider the, canonical homomorphism ¢ : R— X 'R of R into the ring of
quotients 'R (see Section 4). The set of all 2-prime elements of the con-
servative system € of R is a conservative system of R and ¢+ £~ ¢ defines
an isomorphism (called canonical) of this conservative system onto a con-
servative system, which we denote by Z™!@&, of T~ 'R. The inverse of this
isomorphism is defined by b ¢ (b).

These three examples can be subsumed under a single construction. Let
f: M’ — M be a homomorphism of R-modules. The set S (M) of all sub-
modules of M is a conservative system of M, and the set &, (M") cf all sub-
modules of M’ containing the kernel ¥ of fis a conservative system of M.
The mapping f*: ¥ (M)~ & (M’) defined by f*(®) =f"1() is then a
conservative one.

8 Perfect conservative systems

A conservative system € of a module over a ring R will be called divisible
if c:s € € whenever ¢ € € and s € R. When this is the case, then ¢:X € € when-
ever ce € and I is a subset of R, for ¢:T = ;5 (c:5).

A conservative system of the ring R will be called perfect if it is divisible
and every element of it is a perfect ideal of R.

Lemma 7 Let € be a divisible conservative system of the ring R. Let £ and
T be subsets of R and let T denote the set of all products st with s e X and
teT. Then (Z)¢(T)e = ET)s. If € is perfect, then (ET)g = (Z)¢ N (Te.

Proof Since (ET)¢:Z is a C-ideal containing T, it also contains (M.
Therefore (£T)¢:(T)¢ is a €-ideal containing X, hence containing (L)¢, so
that (Z)¢(T)s = (ZT)¢. Consequently ((£)¢ N (T)e)* = (TT)g, so that if
(ZT)¢ is perfect, then (Z)g N (T)g = (£T)¢; the inclusion in the opposite
direction is obvious.

tiy L
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Let € be any conservative system of the ring R. Let ¢ l.)e.a perlfect 1dtea}
of R with ¢ € €. By a €-component of ¢ we shall mean any minimal e efmén od
the set, ordered by inclusion, of prime ideals that are elements c;l an
contain ¢. It is an easy consequence of Zorn’s lemma and CSl t at eve;)i
prime €-ideal containing ¢ contains a €-component of c.'The follozmg pro:rk
sition is, in the case in which @ is the set of all perfect ideals of R, a rem

due to Krull.

Proposition 1 Let € be a perfect conservative system of a ring R. Every
G-ideal is the intersection of its &-components.

Proof let ce@ If xeR and x ¢ c, there exists a C\Z-k‘ieal con.tainlmg ct;
but not x (for example ¢). By CS2 and Zorn’s lemma there is a m;xnm;hiize
@-ideal, say p. If g,b€ R and a,b ¢ p, then xe(p,.a)(;,.xe (p,d )ﬁg’nce cnee
(by Lemma 7) x & (p, ab)g, so that ab ¢.p. Thus.p is prime ar& e ¢ oo
tains a @&-component of ¢. Therefore the mt'ersectlon of all the -C(:n'lp s
of ¢ does not contain x. Since x is an arbitrary element of R not 1n ¢,

intersection is ¢.

EXERCISE

1. Let € be a divisible conservative system of a ring R, apd 1et'c € lC\Z.H' )

. (a) Show that the perfect ideal cfof R gene.rated by cx.saC\Z-xde.:(ait .(1 int:
For every x € R with X" ¢ ¢ (neN) there exists a max1mg1 C\Zl-l' ea ':::;
taining ¢ but not containing any x"; such a mammal C\.Z-ldea is prlrim.e
(b) Show that if ¢! of part (a) is the intersection of finitely many p e
ideals of R none of which contains any other, thep eagh of the;e pri ‘
ideals is a G-ideal. (Hint: If p is one of these prime 1dealsT2'1n—s is a
element in the intersection of the others but not in p, then ¢f:5 = p.)

9 Noetherian conservative systems

If € is a conservative system of an R-module M, the following three con-
ditions are evidently equivalent.

(i) Every element of € has a E-basis.
(i) Every strictly increasing sequence O
(ili) Every nonempty set of elements of

f elements of € is finite.
& has a maximal element.

If these conditions are satisfied, we say that ® is Noetherian, or that M 1s

€-Noetherian.
For perfect conservative systems that are No

be greatly sharpened.

etherian, Proposition 1 can
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Theorem 1 Let € be a Noetherian perfect conservative system of a ring R.
Every G-ideal ¢ is the intersection of a finite set of prime G-ideals none of which
contains another. This finite set is unique, being the set of €-components of ¢

Proof 1f the set of G-ideals that are not finite intersections of prime -
ideals were not empty, this set would have a maximal element a; obviously
a could not be prime or be R. There would then exist elements b, ¢ € R such
that b,c ¢ a and becea. By Section &, Lemma 7 we could write a = (a,0)¢ N
(a,¢)s, and by the maximality of a each of (a,b)¢ and (a,¢)¢ would be a
finite intersection of prime @-ideals, so that a would, too. This shows that
every G-ideal is a finite intersection of prime §-ideals. Let ce €. Discarding
superfluous prirhe ideals, we may express ¢ as the intersection of a finite set
9 of prime G-ideals none of which contains another. If p’ is any @-com-
ponent of ¢, then, because Npem P =¢< p', we have p = p’ forsomep € m,
whence p = p’. Thus, every E-component of ¢ is an element of . Con-
versely, if pe M, then p contains a E-component of ¢, and by what we have

just shown must be that E-component of c. This proves the theorem.

RemArk If a perfect ideal ¢ of R is the intersection of finitely many prime
ideals none of which contains any other, then every divisible conservative
system € containing ¢ also contains these prime ideals (see Section 8, Exer-
cise 1) and they are the @-components of ¢. For such a perfect ideal ¢ we may

therefore refer to the components of ¢, without specifying the conservative

system.

Proposition 2 Let & be a Noetherian conservative system.

(a) Every conservative system contained in € is Noetherian.
(b) Every homomorphic image of € is Noetherian.

Proof The first part is obvious. If F:€->C is a surjective homomor-
phism of conservative systems, then (see Section 7) for each ¢’ € @ there
exists a smallest c€ € with F(¢) = ¢/, and the mapping ¢ > ¢ of € into T is
a strictly increasing one. Therefore if € contains an infinitely strictly in-

creasing sequence, then so does €.

Corollary 1 Let € be a conservative system of a ring R, let R, be a subring
of R, t be an ideal of R, and L be a multiplicatively stable subset of R.If € is

Noetherian, then so are €|R,, Clf, C/1, and T €.

Corollary 2 Let € be a perfect conservative system of a ring R, and let t be
an ideal of R. A necessary and sufficient condition that © be Noetherian is

that G|t and €[t both be Noetherian.
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Proof The necessity is contained in Corolla : .
brfcaniand 0+ (a+de, thenb = brry\ %a —Il-ff;, Soatrsa(ti-(feasls with
§, Lemma 7) b (ab+bhe = (a+anie=a. Therefgre if an Y TCt%On
achbof G-ideals is strict, then either the inclusion a nfcbni ofmlc usion
of G|f is strict or the inclusion (a+H)¢/t = (b+f)g/t of (S/f-idelal ?emepts
It follows that if € is not Noetherian, then either Gt or €/Fis not I\?O;?hztrzc;.

Lemmaz'S’ Let © be a perfect conservative system of a ring R. If € is not
Noet'herzan, then the set of C-ideals that are not finitely C-generated has
maximal element, and every such maximal element is prime ‘

' Proof If T is a nonempty subset of €, totally ordered by inclusion, and
if every element of T fails to be finitely €-generated, then {J N
finitely €-generated. The existence of a maximal elemer’lt is therc:cfeozrc eon:
sequence of Zorn’s lemma. Let m be any such maximal element‘efleco?-
m#R. If a,be R and a,b¢ m, then (m,a)c and (m,b)¢ are ﬁl{it 1 ar(iy
gex'lerated, so that we may write (1, @)¢ = ()¢, (M b)’ ___“(lp) w't;}clp -
finite; by Section 8, Lemma 7 then (m, ab)¢ = (m ’a) cm (m bc) _l(q, ¥
(F)e = (D¥)e, so that (m,ab)e is finitely (S-gener,ate‘ii' sin;:e o e o
ab ¢ m. Thus, m is prime. ’ s nob

(I;rzposition 3 Let R be' a finitely generated overring of a ring R,, and let
e a perfect conservative system of R. If €| R, is Noetherian the(;z, sois &

REMARK The converse is part of Corollary 1 to Proposition 2.

o :’Zzg : Anh'otgvigus ;znd[m}:tion argument shows that it suffices to consider
n which R = R, [v] for some element v € R. Assum iti
: ‘ : . e the propositio
i;;lcsle.n?y'Lerqma 8 ;bere 12: alt maximal C-ideal m that is not finitely G?geﬁer;tledn
is prime. Since €|R, is Noetherian, m N R, h is W,
el b oo () , o has a €|R,-basis V.
c, SO that m s (mn Ry)e. Theref h i
a polynomial f=ao+a, X+-+a Yre R oJe- ore there exists
. - o[X] such that f(v)em and
';(;;s)ssfb(lx: rS\OR(gf;t obvélousl};3 n# 0. We suppose f chosen with 'rfz(a)s smaliu:as
, at @, ¢ m. By the maximality of m, (a,,m)g i i
50 ‘ ] , (a,, s finitely C-
g:r:rated, it follows by Section 7, Lemma 6, that there ex‘iists a ﬁnitZ s(cg:t
i ::) S}lclh that (a,, )¢ = (a,,®)s. Now, for any wem there exists a
P u);t‘ mia LqeRO [x1] sqch that w = g(v). Dividing g by f we obtain an
qc(lv)fzon akg =qf+r with g,re Ro[X] and degr<n, so that afw =
(mn£)+r(v), whence r(v).e m. By the minimality of #, then "r(v) €
0 e =P, frf)m which we conclude that a,*w e (f(v),¥)s. Thus
. < (f(v), ¥)g. Using Section 8, Lemma 7, we therefore ﬁnd’ thact.

m = m A (g, Me = m A (g, P)g = (@,m, ®)c = (f(v), ¥, D)o,
contradicting the fact that m is not finitely generated
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Corollary If the set of all perfect ideals of a ring Ro is @ Noetherian con-

servative system, then o is the set of all perfect ideals of the polynomial

algebra Ro[X 1.

EXERCISES

1. Let@bea perfect conservative system of a ring. Show that @ is Noetherian
if and only if: () every strictly increasing sequence of prime €-ideals
is finite; (i) every G-ideal has only finitely many components. (Hint:
Prove the following lemma about ordered sets: Let C be an ordered set
and assume there exists an infinite sequence (C)nen Of distinct finite sub-
sets of C such’that distinct elements of C, are never comparable and each
element of Cy.y is greater than an element of C,; then there exists an
infinite strictly increasing Sequence of elements of C.)

2. Let @ be a Noetherian conservative system of a ring R. Say that a C-ideal
¢ is G-irreducible if ¢ is not the intersection of a finite set of G-ideals dif-

ferent from c.
(a) Show that every G-ideal is the intersection of a finite set of €-

irreducible G-ideals.
(b) Show that if € is divisible and has the property that u € (v, L)e =
ue (((u ) 07) 0, Z)e for all elements u,v of R and alt subsets T of R,

then every G-irreducible (-ideal is primary.

10 Morphisms and birational equivalence of ideals

Let A be an algebra over a ring R. For any prime ideal p of A4, the com-
plete ring of quotients Q(A/p)isa field. If p’ is a prime ideal of an R-algebra
A’, it is natural to call any R-algebra isomorphism Q(4/p) = Q(A'fp") a
“birational correspondence” between p and p’ over R. The purpose of the
present section is to generalize this notion. The generalization will be used
in Section 12 to derive certain known results in a form suitable for use in later
chapters.

Consider any ideal T of 4. If s € A, the element s+ of Altisa nondivisor
of zero precisely when f.s = £. We denote by T(f) the set of all ideals [ of A4

with [ > t such that
se A, tis=tl = [:s =L

For any { e 3(f) the canonical R-algebra homomorphism A/t — A/l extends
to a unique homomorphism Q(A/D) > 0(4/D), which we also call canonical.

Obviously e J(D). It is easy to verify that the intersection of any set of
ideals in 3(f) is in J(D), that the union of any nonempty totally ordered set
of ideals in 3(f) is in J(D), and that [:s € 3(f) whenever [e3(F) and s€ 4.

{0 MORPHISMS AND BIRATIONAL EQUIVALENCE OF IDEALS 17

Thus, J(8) is a divisible conservative system of A.

if 1 e 3(F), then I() = 3(D).

.If t = a1 A0 q,, where t.he ideals q; are primary, belong to distinct
prime 1deals' (i.e., the perfect ideals they generate are distinct), and are ir-
redundant (1.e.,~ no one; (?f them contains the intersection of the others)
then each fq,- e 3(b). This is an easy consequence of the fact that f:s =1 i%
and only if s¢py WP p; denoting the prime 1 i belo

v Pi prime ideal t :
It follows that each p; € 3(1), too. o which g belongs

By way of example, we see that if p is a prime ideal of 4 3 i

s , then 3(p) consists
ofthe‘two. elements‘p and A. If A happens to be a factorial ring (i.eﬁ)a unique
factorilzatlon domain) and f€ 4, f# 0, then 3(Af) consists of all the ideals
Ag with g € Af. (We leave the proof as an exercise.)

L.et f,f' be ideals of the R-algebras 4, A', respectively. By an R-morphism
of t m'to t wezhall.mearla ;,)axr ‘I" = (¥, (W)es) Such that Y isa conservative
rfnappmﬁ (Iaf :sgg HILIO‘J(U with Y (®) =¥, W3 is @ family such that
or each le 3(f), ¥ is an R-algebra homomot hism of ! into
Q(A4/1), and the diagram ’ QA D) inco

Q(Ajm) <<= Q (4’ (m))
o)
QW) <X Q4 D)

is commutative for all 1€ 3(f) and m e 3(1), the vertical arrows denotin
the canonical homomorphisms. We often write ‘¥ : I A ¢
. Let ¥ = (, (J)re3w) be an R-morphism of T into PP = (), () )
is an R-morphism of ¥ into an ideal " of an R-algebr; /;”I'Etsl(lte')n
(W', (Yo W)iesw) is an R-morphism of finto t'; we call it thé com-
pos{'te'of ¥ and ¥, and denote it by ¥’ o¥. Composition is obviously as-
sociative. The identity mapping of J3(f) into itself together with the identity
homomorphisms Q(4/1) — Q(A4/) define an R-morphism of { into I, which
we cal‘l the identity R-morphism of t and denote by I'or I If the conse’:rvative
mapping ¥ 3(8) - 3(F) is a bijective one,.and W QA ()~ Q(4/D) is
an isomorphism for each 1e 3(f), then we call the R-morphism ¥ =
(&, W)reaw) a birational correspondence between t and ¥ over R. A neces-
sary and sufficient condition for this to be the case is that ther'e exist an
R-.mor‘pt%ism @' ¥t such that ¥/ oW = I' and Yo ¥’ =[". If sucha ¥’
exists it is unique; we then call it the inverse of ¥ and denote. it by L If
there e'x1sts a birational correspondence between f and ' over R, we say tilat
thes'e ideals are birationally equivalent over R. This notion c,>f birational
equlvalegce defines an equivalence relation on any set of ideals of R-algebras
If I e 3(f) and we set I' = (D), it is easy to see that i maps 3(1) into S(I’):
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It follows that if we denote the restriction of ¥ to 3(I) by 4, then (4, (W edmesiy)
is an R-morphism of [ into I'; we call it the R-morphism induced by ¥ on L

It is easy to see that if ¥: f 1 is a birational correspondence over R
and if f has one of the properties of being prime, being perfect, being primary,
being R-regular, or being R-separable, then t' has the same property. in
particular, if t=gq, """ 4. with the g; primary, belonging to distinct
prime ideals p;, and irredundant, then YD = W) N0 gan) and the
ideals y(q;) are primary, belong to the distinct prime ideals ¥ (p,), and are
irredundant.

Before continuing with the matter at hand, we prove the following lemma
which is sometimes useful in passing from an ideal in a subring of R to an

ideal of R. i

Lemma 9 Let R, be a subring of a ring R such that R is a free Ro-module;
let T, be an ideal of R,.

(@) If () is a basis of the Ry-module R and x = S a,u; with each a; € Rq,
then x is in the ideal Rty of R if and only if each a; € g

(b) (Rfg) N Ro = fo.

Proof 1If xe Rf,, we may write x = Y x;k; with x;€ R and k;ef, for
every j, and then we may write x; = X; b;u; with b;; € Ry; hence Sau =
x=2;(3; b kj)u;, so that ;= 3 bi;k; ety Since the converse is obvious,
part (a) is proved. If ae (REy) 0 Ry, then, for any fixed index i, au; € Rig
so that by part (a) a € {o. Since the converse is obvious, part (b) is proved.

We return to R-morphisms with the following lemma, which is the source
of most of the applications in Section 12.

Lemmal0 (a) Iff:A—Aisa surjective homomorphism of R-algebras
and 1,¥ are ideals of A, A", respectively, with ¥ =f"'(1), then the formula
1+ (1) defines a bijective conservative mapping f': 3(&)— 3(¥); for each
le 3() f induces an R-algebra isomorphism fi: Q(A'lf T () = Q(A4/h),
and (fY, (fdeaw) i @ birational correspondence between t and ¥’ over R.

by Iff: A —Aisa homomorphism of R-algebras such that A is a free
f(A")-module, and p' is a prime ideal of A’ containing the kernel of f, then the
formula 1 f~'(1) defines a conservative mapping £ I(Af(p) —
3(p’); for each le 3(Af(p") f induces an R-algebra homomorphism
T O D) —~ QUAM, and (FH, (resiasiry) s an Remorphism of
Af(') into p’

(¢) If Z is a multiplicatively stable subset of an R-algebra A, and
@ A— L7 A denotes the canonical homomorphism, and 1 is a T-prime ideal
of A (see Section 4), then the formula S+~ | defines a bijective con-
servative mapping ™' 3E T - 3(); for each T He3IE', @
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induces an R-algebra isomorphism  @g- : Q(A/) =~ Q(E™'4/Z71D), and
((p:-lr’ ((pg—x():—lxes(z-‘!)) is a birational correspondence between ™'t and
t over R.

Proof (a) Because f is a surjective, [— £~ (1) defines a bijective con-
servative mapping of the set of all ideals of 4 onto the set of all ideals of 4’
containing the kernel of f; the relation £~ ():s’ = f 7' (1) is evidently equiv-
alent to the relation L:f(s) =1, so that 3(I) is mapped bijectively onto
3(t). Moreover, f induces an isomorphism A'Jf () = A/l, which extends
to a unique isomorphism f;: Q(4'[f (D) = Q(A/D). The fact that the dia-
grams analogous to (1) are all commutative is easy to see.

(b) By Lemma 9 we observe first that if s"e A" and p’:s’ =p’, then
(Af(p")) () = Af(p). We observe next that if [ e 3(4f(p)), then fthe
3(p’) (and therefore, since p’ is prime, then either f~ I =porft{ly=4);
indeed, if p’:s’'=9p’, then by our first observation [:f(s) =1, whence

“ID):s' =1, so that 7~ '()e 3(p’). We therefore have our mapping
FAIED I(Af(p)) > 3(7) defined by [+ /"' (D), and f~'(I) = p’ whenever
[ 3(Af(p)) and 1 # A; f4/®7 is clearly conservative, and f induces a homo-
morphism f;: Q(A'If () » Q(4/1) for each le 3(Af(p)). The commuta-
tivity of the diagrams analogous to (1) is obvious.

(c) The formula [— ¥ '[ defines a bijective conservative mapping of
the set of all Z-prime ideals of A onto the set of all ideals of L7 !4, the inverse
of this mapping being defined by ™" [+ e ' EX7') =1 If T is Z-prime,
then so is every le 3(f). For any Z-prime [ and any se A the relation
(.5 =1 is equivalent to the relation (Z™'0):¢(s) = ¥, and ¢ induces an
injective homomorphism A/l> T 'A/x7 "1, the image of which has the
same complete ring of quotients as £~ L4/x7 1. Part (c) of the lemma follows
easily from these facts.

EXERCISE

1. Letf,¥ be ideals of a Noetherian ring R with f < ¥'; let IT, respectively
', denote the set of prime ideals associated with {, respectively f'. Show
that ¥ € 3(f) if and only if every element of TI" is a subset of an element
of T1, and that when this is the case then every element of IT' contains
an element of 1. (Hint: See Section 16, footnote in proof of Corollary
2 to Proposition 11.)

11 Polynomial ideals and generic zeros

Consider a prime ideal p of a polynomial algebra K[X]1= K[(XDier)
over a.ﬁeld K. A generic zero of p is a family x = (x;);, of elements of a field
extension of X such that a polynomial in K[X] is an element of p if and only
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if the polynomial vanishes at x, that is, such that p is the kernel of the sub-
stitution homomorphism K[X]- K[x]. lt follows that x is a generic zero
of p precisely when there exists a K-algebra isomorphism K[x] ~ K[X]/p
that maps x; onto X;+p for every i. This shows that every prime ideal of
K[X] has a generic zero, and it is unique up to K-isomorphism.

Let x = (x,);c; be @ generic zero of p. By the definitions in Section 6, p is
a separable (respectively quasi-separable, respectively regular) ideal over
Kif and only if K(x)is a separable (respectively quasi-separabile, respectively
regular) field extension of K.

The dimension of p, denoted by dim p, is by definition the transcendence
degree of K(x) over K. It is easy to see that if / is an irreducible polynomial
in a finitely genérated polynomial algebra K[X, ..., X.], then the principal
ideal (f) is prime and of dimension n— 1. The following proposition implies
that if, conversely, p is a prime ideal of K[Xj, ...,X.J of dimension n—1,

then p is principal.

Proposition 4 If p and p' are prime ideals of K{X,,...,X,] with p<p/,
then dimp = dim p’, if moreover dimp = dimp’, then p=p".

Proof Let (xy,..., %.), (X1, ..., x,) be generic zeros of p,p’, respectively,
with say (x’,....%s) transcendence basis of K(x,',...,x,") over K. Then
(X4, Xa) 18 algebraically independent over K, for otherwise p would con-
tain a nonzero element of K[X, ..., X,] so that p” would too, and (x;', .-, X))
would not be algebraically independent over K. Therefore dimp=2d=
dimp’. If f,9 € K[X, X and f(xg, ..., %) = g(xy, ..., X,), then f—gep,
whence f—g € p’, $O that f(x,, .., %) = g(xy', ..., x,'). Therefore there exists
a mapping @ : K[x( ... X, ] 2 K[x,,..., %’} such that o(f(x, X)) =
Fxy o x) for every fe K[ Xy, ..., X4, and ¢ is easily seen to be an algebra
homomorphism. Of course, ¢ is surjective. Suppose dimp = d. Then any
nonzero y € K[x,...,x,] 18 algebraic of some degree m Over K(x1, - 0 X
so that there exists a polynomial he K[ Xy, ..., X,,Y] of degree m in y such
that h(x,,..., %4, Y) is an irreducible polynomial in K{x,, ..., X)) [Y] vanish-
ing at y. Clearly A(xy, ., x,,0)# 0. Writing y =f(x,, ..., x,) with fe
K[X,, ..., X,], we see that h(Xy, s X0 (X1, ..., X)) vanishes at (X(5eeer Xu)s
hence is in p, hence in p’, and therefore vanishes at (x,’, ..., x,). However,
h(x,’,...,xs,0) # 0, so that o(y) = flx{, ..., %) # 0. Thus, ¢ is injective,
hence an isomorphism, so that p = p.

12 Polynomial ideals and ground field extension

If £ is an ideal of a polynomial algebra K[X] = K[(X);e ] over a field K
and L is a field extension, then f generates an ideal of the polynomial algebra
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L[XJover L;we generally denote this ideal by LE. The purpose of this section
is to obtain certain information about Lf under various assumptions on f

Lemma 11 Let p be a prime ideal of a polynomial algebra K[X] = K[(X});./]
over a field K, let U be an ideal of a polynomial algebra K[X'] = KIXDo ]
over K, let t be the ideal of K[ X, X'] generated by p w ¥, and let x be a (g:e;zzrlic
-ero of p. Then there exists a birational correspondence between K(x)¥ and
t over K. IfV and s are corresponding elements of 3(K(x)1') and 3(x), respect-
ively, then (for any f€ K[X,X"]) f(x,X")e ' if and only iff(X,X’)’e s, and
the K-isomorphism Q(K[X, X'1/s) = Q(K(x) [X']/I") is given by ’

(g(X, XN+ 8)[(h(X, X")+5) — (g(x, X)+)/(h(x, X)+T).

Proof The substitution homomorphism K[X,X']— K[x,X'] is sur-
jective, has kernel K[X,X'Jpcr, and maps r onto K[x,X']¥. Also
K(x)[X'] is the ring of quotients of K[x, X'] over the set L of nonzer(;
elements of K[x], K[x,X'1¥’, is a Z-prime ideal of K[x, X’] (easy con-
sequence of Section 10, Lemma 9(a)), and ™ 'K[x, X']F' = K(x)[X']{' =
K(x)¥. The result now follows from Section 10, Lemma 10(a) and (c).

Proposition 5 Let p and p’ be prime ideals of polynomial algebras over a
ﬁelc? K, and let them have generic zeros x and x', respectively. Then there exists
a birational correspondence between K(x)p' and K(x')p over K. If I and |
are corresponding elements of 3(K(x)p') and I(K(x')p), respectively, then
(for any FeK[X, X']) f(x,X"Yel if and only if f(X,x')€l, and the K-iso-
morphism Q(K(x')[X]/) = Q(K(x) [X']JV) is given by
(g(X, x)+D/(h(X, x )+ 1) = (g(x, X)) +1) /(A (x, X')+T).
Proof By lemma 11 there are birational correspondences K(x)p' —rt

and' K(xHYp-or, whére r is the ideal of K[ X, X'] generated by p U p'. Com-
posing the former with the inverse of the latter we obtain the desired resuit.

Proposition 6 Let p and p’ be prime ideals of polynomial algebras over a
field K, let ¥ : p—p’ be a K-morphism and let L be a field extension of K.
Then there exists a unique L-morphism LY : Lp — Lp’ (which is therefore a
K-morphism) such that the diagram

Ly —5> Ly’

b

p —> ¢

f's commutati've, the vertical arrows denoting the K-morphisms induced (accord-
ing t’o Section 10, Lemma 10(b)) by the inclusions K[X]— L[X] and
K[X']—> L[X'). If'Y is a birational correspondence, then so is LY.
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Proof To give a K-morphism ¥ :p — P’ is to give a K-homomorphism
W QK[X'1p) — Q(K[X1/p). Denote the image of X under the canonical
homomorphism K[X]- Q(K[X1/p) by x and the image of X’ under the
composite homomorphism K[X']— Q(K[X"1/p) s Q(K[X]/p) by x';
then x and x’ are generic Zeros of p and p’, respectively, and K(x") = K(x)-
Therefore we may write X' = C(x)/D(x) = (Co (/D (x))ir e » Where C.,Dy e
K[X] and D; ¢ p- Let x" be a family of generators of the field extension L
of K, let X" be a corresponding family of indeterminates, and let p” be the
defining ideal of x” in K[X"]. We have the three K-morphisms Lp =
K(x"yp — K(x)p” (according to Proposition 5), K(x)p" — K(x')p" (induced
by the inclusion K(x') - K(x) according to Section 10, Lemma 10(b)), and
K(x)p"— K(x)p = Lyp' (according to Proposition 3). Their composite is
a K-morphism Lp — Lp’ which we denote by LY.

To facilitate the description of LY let us agree, for any polynomial f in
L[X']=LI(XDvepdor in K[X,X'] with degy., /= d, (i’ € I') and for any
family P = (P;)ir of elements of a ring, to denote the product [1ier Pg
by Pée/. Let [ e 3(Lp), and denote the image of [ under the conservative
mapping 3(Lp) = J(K(x") p) — 3(K(x) p”) by I’; the image of 1 under
I(K(x)p") - J(K(x)p") is then I” n K(x')[X"]. Denote the image of
" A K(x')[X"] under I(K(x)p") = I(K(") p’) = 3(Lp’) by U'. Then the
conservative mapping 3(Lp) - 3(Lp") maps [ onto I'. For any nonzero
fe K[X', X", f(X',x") € I if and only if fx', X el" N K(x')[X"], that is,
if and only if f(x’,X")el’, or even F(C(x)]D(x), X")D(xy# el this in
turn happens if and only if f{C(X)/D(X), x")D(X)*#/ e 1. Similar reasoning
then shows that the K-homomorphism Q(L[X']/I')— Q(L[X]/D) is given by

(g(x", x") + V)X, x") +1)

- (g(CX)D(X), x") DX yeezan 4 1)/((C(X)/D(X), x") D(X Yot + 1),
where g, h are arbitrary polynomials in K[X ' X"} with A(X’,x") ¢ 1, that
is, is given by

(g(X) + V)(AX) +1)
- (g(C(X)/D(X)) DxYEEe + 1)/(h(C(X)/D(X) DX)E 4+ 1), (2)
where now g, 4 are arbitrary polynomials in L[X"] with A ¢ U. In particular,

this is a homomorphism over L, so that LW is an L-morphism.
To prove the commutativity of the diagram in the statement of the propo-

sition, we must show that the diagram
I(Lp) —> I(Lp)

I(p) —> 3 »)
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of conservative mappings and, for each [ e 3(L i

: 'P s p) with [ # L i
corresponding ' € 3(Lp"), the diagram ) # L] and with

QLLXYD <— QLLXY/T)

Q(KLXY/p) «— Q(K[X"1/p)

of ho.mom.orphisms are commutative. That the diagram of conservative
mappings is commutative is obvious, since J(p) consists solely of p and

K[X] and similarly for 3(p’). In the diagram of h i
horizontal arrow is given by * emomorphisms, the lower

(9(X") +p)/(h(X") + )
- (g(C(X)ID(X)) D(X)* 2 + p)/(h(C(X)/D(X)) D(X)*=9" + p),

where now g, h are arbitrary polynomials in K(X"] wi “ i
arrow on the right is given by (] it A 375 the vertical

(9(X") + ) (X)) + ) > (g(X) + D)/(R(X") + 1),

and the vertical arrow on the left is given similarly. Together with what we

already kn pp I hOriZ tal art lll'S S A% the
¢ ow about the u ~ on rrow 1 hO i
> S that h dlagram

To prove the uniqueness as stated in the proposition, let ® =
be ?.n L/-morphism Lp — Ly’ that makesa c?)mfnutative, diaglam(.(el"l(m(g[e):[l:;r(ézz
(X;+p)/(1+p) of Q(K[X']/p’) is mapped onto the clement (C.(X)+ p)/
(Dy(X)+p) of Q(K[X]/p), which in turn is mapped onto thé elem:nt
(Co(X)+ DDy (X)+1) of Q(LLX]/D). On the other hand, (X, +p")/(1+p")is
mapped onto the element (X +1)/(1+1") of Q(LL[X']/T). I; follows tkfat
(X +1)/(A+1)) = (Ce () + DD (X) +1).

Therefore if fe L[X’], then
fX) el & f((X+1)/(1+1)) = 0
< f(CCO+DADE) +1) =0
< (f(CX)D(X) D(X)*5 + D/(D(X)**/ +1) = 0
< f(CX)/D(X)) D(X)*/ e,

so that ¢ coincides with the conservati i
ve mapping of LW, and ¢, is gi
by l?q. (2). Thus, ® = LY and the uniqueness is proved. pr e
Finally, suppose that ' is a birational correspondence, i.e., has an inverse
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W-! Then there exists a K-morphism LY~ 1. Lp’ — Ly such that the diagram

Lyt
Ly —— Lp
|

pp—>p

is commutative. Combining this diagram with the one in the statement of
the proposition we find the commutative diagram

Lp LY - 1.LY¥ Lp

ol

P—Iz——>p

ace the upper horizontal arrow here by I**, we also obtain

However, if we repl
a commutative diagram so that, by the properties and uniqueness of LI®,

LY~ 'oLW = LI® = I*. Similarly, LYo L¥ ™' = I%*". Therefore LY is a
birational correspondence (with inverse LY~ Y. This completes the proof of

Proposition 6.

Before we use Propositions 5 and 6 to study the behavior of a prime ideal
under the influence of an extension of the coefficient field, we need a lemma

which is really a very special case.

Lemma 12 Let K be a subfield of a field L, with K algebraically (respectively
separably) closed in L. Let (Xpict be a family of indeterminates.

(@) The field K((X)ier) is algebraically (respectively separably) closed in

L((Xi)iel)'
(b) If f is a polynomial (respectively polynomial having a nonzero partial

derivative) in K[(X);e ] and fis irreducible over K, then f is irreducible over L.

Proof (a) It clearly suffices to consider the case in which I is finite; an
induction argument shows we may suppose that I consists of a single element.
Consider first the hypothesis that K be algebraically closed in L. If ¢ € LX)
is nonzero and algebraic over K(X), and we write ¢ = Ag/h, with L€ L and
with g, h € L[X] relatively prime and unitary, then fo A"g"+/1 4"~ g tht o
+f,h" = 0 for suitable fo, /1, ....f. € K[X] with f,f, # 0. Every root of h is
a root of f;, hence is algebraic over K; the coefficients in h are in L and are
plus or minus the elementary symmetric functions of these roots, l.ence are
algebraic over K, hence are in K, so that he K[X]; similarly g e K[X].
Therefore A is algebraic over K(X), from which it easily follows that 4 is
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algebraic over K, so that A € K. Thus ¢ € K(X). Now consider the hypothesis
that K be separably closed in L, and let ¢ e L(X) be separably algebraic
over K(X). Setting K’ equal to the algebraic closure of K in L, so that K’ <
K,, we see by the case already treated that ¢ € K'(X), whence ¢ € K;(X) <
K(X);. Therefore ¢ € K(X). )

(b) Let i be a fixed element of 7 such that X; is present in i
such that 0f/oX; # 0), let Y denote the family (Xj)jf, i andfc(;iss}ijigl}ez
a polynomial in X;. The coefficients in f are elementsj of K[Y] and do not
have a common divisor in K[Y] (for fis irreducible in K[(X}),.,]), hence
do not have a common divisor in L[Y]. Therefore, if f isjrjeéduc’ible in
LI(X)jeils then f is reducible in L(Y)[X;], and we can write f=f;[]g
where f, € K[Y], and each g, e L(Y)[X,] is irreducible in L(Y) [XOJ ankci
unitary. The roots of g, are roots of f, hence algebraic over K(Y). Thérefore
the coefficients in g are algebraic over K(Y) and are in L(Y). It is easy to
see in the separably closed case that dg,/0X; # 0. Hence, in either case, the
coefficients in g, are elements of K(Y), so that f is reducible in K(Y) [,:X]
and therefore in K[Y, X;] = K[(X});.,], contrary to hypothesis. This cor[n-’
pletes the proof of the lemma.

Proposition 7 Let p be a prime ideal of a polynomial algebra K[(X);.[]
over a field K, let x = (x;);; be a generic zero of p. -

(a) If1is finite, L is any field extension of K, and q is a component of the
perfect ideal generated by Lp in L[(X})..], then ¢ 0 K[(X))ic1]l =p and
dimq = dimp.

(b) A necessary and sufficient condition that Lp be perfect for every field
extension L of K is that p be separable over K. When this is the case then Lp
is separable over L for every L. If, in addition, I is finite and d = dimp, then
p is birationally equivalent over K to a principal ideal K[ X,, X4, ..., Xd]} with
f an irreducible element of K[ X, X, ..., X,] such that 0fj0X, # O, and there
exists a polynomial g € K[(X});.;] with g ¢ p such that, for any L, g is con-
tained in the sum of any two distinct components of Lp.

(c) If p is separable over K, then a necessary and sufficient condition that
Lp be prime for a given L is that, for every element ue L that is separably
algebraic over K, the minimal polynomial of u over K be irreducible over K(x).

(d) A necessary and sufficient condition that Lp be prime for every L is
that p Lbe regular over K. When this is the case then Ly is regular over L for
every L.

Proof (a) Let J be a subset of I such that (x;);., is a transcendence
basis of K(x) over K, and let 0, denote the zero ideal of K[(X});.,]. Because
S(p? consists of p and the unity ideal, and similarly for S(Oi)j, we see that
the inclusion homomorphism K[(X));.,]— K[(X));.,] induces a K-morphism
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¥:p-0,. In accordance with Proposition 6 this yields a commutative

diagram

Lp —25 L0,
4

p —> 0,

The conservative mapping J(Lp) = 3(p) of T1 maps any [ontol N K[(Xie,)J.
If the perfect ideal generated by Lp has only ﬁmFely rrlany components (in
particular, if 1 is finite), each such component g 13 1 \s(~Lp), and:herefor?
qn KX Die1] =P Similarly, the conservative mapping (Lp)— ‘5(170’) 0

LY maps any [ onto [N L{(X));<,] and theref.ore, under‘the same cxrcur}rll—
stances, q 0 L[(X));es]1 = L0,. If y = (yicr is a generic zero of g, .t e
former conclusion shows that y is also a generic zero of p, so that certainly
L(y) is algebraic over L{(y))jes); the latter con.clusmn shows thgt (Vj)jed
is algebraically independent over L. Therefore dimg = Card.J‘= dim p. ;

(b) Let p not be separable over K. Then K has characteristic p # 0, an

there exist elements a, ...,q, € K and polynomials f, ..., [, € K[(X,»)i:,] not
all in p such that a,,...,q, ar¢ linearly independent over K? and 2 fa;€p.
Then the clements al/®,...,a}/" € K'/? are linearly mdependexlm/t over K, so
that by Section 10, Lemma 9, the polynomial Zﬂa}/”e K p[l(/)p(i)iF'] is
not in K'/7p. However, (T fia}")y = Y ffa;e K''?p, so that KUPp is not
pef\lfi)c\:/. let p be separable over K. 1t is easy to see that fo.r any J < I the
prime ideal p n K[(X));e,] is separable over K also, if Lp is not sepgrable
over L, then we may choose a finite J such that L(p'r\ K[(X));esD) 1s.not
separable over L. Thus, in the present part of the proofxt.suﬂices to consider
the case in which [ is finite, say consists of I, 2,...,n. Aspis separable over K,
some of the x;, say X;,...,%; form a separating transcendence basis of
K(x) over K. Then there exists a sing!e el.ement_ xo € K(x) such thgt
K(xgy Xy, 0y Xg) = K(xX15 s Xn)- The deﬁmng ideal i of (xg, %1, ...,x;/) in
K[ Xy, X, ..., X,] has dimension dand is principal, say f = K[Xo, X1, -+ d]f'
Then f is an irreducible polynomial in K[X,, X1, ..., X,] and, because xois
separably algebraic over K(xy,...,x), &f6X, s (0. Because K(xl',...,x,,)l—<-
K(xg, X1» ..., Xg), there is a birational correspondence. ‘P': p—f over K,
which, in accordance with Proposition 6, yields the birational f:orresplon-
dence LW : Lp — Lf over L. Writing f=f, [ with each f; an.lr'reducxblz
polynomial in L[Xo, Xy,..., Xa] we see that the f; are dls‘tmct‘dan1

dfi/éX, # 0, so that L is the intersection of the L-separable pnm(;: 1lea $
L{Xy, X, ..., X, f;. Thus, Lf is separable oYer L aqd has the.se idea sba;s
components. Therefore the birationally equivalent ideal Lp ‘1s separa e
over L and has corresponding components py, ..., P, The isomorphism
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O (K[ Xoy X150, X1/P) = Q(K[Xy, ..., X,]/p) connected with the birational
correspondence W carries the element (X,+7{)/(1+{) onto some element
(C+p)/(D+p), where C,D e K[X,,...,X,] and D ¢p, and carries (X,+7)/
(1+7) onto (X;+p)/(1+p) (1 € i< d). Starting with the equation

8f/8XO = <Z< f1 ---(8]}/0X0)~--f,,

o<j<sr

if we substitute C/D for X, and then muitiply by D¢, where e = degy, f— I,
we find an equation
g= ) P1gi D
osjsr
where g€ K[X, ..., X, ), pyev;, pyév, J#j), g;e LIX,, .., X.], g;¢p,.
Therefore g ¢ p and g € p;+p; whenever j # .

(c) For each ue L that is separably algebraic over K let £, be the minimal
polynomial of u in K[U]. Suppose some f, is reducible over K(x), that is,
the ideal K(x)[U] f, is not prime. This ideal is, by Proposition 5, birationally
equivalent over K to K(u)p, which must therefore also not be prime, so that
Lp is not prime, too. Conversely, suppose Lp is not prime. Then there exists
a finite set J < [ such that the K-separable prime ideal p; = p n K[(X));,]
has the property that Lp, is not prime; x; = (x;);.; is a generic zero of p;.
By (b), p, is birationally equivalent over K to some { = K[(X));.,]/, and,
by Proposition 6, Lp; is birationally equivalent over L to Lf, so that Lf is
not prime, that is, f is reducible over L. By Lemma 12, f is reducible over
the separable closure of K in L, hence over a separable extension of K in
L of finite degree, hence over K(u) for some u € L that is separably algebraic
over K. Thus, K(u)f is not prime, hence K(u)p, is not prime, so that, by
Proposition 5, f, is reducible over K(x,), and therefore over K(x).

(d) If p is not K-separable, then p is not regular over K and (by (b)) Lp
is not prime for some L. Therefore we may suppose that p is K-separable.
By part (c), Lp is prime for every L if and only if every separable irreducible
polynomial in K[U7] remains irreducible over K(x), which, by Lemma 12,
happens if and only if K is separably closed in K(x), that is, if and only if p
is regular over K.

Corollary 1 If ais a K-separable ideal of K[(X));< 11, then, for every extension
L of K, La is an L-separable ideal of L[(X,);.,)- When, in addition, the exten-
sion L of K is separable, then La is K-separable.

Proof We may write a=()p,;, where each p; is a K-separable prime
ideal. Using Section 10, Lemma 9 we can see that La = () Lp;. By the
Proposition, part (b), each Lp; is L-separable, so that La is, too. Now sup-
pose that L is a separable extension of K. Then the ideal La n L = (0) of
L is K-separable. It follows (see Section 6) that La is K-separable.
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Corollary 2 Let K be a field, (X)icr be a Sfamily of indeterminates, (Ix),l;,\
be a partition of the set of indices I, and (.for each .e N) p, be a K«regu Zr,
ideal of K[(XDier,J; let t denote the ideal of K[(/\ji)is,] gen;rc(zj& _f
Usen Pa- Then v is K-regular, v 0 K[(XDier,] = 92 (LeA), and dimy =

Tien dimpy. . ‘ .
Proof It is easy to sec that it suffices to consider the case n Wthh Als
finite, and it follows by induction that we may suppose tbat A consists of
two e,:lements, say the numbers 1 and 2. Let x! be a generic zero of P .By
Lemma 11, ris birationally equivalent to K(x"p, over K; by Proposmon
7. the latter ideal is K(x')-regular, so that if x* is a generic z.ero of it, then
K’(xl x?) is regular over K(x'). As K(x') is regular over Iflt zfollows that
K(xlzxz) is regular over K. Also by Lemma 11, if fe K[ ,X?], then
fxLxHer e fxh, X% e K(xhyp* « flx',x") =0,
so that (x!, x?) is a generic zero of . Therefore t is K-regular, t 0 K[X'] =
P and

trdeg K(x!, x*)/K
trdeg K(x")/K + trdeg K(x!, x?)/K(x")
= dimp, + dim K(x")p, = dimp, + dimp,.

dimzr

i

Corollary 3 Let K be a field, let Ry,..., R, be integral domain;’ IthatUalrje
finitely generated algebras over K, let L be‘ an .extenswn of K, (Jf;’ et F(;
an algebraically closed extension of L of infinite .transce"ndence egree. oK
each index i there exist finitely many isomorphisms fi;: .R,.z R;; ouer.
(1 <j<m), each R; being a subring of U containing K, with the following
properties.

(a) Whenever f: R,— U is a homomorphism over K 1(1 %js m)? <then
there exist indices jy, -..»jm SUch that them homomorphisms f; of 5, (1 SIS m)
extend to a single homomorphism LR ;v R ]— U over L.

(b) trdeg L(U(<i<m stjsn.» Rij)/L = Zl$.5$m n;trdegK(Ri/If.< < n)

(¢) If K(R,) is separable over K, then L(R;;) is separable over (1 <j< ,L

(d) If K(R,) is regular over K, then n; = | and L(R;,) Is regular over L.

Proof There exists a family x = (x},...,x;) of elements of R; sucél thztit
R, = K[x']. Let p; denote the defining idfea.l of x' over K, f'md le_t L, en;):i:
the algebraic closure of L. By the proposition, the perfect ideal p; ge;xera :ts
by p; over L, has finitely many comp.onenFs Pity o> Pincs the set(;)f e errllgeaCh
of p,; that have all their coefficients in K is p;, and dim p;; = dim p;. i
ideal p; (I<ism 1 <js n) is L,-regglar. W'e now treat these Zflsis,:h‘
ideals as the ideals p, of Corollary 2 (with L, instead of K), and form the

SRR AR St
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ideal r as in that corollary. Then r is L -regular, hence has a generic zero
(x7)1 <i<m 1<5<m- NOW, X is a generic zero of p;;, hence also of p;, so that
there is a unique isomorphism f;; over K of the ring R; = K[x'] onto the
ring R;; = K[x"] carrying x' onto x”, and

trdegL< U U Rij)/L

1Sism 1SS

trdeg L, ((x7); <icm 1 <j<n)/La

dimr = ) Y. dimp,;

1sism lsjsn

Y ndimp;.

1<ism

If £ : R;> U is a homomorphism over K (1 <7< m), then f/(x%) is a zero
of p;, hence of p;, and therefore of p;; for some index j, say for j = j,. Writing
the ideals pyj,,..., Py, in different sets of indeterminates, and letting t’
denote the ideal generated by p,; w--- U p,; in the polynomial algebra
over L, in all these indeterminates, we see that (f,(x!), ...,/ (x™) is a zero
of ' and, by Corollary 2, that the point (x!/t, ..., x™=) =(f; (x'),...,
Suj (™) is a generic zero of 1. Therefore there exists a homomorphism
Lol oS (] = Lo Lf (6D, oo S (2] over L, mapping fy;, (<)
onto f/(x") (1 <i<m), and this yields by restriction a homomorphism
LIfiy(R) v ufos (RII=LLA'(RY VU f(R,)] over L extending
fiofiit (1 <i<m). By Corollary 1, if K(R,) is separable over K, so that
p; is K-separable, then Lp; is L-separable, hence has L-separable components.
However, it is easy to see that each x" is a generic zero of a component of
Lp;, so that L(R;;) = L(x") is separable over L. Similarly, by the proposi-
tion, part (d), if K(R,) is regular over K, then n; = 1 and L(R;,) is regular
over L.

REmARK  When K(R)) is separable over K, we have the following con-
verse to part (d) of Corollary 3: If n; = 1 for every extension L of K, then
K(R,) is regular over K. This follows easily from Proposition 7.

13 Power series

We recall certain well-known facts about power series. Let R be a ring
and let X = (X));; be a family of indeterminates. Then we may construct
the power series algebra in X over R, which we denote by R[[X]]. The
elements of R[[X]] are the infinite sequences 4 = (4,),n, I Which 4, is
an arbitrary homogeneous polynomial in X over R of degree k (including
the possibility 4, =0); A is called a power series in X over R, A, is the
homogeneous part of A of degree k, and we sometimes denote it by £, (4).



30 0 ALGEBRAIC PRELIMINARIES

Addition and multiplication of two power series 4, B € R[[X]] are defined
by the formulae

h(A+B) = h(d) + h(B), m(4B) = Y ho(Ah-(B) (keN)
Kk =k )

The series-order of A, denoted by v(A), is defined to be the smallest & for
which A, (A) #0if A#0(ie,if 4 # (0)en) and to be co if A4 = 0. Clearly
v(A4 + B) = min(v(4),v(B)) and v(A4B) > v(A)+v(B). The former inequality
is an equality whenever v(4) # v(B), and the latter inequality is an equality
whenever R is an integral domain.

Certain infinite sums in R[[X]] are meaningful. Namely, if (4),., is
a family of elefnents of R[[X7]] such that for each k e N there exist only
finitely many indices 2 € A with v(4®) <k, then 37, 4 A is defined as the
element of R[[X]] of which the homogeneous part of degree k is Y aen (AP
(this being, in effect, a finite sum). Such infinite sums enjoy various obvious
formal properties, among which we mention the following:

Z AR 4 Z BWX) = z (A(“-{-B('i)),

AcA AeA AeA

( Z AU-))( Z B(u)) —- Z A(A)B(u)’
AeA ueM (A,p)eAxM
Z AD = Z A@

el AeA’
for any set A’ < A such that A = 0 whenever 2 € A~A". If, for each poly-
nomial fe R[X], we let f, denote the sum of the terms of / of degree k, then
the mapping R[X]— R[[X]] that maps each polynomial fe R[X] onto
the power series (fi)cen IS an injective algebra homomorphism; it is used to
identify R[X] with a subalgebra of R[[X]]. With this identification, any
power series 4 = (A4),en May be expressed as the infinite sum Y on Ak,
and it is this notation that is generally used.

It is easy to see that A is an invertible element of R[[X7] if and only if
ho(A) is an invertible element of R. When this is the case, and we write
A = ho(A)(1=B), so that v(B) > 1, then A7V = ho(A)™! Ty on B, the infinite
sum obviously being meaningful.

If I=1, U1, and I, 0 I, = &, there is an obvious R-algebra isomor-
phism R[[(XDier]] & RIIX )iy er I [L(X:)ier,]], by means of which the
two algebras are usually identified.

Let R[[X']] = R[[{X{)icr]] also be a power series algebra over R, and
let P = (P),.; be a family, with set of indices I, of power series in R{[X"]]
such that v(P)) = 1 for each i. If A = (4w is any clement of R[[X1]], then
A,(P) is an element of R[[X']] of series order greater than or equal to k,
5o that the infinite sum Y, cx 4x(P), which we denote by 4(P), is meaningful.
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It is easy to see that the mapping that to each 4 € R[[X]] associates the
element A(P)e R[[X’]] is an algebra homomorphism R{[X]]— R[[X']];
we call it the substitution of P for X. When each P; is a polynomial, thi;
homomorphism extends the ordinary substitution homomorphism R[X] —
R{P] < R[X'] of polynomial algebras.

If D is any derivation of the polynomial ring R[X], then, for any homo-
geneous polynomial H e R[X], v(DH) = v(H)~—1. It follows that, for any
A e R[[X]], the infinite sum 3>,y Dh(A) is meaningful. Therefore D can
be extended to a mapping of R[[X]] into itself, that we still denote by D
by the formula D4 =3, .n Dh,(A). This extension is a derivation of R[[X]j
(called the canonical extension of the given derivation). If D, D, are two
derivations of R[X] and if they commute, then so do their canonical ex-
tensions to R[[X]].
 These remarks apply, in particular, to the partial derivations ¢/0X, (i e I).
Consider a power series 4 € R[[X]], and let P = (P);.; and Q =(Q);.,
be two families of elements of R[[X’]] such that v(P) = 1, v(@) = 1 (iel)
and such that Q; = 0 for all but finitely many indices i. Let q denote the ideal
of R[[X’]] generated by all the power series Q,. Then, substituting P+ Q
for X, we obtain the congruence

04
A(P+0) = A(P) + Z ax (PQ  (moda?).
Indeed, since this congruence holds when A is a polynomial in R[X7, the
general case may be proved by considering separately each of the homo-
geneous parts of A.

We now describe an implicit function theorem for power series. To facili-
tate the description let J be a finite subset of I, say the set consisting of the
q indices iy, ..., 4, put ¥; = X, (1 <j < ¢), and let K = I~ J, so that we may
use the self-explanatory notation R[[X,Y,,...,Y, 11 = R[[(XDick, Y1, ..., ¥, 1]
for what we have heretofore been denoting by R[[X]]. The result can nqow
be stated as follows. :

Proposition 8 (Implicit function theorem) If F,...,F,e R[[X,Y,,...,Y,]]
and F;((0),0,...,0) =0 (1 << ¢q), and if
det((@F/0Y;)((0)0, ...,0)), <j<q 1<) <q

is an invertible element of R, then there exist unique power series P,,...,P, &
R[[X1] = RI[(XDick]] such that:

@ PM)=001<<q);

(b) F((X),P1,... P) =0 (1<j< 9.

These power series have the further property that the ideals (Fy, ..., F}) and
(Y, =P,,...Y,—P) of R[[X,Y,,..., Y]] coincide.
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Proof The power serics are obtained by an inductive construction. Sup-
pose that for each j with 1 €< g we have polynomials P; g, ..., Pjx—1 €
R[X7, with P; o =0 and P, homogeneous of degree k (I Kk <k—1),
SuCh that V(E(X, Zosx<k Pl,x’ ~"7ZO$K<I¢ Pq,K).) 2 k (1 <J< q) If Pj,k
(1<j<q) areany g homogeneous polynomials in R[X] of degree k, then

F;(X* z Pl,xa“': z Pq,K>E E(Xa z Pl,x’“'a Z Pq"c>
0sk<k

0sk<k Osk<k 0<k<k

+ > 81‘}/8Yj,(X, S Piren 2 P,M>Pj,,k (mod p?),
0

15)°<q <k<k 0sk<k

where p, denotes the ideal (P ,, .oy P, ) of RI[X1], so that
1

V<Fj(X, Y P Y Pq,x»zk
0<k<k 0k sk

and

- P l=h|Fl X Piyens P,K>>
FI<X’ Oizx:Sk Pre ’oszx:<k q'> k( j( odse OSEK:<k !

+ 0F;/0Y;.((0),0, ..., 0) Py
1€j°<q

(modm**1),

where m is the ideal of R[[X]] generated by all the X; with ie K. It follov\'/s
that if we let (@; ;)i <j<q 15/7<q denote the inverse of the invertible matrix

((8F10Y;)((0),0, ...,0))1 < j<q 1< <q» 200 if we take

Fi="- Z (pj'jrhk(l'}(X’ O$§<k Pl'“m’os;«c Pq’x>>’

1<j'€q

then

V(f?(kﬂ }: PLK7'” 2: }QK>> >’k + 1 (ligj-g q)

0<k<k ,Oixik
Thus, starting with P, o = 0 (1 <j < g), we can define all the P, , (1 <j < g,
k € N) by induction on k, and it is clear thatif we set £; = Tien P <i< ),

then conditions (a) and (b) are satisfied. o .
It remains to verify the last statement of the proposition (which implies
the uniqueness of Py, ..., ). Working in the ring R[[X,Y,,...,Y,]] we have

0=F(X,P,...P)
= E(X,Y,+ P =Y, ... Y+ P=T)
=F+ Y O0FY, (F-Y)) (mod(Yl—Pl,...,Yq-—Pq)z),

1<€5°<¢q
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whence

F, = ((BF3Y ) ((0),0,...,0) + M, ) (Y, —P)  (1<j<q),

18 <g
where M, € R{[X,Y,,...,Y,]] and v(M};) = 1. Therefore it suffices to show
that the matrix ((0F/dY;)((0),0,...,0)+ M, ;) is invertible over R[[X, Y, ...,
Y,]1. However, this is immediate since the homogeneous part of degree 0
of the determinant of this matrix is the invertible element

det((3F/3Y;) ((0),0, ..., 0)).

We conclude this review with some remarks about power series algebras
RI[X]] in a single indeterminate. In this case R[[X]] can be embedded in
an algebra R((X)) consisting of all power series 3.z @, X* in X over R for
which there are only finitely many negative indices & with a, # 0. Then
R((X)) can be considered as the ring of quotients of R[[X]] over the multi-
plicatively stable set consisting of all the powers X* (keN). The series-
order function on R[[X]] extends in an obvious way to a function, still
denoted by v and still called “series-order,” on R((X)). For any series
A =73,.7a.X" the clements g, € R are called the coefficients in A; if A # 0,
then we call a,(, the leading coefficient in A. We shall often denote the leading
coefficient of a nonzero power series 4 by J,. Thus, 4 = J, X"+ ... where
the dots stand for a power series of series-order greater than v(4). It is evident
that A is invertible in R((X)) if and only if J, is invertible in R. In particular,
if R is a field, then so is R((X)).

14 Specializations

Let R be an integral domain. A homomorphism of R into a field is called
a specialization of R. If a subring R, of R is a subring of the field, too, and
if the homomorphism maps each element of R, onto itself, the specialization
is said to be over Ry. If x = (x));o; and x" = (x/');., are families of elements
of R and of the field, respectively, and the homomorphism maps x; onto
x; for each i e/, then x is said to specialize to x’ (under the specialization
in question). If x and x’ are families of elements of R and of a field L, re-
spectively, such that x specializes to x' under some specialization of R;[x]
into L over Ry, then we also say that x’ is a specialization of x over Ry. If x’
is a specialization of x over R, such that x is a specialization of x" over Ry,
we say that x’ is a generic specialization of x over R,. A necessary and suffi-
cient condition that x’ be a specialization (respectively a generic specializa-
tion) of x over R, is that the defining ideal of x in a polynomial algebra
Ro[(X);c,] be contained in (respectively be equal to) the defining ideal of
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x' in this algebra. When this is the case then the specialization Ry[x]— L
over R, under which x specializes to x” is unique, and induces a surjective
Ro-homomorphism (respectively Ry-isomorphism) Ry[x] — R, [x'].

If R— L is a specialization of R into a field L, the kernel p is prime so
that the subset R—p of R is multiplicatively stable. The local ring R, =
(R—p)” 'R is also an integral domain, and may be considered to be an over-
ring of R. The specialization R — L can be extended to a unique specializa-
tion R, — L; its kernel is the maximai ideal of R,, so that the specialization
maps R, onto a subfield of L.

A specialization of a ring into L followed by the inclusion mapping of L
into some overfield L is a specialization of the ring into L. We sometimes
do not distinguish between these two specializations of the ring (when this
does not lead to difficulty). If R — L is a specialization of R with kernel p,
then restriction to a subring R, gives a specialization of R, with kernel
p N R,. Conversely, if we are given a specialization of R, with kernel p,
and if there exists a prime ideal p of R with p n R, = p,, then the given
specialization of R, can be extended to a specialization of R with kernel p.

The key to the problem of when a specialization can be extended is the
following observation (known as Nakayama’s lemma): If an ideal a is con-
tained in every maximal ideal of the ring R, and M is a finitely generated R-
module such that aM = M, then M = 0. Indeed, if M is generated by x, ...,
x, with n > 0, then we may write x, =3, <;<, ¢;X;, wWhere each c;€aq, so
that (1—c,)x, € 2 <;<a-1 Rx;. However, 1—c,, like every element of R
not in any maximal ideal, is invertible in R, so that x, € 3" <;<.-1 Rx; and
M is generated by x, ..., x,.;. Thus, the resuit follows by induction on n.

Proposition 9 Let R, and R be subrings of a field, with R, < R.

(a) If R is integral over Ry, then every specialization of R, into an al-
gebraically closed field L can be extended to a specialization of R into L.

(b) Let xe R. If a specialization f, : Ry = L into an algebraically closed
field L cannot be extended to a specialization Ry[x]— L, then f, can be ex-
tended to a unique specialization f: Ry[x™'1— L, and f(x~") = 0.

(c) If R is finitely generated (respectively finitely generated and separable)
over Ry and u is a nonzero element of R, then there exists a nonzero element
ug € Ry with the following property: Every specialization f, : Ry — L into an
algebraically closed (respectively a separably closed) field L such that f,(uy) # 0
can be extended to a specialization f: R— L such that f(u) # O (respectively
such that f(u) # 0 and f(R) is separable over f(R,)).

Proof (a) Let p, be the kernel of a specialization f;: Ry — L, and
suppose first that R = Ry [x] for some element x € R. Replacing R, by the
local ring (R,),,, we may suppose that Ry itself is a local ring and that p,
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is its maximal ideal. Since x is integral over R;, R is a finitely generated
Ro-module, and by Nakayama’s lemma, Rp, # R; hence the ideal Rp, of R
is contained in a maximal ideal p. By the maximality of p, we have p R, =
po. Thercfore fo can be extended to a specialization of R = R,[x] into L.
This case settled, we no longer suppose that R is genecrated over Ry, by a
single element. The set M of all pairs (R',f"), where R’ is a ring with R, <
R’ = R and /" is a specialization of R into L extending f;, can be ordered
by defining (R’,f”) < (R",f") to mean that R" = R” and f” is an extension
of f'. Zorn’s lemma then shows that there exists a maximal element (R’,f")
of M. If R" were not R, there would exist an element x € R— R, and of course
R’[x] would be integral over R’. By the case already treated, f” could be
extended to a specialization f” : R'[x] — L, contradicting the maximality of
(R'.f'); hence R = R.

(b) Let g denote the defining ideal of x in the polynomial algebra Ry [X].
The mapping Fr F/° of R,[X] into f,(Ro)[X] is a surjective homomor-
phism g: Ry [X]— fo(Ro) [X], and therefore maps q into an ideal g(q) =
q7° of f5(Ro) [XT]. If q/° n f,(Ry) = (0), then g/ has a zero x' in L. The
homomorphism g followed by the substitution of x’ for X is a homomor-
phism R,[X]— L with kernel containing q, and therefore induces a homo-
morphism R,[x]— L, that is, a specialization which evidently extends f;,.
Thus, if f, cannot be extended to a specialization R,[x] - L, then ¢’° A
Jo(Ro) # (0). Letting p, denote the kernel of £;, we see in this case that £, (a) =
2 fo(b)) X7 for some ae Ry—p, and some T b; X/ eq, so that a =Y b, X7
+2 p; X/, where each p; is in p,. Substituting x for X we find that a =
Y pix’, so that (po—a@)x "+p x " 4...4p =0. It follows from this
equation that x™' is integral over the local ring (Ro)y,- Since fy can be
extended to a specialization f”: (R,),, — L, and, by part (a), /' can be ex-
tended to a specialization (Ry),,[x”']— L, we conclude that f, can be
extended to a specialization f: Ry[x~!]— L. It also follows from the same
equation that, for any such £, f(x~') = 0, so that f is unique.

(c) It follows from the hypothesis that there exist finitely many elements
Xys.., X, € R such that R= R,[x,,...,x,] (respectively such that R =
Rolxy, .., x,] and Rofx,, ..., x;] is separable over Ro[x, ..., Xj-1]
(1 €£j< n)). Hence a simple induction argument allows us to assume that
n =1, so that we may write R = R,[x]. Then there exists a polynomial
G e Ry[X] with u = G(x). If x is transcendental over R,, it is easy to sce
that we may take for u, any one of the nonzero coefficients in G. Therefore
we may suppose that x is algebraic over R, of degree, say m, and may let
F=ay X"+ .. denote an element of R,[X] of degree m vanishing at x.
The ideal (F, G) (respectively the ideal (F,(dF/dX) G)) of Ry[X7] contains a
nonzero element by € Ry. Let uy = ao by. If f : Ry — L is any specialization
with f;, (o) # 0 and L algebraically closed (respectively L separably closed),
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then f;, can be extended to a specialization f' : Ro[ag '] — L. As x i§ i{"esfal
over R,[a; '], part (a) shows that S5 can be extendeq to a specialization
/" of Rylag',x] into L (respectively into thf: algebraic closlure L, of L).
Since f'(uy) # 0 and F/’ vanishes at f’(x), it is clear that G/ (respect{vely
((dF/dX)G)) does not vanish at f7(x), so that f'(u)# 0 (respectively
f'(u) # 0 and f'(Rg[x]) is separable over f'(Ry), whence f(Ry[x]) = L).

The following lemma is used in the proof of the succeeding one concerning
the behavior of a prime ideal under specialization.

Lemma 13 Let R be an integral domain, let (X,, ..., X,) be a finite family of
indeterminates over R, and let A; be a polynomial in R[X,,..., X;] not. in
R[X, .., X;_ ] (1 <j< n). Let m; = degy A; and let I; denote the coefficient
of X in A; (when A; is considered as a polynomial in Xj). Assum.e that
degy A, <m; (I<i<j<n), that (A, ..., 4;_, 1) o R#(0) (1. <j<n),
and that (A,,...,4;,04;/0X)) " R# (0) (1 <j<n). Then the ideal a =
(Ay, .., 4): (I - 1)® of R[X,,....,X,] is separable over R and .does not
contain a nonzero element F such that degy F < my; for every index j.

Proof We first prove the contention that a does not contain an element
F#0 with degy F<m; (1<j<n). Indeed, suppose .that Fea hand
degy, F<m; (1<j<n). For some heN we may write I, 1) F'=
Yi<j<n C; A4;, where C; e R[X, ..., X,]. Dividing each C; by 4, we obtain
equations L*C; = D;+E;A4, (1<j<n—1), where D; E;e R[X,,...,X,]
and degy D; < m,, so that the polynomial (I, -~I,l)"l,,"F.—-Zlsjs,,_l D; 4;
is divisible by A4,. As the degree of this polynomial in X, is less than My, it
must vanish, so that I'**Fe (A, ..., 4,-): (I, ~ 1,.)>. Since theHl(kieal
(A,,...,A,_,,1) contains a nonzero element a e R, we may write @'~ "F &
Ay, ..., Ay )iy I, ). If either n=1, or n>1 and we suppose .the
contention true for n—1 instead of n (and R[X,] instead of R), this relation
shows that F = 0. This proves the contention in general.

It remains to show the ideal a is separable over R. We denote tf.le field of
quotients of R by K. For any Fe K[X,,..., X,], we may divide F in succes-
sion by A,,...,4, to obtain a relation If'--I9F=Fo+3 <;<n C;4;s
where Fo,Cy,...,C, e K[X,,...,X,] and degy Fo <m; (1 <j<n); further-
more, if F has all its coefficients in R, then so do F,, C4,...,C,, and F.e a<s
Fyea. It follows that an element of R[X|,...,X,] is in a if and only if it is
in the ideal (4, ..., 4,):(I, - I,)® of the ring K[X,, ..., X,]. It follows from
this that in the rest of the proof we may replace R by K, that is, we may sup-
pose that R is a field. - .

This being done, we next show that we may assume that 4, is 1rreducxb.le
over R. Indeed, suppose that A, = A, 4,,, where 4, and 4, are in
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R[X,] but not in R. Writing m,, =degy A4,, (h=1,2), and letting 7,
denote the coefficient of X7™ in 4,, (h = 1,2), we see that 1y =1,,1,,. Now,
ift xy,...,x;- are elements of a field extension of R such that A (x) =
0,..,4;_{x,,....,x;—) =0, then, because (A, Ao, 1) A R#£(0), we
have Ti(x,...,x;_,) # 0, so that there exists an element x; of a larger field
extension such that 4;(x,,...,x;) = 0; it follows that for any root x; of 4,
and any A; with j> 1 we have [;(x;, X,,...,X;_,) #0. In particular, /; is
not divisible by 4,, (2 <,/ < n), and a similar argument shows that 0A4,/0X;
is not divisible by 4,, (2 < /< n). Dividing A; by A, we therefore find a
congruence A; = 4,; (mod 4,,,), where Apj # 0, degy, Ap; < myy, degXK_A,,j <
m; (1 <i<j), and degy, A,; = m;; furthermore, if we denote the coefficient
of X" in Ay, (considered as a polynomial in X)) by I,;, then I; = I, (mod A4, ),
and also 0A4;/0X; = aAh,/aX, {mod A4,,)). It follows that Apyy ..oy Ay, and the
ideal ay = (Ay, ...y Ape) 1 (g - )™ satisfy the hypothesis of the lemma.
However, the condition (4,,84,/0X,) ~ R # (0) implies, since R is now a
field, the condition 1€ (A4,,,4,,), and therefore

(A1 d) = (A4, 45,...,4,) A (A3, A5, .., A)
=(A1 A1, .54, N (A2, 452, .., 43,);

since evidently (dy, ..., Ap): (1) -+ 1) = (4,,, ey A (L - L), this im-
plies that a = a; N a,. Thus, to prove that a is separable it suffices to prove
that a; and a, are separable. Tt follows from this that in proving a separable
we may assume that 4, is irreducible over R.

Letx, bearootof 4, insome field extension of R. The substitution of x, for
X, is a surjective homomorphism R[X,, X, ..., X - R[x, X5, ..., X,] over
R[X,,..., X,] (and therefore over R), with prime kernel (4,) which is con-
tained in a; it maps A4; onto the polynomial By =A;(x,,X,,...,X}) of the
polynomial algebra R(x,)[X,,..., X,] over R(x,), and maps a onto the
ideal b=(B,,...,B):(J,---J)® of R(x)[X,,...,X,], J; here denoting
Ij(x,,/\’z,..,,/\’j_,). If n=1, then b = (0), which is separable over R(x,)
and therefore over R, since R(x,) is separable over R. It follows in this case
(for example by Section 10, Lemma 10(a)) that a is separable over R. If
n > 1, we verify without difficulty that B,, ..., B, and b satisfy the hypothesis
of the present lemma, so that if we assume the lemma proved for n—1 instead
of n (and R(x,) instead of R), then b is separable over R(x,) and therefore
over R. Again it follows that a is separable over R. This completes the proof.

Lemma 14 Let R be an integral domain, let R{X|,...,X,] be a finitely
generated polynomial aigebra over R, let p be an R-separable prime ideal of
R[X\, ..., X1 withp o R=(0), and let Ue R{X,,...,X,], Ué¢p. Then there
exist a nonzero element ue R and a polynomial D e R[X,, ..., X,] with the
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following property: For every specialization [ of R with f(u) # 0, the ideal
v (DHY* of the polynomial algebra FRX,, .., X, is f(R)-separable and
does not contain @ U/ DY for any nonzero element a’' € f(R).

Proof Let K be the field of quotients of R. Then Kp is a K-separable
prime ideal of K[X,, ..., X,], and (Kp) n R[X,,.... X, ]1=p. Let (xq,...,%,)
be a generic zero of Kp. Then U(xy, ..., x,) # 0. Also, K(x,, ..., X,) Is separ-
able over K. Permuting the indices, we may suppose that (x,,...,Xg) is a
separating transcendence basis of K(xy, ..., x,) over K (d denoting the dimen-
sion of Kp). Foreach x; withd <j < nletm; = [K(xy, e X)) KXy, v Xjo D]
Then p contains nonzero polynomials A; € R[X,...X]1 < j< n) such
that degy, A; = my (d<j<n) and degy, A, <m; (d<i<j< n), and Kp
does not contain a nonzero element F with degy, F < m; (d<j<n). If we
let /; denote the coefficient of X[™ in A; (considered as a polynomial in X)),
then it is not difficult to see that

p = (Ags s oA Uasy 1) in RIXp 0 XD,
KP = (Ad+la""An):(Id+1 ”‘In)m in K[Xl,--an]‘

We shall now show that if Ce R[X;,...,&}] and C¢p, then the ideal
(Agsetr--nd;, C) of R[X,,...,X;] contains a polynomial in R[X\,..., X;-]
not in p. It follows by induction that (dy.q, ..., 4;,C) contains a nonzero
element of R[ X, ..., X;]. Inthe first place, theideal (444 ¢, v AP dasy )%
of K[X|,..., X;] coincides with Kp n K[ Xy, ..., X;] and hence is prime, and
evidently has dimension d. Each component of the perfect ideal generated
by this prime ideal and C is a strictly larger prime ideal, therefore (by Section
11, Proposition 4) has dimension less than ¢, and hence contains a nonzero
polynomial in K{X, ..., X,]. The product of all these polynomials (one for
each component), is in the perfect ideal. Raising to a sufficiently high power,
and then multiplying by a suitable element of R, we obtain a nonzero element
of R[X,,...,X,] that is in the ideal (Agiq,-.., 4 e I)®+(C) of
R[Xi, ..., X;]. Multiplying by a high power of I, ---I;, we obtain, finally,
an element of the ideal (441, ...,A;, C) that is in R[X,,...,X;-{] but not
in p.

It follows that the product of the 2(n—d) ideals (Agyis--Aj-1o 1)
(d<j<n)and (Ags1r--r A, 04;10X) (d < j < n) of R[X,, ..., X,] contains
a nonzero polynomial D€ R[X,, ..., X;]. Of course, D(xy,...,xs) # 0.

By Proposition 9(c), there exists a nonzero u € R such that every special-
ization f:R— L with f(u)#0 can be extended to a specialization
F i RIxgenx,] = Lg (L denoting the scparable closure of L) with
FD(xyy e x) Ulxy, ..., x,)) # 0, that is, with D/ (f'(xy),....f (x)) # 0 and
US(f'(x0),-..,f (xy) # 0. For every such f we see from Lemma 13 (applied
to f(R[X,-.» Xl A5, A,  instead of R A,,....4,) that the ideal
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b= (Al o AN 1) of fRX,, .., X, is fR[X,,....X
separable and contains no nonzero polynomialrl F with de . F, o
(d<j<n). In particular, b n f(R)[X,,..., X,] = (0), so that ngfs f<(1£nJ
sepgrable. Now, De(Ayyys-, Ay dyry - 1); since (f'(x)),...,f'(x,) ?-
obviously a zero of (47, ,,..., 4,7), we see that it is not a zer<1) ’of.’lf : I }S
and therefore is a zero of b. Hence a’U/ D! ¢ b for every nonzeroda;’lé}l’é ,
fWe complete the proof by showing that b = p/:(D/)®. It is evident t(h )é
pl cbep/ (I, 1)* = p/ (D)™, whence p/:(D/)® =b:(D’)*. H .
ever, for any F' € b:(D’)® we can write a congruence (I )i‘“; (I f.)i"F(’)Vi-
G’ (mod(A{H,...,A,,f)), where G’ € f(R) [Xl,...,X]“alnd deg nG’ < "
d<j< n). For some k e N then (DG’ is an clement of b of dfejoree léﬂj
than m; in X; (d <j < n) and therefore vanishes, and from this weo d'lSS
see that £ eb. Hence b = b:(D)® = p/:(D)=. e

(
Iemma see dlSCUSSlOIl leadlllg up to PI'OpOSlth!l that WIH € [v]
9 i
) b us d n

ReMARK | (Artin-Rees lemma) If R is a Noetherian ring, a is an ideal
of R, M is a finitely generated R-module, and N is a submodu’le of M t}f .
there exists an meN such that (a™*"M) n N = a"((a"M) A N) for ’e oy
ne N. To show this, let R denote the set of all polynomials ¥ a,T" e RIE(;r“y
with a; € o’ for every i. Then R’ is a subring of R[T7], and if x l x, fo :
a set of generators of a, then R" = R[x, T,...,x, T], so that R’ is1 N;étl;eri;m
Let M[T;l =>.n MT" have the obvious structure of the R[T]-modulz‘
and h_kewxse for N[T], and let M’ denote the set of all “polynomials’:
Ye; T e M[T] with e;€ a'M for every i. Thus M’ is an R’-module, and if
fi,-...f; form a set of generators of M, then M’ = R'f, +---+ R'f, ’so th lt
the. R’-module M’ is Noetherian. Hence its submodlule M’ mS}V T :
finitely generated, so that for some me N, t s
Z ((@'M) A N)T?

ieN

It

M’ A N[T]

R - Y (@M)nN)T

0<i<m

Y aTh Y ((@M) A N)T

ieN O0<ism

2 (@MyaN)T + Y o "™(a"M)~ N)T,

0<i<m m<i<o

whence (a™*"M) N N = a"((a"M) n N) for every n.

REI\./[ARK'2 (Krull’s t.heorem) If the ideal a of the Noetherian ring R is
contained in every maximal ideal, and M is a finitely generated R-module
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then (Vpen (@*M) = 0. Indeed, if we set N = ﬂ,(a"M), }hen by)thew/;ret:;;
Rees lemma N = (@" ' M)n N = a((a”M) n N) = aN for some m,

’ ma.
N\_—i/g rt::)c,:all\llatll(lz)t,airfnfni ?slzr:y local ring and m is its maximal ideal,fthen o/m
is a field and, for each de N, m?/m?*! is a vector space over o/m.hI xi, e,:t,g
form a set of generators of the ideal m, then the cosets of t ete er? s
it i (i + - +i,=d) form a set of genergtors of t}l:e vec (;r ua;i o
mémé*1, so that this vector space has dimension less than or eq
)
g, m is its maximal ideal, and

; Noetherian local rin .
ReMark 3 [f o is a Noe generators. Indeed, if

T . t of m
2 pas finite dimension m, then W has a se
! +m?, then the quotient module M = mj(ox, + - +0X,,)

on mM = M so that, by Nakayama’s lemma, M=0,

m/m
m=0x +-+0X,
satisfies the conditi
whence m = oxy + -+ 0Xp.

REMARK 4 If 0 is a Noetherian local integral domain for which the maximal

ideal w has a finite number m of generatorsd;znciyf D;, [z; n;iin z:’fjiflll};szlotshez;
deN, the vector space nvjin :
tiz.i?—(;).rli?i?:d, by hypothesis there exist x,y €0 w1th.y # 0 such1 thalt xliy
is";x;tlegral over o and x ¢ oy. By Krull’; the/orem (zp{)hed/ot;)) tht;eoc:lzer;xengt
i ximal ideal m/oy and the o/py-moduie 0/0y), !
ifi};’y 1etsu/?ya is not in the intersection ﬂ(m/oy)"; that is, x ¢ ﬂ(]n‘}- 14:*-0‘;11),
and therefore there is an neN such that xem’+oy and x¢m o ar;vd
Fixing w e m" and z € o such that x = w2y, we see that w ¢ D}TT?[W/ e
w/y is integral over v. Therefore there exists an he N SuCh tha . eXiS{S -
S o<ich OW/y', whence o[w/y] ' < o; hence for eacl’l k € N, ther cxists an
eler;xle\m v € o such that w'** =0, yk,+?nd by Kkru11¢s t}lfgfer;i;gna; g,enera-
i that yem’, ygm™ !, pent, p gnrT ‘
fz)(;SSt ;’ik.f,i:ug}fl i, \ie see }that there exist homogeneous pol)rfggﬂlatl;
RN, S, eo[X{,...., Xl of respective degrees r,n,s,, none gong 5
0 modulo m, such that y = R(x,, e X))y w = N(xy, ...,xm)', Lﬁ—"—d \,}Snf-lk,::g ';zlz
and obviously N"**— S, R* vanishes at (.x',,:..,x,,,). If we la ) tha;_is kfor
(modn) for every k, then N would be divisible by R modu ode, iy :,QR
some homogeneous @€ o[X,,..., X,,] of degree n—r we would have ¥ =

(mod ) and hence also N
W= Q(xh '-~axm)y+ N('xh“"xm) —Q(xl» ...,.‘C",)R(X‘, "'»xm) € D}’+ m ’

which is false. Therefore N"** # S, R* (modm) for some k, so :E?t gv}\;ek
set d = min(nh + hk,s,+rk) for that k, then the vanishing o?tNh l;mekms
i ivial li i m of the e
at (x,,...,x,,) provides a nontrivial linear relation over o/ of the clement®
Xit oo ximpmd* U (i, + - +i, =d) of the vector space 1 JI
1 m

dimmé/md*t < @5m1h.
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15 Algebraic function fields of one variable

The purpose of this section is to prove the following well-known result
on power series representation of algebraic function fields of one variable.

Proposition 10 Let K be an algebraically closed field, let L be a Sfinitely
generated field extension of K of transcendence degree 1, let R be a ring with
K< Rc L, and let f: R— K be a specialization over K. There exists a homo-
morphism ¢ : L — K((1)) over K into a power series field in one indeterminate
over K such that ¢ (R) = K[[t]] and, for every x e R, (¢(x))(0) = f(x).

Proof Consider the set of all pairs (R,/”) such that R’ is a ring with
Rc R = Landf": R — Kis a specialization extending £, We can introduce
an order on this set by defining (R’,/") < (R”,f”) to mean that R’ = R” and
/" extends f'. By Zorn’s lemma this ordered set has a maximal element;
fixing one, we denote it by (R’,f’). By Section 14, Proposition 9(b), we see
that if xe L and x ¢ R, then x™'e R and f"(x™') = 0. It follows that the
multiplicative group U of invertible elements of R’ consists of the elements
x & R with f'(x) # 0. An easy induction argument shows that if ® is any
nonempty finite set of elements of L not all of which are 0, then ® contains
an element x, such that x/x, € R’ for every xe ®. If none of the x/xg
(X € CD’ X # XO) Is in Ua then f’(erd’ x/x()) = sz@,x#xofl(‘x/XO)'*'fl(l) = 17
so that 3 .o x # 0. Putting it the other way around, if ¥ .o x =0, then
there exist distinct nonzero elements x,, x, € ® with x,/x, e U.

By hypothesis there exists an element ve L with » transcendental over
K and L algebraic over K(v) of finite degree, say n. Since R’ contains v or
v~' we may suppose that ve R’. Setting R, = K@) n R, we see that
K[v] = Rg, so that R is algebraic over R,. Hence, for any nonzero element
z € R’ there exist elements ag,...,a,€ R, not all 0 such that Yaz=0.
By what we have proved above, there exist integers /,j with 0 < i< < n
and a;a;#0 such that q;z/a;z'e U. Since aj/a;e K(v) and aja; =
(a;=/la;z)™'z’""e R, we have aj/a; e Ry. This permits us to record the
following observation: For each nonzero z'e R’ there exist a ue U and a
nonzero a € R, such that z" = qu.

Now the element w=uv—f"(v) is transcendental over K, and K[v] =
K[w]; also, f'(w) = 0. Since every nonzero ¢lement of K(v) can be expressed
as an integral power of w multiplied by a quotient of two polynomials in w
neither of which is divisible by w, we conclude that R, consists of 0 and all
elements of K(v) of the form w*P(w)/Q(w) with ke N, P,Q € K[X], and
P(0)Q(0) # 0. We infer from this that R, cannot contain an infinite sequence
of nonzero elements x,, x, ..., X;, ... such that x,/x,,, € R" and x,, /x, ¢ R’
for every k. By the observation recorded above, R’ cannot contain such a
sequence, either. It follows that there exists a nonzero element re R’ with
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£7(t) = 0 such that every element x & R’ with f(x) = 0 is a multiple of 7 in
R'. That is, the kernel of f” is the principal ideal R'z.

Since f'(a) = a for every a € K and f'(R) c K, for each x€ R’ we have
f(x=f'(x)) = 0, so that there exists a unique x’ € R’ such that x = f"(x) +x".
The mapping x +— x' of R’ into itself has the following properties, all easy

to verify:
(x,+x) = x" + x5 (x1,x,€R),
(X, Xp) = X, X; + X1 %) — X,/ X2 (xy,x, € R),
a =0 (ae K),
Y =1,

(xt)y =x (xe R).
We now define by induction a sequence of mappings x— x® of R into

itself by the formulae
@ = x, D = Wy (ke N).

These mappings have the following properties:

(x4 ‘*'xz)(k) = x(lk) + X(zk) (x,x, € R),

(x)® = Y xPxP = F o xPOE (xy,xp € R,
¥k i+j=k—1
a if k=0
a® = . (aeK).
0 if k>0

The first and third of these are obvious. The second reduces for k=0 to
the identity x, x, = x, x; and fork = 1 to the identity (x, x,) = x, X+ X3 X3’
—x,'x,'t established above, and for k> 1 it follows by a straightforward
induction argument using the properties of the mapping x+— x’. Now, if
xe R and f'(x) = 0, then x = xz. By induction we infer that if f(x) =0
(0 <j < k), then x = x® ¥ It follows from this that if //(x™) = 0 for every
keN, then x =0 (for otherwise x,x/t,...,x/t* ... would be an infinite
sequence of nonzero elements of R’ each term of which is divisible by the
succeeding term but not vice versa, contrary to a property of R’ proved

above).
We now define a mapping ¢’ : R — K[[+]] by the formula

o) = 3 fx®)e
keN
By what we have just shown, ¢’ is a homomorphism, leaves invariant each
element of K, is injective, and has the property that (¢'(x))(0) = f'(x). Since
L is the field of quotients of R and K((#)) is that of K[[¢]], ¢’ can be extended
to a unique homomorphism ¢ : L — K({(1)).
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16 Dimension of components

The following proposition is the ideal-theoretic counterpart of a well-
known .tlleorf:m of algebraic geometry concerning hypersurface sections of
algebraic varieties. The present beautiful proof is due to J. Tate.?

Proposition 11 Let p be a prime ideal of a fini

nitely generated pol 7
algebra K[X,, ..., X,] over a field K, and let d = dim p. Let fe K[)p’o ym?u]ﬂ
fép, and let v be the perfect ideal generated by (p,f) in KX /{/’j“’Th" ;
every component of v has dimension d— 1. el 20T

. Progf If r has no component (that is, if v = K[X,,...,X,]), the It
is trivial. Suppose r has precisely one component (thatl’is.,.’r i"s ;;rime)rez‘;d
letx = (xy,...,x)and x’ = (x,’, ..., x,) be generic zeros of pand r respect;vel
We first gstablish the fact (Noether’s normalization lemmc;) that theZ.
exists a .famlly y=(y,....,ys) of d elements y; = g,(x) € K[x], such tha‘:
K[x] is integral over K[y]. If d = n, this is obvious, for we m;.y then use
x for y; hence we may suppose in this connection that p contains a nonzero
polynomial g. Let cX;'--- X! be the highest nonzero term of g when
order thesg terms lexicographically® with respect to (i, ;, i), let W—e
(1+degg) ™' (2<j< n), and let Xy =x;—x7 (2 <jn,<nn_)hTh:3nl T

. . .
G(xp, X2+ X1 X+ X)) = cxftimt e tiamn +9'(x1, %12 X1n)
>3 X1n)y

Wh.ere g i.s a polynomial in K[X,, X,, ..., X,] with degy, g’ < iy +iymy+--
+i,m,. Since g(xl,xu.-%-)_c'l"z, e X+ XT) = g(xy, X5,..., X,) = 0, this szhows
that K'[xltxz, .. X,] Is integral over K[x,,...,x,,]. The proof of the
normalization lemma now can be completed by induction
This being so, f(x) is integral over K[ i ' i
, y). Since y = (y,, ..., y,) is obviousl

algebraically independent over K, K[y] is i sed in- ot

ai , K[y] is integrally closed
the minimal equation Bratly closed in £, so that

SO + L eV 4+ fo(p) = 0 (3)

of f(x) over K(y) has its coefficients f,( :
! 0 y)"“vfr— (y) in K . Co ti
the norm of f(x) from K(x) to K(y) we therefore Iﬁnd: £y] mputing

N —
k(xS = Nireo,myx00 Voo, S (%)
= Nirm, nyikn SO ET ]

— {{ — K(x):
= (= D fo(MFEIKIEDT = 4 £ (y)2.
2 S M . .
¢e S. Lang, “Introduction to Algebraic Geometry,” Chap. 11, §7. Interscience, New

York, 1958.
* See Section 17 for the definition of the lexicographic order on N-.
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A similar result holds for any k(x) e K[x]. Setting v" = (3", ..., )4), .where
;V.’=g~(x') we see that K[x'] is integral over K[3'], so that dimr =
t;deg ]'<(x’)/l<= trdeg K()")/K. By (3) we see that f,()’) =0, so that there

exists an irreducible factor /7 of fy in K[Y,...,Y,] that vanishes at y". Itjh

is any polynomial in K[Y,,...,Y,] vanishing at y’, then the polynomial

hig ! g€ K[Xy, ..., X,] vanishes at x', hence is in r, and hence has a
1720

power that is in the ideal (p,f). Substituting x for (X4, ..., X,), we therefore
“find an equation /()" = k(x)f(x), whence
h(y) = NK(x),'x(y)h(y)b = NK(x)/K(_v;k(-\’)f(-\’) = iko(}’)"fo(}’)",
so that & is divisible by f’. Thus, the defining ideal of )" in K[Y‘.’ LY s
the principal ideal (f"), so that dimt = trdeg K(y')/K =dim(f)=d-1.
This proves the proposition in the case in which r has just one component.
Now let v have s > 1 components py,...,p,. Let x = (X1, .., X0 am:i X =
(x,,...,x,) be generic zeros of p and say p,, respectively. There ?x1st.s an
hci’K[),( ,n..,,X,,] with he (),<,<s P; and /¢ p,. Let p’ be the defining }deal
of (x 1 x,, 1/h(x)) in K[X,,...,X,, X, ], and let ' be the perfect ideal
Ly erer X . , f :
generated by (p’,/) in K[X,,..., X,, X, ]. Itis clear that (x1 s Xy 1R(X))
isazerooft’. Ontheotherhand, X,, A—1lep =’ ,sothatif(a,,....,q,,d,,)

is any zero of r’, then Ai(a,, ...,a,) # 0. Hence (a,,...,a,) is a zero of p, and
therefore is a specialization of (x,’,...,x,’) over K, whencg (al,....,a,,,a,,ﬂ)
is a specialization of (x,’,...,x, ', 1/A(x")) over K. Thus, 1’ is prime and has
generic zero (x,’,...,x,, l/h(x")). By the case of the proposition already
treated,
dimr’ = dimp’ — | = trdegK(x,, ..., x,, /A (x))/K — |
=trdeg K(x)/)K -1 =d— 1.

Therefore

’

dimp, = trdeg K(x'}/K = trdeg K(x,, ..., x,/, l/A(x))/K = dimt" = d ~ 1.
This completes the proof.

Corollary 1 Let p and q be prime ideals of K[X,,...,X,], and let t denote
the perfect ideal of K[X,..., X,] generated by p+q. Every component of t
has dimension greater than or equal to dimp+dimq—n.

Proof 1f K, is the algebraic closure of K and if we denote the components
of the perfect ideal generated by K, p, respectively K,,.q, by_ Pise-es Py, TES
spectively qy, ..., qs, then, as is easy to see, the perfegt ideal T generated by
K, x coincides with the intersection of the rs perfect ideals r;; generated by
various p;+q; in K,[X,..., X,]. By Section 12, Proposition 7(a), each com-
ponent of T has the same dimension as a component of r, and also as a com-

ponent of some r;, and each p;, respectively q;, has the same dimension

)
]

SRR T g e < ey

O R s M R SRR
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as p, respectively g. Therefore it suffices to prove the corollary under the
additional hypothesis that K be algebraically closed, in which case p and q
are regular over K. This being the case, let X', ..., X, be n more indetermin-
ates and let q” denote the ideal of K[X,’, ..., X,"] corresponding to the ideal
q of K[X,,..., X,]. The substitution of (X,, s Xy Xy, X)) for (X, L X,
X, .., X,)) is a surjective homomorphism KX, o X, X X ]~
K[X,,..,X,] with kernel (X,—X,’, - X,—X,); the ideal o = (p+q,
X, ~-X{,..,X,—X,) is mapped onto p+4q. Hence by Section 10, Lemma
10(a), p+q is birationally equivalent to a’ over K. By Section 12, Corollary 2
to Proposition 7, p+q’ is prime of dimension equal to dimp+dimg. By
n-fold application of Proposition 11 we therefore find that each component
of the perfect ideal generated by a’ has dimension greater than or equal to
dimp +dimq—an.

Corollary 2 Let p and q be prime ideals of K[Xy,...,X,] with p < q, let
s=dimp—dimq, and let fe K[X,, ..., X1, f&p. Then there exists g strictly
increasing sequence of s+1 prime ideals Po S Py © - pg with py, =p,
ps=q,and f¢p, (0<i<ys).

Proof By Section 11, Proposition 4, s > 0 and if 5 = 0, then p =q, in
which case the result is trivial; it is also trivial if s = 1. Letting 5 > 2 we see
that it suffices to prove the existence of a prime ideal p, between p and q
with dimp, =dimp—1 and f¢p,. Let /1 be an element of g not in p (if
feq, we take f| = f). Each component of the perfect ideal generated by
{(p,f1) has dimension equal to dimp—1 and therefore does not contain q,
and at least one of these components is contained in q. It is easy to see that q
contains an element f, not contained in any of these components.* Each
component of the perfect ideal generated by (p.f1,/2) has dimension equal
to dimp—2. At least one component p of the perfect ideal generated by
(p,/3) is contained in g; by Proposition 11, dim p, =dimp—1. If p, con-
tained £}, then p, would be a component of the perfect ideal generated by
(p.f1,/,) and therefore would be of dimension equal to dimp—2.

Corollary 3 Let p be a prime ideal of K[X,,...,X,], let fe K[Xx,..,X.],
Sé&p, let K’ be an algebraically closed field extension of K, and let (a,, ..., a,)

¢ This is an immediate consequence of the following well-known fact: If the union of a
finite set of prime ideals contains a given ideal, then one of the prime ideals does. Indeed,
let a be an ideal and Yi,..., Pw be prime ideals with a < U p,. We may suppose that a
is not contained in the union of any m—1 of these prime ideals. Assume m> 1. For
each / there exists an x; € a with x; ¢ U,ﬁ p;, and obviously x; € p;. Setting y, = H,*, X
we see that y,ép, yeq, y e ﬂj,,pj. Therefore the element z = S yiis in a, and
hence is in some p;, say z € p;,. However, then Yig = z—z,,,oy, € pi,. This contradiction
shows that m = 1.
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be a zero of p with each a;e K. Then there exist power series Qy,...,0, in a
power series algebra K'[[1]] in one indeterminate over K' such that (Q,...,Q,)

is a zero of p but not of f, and Q,;(0) = a; (I1<j<n).

Proof It is obvious that (a,,...,a,) is a zero of some component p’ of
the perfect ideal generated by K'p in K'[X,..., X,]; by Section 12, Propo-
sition 7(a), /¢ p’. Of course p’ is contained in the prime ideal o’ = (X, —a,,
..., X,—a,) of dimension 0. If p’ = a’, we may take Q;=a; (1 <j<n). If
p’ # «’, then by Corollary 2 there exists a prime ideal p,” of K'[ Xy, ..., X,,] of
dimension ! withp’cp,/ca’ and fép,". Let(x,,...,x,) be a generic zero
of p,. By Section 15, Proposition 10, there is a homomorphism
K'(xyy .. %) — K'({1)) over K' mapping x; onto an element Q; € K'[[¢1]
such that Q;(0) =-:aj (1<j<n).

Corollary 4 Let f,....f, be polynomials in K[X,,...,X,] with m<n and
let (a,,...,a,) be a zero of the ideal =(f1,..fm) of K[X,,...,X,] that is
not a zero of the polynomial J = det(f/0X:)  <icm. 1<i<m- Then {ay,...,a,)
is a zero of precisely one component of the perfect ideal of K[X,,...,X,]
generated by §; that component has dimension n—m and is separable over K.

Proof Let py,...,p, denote the components of the perfect ideal generated
by i. It is clear that (ay, ..., a,) is a zero of at least one p,. By m-fold appli-
cation of Proposition 11, dimp, = n—m. Let (x,,...,x,) be a generic zero
of p,; then J(xy,...,x,) # 0. If D is any derivation of K(xy,...,x,) over
K{(Xps 15 Xa), then

0= Dfi(xy,-.n X)) = 2. (8fif0X:)(xy, ..., x,) Dx;e a<is<m),
1<€i'sm
hence Dx; =0 (1 <" <m), s0 that D =0. Thus, there does not exist a
nonzero derivation of K(x,,...,X,) over K{X, ., ..., Xu)- By a well-known
criterion,’ it follows that K(x,,...,x,) is a separable algebraic field extension
of K(Xpps1,--- X). Therefore dimp, =n—m and p, is separable over K. It
remains to prove the uniqueness of p,. It is easy to see by Section 12, Prop-
osition 7(a), that we may replace K by any larger field; in particular, we may
assume that K contains each a; and that K is algebraically closed. Because of
the former assumption we may even suppose that a; =0 (I </ < n). This
being the case, we sce that, in the power series algebra o = K[[X, -0 X1,
of < op, N --- 1 op, < the perfect ideal of o generated by of. However, by
the implicit function theorem (Section 13, Proposition 8), there exist power
series Py, ..., Pn€ K[[Xps1 ..., X,]] vanishing at (0,...,0) such that of =
(X,=P,,..., X,y— P,), s0 that of is prime and of = op, " -+ 0 op,. It follows

5 See, e.g., N. Bourbaki, “Algebre,” Chap. V, §9 p. 140. Hermann, Paris, 1950 or 1959.
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that of coincides with some op,, say with op,, and op, cop, 2 <k < ).
In particular, (0,...,0) is a zero of p,. Consider any p, with k # 1. There
exists an fe p, with f¢ p,. If (0,...,0) were a zero of p,, then, by Corollary 3
above, there would exist power series Q,,...,Q, € K[[¢]] with Q;(0) =0
(1 €/ < n) such that (@4, ..., Q,) is a zero of p, but not of £, hence a zero of
op, but not of op,, contrary to the inclusion op, < op,.

Corollary 5 Let p and q be prime ideals of K[X,,...,X,] with p>q, let
x=(xy,...x,) and y =(y,,...,y,) be generic zeros of p and q respectively,
and set r = dimp and s = dimq. Consider the local ring o = K[ X, ..., X,],,
its maximal ideal \n = vp, and the prime ideal n = 0q. Let J_ denote the matrix
(80/0X)gea 1 <i<n having coordinates in K[ X,,..., X,].

(2) The rank of J (x) is at most n—s.

(b) Every set of generators of the maximal ideal wn/n of the local ring o/n
has at least s—r elements.

(¢) If the rank of J (x) is n—s, then m/n has a set of generators with pre-
cisely s—r elements.

(&) If m/n has a set of generators with precisely s—r elements, then p/n

is integrally closed.

Proof (a) 1f say det(0Q;/0X )s<i<n s<;<n did not vanish at y for some
Q,,...,0, €q, then by Corollary 4 there would exist a prime ideal q' of
dimension s— 1 containing Q.,...,Q, and having y as zero, and this would
imply that ¢ < q and s—1=dimq > dimqg=s. Thus, every (n—s+1)-
rowed minor of J, vanishes at y and hence also at x, so that the rank of J, (x)
is less than or equal to 7 —s.

(b) Let Fi,...,F, be elements of m such that F,+n,...,F,+n generate
m/n; the denominator of each F; is a unit of o, and hence we may suppose
that F,...,F,ep. Then p contains the perfect ideal of K[X,..., X,]
generated by q+(F,..., F,), and hence contains a component p’ of that
perfect ideal. By Proposition 11, dimp’ > s—m. Since p = m, for any Pep
we have P €Y ¢c;<m 0F;+1, and therefore there exists an H e K[ X, ..., X, ]
with H ¢ p (and hence with H ¢ p’) such that AP e p’, so that Pe p’. Thus,
p=p and r =dimp > s—m, whence m = s—r.

(¢c) By Section 14, Remark 3, in order to show that in/n has a set of
s—r generators it suffces to show that the vector space (m/m)/(n/m)? =
(n/m)/((n*-+n)/n) over (o/m)/(in/n) has dimension less than or equal to
s—r, that is, that the vector space nt/(in®+n) over o/m has dimension less
than or equal to s—r. To do this it suffices to show that (in*-+n)/n? has
dimension greater than or equal to n—s and m/m?* has dimension less than
or equal to n—r.

To settle the first point, observe that if Q.. ,...,0,€ q and Y o;Q; € m?
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where «,,,,...,a, €0 and o; ¢ m for some i, then
/
>, 00,/0X; = 6(2 o Q; /oXj — 2 (040X Q; € m
i i i

for every j, so that every (n —s)-rowed minor of the matrix (0Q:/0X))s<i<n 1 <j<n
must be in mt and hence must vanish at x. Since the rank of J(x)is n—s,
this shows that g (and hence also 1n) contains n—s elements that modulo 112
are linearly independent over o/m. Therefore the dimension of (n+m?)/in?
is greater than or equal to n—s.

To settle the second point, suppose that, say x,, ..., x, form a transcendence
basis of K(x) over K, and let d; denote the degree of x;over K{xy,...,x;_)
r<j<gn. For “each J with r <j<n, p contains a nonzero polynomial
Pie K[X,,...,X;] with degy P;=d; and degy, P <d; (r<i<j), and p
does not contain a nonzero polynomial P with degy, P<d; (r<i<n).
Writing P; = I, X{i+-.-, where I, ... are polynomials in KX, .., X2 ]
with /7, ¢ p, we see that for any P e p there is a congruence

I:‘-:-+ll".1:"PE P, (mOd(Pr+lﬁ~~~aPn))

with degy , P’ < d; (r < i< n) and hence with P’ = 0. Since each /;is a unit
of o, it follows that m = op=0F,, +--+0oP, and hence that m/in? has
dimension less than or equal to n—r.

(d) To prove that o/n is integrally closed, it suffices by Section 14,
Remark 4, to show for each de N that the vector space (in/n)*/(m/n)d*!
over (o/m)/(in/n) has dimension (°*37747'), that is, that the vector space
(m’+n)/(m** !+ n) over o/m does. By hypothesis, there exist polynomials
Frvyy .., £y € p such that their residue classes modulo n generate the ideal
m/n of o/n. To complete the proof it evidently suflices to show that whenever

P = Z A?r+l"‘es Y:;—+ll ,,,Y:s
Yei=d

is a homogeneous polynomial of degree d with coefficients in o such that
P(F iy, F)em?™ 41, then every coefficient in P is an element of m,
and to do this it is enough to show that when the coefficients in P all are in
K[X,,...,X,] and P has the property that P(F,,,,...,P)ep'*'+q, then
the coefficients all are in p. Now, because of this property, P(F.,...,F)
can be expressed modulo q as a homogeneous polynomial in J P o
of degree d+ I with coefficients in K[X,, ..., X,], or if we prefer, as a homo-
geneous polynomial Yg,.=y B, .., Ffoy - F& in F,\, ..., F, of degree d
with coefficients in p; then

Z (Ae,.”»»-e,—Be,4;~~e,) F::-/’ll "'Fses € q. (4)
Yei=d
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Assume that A, . ¢p for some (€.+1»-..,€,). Fixing elements | ST
t,—, of an extension of K that are algebraically independent over K, and
setting L = K(t,,,...,¢,_,), we see that Lp and Lq are prime ideals of
L[X,,...,L,] of respective dimensions r and s with Lp > Lq and that

Z_d(Af’rﬂ"-es_Beeres) trcrll ey ¢ Lp.
Therefore if we set G = F,—1,F,eLp (r<i < 5) and in (4) replace £, by
G+t F (r<i<s), we find a relation

CoFf+ C Fé vy 4 C, € Laq, (5)

where C; is a homogeneous polynomial in Goyyyooty Gy_y Of degree j with
coefficients in L[X,,..., X, (0 <j<d)and C, ¢ Lp. Now, Lp contains the
perfect ideal of L{X,,..., X,] generated by Lg+(G,,,,...,G,_,), and hence
contains a component p’ of that perfect ideal. By Proposition 11, dimp’ >
s=(s—1=r)=r+1. By the above, Co ¢ p’ and Ciep' (1 €j<d); there-
fore F, e p’ by (5), and hence also Fi=Gi+,Fep (r<i<s), so that p’
is a component of the perfect ideal of L{X,,....X,] generated by Lg+
(Fri1s--, F). As we saw in the proof of part (b), then Lp = p’, whence
¥ =dim Lp = dimp’ > r+ 1. This contradiction completes the proof.

17 Lattice points

Let W,,...,W,, be a finite sequence of ordered sets, and consider the
product set P =17, <;<. W;. We shall use various orders on P. The product
order on P is defined by the condition that (ay,...,a,) < (by,...,b,) in Pif
and only if @; < b; in W, (1 < i < m). The lexicographic order on P is defined
by the condition that (a,, v @) < (by,....b,) in Pif and only if there exists
an index 4 such that a; = b, (1 < i < h) and a, < b, in W,.

If each Wi, is totally ordered, then P is totally ordered relative to the lexi-
cographic order but not, in general, relative to the product order. If each
W is well-ordered, then P is well-ordered relative to the lexicographic order;
P is not, in general, well-ordered relative to the product order, but it is true
that then every infinite sequence of elements of P has an infinite subse-
quence that is increasing (not necessarily strictly); in particular, every non-
empty subset of P then has a minimal element,

The set N is well-ordered relative to its usual order, as is the finite set
N, consisting of the n numbers L2,...n

Lemma 15 (a) Every infinite sequence of elements of N™ x N, has an infinite
subsequence, increasing relative to the product order, in which every term has
the same projection on N, .
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(b) N"xN, can be totally ordered so as to satisfy (for all i,.. ,i,,

€ryeislyy iy’ .0 € Nand all j,j € N,) the two conditions

(psosimn) S Uy +eg . in+e, ),
(i|,...,i,,,,j) < (il,""’iml’j,):> (il+el""’im+em7j) < (i1,+elv"-aiml+emvjl)‘

(c) Relative to any total order satisfying the first of these conditions,
N"x N, is well-ordered.

Proof (a) As remarked above, some infinite subsequence is increasing
relative to the product order. Since N, is finite, infinitely many terms of this
subsequence have the same projection on N,.

(b) The lexicographic order satisfies the two conditions as does the
lexicographic order with respect to (3 i,,j,i,,...,i,), that is, the order on
N”x N, induced by the lexicographic order on N x N, x N™ via the injective
mapping (i, ..., i, J) = (& i,,/,01,..., i) Of N"x N, into Nx N, x N™,

(c) By (a) an infinite sequence in N” x N, has an infinite subsequence,
increasing relative to the product order, in which all terms have the same
projection on N,,. This subsequence obviously is increasing relative to any
order satisfying the first condition in (b). Thus, relative to any such order,
every strictly decreasing sequence is finite, so that if the order is total, then
N™x N, is well-ordered.

We shall have occasion to consider polynomials in one indeterminate X
over R. The degree of such a polynomial is defined in the usual way with the
proviso that the polynomial O have degree —1. If fe R[X] and degf < m,
then there exist unique ag,ay,...,a,€R such that f=3gc;cn (579,
where (f) denotes the ‘“binomial coefficient” polynomial X(X~1)---
(X—i+1)/ile Q[X] of degree i. We can introduce a total order on R[X]
by defining f< g to mean that f(s) < g(s) for all sufficiently big seN. If
S=Z0cicm (") and g =3 o<icm bi(*7), then f<g if and only if
@, ..yay,a0) < (b, ..., by, by) relative to the lexicographic order on R™* 1.

By a numerical polynomial we shall mean a polynomial fe R[X] such
that f(s) € Z for all sufficiently big s € N. The polynomials (¥) are numerical,
and therefore so is every Yo<;<m @:(*[?) with ag,ay, ...,a, € Z. Conversely,
if f=%o<icma;(*7) is numerical, then ag,ay, ...,a, € Z. Indeed, if degf =
m =0, then

M=fX+) -0 = T a, <X+,.‘+")

O0<ism-—1

as we see from the relation A(f) = (;*,), so that degAf=m—1. Since A/

is obviously numerical whenever f is, the result follows from this formula
by induction. From this result and this formula it also follows that £ is
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numerical whenever Af is numerical and S(s) e Z for some s¢Z: also. if
S is numerical, then f(s)e Z for all se Z. ’ ’

Lemma 16 Let E be a subset of N™, considered as an ordered set relative to
the product order. Let V denote the set of all points of W™ that are not greater
than or equal to any point of E. Let W denote the set of all points of V that are
less than or equal to only Jinitely many points of V.

(a) W is a finite ser.

.(b) There exists a numerical polynomial wg such that, Jor every sufficiently
big s € N, the number of points Wy, ...,v,) €V with Y < S is equal to wg(s).
wE(cZ (X%:e’%;u,z S m; equality occurs if and only i'E is empty, in which case

(d) wg=0ifand only if (0,...,0)eE.

() IfE U W contains a smallest point (e, ...,e,), then

X+m X—-S e 2
wE=< )—( %:'Tm>+CardW.

m

X+m X—et+tm
Wg = m - m +a

with a,e € R, then E U W has a smallest point.

Conversely, if

Proof It is clear that if we replace E by the set of its minimal points
thep V and W will remain the same. Since every infinite sequence in N™ ha;
an infinite increasing subsequence, this set of minimal points is finite. There-
fore we may suppose that E is finite. Then we may set &, = max
(Isi<m)and [El= Zier rem)<E 2i<ism & o

If (v,,...,v,) €V and vy = ey, then (v, +j,v,,...,0,) € V for every je N
50 ‘that (vy,...,v,) ¢ W. Therefore if (vy,...,v,,) € W, then v, < 8, and’
similarly, v; < ¢, for every i. Hence Card W < €, é,. This proves (a). ’

Let Ng(s) denote the number of points (v, ...,v,) € V with Dicicm U < 5.
Fgr each such point either v,, = 0 and Yicicmo1 v; <5 or else L:l\: v"+1
with T)m' eNand ¥, ¢;c,,-, t;+0,” < s—1. Therefore if E, deno't"es th"el: set
of points (e,,...,e,_,) € N™ ¢ such that (e1,....en_1,0) € E, and E, denotes
the set of points (e, ..., €m-15€,") € N"such that either (ersilpm_ e+ 1) e
E,ore, =0 and (1 s€p_,0) € E, then Ng(s) = Ng, (5)+ Ng, (s—1).

. We prove the existence of the polynomial wg with the properlty described
in (b) by induction on [E|. If |[E[=0, then either E is empty or E consists
solely of the point ©,...,0). In the former case Ng(s) equals the number
N, (s) of points (04, ..., 0,,) € N™ with 2 i<iem U < 5, and the above equation
becomes N, (s) = Np— 1)+ N,(s—1). We find by induction on m+s that

vem)eE €
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N, (s) = (**™), so that we may take wg =(*,"). In the latter case V is
empty so that Ng(s) =0, and we may take wg = 0. Now Iet} E[> 0 and
suppose the existence of wg established for lower values.of'|E[. Then E
contains a point different from (0,...,0); permuting the indices, we may
suppose that E contains a point with nonzero mth coordinate. Then [Eq| <
|E| and |E,| < |E|, so that wg, and wg, exist. It is now clear that we may take

wg(X) = wg,(X) + wg, (X=1). (6)

This proves (b). . .
We have already seen that if E is empty, then wg = (™). If E contains

a point (e, ..., e,), then no point of V is of the form (e, +uy,...,e,+u,)
with (u,, ..., u,) @N™ and X, <i<m U $5— 2 <i<m €, 50 that for big values
of se N,

_Ses
0p(5) < Np(s) — Nm(s_ gsmei) _ <H’;1m> ) (s z}; m>’

whence degwg < m. This proves (c). The proof of (d) is obvious.

Before proving (e) we observe that an easy induction argument making
use of (6) shows that if, for each 7, E contains a point with vanishing ith co-
ordinate, then degwg < m—2.

It is evident that replacing E by E U W has the effect of replacing V and
W by V-W and (&, respectively; therefore wg = wg,w+CardW. If
E U W has a smallest point (e, ..., €,), then a point is in V—W if and only
if it is not of the form (e, +uy, ..., &m+ Uy, 50 that wg , w = (* ;™= (¥ "E&™m),
and therefore wg = (X5™ — (¥ L™ + Card W. .

Conversely, let wg= (L") —(*"5"™+a. If degwg <0, then Ng(s) is
bounded, and V is finite; in this case V=W, so that (0,...,00e E U W.
Suppose then that degwg > 1. Then m > 2 and e # 0 whence degwg =
m—1, so that by our observation above there is an index 7 such that every
point of E has nonvanishing ith coordinate. Permuting the indices, we may
suppose that m is such an index. Then the set E, in (6) is empty, so that by (¢)
wg, = (¥}177 "), and therefore

m-1

U)E‘(X) = wg(X+1) "U)EO(X‘*' 1)
X+1+m X+1l—e+m ta- X+m
m B m m—1
<X+m> <X+1—e+m>
= — “+a
m m

Thus, if we replace E, e,a by E,,e— 1, a, respectively, the hypothesis remains
satisfied. Furthermore, as every point of E has nonvanishing mth coordinate,

W is replaced by the set W, consisting of all points (vy,...,0,) such that

18 SHAPIRO’S LEMMA 53

(01, > Um-10m+1)€W and obviously CardW, = CardW. However,
|E,| <!E[, so that we may assume, inductively, that E, U W, contains a
smalles: point (e,’,...,e,"), e—1 =3¢/, and a = CardW,. Then EUW
contains a smallest point (e, ...,e,) = 61y cnemer, ey +1), e=Se,, and
a = Card W. This completes the proof of the lemma.

EXERCISES

1. Let (ay); <i<m 1 <k<s DE @ matrix over R with the following two proper-
ties: the rank of the matrix is m; for each index i if k(i) denotes the
smallest k with ay # 0, then a4, ,,, > 0. Show that the order on N™
induced by the lexicographic order on R® via the injective mapping
Wt (Tag by, .., Y a,0;) of N™ into R, satisfies the two con-
ditions of Lemma 15(b).

2. (more difficult) Prove that every total order on N™ satisfying the two
conditions of Lemma 15(b) can be obtained as in Exercise 1.

18 Shapiro’s lemma

The following lemma, which will not'be needed until Chapter 1V, Part B,
was proved by Arnold Shapiro in 1961. For any set K we denote the set of
all nonempty subsets of K by B(K).

Lemma 17 Let K be a nonempty finite set, let (a,),.x be a family with a.eR
and a, >0 (keK), let (x));cp) be a family with x,eR and x; 20
(J e B'(K)), and suppose that

Xy > Z; a; (1€ WB'(K)). (N

JePK) - PUK-D)

Then there exist numbers x; ;€ R with x; ; >0 (J & B'(K), j€ J) such that
Yoxg=x (e WK)
J€ .

and

Y x;>a  (jeK).
Jaj
ReEMARK |  We may think of the elements of X as representing the vertices
of a simplex, the nonempty subsets of K as representing the faces of that
simplex, the numbers a; as forming a system of masses located at the vertices,
and the numbers x, as forming a system of masses located on the faces. The
lemma then asserts that if, for each face /, the sum of the masses of the second
system located on the faces touching / exceeds the sum of the masses of the
first system located at the vertices of I, then the mass on each face can be
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redistributed among the vertices of that face in such a way that, for each
vertex, the redistributed mass of the second system at that vertex exceeds

the mass of the first system there.

REmarRk 2 The proof shows that the numbers x, ;, may be taken in the
field Q((@kex (x,)s cw(K))-

Proof Let s = Card K. There exists a J & ¥'(K) with x, > 0, and there-
fore there exists a unique r € N such that x, # 0 for some J with CardJ = r
but x;, =0 for all J/ with CardJ > r; of course | < r <s. Let ¢ denote the
number of elements /e P'(K) with CardJ =r and x, # 0; then +>0. If
r =1, then the norzero masses of the second system are already all at the
vertices, so that the result is trivial. Therefore we may assume that r > [.
We assume, too, that the result has been proved for lower values of (s,r,f)
in the lexicographically well-ordered set N°.

Fix some /, € B'(K) with Card/, = r and x,, # 0, and fix some k€ /.
Let /, denote the set of elements of I, other than k. Then K— Iy < K—1; = K,
so that the system of inequalities (7) can be written as three subsystems:

(7a) corresponding to I € P(K—-1),

(7b) corresponding to I € P(K—1,) — P (K~1p),

(7¢) corresponding to I € P(K) —~ P'(K-1)).
The left members in (7a) contain neither of the terms x;,, x;, and the left
members in (7¢) contain both these terms; the left members in (7b) contain
xp, but not x,; . It follows that if {eR, ¢ >0, and if we replace x;, by
x;,—¢ and x;, by x;, +¢, then (7a) and (7¢) remain valid. The system (7b)
remains valid provided ¢ is sufficiently small. If (7b) remains valid for ¢ =
X, then the replacement transforms the original system (7) into a similar
system with a lower value for (s, r,¢). We may therefore suppose that at least
one of the inequalities (7b) fails after the replacement using ¢ = x,,. Then
there is a smallest value for &, and we denote it simply by ¢, such that after
the replacement (7b) fails to hold. Using this £ we see that (7b) becomes a
system (7b’) of weak inequalities in the same direction. Obviously 0 < ¢ <
xy,, and at least one of the weak inequalities (7b) is an equality.

From among all the Ie B (K—1,) — B'(K—1I,) for which the correspond-
ing inequality (7b") is an equality, choose a maximal one, say K’, and set
K" = K—K’'. Then

Xy = Z a;. )

JeP(K) - P (K") iek’
Consider any /”e P'(K”). Writing /=K' uI”, we see that ecither /¢
P'(K—1,) and I corresponds to an inequality (7c) or else /e B'(K—1,)
—P'(K—1,) and I corresponds to an inequality (7b). In either case the
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inequality is strict. Subtracting from it Eq. (8) we obtain
x > ) IU s ’ 1
JeP (K")y—Pp(K"—-1") ! i;” a’ ( € B (K )) (9)
On the other hand, if we start with some /e B'(K"), then either /& B'(K—1I,)
and we have a strict inequality (7a) or else Je P(K—1,) — P (K—1,) and
we .hfave a weak inequality (7b’). If we now reduce ¢ slightly, still keeping it
positive, then‘ the inequalities (7a) remain valid, and the inequalities (7b")
all become sFrxct, that is, we regain (7b). Furthermore, if the amount by which
we reduce ¢ is sufficiently small, then (9) remains valid, too. Then, in addition
to (9) we obtain (denoting I by I')
x; > a; I" e P'(K)).
JeP(K)=p(K-T) / i;’ ( ' )) (19
If Je P(K) - P(K-T"), then Je B'(K) — B (K—K’) and therefore this J
does not occur in the left side of (9). For each Je& P'(K) — P(K—K’) we
now decrease x; and increase x; . x- by the same amount x, (that is, we shift
the entire mass x, from the face J to the face J n K’). This does not affect
the inequalities (9), and replaces the inequalities (10) by
x; > a; I' e P'(K")).
sewiery S i;} (I"e P'(K")) (1)
Since Card K’ <s and Card K” <5, the lemma holds for each of the two
systems (9) and (11). It is now a simple matter to see that the lemma holds
for the original system (7).

Corollary Ler K be a finite set, let a,e N (k € K), let x, €N (J e B'(K)),
and suppose that

Xy > Zl a; (I e W(K)).

JeP(K)= (K-
Then, for each sufficiently big he N, there exist y, ;e N (Je P(K), jeJ)
such that .
; Y5 = hx, (-]E s:B’(K))
and ’
Z.yl,j > ha; (je K).

Jaj

Proof There exist (see Remark 2 after Lemma 17) rational numbers
x,,; satisfying the conclusion of the lemma. There obviously exists a & > 0,
smaller than every nonzero x;, ;, such that if we set

Xy~ € (x;,;#0),
0 (-x!,j =0),



56 0 ALGEBRAIC PRELIMINARIES

then ¥,.; x} ;> a; (j€ K); of course 3 ;; xj ; < x,. For any he N with
h> &1 there exist xj ;€A™' N such that xj ;< xj ;< x, ;, and for such

x; ; obviously
Y oxp;<x (Je P(K)) and ,Z- Xy > a (je K).
3j

jeld
For each J € P'(K) fix an element i(J) € J and set
yip=hx; (jed, j#) and gy = hxg gy +hxg = ) kg

jed
It is easy to see that the numbers y, ; have the required properties.

¥

19 f-Values

Let R be a ring and let  be an ideal of R. For any x € R let y(x) denote
the biggest integer m with x € [™ if the set of such integers m is bounded,
and denote the symbol co otherwise. It is clear that if f # R, then (£ 1) =0,

whereas pg(x) = o (x e R).
We adopt the convention that

0 > a, O+ a = o -+00 =00+ = (x €R),
Qo0 = 00 = CO0 = O (xeR, a>0).
It is then apparent that
py(xy £ x) = min((x), p(x2))  (xg, X2 € R),
pr(xy x3) = pe(xy) + pe(xs) (x1,x; € R),
w(x" = nu(x) (xeR, neN, n#0).
We also show that
lim n™ !y (x") = S\:}gn'l,u,()(') (x € R).

n—= ®

For this it suffices to show that whenever a € R, a > 0, and a < sup,,o7n" !

w (), then n~ 'y (x") >« for all big ne N. Now, for any such 2, we
may fix me N with m >0 and m™ ' 14(x™) > x; for any ne N with n > m,
we may write n = gm+r with g,reN, g >0, and r <m, so that

n™ ! (X" X7)
n™ !ty (x)
n~t(gm)(gm)™! - qu(x™) = nTH(n—m) - m” (=)

n (X"

vl

A\

which is greater than « for all big values of n.
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This being the case, we define v, (x) by the equations

ve(x) = lim n™ " py(x") = supn ™!y (x"),
n=w n>0
and call v;(x) the f-value of x. Thus, v,(x) is either a real number greater
than or equal to 0 or is the symbol co. If £ # R, then v,(£1) = 0, whereas
vp(x) = (x€R).
For any « € R, to say that v;(x) > o is to say that there exist m,n e N with
m > na such that x" e {".

Proposition 12 Let T be an ideal of a ring R.

(@) vl +x;3) 2 min(vi(x), v (x;)) (x,x, € R).
() wilxyxg) 2 vi(x)+v(xy) (x,x,€R).
©) wx)=m(x) (xeR neN, n>0).

Proof (a) It suffices to show that for any xeR with 0 a<
min(v,(x,), v (x;)) there exists an n € N with # # 0 such that i ((x, +x5)") >
nz. To this end, fix § € R such that & < § < min(v(x,), v(x,)). There exists
an m e N so big that 7% 4 (x;") > B (i = 1,2) for all n.e N with n > m. Now,
for any ne N,

Nr((xr*'xz)") = Nr(Z (?) x'f-ixzi> Z min (p,(x'[—i)+y,(x2i)).
O0<i<n

Taking n > 2mB/(f—a), we see that we cannot have n—i < m and i<m
and that if n—i > m and i < m, then

() + w(x2) > (n=i)B = (n—m) > na,
if n—i< m and i > m, then
w7 + iy (x,)) > iB > (n—m) B > na,
and if n—i> m and [ > m, then
u(ET) + () > (n=1)B + if = nf > na

(b vi(x; x;) = lim, ., ”_llit(xlnxz") 2z lim, ., n_l(/‘z(xln)"f‘/lr(xzn)) =
ve(x,) 4 v (x,).
© w(x") =lim,. g r ™ (™) = nlim, ., () ™! gy (x™) = nvy(x).



CHAPTER I

Basic Notions of Differential Algebra

In this chapter we introduce the notions that are basic to all of differential
algebra, and we go through some technical considerations that will facilitate
the study of these notions in the subsequent chapters.

1 Differential rings

An operator § on a ring is called a derivation operator if 5(a+bh) = da+ b
and S(ab) = (3a)b+adb for all elements a. b of the ring. o

A differential ring is defined as a ring # with a finite set A of denyanon
operators on £ such that dd’a = §'da (ac #, §e A, 3" e A). If the ring %
1s an integral domain, or a field, we speak of a diﬂeremia/‘ imegrql do‘mazr.z,
or a differential field. If the number m = Card A is I, the differential ring is
ordinary, and if m > i, it is partial.'

ExampLe I Any ring 2 on which the elements of a finite set A operale
trivially (8a = O for every a e # and every 0 € A) is a differential ring.

EXAMPLE 2 The ring of all real-valued functions defined and infinitely
differentiable at every point of a given region in the space of m real variables
Xis .5 Xy, With the set of operators /éx,, -+, €/0x,,, is a differential ring.

"In the case m =0 the notion of differential ring reduces to that of ring. In this book
we shall always suppose that mr> I, except in a few proofs in which we use induction on

m and start with m = 0.
58
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ExampLE 3 The ring of all complex-valued functions defined and analytic*
at every point of a given region in the space of m complex variables Xy X
with the set of operators 0/dxy, ..., 0/éx,,, is a differential integral domain.

ms

ExaMPLE 4 The field of aj] complex meromorphic functions on a given
region in the space of m complex variables Xgs -5 Xy, together with the set
of operators §/éx,, -, 0/0%,,, is a differential field.

Let Z be a differential ring with set A of derivation operators. Let ® denote
the free commutative semigroup (written multiplicatively) generated by the
elements of A. Every element of © can be expressed uniquely in the form
of a product [T;_, 6°®, where each exponent e(8) is a natura] number, and
every such product is an element of @ There is a unique way of making ©
into a set of operators on % consistent with the way in which the elements of
A already operate on % and subject to the two conditions that la = g and
(00 a=0(0a)forall g e Z,0€0,0 e0 (1 here denoting the unity element
of ®). We call the elements of O the derivative operators of the differential
ring Z.1f 0 =T,., 6°®, then the number S =12 sca€(d) is called the order
of §, and is denoted by ord 0; for any a e ®, 0a is said to be a derivative of a
of order s. In particular, a is its own derivative of order 0. A derivative of ¢
of order greater than 0 is called a proper derivative of a. In the special case
of an ordinary differential ring, A consists of a single element §; the deriva-
tives da,d%a,%a, 5a, are then frequently denoted by a’,a",a”,a®, respec-
tively.

If Zq is a subring of the ring 2 and is stable under A, that is, has the property
that AZ, < R, then the elements of A become, on restriction, derivation
operators of #,, and #, is then a differential ring with the same set of deriva-
tion operators A: we say in this case that Ry is a differential subring of R,
and that 2 is a differential overring of #,. The intersection of any set of
differential subrings of # s itself a differential subring of #. Therefore if
X is any set (or family) of elements of R, there exists a smallest differential
subring of # containing all the elements of Ao and of X; it is called the dif-
Serential ring generated by L over Ao, and is denoted by #,{X}, and X
is said to be a set (or family) of generators of the differential ring Ry {L}
over #o. If T is a subset of # and OX denotes the set of ajl elements fa with
fe®@andgex (or if £ is a family (@)ie; of elements of # and O3 denotes
the family (03)9.0, 1), then Ao {Z} coincides, as a ring, with the ring
Ao [OX] generated by OX over Ro. A differential overring of a differential
ring A, is said to be finitely generated over R, if it has a finite set of generators
over Z,.

If % and # are differential fields such that F, is a differential subring of
F, then #, is said to be a differential subfield of #, and F is said to be a
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differential overfield, or a differential field extension or simply an extension,
1 )
& 2 . . . .
Of';{moe; intersection of a set of differential subfields of & is 1tsel£a dxﬁ”erenpal
bfield of #. Therefore if I is a set (or family) of elements of #, thf_re e):letSf
N Hest diﬁ.”erential subfield of # containing all the eleme.:ms of %, and o
aZ'sz denote it by Z, (%), call it the differential field obtained by adjoining
th’ \tlements of T to %, or the extension of % generated by/_Z and say t};at
) ies a set (or family) of generators of the extension %, {X) of %, Theré)§0< >
oincides, as a field, with the overfield %, (©X) of #, ger?erated by OL.
) An exte’:nsion is said to be finitely generated if it has a finite set of gf:nf:ratofrs,
i if i t of generators consisting of a
is said to be simply generated if it has ase g ‘ r
a‘?xdlles selement ' 1f # and %, are both differential subﬁelii-s of :_", gler{
Zl)'dfg' = #, and OF, = F,, 50 that F(F) = F#(F) = ?zgl) =d/.z<ag;;
thisldiﬁerential field is called the compositum of # and #,, and is o
d by # ;. . o .
de:(;teelergentlc ;f a differential ring £ with set A of derivation operatorfs;
1 = J € A. The set of all constants o
id to be a constant if 3c = 0 for every . :
issla differential subring of #, called the ring of constants of Q%;Theli'lzgtg;’
constants of a differential field & is a differential subficld of f, called
field of constants of F . The field of constants of & alv\{ays contams(t-hpe pfrm:ﬁ
field of & and, if & is of characteristic p # 0, contains the field 7 of p

powers of elements of F.

EXERCISES

1. Let 2 be a differential ring with set of deri:/g)tion opeéaéf)r_s A andés[eé(té)o;
. derivative operators ©. For all 6 = Hqu i e® anh —tg;[;f;umber
© with 0’16 (i.c., with ¢ dividing Q.m Q), df:ﬁne the na e
(&) = [Tsea (53, product of binomial coefﬁmex.xts. Show ha () =
Zg (Q)-Ef)/&')w()’u for all u, v € #. Prove that if Z has prime char
tez;!sotig p then §°° is a derivation operator (0eA, eeN). t
2. Prove that a finite differential field is 1t§ own ﬁeld of cor;sta;ll s:.1cteristic
(Baer [4]) Let % be an ordinary differential field of ¢ ar rensic
p # 0 with field of constants €, let a e &, and suppose that a is
ivati any element of &. . . _
zi:)rl";trl(‘)lieotfhatyift is an element of an extension of & w;tld]‘éij’
tPe F, ' e F, then a/t is not the derivative of any.elemeni_o i'h t%g:
(b) Prove that if 7 is an element of a field extension of F wi

21 tl{{s book (except for Chapter V) the field theoretic notion gem?ral'l.y assoc;gézj
with rtlhis word will always be called field extension, and the word “extension™ unquali
by the word “field” will denote “differential field extension.
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and 1" € ¥, then there is a unique way of extending the differential field
structure on ¥ to Z (¢) so that ;' = a; show that the field of constants
of the differential field 7 (1) is %.

4. (Baer [4]) Let C be a subfield of a field K of characteristic p s 0 with
K? < C. Prove that there exists an ordinary differential field structure
on K for which the field of constants is C. (Hint: Let T be a maximal
subset of K that is separably independent (see Chapter 0, Section 2)
over C, and show that C(IN = K. If T is empty, all is clear. If T is non-
empty and finite, then adjoin its elements one by one using Exercise 3
to extend the differential field structure at each step. If T'is infinite, use
Zorn’s lemma.)

2 Homomorphisms and differential ideals

Let # and 2’ be differential rings with the same set A of derivation operators.
A differential ring homomorphism, or simply a homomorphism, of # into &'
Is a ring homomorphism f: 2 — %’ such that f(6a) = éf(a) for all ae ®
and ¢ € A. This definition carries with it, of course, corresponding definitions
of isomorphism, automorphism, etc. If # and % are differential overrings of
a common differential ring Ry, fis called a homomorphism over Ry, Or an
Ro-homomorphism, provided Jla) =afor every a e R,.

The image f(#) of a homomorphism f: % - %' is a differential subring
of Z'. The kernel of fis an ideal of & stable under A. Any ideal of # stable
under A is called a differential ideal of 5.

Let g be a surjective ring homomorphism of % onto some ring . If the
kernel of g happens to be a differentia| ideal, it is easy to see that there exists
on % a unique differential ring structure with set A of derivation operators
such that g is a differential ring homomorphism of # into . If we apply
this remark to the canonical ring homomorphism of 2 onto the residue
ring 2/t of Z modulo a differential ideal ¥, then 2/t becomes a differential
ring, called the differential residue ring of # modulo .

The intersection of any family of differential ideals of % is itself a differen-
tial ideal; similarly for the sum and, provided the family is finite, for the
product. Also, if f is a differential ideal of #, and ¥ is any subset of # stable
under A, then the quotient £:X is a differential ideal of %.

Let X be any set (or family) of elements of Z. The intersection of all the
differential ideals containing the elements of ¥, which obviously is the smallest
differential ideal containing the elements of ¥, is called the differential ideal
of R generated by %, and is denoted by [X], or, when there is no danger of
ambiguity concerning the differential ring Z, simply by [X]. Set-theoretically,
[Z] coincides with the ideal (OX) of # generated by OF.
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Lemma 1 Let a and b be elements of a differential ring, let h e N, and let
O be a derivative operator of order h. Then a"*10b e [ab]. More precisely,
a"* ' 0b is in the ideal generated by all the derivatives 8, (ab) with 0, dividing 0.

Proof 1f h >0, we may write f§ = 50" with § a derivation operator and
¢" a derivative operator of order #—1. Computing §(a"¢’h) and muitiplying
by a, we find that a"*'0b € (a"0'b, 5(a"0'b)). Since the case h = 0 is obvious,
the general result follows by induction.

Corollary  Let a be an element and t be a differential ideal of a differential
ring. Then t:a® is a differential ideal.

Proof If bgt:a”, then a"bef for some neN. By the lemma (case
h=1), for every derivation operator &, a"’ébe[a"h] ct, so that dbe
t:a™.

Lemma 2 Let a be an element of a differential ring, let he N, and let
Oy, 0a4—1 be derivation operators (not necessarily distinct). Then

M 1T <acon-1(0,0) € [a"].
Proof We may suppose that /> 0. The desired result is the case i = 4
of the more general result

hth=1) - (h—i+Da"" ] (6,a) e [a"]
:

1€A<2i-

(I<igh).

The case i = 1 is obvious since ha" ™', a = §, (a"). Assuming the case i = r
(for a particular r < /), apply 0,, and then multiply by 8,,,,a. The case
i=r+1 then follows.

Corollary Let a be an element of a differential ring with m derivation operators,
let h,ke N, h> 0, let
c=clk,hy= [] QU-1+1),
o0si<y
h (k=0),
d=dk,h,m) =
2(h—=1)2m* " + 1 (k> 0),
and let 0, ...,0, be derivative operators of order k. Then

¢ [1 (8,a) € [a"].
1$4%4

Proof For k = 0 the result is obvious, and for k = 1 it reduces to Lemma
2. Let k> | and suppose the result proved for lower values of k (and all
values of /). Setting ¢’ = c(k—1,2h—1) and d’' = d(k—1,2h—1,m), we see
that ¢ = fi!¢" and d=m(d'— 1) + 1. If, for every one of the m derivation

i o TR N s ¢
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operators 9, no more than d’—1 of the derivative operators 0,,...,8, were
divisible by o we should have d < m(d’'—1). Therefore some & divides at
least d’ of the operators 0,,...,0,, so that ¢ [],<,<,(6,a) is a multiple of
hte' Tli<i<a (03 0a), where 0,',...,6). are derivative operators of order
k—1. Hence, by the inductive hypothesis and Lemma 2,

¢ [l 0,0 e [h(3ay**1] < [a"].

1<Asd .

EXERCISES

I. (See Ritt [95, pp. 14-16]) Let t be a differential ideal of a differential
ring &.
(a) Show that if a,a,eR, a,+a, =1, and a,a,ef, then [¢] =
(a)+t (1=1,2), (a)+f is a differential ideal of % (i=1,2), and =
Lad+H n [(@)+1 = [(a))+ ] [(a,) +1].
(b) Let!bean ideal of Z with I = such that every element of [ has a
power contained in f, and let [, 1, be ideals of # such that [, +1, = #
and [, n [, =I. Show that there exist unique differential ideals t,,t, of
2 such that every element of I, has a power contained in f, (i = 1, 2),
L+, =2, andt, nf, =1 Show thatf, < [, (i = ,2).

2. (See Kolchin [36, Sections 2, 3]) Let the hypothesis and notation be as
in Exercise 1(b).
(a) For any two ideals a,b of 2 define /,a to be the smallest natural
number #n such that b" < a if such an # exists and to be oo otherwise.
Show that /f = max;_; , /. f,.
(b) For any differential ideal a of # set b(a) = ming /,[®], where ®
runs over the set of all finite subsets of a. Show that b(f) = max, . 1,2 b(E).

3. Let § be a multiplicatively stable subset of the differential ring A,
and let q be a maximal differential ideal of # disjoint from S. Prove
that q is primary, and that if # is an overring of Q, then q is prime.
(Hint: Let a,beR, a¢q, b"¢q (neN). Show there exist an se $ ~
(Forao<n A0a+q) for some heN and a te SN (Togec, ZOB" ) +q)
for some k € N, and inifer by Lemma | that s't € [ab] + q for some /€ N.
Conclude that ab ¢ q, so that q is primary. The set p of all elements
¢ € # such that ¢"e q for some ne N is a prime ideal disjoint from S.
Use Lemma 2 to show that when # > Q, then p is a differential ideal,
and conclude that g = p.)

3 Differential rings of quotients

Let Z be a differential ring, and let X be a multiplicatively stable subset
of Z. Then we may form the ring of quotients £~ '2 of 2 over £ (see Chapter
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0, Section 4). If a,/s, = a,/5s, in £~ 'R, that is, if there exists an s& £ such
that a,s,5 = a, s, s, and if 0 is any one of the derivation operators of #,
then
(0a, -5, —a, 8s,) 575> — (8ay-5,—a, 05,) s, % 5>

= (8a,-5,5,°+a,05,-57—da,-52 5, —a, 5s;-5,°) 57

= (04,5, 5, +a, 85555, — 30,55, —a, 85, -5, 55)5°

= (8a,-5,+a,85,—3a, 5, —a,95,)$,5,5>

= 5(“152_0251>'525152§

but by Section 2, Lemma I, this is an element of [(a,s,—a,s5,)s] = [0],
that is, is 0. This shows that

(da, s —a, 551)/512 = (0ay-5,—ay 0s))/s,’.
Hence we may define an operation of § on £7'% by the formula
5(ajs) = (ba-s—ads)/s>.

It is easy to verify that £~ '2 then becomes a differential ring (with the same
set of derivation operators as #). We call it the differential ring of quotients
of Z over X, in the special case of Q(Z#), we call it the complete differential
ring of quotients of # or, when Z is a differential integral domain, the dif-
Jferential field of quotients of &.

The canonical ring homomorphism ¢ : # - X! is easily seen to be a
differential ring homomorphism. If /is a homomorphism of # into a dif-
ferential ring &', and if we set L' =f(X) and write ¢’ : & - X' " '& to
denote the canonical homomorphism, then there exists a unique homo-
morphism g : £7'# — X'~ '#’ such that gop = ¢’ of. The kernel of ¢ is the
set of all fractions a/s e £~'Z such that the numerator a has the property
that as € Ker / for some s € ¥ (i.e., such that a is in the smallest Z-prime ideal
of # containing the kernel of f). In particular, if / is injective, then so is g;
if f is surjective, then g is too.

EXERCISE

1. Let a be a perfect (see Chapter 0, Section 5) differential ideal of the
differential ring £, let p be a minimal element of the set of all prime
ideals that contain a. Show that p is a differential ideal and that, in the
local ring #,., Z,a=R,p. (Hint: Show that #,a is a perfect dif-
ferential ideal, that #,p is a minimal element of the set of all prime
ideals of #, that contain Z,a, and hence that #,p is the only prime
ideal of #, that contains Z, a. Conclude that Z,a = Z,p and that the
ideal p is a differential one.)
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4 Transformation and restriction of the set of derivation operators

A ring # may have several different differential ring structures, that is,
# may be a differential ring relative to several different sets of derivation
operators A, A’, etc. When we are considering more than one differential
ring structure on Z, we use the term A-ring to denote the differential ring for
which A is the set of derivation operators. We then also use, in an obvious
way, such terms as A-field, A-ideal, A-ring of quotients, A-constant, etc. 1f
A is a A-subring of a A-ring ¥ and X is a subset of &, we denote the A-ring
generated by Z over # by Z{X},. Similarly, if # is a A-subfield of a A-field
% and ¥ is a subset of ¢, we denote the A-field extension of & generated by
Y by F{(E,.

We shall describe two ways of associating with a given differential ring
structure certain other differential ring structures.

Let o/ be any differential ring in which every element is a constant, and
let A denote the set of derivation operators of .&/. Denote the free <Z-module
with basis A by D. Every element 6’ € D can be expressed uniquely in the
form & =3 ;.. ¢s0, where each ¢;€ /. We make &' into a derivation
operator on any differential overring 2 of & by defining §'a = ;_, ¢; 0«
for every element « of #. If A’ is another basis of D, there exist matrices
€= (Css)sen,50ca aNd ¢ = (C35)5ca" 5ca OVEr &7 inverse to each other, such
that § = 344 c558" (d€A) and &' =3, c;50 (6" € A’). The differential
overrings of .2/ can all be considered as differential rings with set of deriva-
tion operators A". We say that A’ results from transformation of A by c,
and call the A"-ring Z the differential ring obtained from the A-ring # by
transformation of A by c.

It is clear that if A’ results from transformation of A as above, so that
every A-overring # of &/ is also a A’-overring of ., then an ideal of such
an Z# is a A-ideal if and only if it is a A’-ideal; an element of # is a A-constant
if and only if it is a A’-constant; and a ring homomorphism over o« of &
into a A-overring of & is a A-ring homomorphism if and only if it is a A’-ring
homomorphism. Also, if & is a A-overring of # and ¥ is a subset of &,
then Z{X}, = Z{Z}, and (if #Z and & happen to be fields) Z(T), =
R,

Starting afresh, let # be any differential ring and denote the set of deriva-
tion operators of 2 by A. If A, is any subset of A, we may regard # as a
A -ring. We call the A,-ring # the differential ring obtained from the A-
ring # by restriction of A to A,.

It is clear that every A-overring of # is also a A,-overring of 2, that every
A-ideal of Z isalso a A -ideal of %, that every A-constant is also a A -constant,
and that every A-ring homomorphism of 2 into a A-ring is also a A,-ring
homomorphism. The converses to these statements are in general false.
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Let A, denote the complement of A, in A, let ® denote the set of derivative
operators of the A-ring %, and let ®, and @, denote the respective semi-
groups in @ generated by A, and A, (so that @ = ©, @,). If & is a A-over-
ring of # and Z is a subset of &, then #{X}, = #{0,%}, , and (if # and
& happen to be fields) (L), = #{O, L), .

5 Differential modules; differential algebras

Let # be a differential ring with a set of derivation operators A. By a
differential module over R, or differential #-module, we mean an #-module
4 on which A oOperates subject to the conditions

d(u+v) = du + dv, S(au) = (da)u + adu

(beA, ued, ve.ld, ach).

A differential module over a differential field F is called a differential vector
space over F. The terms differential submodule and differential subspace are
defined in the obvious way, as is the notion of homomorphism of one dif-
ferential Z-module into another. If f: .4 — 4 is such a homomorphism,
its kernel and image are differential submodules of .# and .4, respectively.
In particular, when .# and V" are differential vector spaces, the kernel and
image are differential subspaces of .# and ¢, respectively. On the other
hand, if f: .4 — A" is a surjective module homomorphism of a differential
R-module .4 onto an #-module .47, and if the kernel is a differential sub-
module of ./#, then .¥" has a unique differential #-module structure such
that f is a differential #-module homomorphism. In particular, if .7, is
any differential submodule of .4, there is a unique differential #-module
structure on the quotient module .#/.#, such that the canonical module
homomorphism % — .//.4, is a differential module homomorphism. We
call W[4, with this structure, the differential quotient module of . by . .

An element u of a differential Z-module .# is said to be a constant if
du =0 (6 € A). The set of constants of ./ is a subgroup of the additive group
<, and has a natural structure of module over the ring of constants of %.

Let V be a vector space over a field K with basis e = (¢;);,. If ¢ is any
automorphism of K, the mapping o,:V -V defined by the formula
0,(X ¢;e;) = Y (oc;)e; is obviously an automorphism of the additive group
V, and o,(cu) = (oc)o,u (ce K, ueV). If f= (f})jes is a family of vectors
in ¥, we let P,(f) denote the field generated by all the coefficients a;; in the
equations

fi=2 aze (e ).
iel
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Let W be a subspace of V. For a subfield K, of K, the condition

K-(Wn Yy Koe,.) -w

iel
is evidently equivalent to the condition that W have a basis f such that
P.(f) = K,. A subfield K, satisfying these conditions is called a field of
definition of W with respect to e.

Lemma 3 (a) LetV be a vector space over a field K, let e be a basis of V,
and let W be a subspace of V. There exists a smallest field of definition P,(W)
of Wwith respect to e. [f an automorphism ¢ of K leaves invariant every element
of P,(W), then o, (W) =W. Conversely, if 6,(W) < W, then ¢ leaves invariant
every element of P,(W).

(b) Ler v be a differential vector space over a differential field F with
set of derivation operators A, let e = (e;);.; be a basis of the vector space ¥,
and let W be a differential subspace of ¥". If the family Ae = (6€))s.4.;c; has
the property that P,(Ae) < P,(W"), then P,(W") is a differential subfield of % .

Remark This lemma is useful when there is a canonically given basis e.
Examples for part (a) are the vector spaces K" and the polynomial algebras
K[(X});es]1: in the former case we have the basis vectors (1,0,...,0), etc,
and in the latter case we have the basis formed by all the monomials in
(X)jcs- Examples for part (b) are the differential vector spaces #" and the
differential polynomial algebras over & defined in the next section.

Proof (a) The canonical homomorphism ¥V — V/IW maps the basis
e = (e);.; of V onto a family e = (¢;);.; of generators of V/W. Let J' be a
subset of I such that (&);., 1s a basis of V/iW/, let J=1—J’, and let W’ =
S i.s Ke;. Clearly V = W+ W’ (direct sum), so that we may write

€; =f}+ AZJ a;y e (]EJ),
foett

where f; € W and g;;. € K. Tt is clear that the family f = (f});., is a basis of
W and that P,(f) is the field generated by (4;;)jeys j ey, SO that P(f) is a
field of definition of W with respect to e. If g =(g;);., is any other basis

of W and we write
gj=.zl bjiei (jelJ),
then

Z bjiei+ Z bﬁei

ied ield’

> bji<f} + ) ay ej'> + Z bjjej
ied e’ j'eJ
ZJ bifi+ ). < ) bj;a;jr + bfi’) ej-

j'ed’

g;

il

It
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Since the sum W+ W’ is direct this means that
9; = Z; bifi  (jelJ),

Zjbﬁa,»jr+bjj, =0 (jed, jeJ)

The first set of these equations shows that the matrix (b;)je1,ies Is invertible,
and the second set therefore shows that P,(f) < £,(g). This proves that
P,(f) is the smallest field of definition of W with respect to e and thus is our
field P, (W). If the automorphism & of K leaves invariant each element of
F.(W), and in particular each g, then Ocfj=0.(e;=% ;) aje;)=
€;—2 ey @€ =f; for each jeJ, so that W) =0 (LK) =3 Kf;, =W.
Conversely, if ¢,(W) < W, then the computation

A

oefi+ .ZJ,(WJ‘J") € = f’e<f} + ) ay ej’)

Jjed

= 0,¢;

I

e =ri+ Y aye

Jjed
shows that oa; =a; (jeJ, jeJ') and therefore that ¢ leaves invariant
every element of P,(W).

(b) Keeping the same notation, but now supposing that K is the dif-
ferential field .#, V is the differential vector space ¥, and W is the differential
subspace %", we may write Je, = 2ker Csine (D€ A, i), where, by hy-
pothesis, ¢;y € P.(#7). Then

of; = 5<ej - .Z,ajj,gj)

Jjed
=0de;— ) (daj)ey — ¥ a;; de;.
i S
= Z Cajk €, — Z (0a;;)e; — Z Z Qi Csik €
kel jred’ kel jred’

= Z béjkek+ Z (—5ajk‘+b5jk‘)ek'
kel kel

(where by, b0 € Po(W))
= kgj by <ﬁ( + kgj' Qe ek,> + kl;’ (—da;. + bsj) e

= ij bsje fu + Z <Z Dsji e — Oay, + b&jk') €5

kel \keJ

e v b et
-

i b e perts s oot
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so that (by the directness of the sum % + %" and the linear independence
of the e,.)

Sy = 3 bsply + by € Po(W) (beA, jed, keJ).

ked
Since P,(#") is the field generated by the elements ay-, we conclude that
P,(#") is a differential field.

By a differential algebra over R, or differential R-algebra, we mean a
ring &7, on which # operates in such a way as to make .27 an algebra over
the ring #, and on which A operates in such a way as to make 7 a differential
ring, which satisfies the condition

d{au) = ba)u + adu (beA, aeR, ued).

Then 27 has an obvious structure of differential Z-module.

If # is a differential subring of a differential ring %, then %’ has a natural
structure of differential #-algebra. More generally, if we have a homo-
morphism f: Z— %' of # into a differential ring #’, and we define an
operation of # on &’ by the formula aa’ = f(a)a’ (ac R, a' X'), then '
becomes a differential #-algebra.

6 Differential polynomial algebras

Let Z be a nonzero differential ring. Denote the set of derivation operators
of # by A, and the set of derivative operators of # by ©.

A family («,);; of elements of a differential overring of # is said to be
differentially algebraically dependent over # if the family (0c)ic1.0c0 18
algebraically dependent over &, and is said to be differentially algebraically
independent over R, or to be a family of differential indeterminates over R,
in the contrary case. A subset ¥ of a differential overring of 2 is said to be
differentially algebraically dependent or differentially algebraically indepen-
dent, over #, according as the family (x),.y is. In the special case in which
X consists of a single element «, « is said to be, correspondingly, differentially
algebraic or differentially transcendental, over .

It is clear that if A" is a set of derivation operators that results from trans-
formation of A by an invertible matrix over the ring of constants of 2, then
(%,);c s is A-algebraically dependent over 2 if and only if it is A’-algebraically
dependent over Z. Also, if we restrict A to a subset A,, and let @, denote the
semigroup in @ generated by the complement of Ay in A, then ()., is
A-algebraically dependent over £ if and only if (0a)gc0,,ic1 18 A -algebraically
dependent over £.
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Let J be any set. We claim that there always exists a family of differential
indeterminates over ® with set of indices J. Indeed, let 2 [(¥;9);cs 0c0] be
the polynomial algebra over # in a family of indeterminates (y4);c; sco
with set of indices Jx @. For each d € A, the derivation a s da (ae #) of
A can be extended” to a unique derivation of 2[(y,p); ., sco] Mappingy;,onto
Visal{jeJ, 0e@). Correspondingly, A becomes a set of derivation operators
on Z[()e)jcs.0c0l> and this aigebra thereby becomes a differential algebra
over #. If we set y, = y;, (1 here denoting the derivative operator of order 0),
then Oy; = yj, so that R{UV)iest = AU yje)jes pe0ls and (V))jes is dif-
ferentially algebraically independent over 2. This establishes our claim.

Let (y));o, be any family of differential indeterminates over #. The
elements of #{(y);.,} are called differential polynomials over R (or with
coefficients in R)in (y));cs, and Z{(y));.,} itself is called the differential
polynomial algebra over R in (y;);es-

Since the family of derivatives (0y));., 4.0 Is algebraically independent
over #, the differential polynomial algebra Z{(y;);.,} may be regarded as
the polynomial algebra over 2 in the family of indeterminates (0y));c; sc0-
Therefore, if Ge Z{(y;);.,}. it is clear what we mean by the degree of G
(which we denote by deg (), or more generally (if A is any subfamily of
(6Y));c1. 6c0) the degree of G in A (which we denote by deg, G), the cor-
responding notions of homogeneity, the terms of G, and the coefficients in G.
Similarly, for any jeJ and 0 € ©, it is meaningful to say that G involves
8y; (or By; is present in G) and, in the contrary case, that G is free of Oy;. If
G involves a derivative fy; of order r but does not involve any derivative
of order greater than r, then r is called the order of G and is denoted by
ord G. 1f G is free of every derivative fy;, that is, if G € #, we define the order
of G to be — 1. For a given j € J, if there exists a § € @ such that G involves
fy; we shall say that G involves y; differentially (or that y; is differentially
present in G) and, in the contrary case, that G is differentiaily free of y;.

By a differential monomial in (y;);.,, we shall mean a differential poly-
nomial in (y;);., having precisely one nonzero term, the coefficient in that
term being 1. By a prime factor of such a differential monomial M, we shall
mean any derivative y; that divides M.

Let (n;);cs be any family, with the same set of indices J, of elements of a
differential overring of #. Because (0y));, g.o is algebraically independent
over 4, there exists a unique ring homomorphism

o '@[(Oyj)jel.aeﬁ)] - %[(Oqj)jel,ﬂeﬁ)]
over # mapping 0y; onto On; (j € J, 8 € ©). The equations gdu = dou (5 € A)
obviously hold when u is one of the derivatives 0y; and also when u e 2.

3 See e.g.,, N. Bourbaki “Algébre,” Chap. V, §9, Prop. 4, p. 139. Hermann, Paris,
1950 or 1959.
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These equations therefore hold for every ue Z[(0Y));c, scol, 50 that o is a
differential ring homomorphism

'@{(yj)jej} - {('Tj)jej}-

We call this homomorphism the substitution of (1;);; for (¥;);,- It is obvious
that if (y;);, is differentially algebraically independent over # (and only
then), the substitution of (1;);c, for (y;);., is an Z-isomorphism.

Let G & Z{(y));es}. The substitution of (1,);c, for (y;);., maps G onto
an element of Z{(1,);,}. This element is called the value of G at (1,);., and
is denoted by G{(n);.,). In particular, G((y);c,) = G. If the value of G at
{(n))jes is 0, that is, if G belongs to the kernel of the substitution, then we
say that G vanishes at (y;);.,;. The set of differential polynomials that vanish
at(n;);e;, being the kernel of the substitution homomorphism, is a differential
ideal of Z{(y));c,}. We call it the defining differential ideal of (y,);., in
R{(y))jes} (o1 Over Z).

If # happens to be a differential field &#, then & {(y;);.,} is a differential
integral domain. lts differential field of quotients is denoted by # ((y);.,>,
in conformity with the notation introduced in Section 1, and its elements
are called differential rational fractions over F (or with coefficients in F)

in (yj)jel'

EXERCISES
In the following exercises # denotes a differential ring, with set of deri-
vation operators A consisting of §,...,d,, and with set of derivative

operators ©.

1. Call a differential polynomial Be Z{ys,y1,...,y, differentially
homogeneous if there exists an re N such that B(ty,, ty,,...,ty,) =
t"B(Yo, 1, -, ¥n) for a differential indeterminate ¢t over Z{y,,,, .-, Vu}-
(a) Show that if B is differentially homogeneous and B 3 0, then B is
homogeneous and the number r above equals deg B.

(b) Show that B is differentially homogeneous and of degree r if and
only if there exists a differential polynomial 4 € Z{y,,...,y,} such that
B(yos Vises Va) = Yo AV 1/Vos s ValVo) 1IN Q(R{y0, V15 s Va})-

(c) Using the notation (J) of Exercise I of Section I, show that a neces-
sary condition that B be differentially homogeneous and of degree r is
that B satisfy the system of differential equations

Z 0'0) o aB rg  (0=1),
(0 Yi a(o'oy,)“{o (6e®, 0%1).

9@
0<j<n

(d) Show that if # is a differential field of characteristic 0, then the
condition in (c) is sufficient.
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2. Show that the ordinary differential polynomial
W= det(}’}i_l))lsis,v,xsj'sn

(Wronskian determinant) is differentially homogeneous.

Let (zy,...,Zn) be @ family of differential indeterminates over 2, and set

& = R{z\,....7m}. Let D denote the derivation operator on & defined

by D=2 <i<m -0, Let W, denote the differential polynomial in

(P1s - V) OVET F defined by Wy, = det(D"" ' ¥))i cicn i <jisnr

(a) Show that W can be written as a linear combination over % of

determinants of the form det(8; ;)i cicn1<j<ns where 0, ®@ and

ordd, < i (1 <i<n).

(b) Show that when W is written as a linear combination over

R{y\,....vn} of differential monomials in (zq,...,2.), then the coetf-

cients in this linear combination are differentially homogeneous. (Hint:

Use the result of Exercise 2.)

4. (a) Show that for each 4 € R{Y\s..,Va} there exists a de N such that
if we embed Z { Vo, V1 o» Fa} i Q(R {0,715 - ¥a})s then oA (yi/yo, s
valvo) € LYo, V1> <.esVn}. The smallest such d is called the denomination
of A and is denoted by den A.

(b) Show that denfy; <1+ ord0, den(A+ B) < max(den 4, den B),
and den AB < den A +den B.

5 Let a be a differential ideal of a differential polynomial algebra over a
differential field. Show that if a has a set of generators that are linear
(i.e., of degree 1), then either 1 ea or a is prime. (Hint: The problem
reduces to the analogous problem for polynomial ideals.)

(OS]

7 Permissible gradings

The contents of this section are not used until the second half of Chapter I'V.

Let # be a differential ring with set of derivation operators A and set of
derivative operators @; denote the elements of A by 3iy..s0m- Let (3)jey
be a family of differential indeterminates over A, and consider the differential
polynomial algebra o7 = Z {(¥)jes}-

If 57, denotes the set of all elements of &/ that are homogeneous of degree
k, then &, is a submodule (indeed, a differential one) of the differential
#-module &/, we have a direct sum decomposition & = ¥z Fx» and
A, < sy, for all k and [ Thus, o/ is a graded algebra with grading
(o )iez. We call this the usual grading of «7.

It is sometimes useful to consider other gradings of of. Let v; (jeJ),
Uy, ..., I be arbitrary elements of Z. For each derivative u = 0{"---d,"y;
define g(u) = v;+p e+ + HnCm> and let 7, denote the submodule of =/
generated by all the differential monomials [T, u, in (¥)jes With 2 g () = k.
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It is clear that &7 = 3.z &/, (direct sum) and &/, o/, < ., (klel),
so that . is a graded algebra with grading (s7,);cz- We call any grading
obtained in this way a permissible grading of «/.

The special case in whichv;=1(jeJ) and g, = 0 (1 < i< m)is the usual
grading. The special case in which v;=0 (jeJ) and 1; = 1 (I<igsm)
carries its own terminology: The elements of & that are homogeneous
relative to this grading (i.e., that are in Ukez #,) are called isobaric. An
isobaric element F of & is an element of o/, for at least one k (for precisely
one k if F#0, for every k if F'= 0), and F is then said to have weight k. If
F is nonzero and isobaric, we denote the weight of F by wtF.

A grading of &/ is positive if o7, = (0) whenever k <0, and is strictly posi-
tive if it is positive and &/ = A. A permissible grading is positive if and
only if v; 20 (jeJyand i; 20 (1 i< m), and is strictly positive if and
only if v; >0 (jeJ) and g, = 0 (1 < i < m). Thus, the grading by weight is
positive; the usual grading is strictly positive.

The usual grading has the property that S, < oA, SeA, kel) We
call any grading of s enjoying this property a differential grading. A permis-
sible grading is differential if and only if u; =0 (1 i< m). Relative to a
differential grading of &7, the differential ideal [Z] generated by a sct of
homogeneous clements of &/ is homogeneous. (An ideal of a graded ring is
homogeneous if, for every element of the ideal, the homogeneous parts of
the element are all in the ideal.) Relative to a permissible grading that is
not differential, a derivative of a homogeneous element F is in general not
homogeneous. However, if / has constant coefficients, then every derivative
of F is homogeneous. More precisely, if 7, denotes the set of elements of
o/, that have constant coefficients, then sl s, (I<ism kel)
It follows that if X < {J 2, then [X] is homogeneous. In the absence of
mention of other gradings, terms like “degree” and “homogeneous” will
always refer to the usual grading.

The following somewhat technical lemma plays an important role in the
second half of Chapter IV.

Lemma 4 Let (y,,...,v,) be a finite family of differential indeterminates over
Q (considered as a differential field with m derivation operators), let h k1€ N,
and let

2my—1
e = e(n k,h,m) = nh=1)(k+1) <1 +2(——’i)———>+ 1.
2m—1

Then for each differential monomial M in (V1,...,pn) with degM 2 e+lh
and wi M < ke, there exist indices jo, ..., i such that M e To<acs V1] in

Q{,Vx, -~',yn}°
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Proof Let f=degM and suppose that f > e4/h. We may suppose that
n>0, h>0. First let /=0, and write M =[T,<;<,0; y;;, where each 0,
is a derivative operator. If M ¢[y"] (1 << n), then (by Section 2, the
Corollary to Lemma 2) for each y; and each &’ € N, the number of indices
i with j(i) =/ and ord®; = k' is less than or equal to d(k’,h,m)—1, so
that the number of indices i with ordf; <k is less than or equal to
Picien 2ok er(dk’ hym)—1) = (k+1)""(e~1). Therefore the number of
indices / with ord 8, > k+1 is greater than or equal to e — (k+ 1) '(e—1),
so that

wtM = > ordf; 2 [e—(k+D7 (e~ D]k+1) = ke + 1.

1<igSf
This proves the‘ lemma when /= 0.

Now let />0 and make the inductive hypothesis that the lemma holds
for lower values of /. By the case / = 0 we have M e [v/] for some j, say for
J=n. Writing M = NP with N a differential monomial in (y,,...,y,_,)
and P a differential monomial in y,, we see that Pely™M, so that P=
Y a; P.0(y,"), where ;€ Q, 9,€®, and P, is a differential monomial in
Y, with deg P, =deg P—h and wt P, = wt P—ord6,. For each index i, NP,
is a differential monomial in (y,,...,y,) with deg NP,z e+ (I—1)h and
wWtNP; < ke. By the inductive hypothesis then NP, e[y, "4 ... [y ]
where  A;,...,4,eN and A +--+4,=1[ Evidently Ne [y % ...
[(ya- 0%~ and P;e[y,"]*". Fixing j so that i, = min, 1,. we see that
P; e [y, 79" for every i, so that

M = ¥ NP0, € [y T o [ 1t [ ],

This yields a corollary about f-values (see Chapter 0, Section 19).

Corollary Let R be a differential overring of Q with a set of derivation
operators A and let t be a differential ideal of R. Then v,(6x) = v,(x) (x € A,
deA).

Proof If suffices to show that if « is any real number with a < v,(x),
then a < v, (6x), that is, then there exist n,re N with r > na such that
(0x)" e t". Now, there exists a rational number p with x < p < vi(x), and
there exists an /e N that is a multiple of the denominator of p and is so big
that ph/(A+1) > x and x" e " Set e=e(1,i+1,h,m) in the notation of
Lemma 4. Then (6y)"* "¢ is a differential monomial in y of degree e+ eh
and weight (h+1)e, and therefore by the lemma (case / = ¢) is an element
of [y"]° in Q{y}. Substituting x for y, we find that (3x)"*"* e [x"]* in
Q{x} and therefore also in #, so that (5x)"* D¢ ¢ t?'_Since phe > (h+1)e-a,
the proof is complete.

e
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8 Rank

Again let # be a nonzero differential ring. Denote the set of derivation
operators of # by A, and the set of derivative operators of #Z by ©.

Consider a finite family (y,...,»,) of differential indeterminates over 2.
By a ranking of (y,...,y,) we shall mean a total ordering of the set of all
derivatives 0y; (0€ @, | <j< n) that satisfies (for all such derivatives u
and v, and for all 8 € ®) the two conditions

u < Ou, u<v=0u< o

If we denote the elements of A by §,,...,8,,, then the derivatives fy; can all
be expressed in the form 6y --- 9,7 y;. It follows from Chapter 0, Section 17,
Lemma 135, that a ranking exists and every ranking is a well ordering of the
set of derivatives Oy;.

Let there be given a ranking of (y,,...,»,). We indicate the relation u < v
of the ranking by saying that u has lower rank than v, or the rank of u is lower
than the rank of v, or v has higher rank than u, or something similar (or when
there is no danger of confusion, by saying simply that u is lower than v, or
v is higher than u).

A ranking will be said to be integrated if for each pair of derivatives
0y y;,» 0, y;, there exists a 0 € O such that 00, y; has higher rank than 6, y,,.
To show that this is the case, it suffices to show that each y; has a derivative
of higher rank than every other y;.

A ranking will be said to be sequential if its order type is that of N, that is,
ifevery derivative 0y;is of higher rank than only finitely many other derivatives.
Every sequential ranking is integrated.

A ranking will be said to be orderly if the rank of Oy, is less than that of
6'y; whenever ord@ < ord#'. Every orderly ranking is sequential. An ex-
ample of an orderly ranking is obtained by ordering the set of derivatives
djt -+ 8y, lexicographically with respect to (X iy, j, iy, .., im)-

Let A€ Z{y\, ..., yn}, A ¢ #. The highest ranking derivative 6y, present in
A is called the leader of A. We shall frequently, without further notice, denote
the leader of A by u,. If d=deg, A, we may write 4 =3 ¢;cq Lt
where I, ...,1; are in #{y,,...,y,} and are free of u,. Then I,,...,I; are
unique, I; # 0, and every derivative fy; present in an I; is lower than u,.
The differential polynomial /; is called the initial of A, and the differential
polynomial X if,u'7! (=8A4/du,) is called the separant of A. We shall fre-
quently, without further notice, denote the initial of 4 by 7, and the separant
of A by S,. The notions of leader, initial, and separant are, of course, relative
ones, depending on the particular ranking used.

It is useful to extend the notion of comparative rank to the whole dif-
ferential polynomial algebra by the following convention:
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() Every element of 2 has lower rank than every element of Z {y, ..., y,}
not in 4.
(i) If A and Barein Z{y,, ...,,} but not in 2, and if either u, is lower
than ug or u, = ug and deg,, 4 < deg,, B, then A has lower rank than B.
(iii) Two elements of Z{y,,...,y,} that either are both in # or have
the same leader and the same degree in that leader, have the same rank.

" Since distinct differential polynomials evidently may have the same rank,
the relation “the rank of A is lower than or equal to the rank of B” does not
define an order on #{y,,...,y,}. However, it does define a pre-order, being
reflexive and transitive.

If Ae R{y,, .2, v.), A¢ R, then 4 has higher rank than 7, and S.

1t is clear that in every nonempty subset of Z{y,,...,»,} there exists an
element the rank of which is lower than or equal to the rank of every element
of the subset. Any such element is called an element of lowest rank, or a
lowest element, of the subset.

Lemma 5 Let A be an element of the differential polynomial algebra
R{y,, ..., v, not in & and let 8 be a derivative operator of R of order greater
than 0. Then 84— S 0u, has lower rank than Ou,.

Proof If we write A =Y Lu," as before, and if § € A, then
04 = S du,+ 3 5l - uy.

Since any derivative of a y; present in any /; is lower than u,, any derivative
present in any 41, is lower than u,, and u, is too. Thus 64— S, ou,, is lower
than du,, that is, the lemma holds when ord # = 1. The lemma for arbitrary
8 follows quickly by induction on ord 6.

Corollary If & is a differential integral domain and if A€ R{y,...,Va}
has the property that A €(A) for some derivation operator & €A, then
A€ R[((0Y)))seo, 1 <j<n)s Where p denotes the characteristic of R.

Proof We may suppose that A ¢ #, as otherwise the lemma is obvious,
and therefore we may argue by induction on the leader u (relative to some
fixed ranking). Because of the obvious inequality degdéd < degA, the rela-
tion 84 € (A) implies that 54 = ad, where a € #; in particular, 64 is free
of Su,. Since by Lemma 5 we have 64 = S, 6u,+ T with T free of du,, we
conclude that S, = 0, so that p ¢ 0 and 4 = ¥ A, ufy, where each 4, is lower
than u,. Then 3 (8A,)u? = (¥ A;uf") = 64 = ad = Y ad,uf’. As the degree
in u, of each 84, is obviously less than or equal to 1, we conclude that each
84, is free of u,, so that 84; = ad; for every i. As A either is in Z# or else
has leader lower than u, the result follows by induction.
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9 Autoreduced sets

Let (y,,...,),) be a finite family of differential indeterminates over a non-
sero differential ring %, and suppose we are given a ranking of (y, ..., ).

Let A be an element of Z{y,,...,y,} notin Z. A differential polynomial
Fe R{y,, ...y, is called partially reduced with respect to A if F is free of
every proper derivative of . If F'is partially reduced with respect to A and
deg,  F < deg,, A, then £ is said to be reduced with respect to A (it being
understood that 0 is always reduced with respect to A). More generally, if
¥ is any set or family of elements of #{v,,...,y, none of which is in %,
Fis said to be reduced or partially reduced with respect to X if F is, respec-
tively, reduced or partially reduced with respect to each element of XZ.

A subset of Z{3,,....v.} will be called autoreduced if no element of the
subset belongs to # and each element of the subset is reduced with respect
to all the others. In any autoreduced set distinct elements must obviously
have distinct leaders. It is an easy consequence of Chapter 0, Section 17,
Lemma 15(a), that every autoreduced set is finite. As examples of autoreduced
sets we have the empty set, and any set consisting of a single element of
R{y,,...,y,} notin R.

RevArRK Autoreduced sets were introduced by Ritt (who called them
“ascending sets” or “‘chains”) as a tool in his process of reduction of dif-
ferential polynomials. This process, which plays a role analogous to that of
Euclidean division of polynomials, is described below in the discussion
culminating with Propositions ! and 2.

If A is any autoreduced set we shall frequently, without further comment,
denote by H, the product [T e 1454

Let A be an autoreduced subset of Z{y,,...,v,}. We are going to define,
for each Fe Z{y,,...,ya}, a differential polynomial F e Z{y,,..., va}, called
the partial remainder of F with respect to A, and corresponding natural
numbers s, (A € A), such that F is partially reduced with respect to A, the
rank of F is lower than or equal to that of F, and [Tc, Si*- F = F (mod [A]).

If Fis partially reduced with respect to A, we define F=Fand 5,=0
(4 € A). It is then obvious that F and the numbers s, have the desired proper-
ties. We suppose that F is not partially reduced with respect to A, that is,
that F involves a proper derivative u of some u,, and define 7 and the s,
by induction on the highest such u. Let v, then, denote the highest such u
present in F, and assume the partial remainder and corresponding natural
numbers have been defined, and have the desired properties, for every dif-
ferential polynomial in Z{y,, ..., y,} that does not involve a proper deriva-
tive of any u, of rank higher than or equal to that of ». Let uc denote the
highest u, of which v is a proper derivative, and write v = fuc. By Section 8,
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Lemma 5, we may write Sco = T+0C, where Te Z{y,,...,¥,} and T is

lower than p. Letting e = deg, F, we may write F=3,¢;<.J;t’, where

Jor-oiy Jo€R{y,,...,ya} are lower than v. Then
SEF =Y SEU(Sev) = ) ST

O<i<e 0<i<e

(mod 6C).

Obviously, the differential polynomial G = ¥o¢;<, SE™ Y, T’ cannot involve
a proper derivative of any u, as high as v, and the rank of G is no higher than
that of F. Therefore the partial remainder G of G with respect to A and the
corresponding natural numbers 7, are defined and have the desired properties.
We now define F =G, sc =tc+e,and s, =1, (4 €A, A ¢ C). It is obvious
that F and the ndmbers s, have the properties announced above.

What we have just proved is summarized in the following lemma.

Lemma 6 Let A be an autoreduced set (relative to some given ranking) in
the differential polynomial algebra R{y,,...,v.}, let F€ R{y, ..., y.}, let F
denote the partial remainder of F with respect to A, and let 5, (A € A) denote
the corresponding family of natural numbers. Then F is partially reduced with
respect 1o A, the rank of F is lower than or equal to that of F, and

[] Sy-F=F  (mod[A)).

AeA
More precisely, [1aca Si*- F—F can be written as a linear combination over
R{V,,...,Va of derivatives 04 such that A € A and Ou  is lower than or equal
to the leader of F.

Corollary If F,.. . F,e R{y,,....,y.}, then there exist Gy,..,G, ¢
R{Y1»-»Va}, partially reduced with respect to A and of rank no higher than

the highest of the ranks of F,,...,F,, and there exist natural numbers 1,
(4 € A), such that

[1S¢# F=G; (mod[A) (I1</j<9.

AeA

Proof Let F; be the partial remainder of F; with respect to A, and
let 5;4 (4 €A) be the corresponding natural numbers. If we define 7, =
max(s; 4,...,5.4) and G; = [T4eca S'a7si4. F. the conditions are met.

Now consider finitely many differential polynomials H,,...,H, €
R{Y¢» ..., Va}, all partially reduced with respect to A. Let the elements of A
be denoted by 4,,...,4,, and set yy =wu, , I, =1, , S, =S, (1<k<r).
Furthermore, let the notation be arranged so that u, is lower than i, when-
ever | < k < k'’ <r. Then we may write

A = Lo + Loud ™' + ot Ly,
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where d, = deg, A, and each [, like /, is an element of Z{y,,...,y,}
free of every derivative of u; (k < i< r) and free of every proper derivative
of y; (1 <i<k).

Let e, = max(deg, H,,...,deg, H ), and define i, =e,—d,+1 or i,=0
according as e, > d, or ¢, < d,. In either case we may write

IFH;= H"”  (modd,) (1<j<g),

where each H" e Z{y,, ..., v} is, like H;, partially reduced with respect
to A, is reduced with respect to 4,, and has rank lower than or equal to
the highest of the ranks of H,, ..., H,.

Next, let e,_, = max(deg, , H{",...,deg, , H!”), and define i_, =
e, —d,_,+1ori_, =0accordingase,_, >d,_, ore,_, <d,_,. Ineither
case we may write

L HD = H{™1 (mod 4,_,) 1<j<y,

where each H{""V e Z{yy, ..., y,} is, like H”, partially reduced with respect
to A, is reduced with respect to A,_, and A,, and has rank lower than or
equal to the highest of the ranks of H{”, ..., H!".

Continuing in this way, we define successively i,, (H{");<j<q» fr=1>
(H ™) ¢jegs orits () 1< <q» Where, for each k, i, is a natural number,
H® e R{y,, ...y} is partially reduced with respect to A, is reduced with
respect to Ay, ..., A,, and has rank lower than or equal to the highest of the
ranks of Hy,...,H,, and H¥ = L}... ' H; (mod (4, ..., 4,))-

If we apply this process of successive division to the case in which
g =1 and H, is the partial remainder F of the differential polynomial Fe
R{y,,...,y,} with respect to A, the resulting differential polynomial H{") is
called the remainder of F with respect to A. The resulting natural numbers
i\,...,i,, which we now denote by iy,,...,i,,, together with the natural
numbers s, ...,5,, corresponding to the partial remainder F, we call the
exponents corresponding to the remainder of F with respect to A. We thus

have the following result.

Proposition I Let A be an autoreduced set (relative to some given ranking)
in the differential polynomial algebra R{y,,...,y,}, let F€ R{y1, ..., v}, let
F, denote the remainder of F with respect to A, and let i,, s, (A € A) denote
the corresponding exponents. Then F, is reduced with respect to A, the rank
of Fy is lower than or equal to that of F, and

[17s - F=F, (mod[A]).

AcA
More precisely, [Taea I Si*- F—F, can be written as a linear combination
over R{yy, ..., va} of derivatives 0A such that A€ A and Qu, is lower than or
equal to the leader of F.
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If we apply the same process of successive division to the case in which
H,. .. H, are the differential polynomials G,,...,G, of the Corollary to
Lemma 6, we obtain the following generalization of Proposition 1.

Proposition 2 With notation as in Proposition 1, if Fy, ..., F,e Z{y: s Vnbs
then there exist differential polynomials E,,...,qu@{yl,...,y,,}, reduced
with respect to A and of rank no higher than the highest of the ranks of

Fi, .. Fy and there exist natural numbers j, t4 (A€ A), such that
11 [AsSy F; = L; (mod[A]) (1<j<9.
AcA

The following lempa is recorded for use in the second part of Chapter 1V.

Lemma 7 Let A be an qutoreduced set in BR{Yis s Yab> and denote the
elements of A by Ay, LA et FeR{Viy--oyu), and let 2,2, denote r
differential indeterminates ovet BV, Va). Then there exist natural numbers

1, 04 (4€A), and a finite family (M) of distinct differential monomials in
(z¢, .. 2,), and a family (C,) of nonzero elements of B{Y1, - Vnbs with the
following properties:

(a) Whenever 0z, §'z,. are distinct derivatives, each one present in at

least one M, then
Ouy, # Oty

(b) Each C, is reduced with respect 1o A.
(C) HAEA I:{‘S;A'F: z:x Ca'Mz(Al’ ""Ar)~

Proof For each derivative v of a leader of an element of A there exists
a pair (0,k)e @ xN with 1 <k < r such that v = Ou,,, but the pair need
not be unique. From among the various possibilities for (0, k) choose one
and denote it by (8, k()). If Fis reduced with respect to A, the conclusion
in the lemma is obvious, so we may suppose that F involves a highest ranking
derivative v of a leader of an element of A such that either v is a proper deriva-
tive of uy, ) OF U= Uay, and /> a where f=deg, F and a = deg, Ay
In the former case 0, Ay, = Sau 0T T with 7, like S,,,,» of lower rank
than v (see Section 8, Lemma 5), so that Sjk(”F can be expressed as a poly-
nomial @ in 0,4, and in derivatives 0y, lower than o. In the latter case,
Ay = Lap o,V 1 Wi+ I, with 1y, L dike Ly, of lower rank
than v; an easy induction argument then shows that, for each integer € = 4,
15755 1v® can be expressed as a polynomial in Ay, in derivatives 0y; lower
than v, and in v itself, of degree in v less than a, so that [{ 5" F can be ex-
pressed as a polynomial @ in Ay, in derivatives Oy; lower than v, and inv
itself with deg, ® < a. In either case, if @ is free of every proper derivative
of a leader of an element of A and if deg, ,® < deg, 4 (4 € A), then we
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have finished, so we may suppose that @ involves a highest ranking derivative
. of a leader of an element of A such that either w is a proper derivative of
Upryr OF W =ty and deg, ® > deg,, A,(.,- Then we can give ® and w
the same treatment we gave F and v, above. After a finite number of such
treatments we obtain the desired conclusion.

10 Characteristic sets

Let # be a nonzero differential ring, let (¥4,...,»,) be a finite family of
differential indeterminates over #, and suppose given a ranking of (¥, .-, ¥u)-

It is useful to introduce the notion of comparative rank into the set of all
autoreduced subsets of Z{y,, ..., ¥»}. This is done by the following conven-
tion, in the statement of which A4,, ..., A, denote the elements of an auto-
reduced set A and By, ..., B, denote those of an autoreduced set B, in each
case arranged in order of increasing rank.

(1) If there exists a nonzero k e N with k <r and & < s such that
rank 4; = rank B; (I <i<k), rank A, < rank By,
or if r>sand
rank 4; = rank B; (1<i<y),

then A is said to have lower rank than B.
(2) If r=s and rank A; = rank B; (1 <i<r), then A is said to have
the same rank as B.

It is clear that this notion of comparative rank defines a pre-order on the
set of all autoreduced sets in Z{y, ..., Va}-

Proposition 3 In every nonemply set of autoreduced subsets of R{Y1s--sVu)
there exists an autoreduced subset of lowest rank.

Proof Let M be any nonempty set of autoreduced subsets of Z{ ¥, .-+ Va}-
Define by induction an infinite decreasing sequence of subsets of M by the
conditions that M, = M and, for i >0, M, is the set of all autoreduced sets
A € M, with Card A > i such that the ith lowest element of A is of lowest
possible rank. It is obvious that in all elements of Mi; the ith lowest differential
polynomials have the same leader v;. If every 3; were nonempty, then the
leaders v; would form an infinite sequence of derivatives of the y; such that
no v, is a derivative of any other, and this would contradict Chapter 0,
Section 17, Lemma 15(a). Therefore there is a smallest i such that M; = &
and, since My =M # J, i>0. Any element of W, is clearly an auto-
reduced subset in M of lowest rank.
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If t is any differential ideal of R{y\, ..., V), there exists an autoreduced
subset A of f such that S, ¢ I (4 € A); for example, the empty set. Such an
autoreduced set of lowest rank is called a characteristic set of 1 (relative to

the given ranking).

Lemma 8 Let A be a characteristic set of a differential ideal Y of B{ Y1, ..oy Vu)-
Then I, ¢t (A € A) and, for every Pe t that is not in R and is reduced with

respect to A, Spef.

Proof Let Pef, P ¢ %, and suppose that P is reduced with respect to A.
Then P and the elements A € A for which u, is lower than up form an auto-
reduced set lower than A, so that Spet. If for some 4 € A we had 1,€f,
then A—1,u’, withd = deg,, 4, would be an element of f reduced with
respect 1o A and either with leader u, or else free of u,. In either case the
differential polynomial d(A4 -1, uNfou, =S, —dlui”"' would be in f, so
that S, would too.

The following technical lemma, which makes special hypotheses on both
the differential ideal and the ranking, is used several times in subsequent

chapters.

Lemma 9 Let A be a characteristic set of a prime differential ideal p of
R{Y\, - r Vn}- Assume either that the ranking is sequential or that A is empty
and the ranking is integrated. Denote by V the set of all derivatives 8y; that
are not proper derivatives of any leader u, (4 € A), and denote by W the set
of all elements weV such that only finitely many derivatives of w are in V.
If Pep, and if veV—W has the property that every derivative 8y; present
in P and higher than v is in V=W, then 6PJdv € p.

Proof Let r =degP. Let s denote the number of derivatives 0y; present
in P and higher than v. Under either of the alternative assumptions in the
hypothesis, there exists a derivative operator § of minimal order ¢ such that
ByeV—W and Bv is higher than or equal to every derivative of any y; present
in P. Arguing by induction on the element (r,s,t) of the lexicographically
well-ordered set N, we make the appropriate inductive hypothesis.

If t = 0, we have P = Y P;v', where each P, is lower than v. By Section 9,
Proposition 2, we may write HP; = 0, (mod[A]) for every i, where H Is a
product of the form [T4ca 1528’ and Q; is reduced with respect to A and
is lower than ». By Lemma 8, YiQ;0'"'ep, so that H3iP; vV l=H
dPJdv is in p, whence ¢P/dv is too.

Let t > 0. Then we may write 8 = 8, 6, with & a derivation operator and
0, a derivative operator of order t—1. For any derivative v, = fy; with
v, >v our inductive hypothesis implies that 8P/dv, € p. Since 0P =
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PP +3, OP[ov,-dv,, we conclude that the differential polynomial P, =
PP +Y, <, OP[Cv,-dvyisinp. Since dv > v we have éP/0(dv) € p, and because
deg 0P)d(dv) < r, our inductive hypothesis implies that 6(8P/3(dv))/cv, € p
whenever v, > v. Therefore

8P, )8(dv) = 8P°[6(dv) + Y. 0% P[dv, 8(6v) - vy + oP/dv

vy Sv

= (2PJ3(BV)) + Y. 8(2P[6(60))/dv, - dv, + OP|dv

= 5(8P/8(6v)) + OPfov
oP/ov (mod p).

However, deg P, < r, and the derivatives fy; present in P, and higher than
Sv are all present in P, and hence are in V=W, and are at most s in number.
Also spe V—W, B, (év) e V—W, and 8, (5v) is higher than or equal to every
derivative of any y; present in P,. Since ord8, = t—1, we see by our induc-
tive hypothesis that 0P,/¢(dv) € p. It follows from the congruence above
that ¢P/ov € p.

]

11 Pseudo-leaders

Let # be a nonzero differential ring, let (y,,...,»,) be a finite family of
differential indeterminates, and suppose given a ranking.

Consider a differential polynomial A € Z{y,, ..., s}, and suppose there
exists a derivative u of one of the differential indeterminates y; such that
GAJou # 0. Then there is such a derivative u of maximal order, and we call
its order the essential order of A. There is also such a derivative u of highest
rank: denote this derivative by v. If 4 is free of every proper derivative of v,
we call v pseudo-leader of A (relative to the given ranking), and call d4/dv
pseudo-separant of A. We say that a differential polynomial B€ #{y, ..., Vu}
is partially pseudo-reduced with respect to 4 if B is free of every proper deriva-
tive of the pseudo-leader v. (When £ has the property that ka # O for every
nonzero k € N and every nonzero a € #, then the notions “pseudo-leader,”
“pseudo-separant,” and “partially pseudo-reduced” coincide, respectively,
with the notions “leader,” “separant,” and ‘‘partially reduced.”) We say a
differential polynomial is pseudo-le\d if there exists a ranking relative to
which the differential polynomial has pseudo-leader.

The following lemma is similar to Section 8, Lemma 3.

Lemma 10 Let A€ R{Y,,....,ya}, let v be the highest ranking derivative of
a y; such that 04/0v # 0, and let e be the essential order of A. For each deriva-
tive operator 0 of R of order greater than 0, 0v is the highest ranking derivative
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u such that &(04)/éu # 0, 0A has essential order e+ord 8. and we may write
04 = (0A/8v) 8o+ Uy, where Uge Z{y,, ) and every derivative w present in
U, with w = Qv is present in A and has the property that ¢Uy/Cw = 0. In partic-
ular, if v is pseudo-leader of A, then Ov is pseudo-leader of 0A and Uy is Jfree
of every derivative of v that is higher than or equal to Or.

The proof, similar to that of Section 8, Lemma 5, is by induction on the

order of 0.
Using this lemma it is easy to deduce the following result.

Corollary 1 Lét A have pseudo-separant S, and let Be Z{y,, eeisVut. Then
there exist be N and B, € R{y,....,y,} such that B, is partially pseudo-
reduced with respect to A and S*B = B, (mod[A]).

Corollary 2 Assuming that Z is a differential field, let v be the highest ranking
derivative with 3Ajév # 0. If Be [A]:(8A/8v)™ and v, denotes the highest
ranking derivative of v present in AB, then Be (@ A):(0A/ér)™, where O,
is the set of derivative operators 0 of R such that 0v < vo. In particular, if v
is pseudo-leader of A, then every element of [A]:(CAJ6vY® that is partially
pseudo-reduced with respect to A is in (4):(04/dv)”.

Proof Suppose there exists a relation (BAJ)P B =3 i<, Ci0; A, where
each C,is in Z{y,,...,y,; and each 9, is derivative operator of #. Of all
such relations we use one with ¢ as small as possible, and we suppose the
notation arranged so that 6;v < 0,0 (1 <i<1t). If +>0 and 6,0 > v, then
we may write §, A = (8A4/v) 0,0+ Uy, as in Lemma 10, and 0, v is not present
in any of éA/dv, B, 0, A, ...,0,- A. Therefore if, in the above relation we
substitute — U, /(é4/cr) for 6,0 and then multiply both members by a high
power of 8A/dv, we obtain a similar relation with ¢ replaced by a smaller
number. Therefore either 1 =0, or >0 and 6,0 < vy; in either case, Be

(@, A):(34/3v)™.

12 Differential algebras of power series

Let 2 be a nonzero differential ring. Denote the set of derivation operators

of # by A and the set of derivative operators of #Z by ©.
Suppose s = (s,);¢; is a family of elements of a differential overring of #

such that

(i) s is algebraically independent over #;

(i) #[s]=#{s} (i.e., for each i; e/ and each § € A, Js;, equals a poly-
nomial in (s;);., over ).
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Because of (i) we may form the power series algebra Z[[s]] in s over Z.
Becausc of (ii) cach 0 € A yields a derivation 4 +— 34 of the polynomial
ring A [s]. By Chapter 0, Section 13, these derivations extend canonically
to derivations of Z[[s]] that commute with each other. Thus, the operation
of A on #[s] extends to Z[[s]], and Z[[s]] becomes a differential algebra
over # that is a differential overring of Z[s].

It is easy to verify that if (4,),., is a family of elements of #[[s]] such
that the sum Y ;. 4; is meaningful, then, for each d € A, the sum ¥, _, 34,
is meaningful and equals 6> ;.4 A;. Also, if /=1, UI,, with I, and I,
disjoint and 2[(s;), 1,1 = Z{(5:):,e1,)> then the canonical ring isomor-
phism

RUGDie 1l = 2L )iy er 1T L)1, 60,1

is a differential ring isomorphism.

Let Z2[[s'1] = Z[[(s});---1] also be a differential algebra of power series
over #, like Z[[s]], and let S =(5));.; be a family, with set of indices 7,
of elements of Z[[s"]] such that v(S;) > O for each i. Then the substitution
of Sforsis defined and is a ring homomorphism Z [[s]] — Z [[s']]. A straight-
forward computation shows that if 8S; = (3s5,)(S) for each ie I and each
d € A, then (and only then) substitution of S for s is a differential ring homo-
morphism.

For an example, let (y,,...,»,) be a family of differential indetermin-
ates over #. Then we may form the differential algebra of power series
R[[0V)oco.1<j<a)]. 1t is called the differential power series algebra in
(¥1,...,y) over Z, and is denoted by Z{{y,, ..., y,}}: its elements are called
differential power series in (y,,...,y,) over Z. If Y,,...,Y, are elements of
the differential algebra of power series #Z[[s']] such that v(0Y;) > 0 (0 € ©,
1 €j<n), then the substitution of (0Y;)sco,1<j<n fOr (0¥)sco, 1<j<n IS
defined and is a differential algebra homomorphism Z{{y,...,y.}} —
ZA[[s']]. When there is no danger of confusion, we call it the substitution
of (Yy,...,Y,) for (y1,....¥,), and denote its image by Z{{Y,,...,Y,}}.

For another example, let ¢ be a constant that is transcendental over 2.
Then Z[[c]] is a differential algebra over 2. The differential ring of quotients
of #[[c]] over the multiplicatively stable set consisting of the powers of ¢
is then #((c)). For any element C =3, ., a,c* of Z((c)) we have 6C =
Siez(da)c* (5eA). Thus, C is a constant if and only if every coefficient
in Cis a constant. If this is the case, and if C # 0, v(C) > 0, and the leading
coefficient in C is invertible in # (so that C is invertible in Z((c))), then
the substitution of C for ¢, which is an endomorphism of the differential
algebra #[[c]], can be extended to a unique endomorphism of Z((c));
this extended endomorphism, too, is called the substitution of C for c.



CHAPTER ll

Differential Fields

In this chapter we develop the elementary theory of differential fields and
their extensions. Most (but not all) of the main results of Sections 1-10 were
essentially obtained by Ritt in the case of differential fields of functions
meromorphic in a region, and were extended to abstract differential fields of
characteristic 0 by Ritt and his students (Raudenbush and the author). The
generalization to arbitrary characteristic received its main initial impetus
from Seidenberg.

Throughout the chapter & denotes a differential field. We denote the set of
derivation operators of F by A, the set of derivative operators of & by ©, the
set of elements of @ of order less than or equal to s by ©(s), the characteristic
of F by p, and the field of constants of F by €; (¥,2,Y0,V1s---s Yur --.) denotes
a family of differential indeterminates.

1 Linear dependence over constants

The following theorem generalizes a well-known classical result on
Wronskian determinants.

Theorem 1 Let
nj=(’7jlv"')njr)’ 1 <j<n)
be n elements of F'. If they are linearly dependent over €, then
det(giqj,k(i))l$iSn,1Sj$n =0 )
86
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for all choices of 0,,...,0,€ 0 and all choices of the indices k(1), ..., k(n).
Conversely, if (1) holds for all choices of 0,,...,8, with8,e O(i—1) (1 <i<n)
and all choices of k(1), ..., k(n), then n,,...,n, are linearly dependent over €.

Proof U¥ <jcncitt;=0withey, ... ,c,e@notall0, then; ¢;c, c;0n; =
0 for all # € @ and all indices &, so that (1) holds. Conversely, suppose that
(1) holds whenever 0;€ @(i—1) and k(i) is arbitrary (1 <i<n). We may
suppose that n > 1 and that the result is proved for lower values of n. Then
we may further suppose that there exist 0, e @(i—1) (1 <i<n-1) and in-
dices k'(1),...,k'(n—1) such that det(0;/n; r))1 ci<n—-1,1<5n—1 #* 0. Letting
IT denote the Cartesian product of the set @(n—1) and the set of indices
1,...,r, we see that the matrix (01;), ryen, 1 <j<» has the property that the
n—1r1ows (0,1 wiys --er & Mn wy) With 1 < i< n—1 are linearly independent
and every other row is a linear combination of these; hence the rank of the
matrix is n— 1. Therefore there exists a nonzero vector (¢, ..., ¢,) € #" with
the property that 3 <<, ¢;0n; =0 for all 0 € @(n—1) and all indices %,
and every vector with this property is a scalar multiple of this one. We
may suppose, moreover, that ¢; =1 for some j. For any 6 € A we have
P <ien(06) O+ 21 < i<a €(08) ny = 0. However, if 6 € ©O(n—2), then 60 €
@(n—1), in which case, 3, <;<, (6¢;) On;, = 0. Since this holds, in particular,
for 0 =0 (1 <i<n-—1), and since every row (84,...,0n,) is a linear
combination of the rows (0,1, wqys---» 0 tin 1iy), W€ see that

> (55',‘)9'11/( =0
1<€j<n

for all 0 e ®(n—1) and all indices k. Therefore (dc,, ..., dc,) is a scalar mul-
tiple of (cy,...,¢,). Since ¢; =1 and hence dc; = 0 for some j, the scalar

factor must be 0, so that dc; = 0 for every j. Thus, each ¢;€ %.

The most important case of Theorem 1 is that in which r = L.

Corollary 1 Let o/ be a differential algebra over F with ring of constants
oo Then F and s o are linearly disjoint over 4.

Proof 1If n,,...,n,€F are linearly dependent over &/, say
> Vi ’7{= 0,

1€j<n
where 9y, ...,7, € &, and some y; # 0, then 3, ¢;<,7,0n; =0 for all 6 € O,
so that det(6;7,),<i<n15j<a =0 for all 0,,...,0,€ ©. By Theorem 1 then

Ni»..., 1, are linearly dependent over .

A consequence of Corollary 1 is that if elements of a differential field are
linearly dependent (or independent) over the field of constants of some
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differential field containing them, then they are linearly dependent (or in-
dependent) over the field of constants of any differential field containing
them. Therefore we may speak simply of linear dependence (or independence)

over constants.

Corollary 2 Let 9 be the field of constants of an extension of . The mapping
that to each field @, between € and & associates the differential field %
between F and F D, and the mapping that to each differential field 4 between
F and FD associates the field 4 n D, are bijective and inverse to each
other.

Proof We must"prove that if 2, is given, then (F%2y) N 2 = D,,
and that if ¥ is given then F(¥ n 2)=% (see the accompanying
diagram).

Now, by Corollary 1, # and @ are linearly disjoint over ¥ and therefore,
for any given @,, F 2, and 9 are linearly disjoint over @, so that (¥ D) N
9 = 9,. To establish the second point let (¢;) be a basis of # over ¥. Then
(p,) is linearly independent over &. For any n € % we may (since n € F2)
write =Y @, k,/3 @, A, where K, 4, €2 and Y ;4 # 0. It follows that
the various elements ng, and @, of % are linearly dependent over constants,
hence over the field of constants of %, that is, over 4 n 2. Thus, there exist
elements k;/, 4/ € 4 n @ not all 0 such that 3 ne; L' —> ¢;x;/ = 0. Because
the elements ¢, are linearly independent over constants, > ;4 # 0 and
we may write n=2Y @;K//> 0;4 € F (¥ n D). This shows that ¥ =
F(% n Z) and completes the proof.
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EXERCISE

1. Letn,,...,n, be nonzero elements of a differential field with m derivation
operators 0y, ..., 0,, suppose that each of the mn elements n o =
k;; is a constant, and that the n vectors (k;, ..., k,;) are distinct. Prove
that 5, ...,n, are linearly independent over constants. (Hint: Refer to
Chapter I, Section 1, Exercise 2, and show that constants ¢,, ..., ¢, can
be fixed so that the n constants k;" = 3, ¢, k;; are distinct. Set 8" = ¢, §;,
verify that ;" 'd'n; = &, and show that det(3" ™' 1) cpem 1< <n # 0.)

<

2 Separable extensions

We recall (Chapter 0, Section 6) that a nonzero algebra 4 over a field K
of characteristic p is separable (in the sense used in this book) if 4 has no
nonzero nilpotent element and either p = 0 or else p # 0 and A” and K are
linearly disjoint over K”. The following proposition shows that for dif-
ferential algebras a seemingly weaker condition suffices.

Proposition 1 Let o be a nonzero differential algebra over F with no non-
zero nilpotent element, let p # 0, and suppose that o7 and € are linearly dis-
joint over 7. Then o is separable over F .

Proof By Section 1, Corollary 1 to Theorem 1, ¥ [ /"] and & are linearly
disjoint over ¥. By hypothesis, «/? and % are linearly disjoint over .
Therefore &% and & are linearly disjoint over #7.

A separable extension of a differential field need not be separable over an
intermediate differential field. The following proposition describes precisely
when it is.

Proposition 2 Let K be a separable extension of F, let 4 be a differential
freld with F <= 4§ < A, and denote the field of constants of 4 by 9. A necessary
and sufficient condition that # be separable over 4 is that #*%€ and G be
linearly disjoint over 47 %.

Proof We may suppose that p # 0. Then #7 and % are linearly disjoint
over #°*, so that #? and 47% are linearly disjoint over 4*. It follows that a
necessary and sufficient condition that #” and & be linearly disjoint over
%? is that #7% and 2 be linearly disjoint over 474.

Corollary Let the hypothesis be as in Proposition 2. Each of the following
conditions is sufficient for ¥ to be separable over 4.
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(a) % is algebraic over F.
(b) The field of constants of 4 is 47
(©) % = Fy), where y is a constant and y¢ H’E.

Proof The sufficiency of (a) is well known, not depending on the differen-
tial structure!; the sufficiency of (b) is an immediate consequence of Prop-
osition 2. Let (¢) be satisfied, with p # 0. Since y¢ #"% and y? e HTC
we see that y is not separably algebraic over #7%, so that (1,7, L YTTh
is linearly independent over #°%. By Section 1, Corollary 2 to Theorem 1,
the field of constants of ¥ = F€(y) is € (y), so that C(y) o HPE By >
@r%. As the degrees of € (y) over #7%¢ N €(y) and 9% are both evidently
p we infer that #°€ N G(y) =4"¢ and that (1,y,...,y°”") is a basis of

%(y) over 47%. Hence #°% and %(y) are linearly disjoint over 9°%, so.

that (by Proposition 2) J is separable over 4.

If L is a separable algebraic field extension of a field K, then every deriva-
tion D of K can be extended to a unique derivation D, of L21falso D' isa
derivation of K, then DD’'—D'D is a derivation of K, D, D,—D;D isa
derivation of L extending DD'— D'D, so that D, D; —D; D, = (DD'—D'D),.
Since the zero derivation of K extends to the zero derivation of L, it follows
that if D and D’ commute, then so do D, and Dj.

Lemma 1 A separable algebraic field extension of & has a unique structure
of differential field extension of F.

Proof By the above there is a unique way of defining S« for all elements
« of the field extension % and all & € A so that the mappings o dx (x € %)
are derivations of ¢ extending the derivations x— dx (x € F) of &, and
these derivations of 4 commute with each other.

Proposition 3 Let 4 be a separable algebraic extension of #, let 4’ be an
extension of a differential field F', and let [ be a field isomorphism of 4 onto
@ such that the restriction of f to F is a differential field isomorphism of
onto F'. Then f is a differential field isomorphisni.

Proof For each & € A the mapping a— f~ H(6f (@) (x € %) is a derivation
of 4 extending the derivation « > dx (x € F) of #, and so too is the mapping
o+ da (2 € ¥). These two mappings must coincide, so that §f(x) = f(da)
(2 € %) for every e A. That is, fis a differential field isomorphism.

! See, e.g., N. Bourbaki, ““Algebre,” Chap. V, §8, Prop. 5, p. 130. Hermann, Paris,
1950 or 1959.
2 See, e.g., N. Bourbaki, op. cit., §9, Prop. 5, p. 139.
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Now, # has a separable algebraic field extension that is separably closed,
that is. that has no proper separable algebraic field extension. This separably
closed field extension is unique up to a field isomorphism over #. By Lemma
1, there is a unique way of making this field extension into a differential field
extension of #. Thus, # has a separably closed separable algebraic exten-
sion. We call such an extension a separable closure of . By Proposition 3,
a separable closure of Z is unique up to a differential field isomorphism
over #.

A differential field may well have two extensions that are incompatible in
the sense that they cannot both be embedded in a single extension (see Exer-
cise 1 below). The following proposition shows that with separable extensions

such incompatibility does not occur.

Proposition 4 Let (%) be a family of separable extensions of F. There
exist a separable extension % of F and, for each 1€ A, an F-homomorphism
1%, ~ %, such that 9 is the compositum of all the differential fields f,(%,).

Proof Let &’ be a separable closure of #, and let 4,, be the separable
closure of & in %,. There exists an #-isomorphism of ¥, onto an exten-
sion &, of & in ', and this can be extended to an isomorphism g, : 4, =
#,, where #, is some extension of &,. Now, 4, is separable over # and
therefore is regular over %,,; hence 5, is regular over ZF,. Let ({i)jes,
be a family of elements such that ), = Fil(Cipjess- Let (Vapieajess
be a family of differential indeterminates over &’. For each 1€ A let p, be
the defining differential ideal of ({;);cy, in Fi{(y:1))jes ) Thenp;isa prime
differential ideal and is regular over &, so that (by Chapter 0, Section 12,
Proposition 7(d)) #'p, is a prime ideal of F'{(yij)ren.jei,)> regular over
F’, and obviously is differential. By Chapter 0, Section 12, Corollary 2 to
Proposition 7, the ideal r of F'{(¥ip)ien, jes) generated by Uiea 'Pas
which obviously is differential, is prime and regular over %', and has the
property that t © F'{(Vij)jes} = F 'Pa» 8O that (by Chapter 0, Section 10,
Lemma 9) t N Z{(¥a))jes,} = Pa. Now let ny; denote the image of y;;
under the canonical homomorphism F'{(y:)aca jesa) = F'{(yiren el
The differential field % = F'{(Mi)ica,jes,> 1S regular over %' and there-
fore separable over #. For each 1, the defining differential ideal of (17;))es,
in F{(y)jes 18 Pa- It follows that there exists an Z;-isomorphism
Fllspjest = Z{(N:))jes,)> and consequently an F,-homomorphism 4, :
#,— 9, where ¥ is the compositum in &’ of all the differential fields
Fil(Mapjes- Setting f; = h,0g;, we see that 4 and the f; have the required
properties.

It is now a simple matter to prove the existence of an extension of & into
which every finitely generated separable extension of % may be embedded.
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find it useful to have still more inclusive extensions (which
we call such extensions semiuniversal
(over &F). Let A, = A(F) denote the set of all F-separable prime
differential ideals of the differential polynomial algebra F AV ir s Vnt
(n=12,..) It is apparent that an extension & of F is semiuniversal

if and only if, for each ne N with n#0 and each peA,, there exist
e such that p is the defining differential ideal of

Because we shall
we shall introduce in Chapter I£1))]

‘elements 7, -
(r’h'“,nn) in ?{yl""’yn}'

Corollary Every differential field has a separable semiuniversal extension.

osition 4 it suffices to exhibit a family (%,)1ea Of separable
hat every finitely generated separable extension of
&F is F-isomorphic to at least one ;. Let A= (JA,. For each p€ A let
%, denote the differential polynomial algebra # {yy, ..., ¥,} of which p is
an ideal, and let 4, = Q(R,/p). For every finitely generated separable ex-
tension F Ny, .- ay Of Z the defining differential ideal of (15 M) 1N
F{ Py, u} is an element p € A, and F o 1) 18 F-isomorphic t0 ;.

Proof By Prop
extensions of # such t

EXERCISE

1. Let # be a differential field of nonzero characteristic p containing a
constant ¢ ¢ F?, and let &€ A. Show that for each x € Z the ideal
p.=0F—c)+ [6y—2] of #{y} is a prime differential one, so that
&, = Q(F {y}/ps) is an extension of F. Show that if «,fe % and
% # B, then &, and &, are incompatible extensions of #.

3 Differentially perfect and differentially quasi-perfect differential fields

We shall call # differentially perfect if every extension of # is separable.
Similarly, we shall call # differentially quasi-perfect if every extension of F
is quasi-separable (see Chapter 0, Section 3). The following internal charac-
terizations of these notions show that & may be differentially perfect (re-
spectively differentially quasi-perfect) without being perfect (respectively

quasi-perfect).

Proposition 5 () A necessary and
tially perfect is that either p =0 or else p # 0 and € = F°.

(b) A necessary and sufficient condition t
perfect is that either p = 0 or else p # 0 and [%€:F"] be finite.

Proof We may Suppose that p # 0.

sufficient condition that F be differen-

hat F be differentially quasi-
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(a) If € # %", there exists an
. , element ye ¥ with y ¢ #* i
’ ; ts 4 yéZ? Int -
(f)erentmldpoly/iom‘lal algebraA Z {y}, the ideal (y"—7) is a prime diﬁel;chti‘lfl
thnee,ma; E(Jc'i{.yf,(/é(jy"—y)) is an extension of # that is not separable éan
er hand, 1 = %7 and ¢ is any extensi F i :
over & by Section 2, Proposition 1. ’ noton of 7, then #1s separable
elér:)emlsf [f%”(g:f"]hls not ﬁnit_e, there exists an infinite sequence (y,),.n Of
clemer 1o qucﬁ that y, ¢ #?(yo, ..., Vs ) (n€ N). In the differenti’;i'EZI
hi 1{? algebra F {(va)eny, the ideal p = (36" =70, y," =7 P,
;ve;fionclgariy isa dlzt?erential one, is prime (easy consequeééé“c;fy"Cha/pnt’e.r. 8’
, Lemma 2). Thus Q(F {(yu)aent/P) | i ;
. . ) Jeen}/P) Is an extension of F i
n?t. qua451-separable, since the image of (,),.n IS separably independ e lcj
g .mﬁmte algebraxc codimension over #. On the other hand i? [® 'e;”an‘
(amtel'agd 4 is any extension of #, then, by Chapter 0 Sectio’n 3 Lémmjsa ];
pplied to E=%, K=%, L =%), % is quasi-separable over 37

4 Separable dependence over constants

anéeg:}; .i.f.,g;eefii .lThzs? elements are algebraically dependent over ¢ if
mily ()’ ...,11,.)1_ N is lin
ily . 7)j1eN, . neN early dependent over ¥
gnﬁithfls is the case if and. only if this family is linearly dependent overrth,
ae ° constants of any differential field containing 4, ..., n,. Thus, we mae
say simply that (n,,...,1,) is algebraically dependent (or in'::le d’ y
constants. pendent) over
This notion is of interest only when p = 0, for when p # 0, then the pth
ggtv)ver. olfl e\:ry elgmem is a constant, so that every nonempt;/ family ispal
raically dependent over constants. It is, accordi -
: . , accordingly, more appropri
Eio cgncslxder separable dependence, which when p = 0is equivalent tgzlgsg;?iz
c[epvn enci. When p#0 Fhen, since 0, € €, (1, ...,n,) is separably depen
dent cziver % if and only if the family (nZ" - #Do<i <p . 0< is lineﬁ’ul-
$j1<p, .., 05jn<
ependent over %. Therefore we may say simply that (;; . ;17 ) ‘i,s separ bly
dependent (or independent) over constants. B e

p ..

r:p(;)zztwn 6 . L/€[~ (71,--,n,) be separably dependent over constants. If
lpe ) rte;spec/tllve ly lfp(;é 0 and A'® denotes the set of all operators 87 (6 € A
, then the matrix (6n;)sca 1 <i<q(respecti ] )

has rank less than n. oent \j\"( pectivelythe marix wqj)aﬂ(p),mjsﬂ)

Proof If fe 4[X X.] vanish
. @ t
vanishes there, thenl es at (1,....1,), but not every &f/0X;

S @oX) (s On; = Of (M5 M) =0 (J€A)

1<j<n

so that th i i
e rank of the matrix (31;)sca, 1<;<n is less than n. Now, for any
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derivation D of a field of characteristic p # 0, D? is also a derivation of
that field. This is an immediate consequence of the formula DFf(ab) =
So<yc, (P DPIa-D’b and the fact that (%) is a multiple of p whenever
0 <j < p. It follows that when p # 0, then the elements of A all are deri-
vation operators, and a computation like the one above shows that the rank

of the matrix (01))gear, 1<j<n 1S less than n.

Corollary If an element of a differential field is separably algebraic over
constants, then the element is a constant.

This is the case n = 1 of the proposition.
A

.

EXERCISES
. Denote the elements of A by &,,...,0,, let 7y,...,2, be differential in-
determinates, set % = #{z, ..., Z,), and consider the derivation opera-

tor D=3% z;6,0on %.

(a) Show that every D-constant in & is a constant.

(b) Show thatif p # 0, then D”is a linear combination over & {zy, ..., Zp}-
of the 2m derivation Operators 0y, ...,0,,0,%...,0u" (Hint: First
show that D’ =3 <ij+.tim<p Ai.---i,,.éill -0t with A, e F {21,
z,}; observing that D” is a derivation operator and letting u,v be new
differential indeterminates, make use of Chapter 1, Section 1, Exercise |
to compare (DPu)v+uDPv with DP(uv), and conclude that 4, ., =0
whenever 1 < i+ +iy<pandi,<p(l<p< m).)

(c) Show thatif p # 0and re Nand AP denotes the set of all operators
57 (5 e A, 0 <i<r), then D" is a linear combination over # {z, ..., 2}
of the elements of A!”.

2. Let p #0, and let A{” have the same meaning as in Exercise 1(c). Prove
the following partial converse of Proposition 6: If n,,...,n,€ F have
the property that det(0in) <i<n 1550 = 0 whenever ;€ AP, (1 <i<n),
then (1, ...,1.) is separably dependent over constants. (Hint:  With the
help of Exercise 1(a) show that (1, ..., n,) is separably dependent over
constants if the family (74" #r)., . jyepn 1S linearly dependent over
D-constants, P here denoting the set of numbers 0,1,...,p—1. Apply
Theorem 1 to show that this is the case if the Wronskian

QHigpt et inp" T Ll
det(D" 7" M ) iy € P, (G i PP

vanishes. By a succession of elementary transformations show that this
Wronskian is the product of det(D” ™ '1))1 <i<n 1<j<n @nd the deter-
minant of a certain square matrix of p"—n—1 rows. Finally, apply
Exercise 1(c).)
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5 Differential polynomial functions

Let # be a natural number different from 0, and let £ be a nonempty subset
of the Cartesian nth power of some extension of the differential field #.
If Fis an element of the differential polynomial algebra & {y,...,v,}, the
mapping (a,....d,) — Fla,,...,a,) ((a,,....a,) €Z), which we sometimes
denote by Fy, is called a differential polynomial function on X over #, and is
said to be the differential polynomial function on X induced by F. This Fy
is the zero function on X precisely when F vanishes at every element of Z,
that is, when F is in the intersection ay of the defining differential ideals over
Z of all the elements of X; we say in this case that F vanishes on X.

Obviously, ay is a differential ideal of # {y,...,y,}. Furthermore, two
differential polynomials F,Ge #{y,,...,y,} induce equal differential poly-
nomial functions F;, Gy precisely when F—G € ag. 1t follows that there is
a unique differential ring structure on the set of differential polynomial
functions on X over & such that the mapping Fi— F (Fe F {y, ..., V})
is a differential ring homomorphism (called “‘canonical””) with kernel as.
F is mapped isomorphically, and therefore can be identified with its imagé.
The differential polynomial functions then form a differential algebra
over &.

Of course, if £ is suitably chosen, then a; = (0), that is, 0 is the only dif-
ferential polynomial in & {y,,...,,} vanishing on Z; this certainly will be
the case if T contains an element (7, ..., 7,) that is differentially algebraically
independent over #. Suppose, however, that I is the Cartesian nth power
of a nonempty subset £’ of . We shall say, loosely, thatan Fe # {y,, ..., y,}
vanishes on X’ when F vanishes on . An easy induction argument shows
that the condition that 0 be the only element of & {y,, ..., y,} vanishing on
I’ is independent of n. Furthermore, if ¢ is an arbitrary extension of &,
any differential polynomial G over ¥ may be written in the form G = ¥ G;7;,
where the elements y; of 4 are linearly independent over &% and each G; is
a differential polynomial over &. It follows that if there does not exist a
nonzero differential polynomial vanishing on £’ with coefficients in #, then
there does not exist one with coefficients in 4, so that we may say, simply,
that O is the only differential polynomial vanishing on Z'.

6 Dependence of derivative operators

More generally, let Q be any subset of the set © of derivative operators.
The condition that O be the only element of % {y, ..., »,} that vanishes on
¥’ and involves only derivatives y; with 6 € Q, is independent of » and is
preserved when & is replaced by any extension %. We shall say, when this
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condition is satisfied, that Q is algebraically independent on X', and in the
contrary case that Q is algebraically dependent on T'.

Also, we shall call Q linearly dependent on T’ if there exist elements a, € F
(0 € Q), at least one of which is, and at most a finite number of which are,
different from 0, such that the differential polynomial Y y.q @8y vanishes
on ¥, and shall call Q linearly independent on X’ otherwise. These notions
do not depend on Z.

We remark that if Q is linearly dependent on X', and if ¥’ has the property
that the vector space generated by I’ over € is a differential one, then there
exist distinct elements 0., ...,0, € Q with h > 0 and nonzero constants ¢, ...,
c, €% such that Y <i<h 0,y vanishes on L'. Indeed, if 6,,...,0, form a
minimal nonempty subset of @ linearly dependent on ¥, and ¢, ..., ¢, are
elements of &, not all 0, such that ¥, <<, ¢;0; v vanishes on X', then ¢, # 0
so that we may even suppose that ¢, = 1; forany é € A then 3 i<ish-1 06;- 0y
vanishes on X'. By the minimality of the set 0,, ..., 0, then d¢; =0 for each
i, so that ¢y, ..., ¢, are constants.

Theorem 2 Let V be a subspace of F considered as a vector space over €,
let ® be a finite subset of ©, and suppose that F is infinite. Then the following
three conditions are equivalent:

(@) @ is algebraically independent on V.
(b) ® is linearly independent on V.
(c) V contains elements vy (0 € ®) such that det(Ovg)se,6-c0 # 0

ReEMark If # is finite, then & = %, and it is easy to verify the following
statements: When @ contains a derivative operator other than 1, none of
the three conditions is satisfied; when ® = ¥, all are satisfied; when ®
consists of the single derivative operator 1, (a) is not satisfied whereas (b)
and (c) are satisfied or not according as ¥ 0 or V'=0.

Proof We may clearly suppose that ® s ¢¥. It is obvious that (a) implies
(b). Suppose (b) holds. For arbitrary elements vy e V' and fixed 0, € ® we
may write det(8vy) = g a5 0vs,, Where ay is plus or minus the minor of
Oup, in the matrix (0vg)sc 0,0 c0 - Arguing by induction on the number of
elements of ®, we may suppose the elements v, (8 # 8,) chosen so that
ag, # 0. Condition (b) implies that we can then choose vy, s0 that 3" ag Ovg, # 0.
Thus (b) implies (c). Finally, suppose that (c) holds and let G be a nonzero
differential polynomial in # {y} involving no derivative 6y with 0¢d.
Let (byy) denote the inverse of the matrix (0v,.), and define =z, = > boa 0y,
50 that fy = 3, Ovg. - 2. Because the family (0y),. o is algebraically indepen-
dent over F, so is (Z)p.e. There exists a polynomial g over & in a family
of indeterminates (Zgpce such that G(p) =g((zpleeq) If p=0, then
% > Q, and if p # 0, then ¥ > F”. Thus, regardless of the value of p, € is
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infinite, so that ¢ contains elements ¢, (0 € ®) such that g{(cy)seq) # 0.
Setting w = cyry we see that we V and G(w) # 0. Thus (c) implies (a).

Because of Theorem 2 and the Remark following it, a subset Q of @ may,
when Z is infinite or Q does not consist solely of 1, be called independent on v
(or dependent on V') without reference to algebraic or to linear independence
(or dependence). Thus @ itself is independent on V precisely when 0 is the
only differential polynomial vanishing on V.

Theorem 3 Let A be a subalgebra of & considered as an algebra over €.
A necessary and sufficient condition that @ be independent on A is that either
p =0 and A be independent on A, or p # 0 and the set A" of all derivative
operators 87 (6 € A, i € N) be independent on A.

Proof The necessity of the condition is obvious. To prove the sufficiency
suppose first that p = 0 and A is independent on A, and denote the elements
of A by 6,,...,0,,. By Theorem 2 there exist elements u,, ..., 4, € A such that
the matrix (0;u4;) has an inverse, which we denote by (a;;). We define new
derivation operators d;" on # by the formulae

& = Y ayd;, (I1<i<m), @
so that e
Si= ) S8  (1<i<m) )
and o
R Y
A P @

A simple computation shows that

8/6; = 5,8/ + Y €k O

1<ksm

(1<i<m 1<j<m, (5)

where heach ik €F. For each 0 = " ..- 8"~ € ©, define 8’ by the formula
0" = &} ... 5.0 1t is apparent from (2), (3), and (5) that & contains elements

m

ag, (0 ©, we @) and elements by, (0 € ©, w e O) such that for each se N

0 = wezom a,w (0 O(s) (6)
and
0= T e (0200 %)

The two matrices (@g.)oeo(s). weors ANA (Boulocars), weo(s) are inverse to each
other and therefore have nonvanishing determinants. Now, by Section 4,
Proposition 6, uy,...,u, are algebraically independent over ¥. For each
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g =dh. me @ set vy =(1/(h ! h, D)o utm Tt follows from (4) that
if we also have @ = &% -.- 8%, then 0'v, = 0 whenever A; > k; for some /,
and 0'v, = 1. Ordering the set of all operators §it ... §im lexicographically

with respect to (i), ..., im), We therefore have
0 if 8> o,
O'v, = (8)
1 if 0=o0,

5o that det(8'v,)sco, oo = |- Therefore by (7)

det(evm)eee(s)'weo(;) = det( Z berrrvw>060(5),weﬁ)(5)

1€0(s)
K = det(bOw)BeG)(s).weG)(s) det(gtvw)ﬂeﬁ(s).weo(-‘) # 0.

Since s is arbitrary, it follows from Theorem 2 that © is independent on A.

Suppose now that p # 0, and continue to suppose merely that A is indepen-
dent on A. We can define the elements &; (1 €i<m) and g; (1 <i<m,
1 <j<m) of F and derivation operators 5/ (1 €i< m) as before, and
therefore introduce the operators 0’ and elements ag, and by, satisfying
(2)-(7). However, we can define the elements vy = (1/(h, Lo D)) uft -
u'e F only for the derivative operators § = o ... o such that A; <
Py ..., h, < p. For the duration of this proof we denote the set of all such
operators § by A. Then (8) holds for all fe A, weA; it follows that
det(0'v,)gen, wea #* 0- For each natural number s let D, be the vector space
over % with basis @(s). It is clear from (6) and (7) that the family (6" )gcas)
is also a basis of D,, and that the mapping 6" — 0 (0 € ©(s)) defines an
automorphism f of D, which, relative to the basis (0)sca(s)s has the matrix
(b9w)950(s), we®(s)"

Now, if s> 1, then f(®, ;)= D,.,. Furthermore, 6 = (X a0, =
Y, afé7 (modD,_ ) and 5 = (X, 6:u; 8/ ) = 3;(0,up)?0;" (mod®,_ ). It
easily follows that the subspace € of D;, generated by the elements of D,_,
and the operators § = &% -+ 5k € @(s) for which at least one exponent h,
is greater than or equal to p, is also the subspace of D, generated by the
elements of D,_, and the operators 0 = 3 --- 5,4~ with 0 € ©(s) for which
at least one k, is greater than or equal to p, and that f(€,) = €;. (Of course,
if s<p, then € =D,_,, and if s>m(p—1), then € = D,.) Therefore f
induces an automorphism of the space D,/€,. A basis of D/E; is the image
under the canonical homomorphism D;— D€, of the family (0')geacs)
where A(s) is the set of elements 0 = &% --- O~ of O (s) with A, + - +h,=$
and each h; < p. Relative to this basis, the induced automorphism of D,/E;
has matrix (bg,)scacs), weacs)» SO that the determinant of this matrix is not 0.
Also, because f(D,.,) = D,_,, we see that bs, = 0 whenever 0 € O(s—1),
we®(s) — O(s—1) and therefore whenever 0 € A(s,) and we A(s,) with
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s; < 5. Since (A(8))o<scmp-1) 1S & partition of A we conclude that
det(bp)pca wea = [ocscmp-1) 4€t(Cow)ocais), weacs) # 0-

We have already remarked that det(0'v,)gc wea # 0. Also, if 8¢ A,
then @', = 0 (w € A). Therefore

d‘et(eva))OeA,weA = det(z betTIvm>eeA,a)EA

€A
= det(bew)aeA,wsA det(elvw)()el\,wel\ # 0

Thus, by Theorem 2, the assumption that A is independent on A leads to the
conclusion that A is independent on A.

This being the case, for each natural number r, let A denote the set of
all derivative operators §” with d € A and 0 < i< r, and let A, denote the
set of all derivative operators of the form [, A*, where h; <p for
each A. It is evident that a derivative operator § = &% -.. 5%~ belongs to A,
if and only if each k; < p"*'. However, the elements of Al” all are deriva-
tion operators on & (see Section 4, the proof of Proposition 6). Hence we
may consider the differential field structure on & for which A{” is the set of
derivation operators. If we apply the conclusion we just reached to this
differential field, we see that if A{”’ is independent on A, then so in A,. Since
(A"),.n and (A,),.n are increasing sequences with (JA!® = A® and
U A, = ©, we conclude that if A® is independent on 4, then so is ©.

Corollary Let A be a subalgebra of F (considered as an algebra over ).
A necessary and sufficient condition that 0 be the only differential polynomial
vanishing on A is that either p = 0 and there exist elements vz € A (0 € A) such
that the “Jacobian” det(0v5)s5¢4 5 ca does not vanish, or else p # 0 and for
each r € N there exist elements vy € A (0 € AY) such that the ““hyper-Jacobian”
det(0vg)gea o0 5 caner does not vanish (AP denoting the set of all operators
87 withdeA and 0<i<r).

Proof This is immediate from Theorems 3 and 2.

7 Differentially separable dependence

We recall (Chapter I, Section 6) that a family («;);., of elements of an
extension of & is said to be differentially algebraically dependent over & if
the family (02;)pce ;s is algebraically dependent over &. We shall say that
(2,)ic is differentially separably dependent over F if (0;).e,:cr 15 Separably
dependent over &, and shall say that («);., is differentially separably in-
dependent over & in the contrary case. As in the case of differentially algebraic
dependence, we call a set £ differentially separably dependent or independent
over & according as the family («),.y is. In the special case in which Z
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consists of a single element o, we call « differentially separable or differentially
inseparable over F in the respective cases. It is clear that a set T is differen-
tially separably dependent over Z if and only if there exists an x € X such
that « is differentially separable over & (¥’>, I’ denoting the set of elements
of ¥ other than a.

If there exists a subset of J of I such that («);., is differentially separably
dependent over #, then (%)ic; is, too. Conversely, if (%,);c; is, then there
there exists such a J that is finite. If 2, € # for some je I, then (%), 1S dif-
ferentially separably dependent over #. A family that is differentially separably
dependent over & also is differentially separably dependent over any exten-
sion of &.

By the remark in Chapter 0, Section 2, following the definition of separable
dependence, we see that if A’ is a set of derivation operators resulting from
transformation of A by an invertible matrix over & (see Chapter I, Section 4),
then («,);.; is A’-separably dependent over & if and only if it is A-separably

dependent over &.

Proposition 7 Let n = (ny,...,n,) be a finite family of elemients of an exten-
sion of . Let there be given an integrated ranking of the family (¥, .., ¥.)
of differential indeterminates. Then the following three conditions are equivalent.

(@) 7 is differentially separably dependent over &.

(b) There exists an A € F {y1,....y,} with A¢ F such that A(y) =0 and
Su(p) #0.

(c) Thereexistsaderivativev of a y;such thatv(n) € F((Onsco, 1<j<n, gyjq)

RemMaRK The hypothesis that the ranking be integrated is used only in
proving the implication (a)=>(b). It is easy to see that if p =0, then this
hypothesis can be dropped.

Proof Let p denote the defining differential ideal of n in Z{y,,. s Vu}
If (b) is false, then the empty set is a characteristic set of p (see Chapter 1,
Section 10). By Chapter I, Section 10, Lemma 9, then éP/ov € p for every
Pep and every derivative v of any y;, so that n is differentially separably
independent over #. Thus, (a) implies (b). If A() =0 and S;(n)#0
as in (b), and if & € A, then (Chapter I, Section 8, Lemma 5) du,(n) €
F ((0n))s0,1<;<n 0y,<su,) Therefore (b) implies (c). The fact that (c) implies
(a) is obvious.

8 Differentially separable extensions

Let 4 be an extension of %. Then % is said to be differentially algebraic
over Z if each element of ¢ is. Similarly, we shall say that 4 is differentially
separable over F if each element of ¥ is.
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Proposition 8§ Let « and f§ be elements of an extension of .

(a) If B is differentially separable over F<{x> and « is differentiall
separable over F, then B is differentially separable over F . g

(b) If B is differentially separable over F {ay, but « is not differentially
separable over F (B>, then B is differentially separable over F .

P”’Of (a) Fix some orderly ranking of a differential indeterminate y.
BySection 7, Proposition 7, there exists a 6, € @ such that 6, @ &€ F ((62)y, . ,);
clearly 0’8, a € # ((0)g, < g4,,) for every 6 € ©. Setting r, = ord 8, weyeasxfly
conclude that for any r 2 r,

37((95‘)9;_00)) = f((ea)eeo(r)-o(r—n)el)- 9

Similarly, there exists a 8, € @ such that 0,8 e # (2 ((8B)gy<p,y), and
g <Bay/s
therefore 0, f € F ((00)gcaqq), (08)s,<p,;) for some g e N. Then 06,p e
F ((0)gco(q+oraerrs (OB)oy<aa,y) fOr every 6 e®. Setting r, =ordd, we
conclude that for any s > r, )

37((0/3)950(:)) < ‘g'_((ea)eeﬁ)(s+q)’(Oﬂ)ﬂeﬁ)(s)—ﬁ)(s—rz)ﬂz)'

In the light of (9) this yields (provided s+ ¢ > r,) the relation

j’((oﬁ)ﬁeﬁ)(s)) < ‘9’_((0&)650(5+q)-0(s+q—r1)0|9(6ﬁ)950(s)—0(s-r2)92)'

The number of generators 6f on the left here equals
Card®(s) = <5+’”> LR
m m! ’

whereas the number of generators 0a and 68 on the right is equal to

Stg+m\ [(s+q—r +m S+m S—ry+m
m m + - ’
m m

which can be expressed as a polynomial in s of degree less than m. For a
large value of s the number of generators on the left therefore exceeds the
pumber on the right, and then (by Chapter 0, Section 2, Lemma 1) (08),
is separably dependent over #. Thus, B is differentially separable overet,;(‘fs)
(b) By Proposition 7 we may write 0, 8 = 4(«, §)/B(a, B), where 0, € G)-
A and B are in the differential polynomial algebra % {y, z}, every derivativé
of z present in A or B is lower than 0, z (relative to some orderly ranking)
and B(a,B) # 0. For any e A the differential polynomial ,

0(BOyz—A) = B3Oyz + (BOoz—A)Y + Y 8(BOyz—A)/du-Su

ue®y
+ Y 8(BOyz—A)fov-dv
o<

vanishes at («, f). Since « is not differentially separable over # (B>, each
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3(BO, z~ A)/du here must vanish at (a, B). Therefore the differential poly-
nomial BS0, z— A, with 4; = — (B0, 2= AP =3 oz <tq: 0(BOyz—A)[Cv- b0,
also vanishes at (z, B). It is obvious that every derivative of z present in A;
is lower than 86, z, and that every derivative of y present in A, is present in
A or B. By induction we now see that for every 0 € © there exists an 4y €
F {y,z}, not involving derivatives of z other than those lower than §8,z
and not involving derivatives of y other than those present in 4 or B, such
that 68, 8 = Ag (o, BY/ B2, B). It follows, for every natural number s = ro =

ord §,, that
?((9.5)659(5)) < 9’7(01 Xy ey Bk &, (gﬁ)ﬁee(s)—e(s—r‘)) 90)7

where 8,y ... 6,y denote the derivatives of y present in 4 or B. However,
for sufficiently big values of s, Card ©(s) > k+Card©(s)—Card @ (s—ry).
Therefore (by Chapter 0, Section 2, Lemma 1) (08)scos) 1S separably depend-

[

dent over %, so that g is differentially separable over &

Corollary Let 4 be an extension of F.

(@) The set F of all elements of % that are differentially separable over
F is a differential field. -

(b) If T is a subset of & every element of which is differentially separable
over F, then F (I is differentially separable over F.

(c) Let # be an extension of 9. Then # is differentially separable over
F if and only if K is differentially separable over 4 and 9 is differentially
separable over F. ’

Proof (a) Let a,fc% and let y denote any one of a+pB, a—f, «f,
ajB, o (5 € A). Then y is differentially separable over # (x, > = F {a) (f,
B is over F (ap, and « is over F. By double application of Proposition 8(a),
then y € ;.

(b) Since T < & it follows from part (a) that F > < F.

(c) Suppose H# is differentially separable over ¢ and & is over #. Let
B e . Then there exist finitely many elements a,...,%, € ¥ such that B is
differentially separable over & {a;, ...,a,». By n-fold application of Proposi-
tion 8(a), B is differentially separable over F. Therefore # is differentially
separable over &#. The proof in the opposite direction is trivial.

The differential field %% described in part (a) of the above corollary will
be called the differentially separable closure of & in 4. In the case p =0,
where the notions “differentially separable” and “differentially algebraic”
coincide, %, will also be called the differentially algebraic closure of % in 9.
If # = %, we shall say that # is differentially separably closed (when p = 0,
differentially algebraically closed) in 4.
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Proposition 9 Assume that © is independent on F . Then every finitely gen-
erated differentially separable extension of & is generated by a single element

Proof It suffices to show that if « and f are differentially separable over
#, then there exists an e % such that #{a, ) = F{a+ef). Let ¢, y, z
be differential indeterminates over # (%, ) and fix some integrated rar.1ki’ng
of y. By the Corollary to Proposition 8, «+¢§ is differentially separable over
Z (t>. By Section 7. Proposition 7 there exists an 4 € # {¢+>{y} such that
A(x+18) =0 and S,(x+18) # 0. Clearing denominators and writing u, =
8,y we find a Be # {y,z}, not involving a derivative of y higher than (; y
such that 7

B(a+18,t) =0

and (0B/0(6,¥))(x+16,1) # 0. Now, 8y(x+18) = 0y ¢-B+terms free of 0, 1.
Also, for every 0y present in B with 0 # 8,, 0(x+ 1) is free of 8, . Computing
the partial derivative with respect to 8, ¢ of both sides of the equation dis-
played above, we therefore find that

2] dB
50ep TP P 555

Since ® is independent on %, there exists an e € # such that

(a+1p,t) = 0.

B (arepe)#0
———(x+ef, e .
5007) ?
Substituting e for ¢ in the last equation, we find that fe % <{a+ef)
whence F {a, f> = F {a+ef). ’

EXERCISES

1. (This exercise should be done after Section 9 and the beginning of
Section 10) Prove the following converse to Proposition 9: If every
finitely generated differentially separable extension of F is generated by
a single element, then © s independent on % . (Hint: Assume © depen-
dent on &#. When p = 0 show by the results of Section 6 that for some
0, € A there exist constants ¢; (8 € A|), A, denoting the set of elements
if A different from &, such that 8, a+23;.,, ¢;0a =0 for everyae #.

et

g=Q(f{y,z}/{:51y+ Y sy, 8z + Y c652:|>
s

€4y deA

and let 5, respectively {, denote the canonical image of y, respectively z,
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in €. Show that ¥ is a differentially separable extension of # with
G =F > =Fn ), and that the A -transcendence degree of ¥
over F is 2. Then show that, for any ye 4, F (y> = F (D4, 0 that the
A,-transcendence degree of % (y) over F is less than or equal to 1.
When p # 0 show how this proof can be suitably modified.)

In the next three exercises let ¥~ be a differential vector space over %,
and let ¥, ¥ be differential vector subspaces of ¥~ with ¥ < ¥". Call
an element x € ¥ differentially linear over ¥" if there exists a nonzero homo-
geneous linear L& # {y} such that L(x) ¥ (the meaning attached to
L(x) being the obvious one). For any set £ < ¥, let [Z] denote the smallest
differential vector subspace of ¥~ that contains Z.

2. Leta,fe ¥ . Prove the following two facts (analog of Proposition 8):
{(a) If Bis differentially linear over ¥+ [«] and x is differentially linear
over ¥, then B is differentially linear over ¥
(b) If B is differentially linear over ¥+ [«] but « is not differentially
linear over ¥’ +[f], then 8 is differentially linear over ¥”.

3. Prove the following three facts (analog of the corollary to Proposition 8):
(a) The set of elements of ¥~ that are differentially linear over ¥ is a
differential vector subspace of ¥~ containing ¥"'.

(b) If every element of a-set £ < ¥ is differentially linear over ¥, then
so is every element of ¥~ +[Z].

(c) A necessary and sufficient condition that every element of ¥~ be
differentially linear over ¥ is that every element of ¥~ be differentially
linear over ¥ and every element of ¥~ be differentially linear over ¥™".

4. Prove the following analog of Proposition 9: If every element of a finite
set © is differentially linear over ¥’ and © is independent on F , then there
exists an element y € ¥ such that V"' +[®] =" +[y].

9 Differential inseparability bases

Proposition 10 Let %4 be an extension of % and B be a subset of 4. The follow-
ing three conditions on B are equivalent.

(a) B is differentially separably independent over ¥ and % is differentially
separable over # (B).

(b) B is a minimal subset of 4 such that 4 is differentially separable over
F(B>.

(c) B is a maximal subset of 9 that is differentially separably independent
over .

hopmts -
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Proof It is obvious that (a) implies (b). Suppose (b) holds. If B were dif-
ferentially separably dependent over %, there would exist an x € B with «
differentially separable over # (B’>, B’ denoting the set of elements of B
other than «. By Section 8, Proposition 8(a), every element of ¢4 would be
differentially separable over 4 (B’) contrary to the minimality of B. There-
fore B is differentially separably independent over #. Clearly no bigger
subset of ¢ is, because every element of ¢ is differentially separable over
F (B). Thus, (b) implies (c). That (c) implies (a) is a special case of the
following lemma.

Lemma 2 Let T be a subset of an extension of . If B is a maximal subset of
T that is differentially separably independent over F, then every element of T
is differentially separable over F (B).

Proof Assume the lemma false. Then there exists an a e T differentially
inseparable over # (B); of course « ¢ B. By the maximality of B the set
consisting of « and the elements of B is differentially separably dependent
over 4, so that this set contains an element f differentially separable over
the extension of & genérated by the other elements of this set, and obviously
f € B. Denoting by B’ the set of elements of B other than j, we see that 8
is differentially separable over # (B’) {a) but not over # (B’), so that by
Section 8, Proposition 8(b), « is differentially separable over # (B> (f> =
F (B). This contradiction proves the lemma and completes the proof of
Proposition 10.

We shall call a set B satisfying the equivalent conditions in Proposition 10
a differential inseparability basis of 4 over #.

Theorem 4 Let 4 be an extension of # .

(@) IfZ<=Tc¥9, and X is differentially separably independent over &,
and 4 is differentially separable over F (T, then there exists a differential
inseparability basis B of 4 over F with L< B < T.

(b) There exists a differential inseparability basis of 4 over F.

(c) All differential inseparability bases of 4 over F have the same cardinal
number.

(d) Let A be an extension of 4. If B is a differential inseparability basis of
Y over & and U is a differential inseparability basis of # over 4, then B ~n T
is empty and B U T is a differential inseparability basis of # over F.

Proof (a) Using Zorn’s lemma we see that among all subsets of T that
contain £ and are differentially separably independent over & there is a
maximal one. If B is such a maximal one, then, by Lemma 2, every element
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of T is differentially separable over & (B} so that, by Section 8, the Corollary
to Proposition 8, ¢ is differentially separable over F (B). Thus B is a dif-
ferential inseparability basis of 4 over &.

(o) Inpart(a)takeZ=Fand T=%

(¢) Let B be a differential inseparability basis of 4 over # of minimal
cardinal number 7. It suffices to prove that if B, is any differential insepar-
ability basis of 4 over &, then Card B, < n. If n. =0, then ¢ is differentially
separable over # and obviously B, has cardmal number 0. Let n be a finite
number greater than 0, and suppose that for any extension having a dif-
ferential inseparability basis of fewer than n elements all differential in-
separability bases are equipotent. Since n > 0, % is not differentially separable
over #, so that B, # . Let « € B, and let B,’ be the set of elements of B,
other than «. By part (a) there exists a set B’ = B such that « ¢ B’ and the
set consisting of « and the elements of B’ is a differential inseparability basis
of @ over #. Since a is differentially separable over # (B), B’ # B, so that
B’ contains less than or equal to n— | elements. Obviously B’ is a differential
inseparability basis of 4 over & (a), as is B;". By the inductive hypothesis
B,’ and B’ have the same cardinal number, so that the cardinal number of
B, is less than or equal to | + (n—1) = n. Finally, let n be an infinite cardinal
number. For each fe B there exists a finite set Oy = B, such that g is dif-
ferentially separable over & (®;). Then every element of B is differentially
separable over & ({ Js.p @) so that, by Section 8, the Corollary to Propo-
sition 8, & is, too. Since B, satisfies condition (b) in Proposition 10, it follows

that B, = { J;.p ®4. Therefore
CardB, < ) Card®; < Z No = ¥y = n.
BeB

(d) No element of [ is differentially separable over ¥, so that no element
of T belongs to @, whence B n [ is empty. Every element of 4 is differentially
separable over % (B} and therefore over F (B u [, and # 29 =
F(B U (%> > F(BuT). Therefore (by Section 8, Proposition 8) #
is differentially separable over % (B u I'). To complete the proof it suffices
to show that B u I is differentially separably independent over &, that is,
that no element of B U [ is differentially separable over the extension of #
generated by the other elements of B u I'. No element of I' can have this
property because I is differentially separably independent over % and there-
fore over # (B). If some e B had this property, then there would exist a
minimal set of distinct elements y,,...,7; of I such that § is differentially
separable over Z (B, y,, ...,7.>, B’ denoting the set of elements of B other
than 8. Because B is differentially separably independent over &, s could not
be 0, and B would not be differentially separable over F B, Y15 s Vst
‘By Section 8, Proposition 8(b), y, would be differentially separable over
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F (B, v, ..
possible.

5 Ys—108B> =F (B, ....,¥s-17, which by the above is im-

In virtue of Theorem 4 (b) and (c), we may define the differential insepar-
ability degree of ¥ over & as the cardinal number of an inseparability basis
of 4 over #.

Corollary 1 Let 9 be an extension of F of differential inseparability degree
n, and let T be a subset of 9 of cardinal number s. If 4 is differentially separable
over # (XY, then s = n. I[f ¥ is differentially separably independent over F
then s<n

Proof This follows from part (a) of the theorem.

Corollary 2 Let 9 be an extension of ¥ and # be an extension of 4, and
let the differential inseparability degrees of 4 over F, # over 4, and H over
F be n, r, and s, respectively. Then s = n+r.

Proof This follows from part (d) of the theorem.

Corollary 3 Let % be a differentially separable extension of &, and let % be
a subset of an extension of 4. If ¥ is differentially separably dependent over %,
then T also is over .

Proof By part (a) of the theorem some subset ¥’ of L is a differential
inseparability basis of #{(X) over 4, and obviously £’ # . Also, the empty
set is a differential inseparability basis of % over #. By part (d) of the theorem,
then X' is a differential inseparability basis of ¥ (X) over &, so that X, being
strictly bigger than X', is differentially separably dependent over #.

Corollary 4 Let 4 be a differentially separable extension of ¥ and let T be
a subset of an extension # of 4 with ¥ differentially separably independent
over F. Then #°Y and #° F (X) are linearly disjoint over H° F .

ReMarRk If p =0, this means that 4 and
over &.

F(Z) are linearly disjoint

Proof Let q denote oo or p according as p = 0 or p # 0. Each element of
AP is a constant and therefore is differentially separable over #. It follows
from Corollary 3 that Z is differentially separably independent over #°%
and also over #7%. Therefore the set of all elements of the form [T, cex W™,
where each e(w) is a natural number less than g and e(w) # O for only finitely
many elements we @, is a basis of #?F (I} over #7F and also of
HPG{Z} over #*Y. Therefore #79¢ and #PF {I} are linearly disjoint
over #? %, and the desired result follows.
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Corollary 5 Let Z @ subset of an extension of &, be differentially separably
independent over . Then the field of constants of (T is FLEYE.

Proof Let 2 denote the field of constants of #<Z>. By Corollary 4
(with 4 = 2% and # = F (L)) we find that F{(EYPPF (= @F) and
F (P F (L) (= F (L)) are linearly disjoint over # (I)?.F, and therefore
DIF N FLL) =FEHPP. Since 9F <« F () this means that 9F =
FLIYF, sothat @F = F (THP¥ - F. By Section 1, Corollary 2 to Theorem
I, this implies that 2 = F (E)?¥.

EXERCISES

Let ¥” be a differential vector space over #, and use the terminology and
notation of Exercises 2-4 of Section 8. Call any set £ < ¥ differentially
linearly independent if the family (8a)y.q ,.r is linearly independent, that is,
if ¥ is not differentially linear over [0].

1. Prove that the following conditions on a set B < ¥ are equivalent:
(a) B is differentially linearly independent and every element of ¥ is
differentially linear over [B].

(b) B is a minimal subset of ¥~ such that every element of ¥ is dif-
ferentially linear over [B].
(c) Bisamazimal subset of ¥” that is differentially linearly independent.

Call any set B having these properties a differential basis of ¥".

2. Prove the following facts:
(a) HZ<Tcv, L is differentially linearly independent, and every
element of ¥ is differentially linear over [T], then there exists a dif-
ferential basis B of " with L=< B < T.
(b) There exists a differential basis of ¥ .
(c) All differential bases of ¥~ have the same cardinal number (called
the differential dimension of ¥°).

3. Let # be a differential vector subspace of ¥ and let d respectively e
respectively d' denote the differential dimension of ¥ respectively #
respectively ¥°/# . Prove that d = e+4d’.

10 Differential transcendence bases

Let 4 be an extension of &. A differential inseparability basis of 4 over
& that is differentially algebraically independent over % will be called a
differential transcendence basis of 4 over #. A differential transcendence
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basis B of @ over & will be called separating if 4 is separable over # (B>.
If there exists a differential transcendence basis of ¢4 over &, the differential
inseparability degree of ¢ over & will be called, also, the differential tran-
scendence degree of 4 over &.

Proposition 11 If 9 is a quasi-separable extension of &, then there exists a
differential transcendence basis of 9 over F.

Proof Let B be a differential inseparability basis of ¥ over #. The family
(0B)s.0. pcp is then separably independent over &, and therefore has finite
algebraic codimension over &. Thus there exists a finite set of elements
(6,,B1), .-, (8,, B,) of @ x B such that the family (08)sce, sen.0. 5685 (1 5150
is algebraically independent over &#. Fixing 6 € @ with ordf > ord§,
(1 < i< r) and letting B’ denote the set of all derivatives 6’8 with S & B, we
see that B’ is a differential transcendence basis of ¢ over &.

Theorem 5 Let % be an extension of F . If there exists a separating differential
transcendence basis of % over F, then 9 is separable over F. Conversely, if
& is separable over &, then euery differential inseparability basis of 4 over F
is a separating dtﬁ”erennal transcendence basis of 4 over F.

Proof We may suppose that p # 0. The first assertion is obvious since a
separable extension of a separable extension of & is a separable extension
of #. Let % be separable over # and let B be a differential inseparability
basis of 4 over #. The family (68)sce.scp i Separably independent over &
and therefore algebraically independent over #, so that B is a differential
transcendence basis. By Section 9, Corollary 5 to Theorem 4 the field of
constants of # (B) is F (B)?%. By Section 2, the Corollary to Proposition

2, then ¢ is separable over & (B).

EXERCISE

1. Prove that every finitely generated separable extension of & of dif-
ferential transcendence degree n >0 is generated by a set of n+1
elements. (Hint: Use Theorem 5 and Proposition 9.)

11 Finitely generated extensions

The following two propositions sometimes make it possible to carry out
proofs by induction on CardA.

Proposition 12 Let ¥ be a finitely generated extension of %, an@ N

subset of A with CardA = 1+CardA,. A necessary and suffici iif‘condxtz%
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that 4 be A-separable over F is that 4 have finite A,-inseparability degree
over F.

REMARK  When Card A = 1 this is to mean that ¢ has finite inseparability _

degree over # in the sense of Chapter 0, Section 2.

Proof By hypothesis we may write 4 = F (q,, s®%,05. Suppose the
condition satisfied. Then there exist elements B,,...,8.€ % such that 9 is
A,-separable over F(f,, <> B:Ds, (When CardA =1 this means that 9 is
§eparably algebraic over & (8,, --» B,)). Denoting by & the element of A not
in A, we see that for some big A e N we have B e?((é"aj)oq(,, L<isny
(l < k <r). For any element y € 9 each of the in+1 elements\y, 53}, \J\g""A}:
i1s A,-separable over f{(&iaj)osk,,,lg,‘,,)‘,,. By Section 9, Corollary 1 to
Theorem 4, when CardA > 1, and by Chapter 0, Section 2, Lemma 1, when
CardA = 1, we infer that 7,07, ...,6"y are A,-separably dependent over &,
It follows that each Y€ 9 is A-separable over #, so that & is A-separable
over #.

Conversely, suppose that ¢ is A-separable over &. Letting ®, denote the
set of all elements of © that are products of elements of A,, we see that every
0 € 0 has a unique expression of the form 6§ = 8*6; with k€ N and 0,e0,.
Fuqng a ranking of y as a A,-indeterminate, and then ordering the set of alll
derxv.atives 30,y lexicographically with respect to (k,8,y), we obtain a
ranking of y as a A-indeterminate. This ranking obviously is integrated.
He}r:ce by Section 7, Proposition 7, for any o = a; there exists a 59, ¢ @
wit - '

30,0 € F (86, %k 0,9y <t 009
that is,” with
0,5 & F (o a,..., 84 ad, (0,5 a)p <) (10)
It follows that for every/ > k
6,0'a € Fa,ba,...,5'" 1“>A|((01'51a)01'y<0|y)'

Therefore for every /> k, 8« is A,-separable over F («, da, cd T la)

hence is A,-separable over # (a,éa, w8 lad, . Thus, & {ad, is z;:-’
separable over & (a, o, ...,5""a>A‘l. Choosing k big enough for this to be
the case for each a« = a;, we see that ¢ = # (a,, -3 %04 is A-separable over

FLU a)o<ic k t<j<ala, - Hence ¢ has finite A 1-inseparability degree over &. ]

_ We observe that if, in the above proof of the necessity, we had found,
instead of relation (10), the stronger relation

& e f{a,éa,...,é“"’a)h, (1)
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then we could have concluded the stronger result that
g = y((fsia)o <i<k1<j<n08,

that is, that ¢ is a finitely generated A,-field extension of #. Such a relation
(11) does not always exist, but we can avoid this obstacle in the following way.

Let the elements of A be denoted by §,,...,5,, and fix an orderly ranking
of the A-indeterminate y. By Section 7, Proposition 7, there exists a differen-
tial polynomial 4 € & {y}, with 4 ¢ & such that 4(«) =0 and S, (a) # 0.
Let (¢;)1 ci<m 1< <m D€ an invertible matrix over %, let A’ denote the set of
derivation operators 8,’,...,4,  defined by the equations &, = i<i<m Gt O
(1<i<m), and let A, denote the set consisting of §,’,...,8,_,. For any
derivative §{' --- 85"y of order r = Y ¢;, we may write

oft Oy = < DI 5;.) < > Cmi,,.alf,,.> m}’
1€i€m 1€imsm

:;y + -,
so that if r is the order of 4 (as a A-polynomial and hence also as a A’-poly-
nomial), then

A0 (0ny) = Y (0A4/0(55" --- 32my)) 5Ly - e o

ey te-ten=r
However, one of the partial derivatives d4/3(5% --- 8%my) in the sum here
is the separant S,, which does not vanish at «. Therefore if we substitute «
for y and then express each of these partial derivatives linearly in terms of
a basis (y;) of ¥ over ¥, we arrive at an equation

aA/a(a;:y)(“) = ;gk(clm, “res cmm)?k’

— e [ €,
= cf e cim 5

where each g; is a homogeneous polynomial in ¢[X,, ..., X,,] of degree r,
and some g, is not 0. Letting g denote some nonzero g,, we see that if
(Cims o> Cmm) # 0, then 3A4/3(8) y) does not vanish at a. On expanding the
left member of the equation 6, 4(x) = 0 we then find that

0A413(8y) (@) - 6% e — T(@) = 0,

where T is 2 A’-polynomial over & in y of order less than or equal to r+1
and free of §;*'y. Hence we have the following result.

Proposition 13 Let the element a of an extension of F be differentially separ-
able over & . Denote the elements of A by 3, ..., ,,. Then there exist a number
reN and a nonzero homogeneous polynomial ge €[X,, ..., X,] of degree r
with the following property: If (¢i)y ci<m, 1<i<m IS an invertible matrix over
€ with g(Cipms .- Com) £ 0, and if 8,',...,8,  are the derivation operators

defined by the equations 8, =Y, ¢y g Cir 04 (1 € i< m), then
Ontlae F((BY - Ouma v vimsrs 1, imsr) (12)
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If we denote by A,’ the set consisting of 8,, ..., 0,,_, then evidently rela-
tion (12) implies
iy e FLt 05, Omady, - (11"

Comparing this with relation (11), and recalling the observation made in
connection with (11), we see that if (¢;) has the properties described in Propo-
sition 13, then & (a), is a finitely generated A, ’-field extension of #. Now,
there are two cases in which the existence of a matrix (¢;;-) as above is guaran-
teed. (1) In the case of an ordinary differential field (that is, m = 1), g is of
the form aX,” with a # 0, so that g(c) # 0 for every nonzero ce 4. (2) In
the case of an infinite differential field &, ¥ too is infinite since € > #7,
and therefore there exist matrices (¢;») over € with g(c;m, ---» Cmm) det(cii) # 0.
Thus we have the following two corollaries.

Corollary 1 Every finitely generated differentially separable extension of an
ordinary differential field is finitely generated as a field extension.

Corollary 2 If % is a finitely generated differentially separable extension of
F uand F is infinite, then, after transformation of A by a suitable invertible
matrix over € and subsequent restriction of the resulting set of derivation
operators to a set consisting of all but one of these operators, 9 is a finitely
generated extension of F.

1t is a well-known and easy to prove fact that a subextension of a finitely
generated field extension is itself always finitely generated. The analog for
differential fields is in general false (see Exercise 4 below), but starting with
this fact and using Proposition 13 we can prove the foilowing result which,
under favorable conditions (certainly when p =0), yields the analog in
question.

Proposition 14 Let 3 be a finitely generated extension of F and let G be a
differential field with F = 4 < #. Then 79 is a finitely genearted extension
of #*F. If # is separable over F and over 9, then % is a finitely generated
extension of F.

Proof First suppose that & is infinite. If Bis a differential inseparability
basis of @ over &, then B is finite and # is finitely generated over # (B)
(and in the separable case # is, by Section 10, Theorem 5, separable over
F (B)). Hence we may replace & by & (B), that is, we may suppose that 4
is differentially separable over . This being done, let I' be a differential
inseparability basis of # over # and hence of # over 4. Then # is finitely
generated over the differential field #' = #(I') (and in the separable case

ok 5 b
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is, by Section 10, Theorem 5, separable over &’ and over the differential
field @' = F(I')). Also, # is differentially separable over #'. By Corollary
2 to Proposition 13 we may transform A to a set of derivation operators 4’
and then restrict A’ to a proper subset A, so that J# is finitely generated as
a A, -field extension of #'. Arguing by induction on Card A, we may suppose
that #°% is finitely generated over #7 %" as a A, -field extension, a fortiori
as a A’-field extension, and therefore as a A-field extension (and in the separ-
able case, similarly, we may suppose that ¢’ is finitely generated over ).
However, by Section 9, Corollary 4 to Theorem 4, #°¥ and #?F’ are
linearly disjoint over #?# (and in the separable case, since by Section 10,
Theorem 5, I is differentially algebraically independent over & and over &,
@ and " are linearly disjoint over &). Hence we conclude without difficulty
that #°¢ is finitely generated over #°% (and in the separable case that &
is finitely generated over %).

Now suppose that & is finite, so that p # 0 and & = €. Let £ be an element
of an extension of # with ¢ differentially transcendental over J#. Clearly
# and F (¢) are linearly disjoint over &, as are 5 and %{t> over ¥4, and
also #°% and #PF(t> over #PF. Furthermore, F{¢) is infinite. Now,
# (t) is finitely generated over # <t (and in the separable case, by the linear
disjointness, # {t) is separable over F {1} and over 4<{¢>). Hence by what
we have already proved # (t)PF{t) = #PF(t) is finitely generated over
H P F (> = #PF (1) (and in the separable case ¥ (1) is finitely gen-
erated over & (1>). It follows by the linear disjointness that #°% is finitely
generated over #°% (and in the separable case that ¢ is finitely generated
over %).

Corollary 1 Let 9 be a finitely generated extension of #, and let 9 denote
the field of constants of 4. Then 9 is a finitely generated field extension
of 9°%.

Proof Wehave F < 9 < ¥, so that, by the proposition, the differential
field ¥°- %P = F9 is a finitely generated extension of ¥*F. Hence there
exist finitely many constants i, ..., d, € 2 suchthat F9 = ¢ Fdy, ..., dp) =
F.4°%4(d,,...,d), so that by Section 1, Corollary 2 to Theorem 1, 2 =
YrE(d,, ..., d,).

Corollary 2 Let 4 be a finitely generated separable extension of &, and let
F° denote the algebraic (= separable) closure of & in 9. Then 9 is separable
over F° and [F° . F] <.

Proof ¥ is separable over #° by Section 2, Corollary to Proposition 2,
and therefore the second part of Proposition 14 applies.
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EXERCISES

1. Give an example of an extension ¥ =% (n), generated by a single
element, of an ordinary differential field %, which has finite transcen-
dence degree but which is not differentially separable. (Hint: Let
p#0, let % contain elements ¢, (k€ N) such that &t FP(cocicn)
and consider the ideal p = (" —co, ¥ "=,y —c,,...) of F{y} (see
Chapter 0, Section 3, Lemma 2).)

2. Let A, be a set consisting of all but one of the elements of A. Show by
example that & can be a finitely generated differentially separable (i.e.,
A-separable) extension of % without being finitely generated as a A -
field extension. (Hint: Let A consist of 8, and §,, A, consist of &,
alone. The differential ideal [, J, y] of # {y} is prime (see Chapter I,
Section 6, Exercise 5). Take ¥ = Q(F {¥}/[6,5,5]).)

3. Show by example that the condition that % be infinite cannot be omitted
from Corollary 2 of Proposition 13. (Hint: Let A consist of §, and J,
and let # be the prime field of characteristic 2. Observe that the differen-
tial ideal p = [0,6,5,,0,%y;,+8,0292,0,0,y3+08,°y;]1 of F{y(,y2, 53}
is prime, and take & = Q(F {y,,,¥3}/p).)

4. Let p#0, and let # = & («) with « differentially transcendental over
F.Set 9 = AP F . Show that 9 is not a finitely generated extension of &.

5. Let ¢ be differentially transcendental over #.

(a) Let ¢ be an extension of F with ¥ < # (¢ such that F () is
separable over 4. Show that ¢ is generated by a set of two elements.
(Hint: Use Proposition 14 and Exercise 1 of Section 10.)

(b) Show that when CardA > 1 and §,,0, are distinct elements of A
then the extension # (5, 1,6, of F is not generated by one element,
and therefore the result of part (a) can not be improved. (When CardA = 1
and p = 0, an improvement is given by Ritt’s analog of Liiroth’s theorem.
See Chapter 1V, Section 7, Exercise 2.)

6. Let ¥ be a differential vector space over # that is finitely generated (as
a differential vector space), and use the notation and terminology of the
Exercises of Sections 8, 9. Let A, < A, CardA, = CardA—-1.

(a) Prove the following analog of Proposition 12: Every element of ¥~
is differentially linear over [0] if and only if the A -dimension of ¥ is
finite.

(b) State and prove the analogs of Proposition 13 and its two
corollaries.

(c) Show that every differential vector subspace of ¥ is finitely
generated.

(d) Let ¥, denote the set of all elements v € ¥ with dv =0 (5 € A).
Show that ¥} is a finitely generated vector space over 4.

Ao
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12 Differential inseparability polynomials

For finitely generated extensions it is possible to refine the notion of dif-
ferential inseparability degree. We shall do this in Section 13 by attaching
an object to each finite family of generators, and then showing that the object
is independent of the family. In the present section we attach to each finite
family n = (n,,...,n,) of elements of an extension of # a numerical poly-
nomial {see Chapter 0, Section 17) that reflects some of the (differential)
inseparability properties of », and which is used to introduce the refinement
mentioned above. This polynomial, which bears an analogy with Hilbert’s
“characteristic polynomial” in algebraic geometry,® is not an invariant of
the extension; it depends on the family and not merely on the differential
field # <n). But it does, as indicated above, carry certain invariants with it.

Theorem 6 Let n =(n,,...,n,) be a finite family of elements of an extension
of & . There exists a numerical polynomial w,, z with the following properties.

(a) For every sufficiently big s € N the inseparability degree (see Chapter 0,
Section 2) of F((0n)scosy, 1< <n) Over F equals w,,5(s).

(b) degw,;» <m (= CardA).

(¢) If we write wyz=7Yocicm@(*)), then a, equals the differential
inseparability degree of F (n) over F.

(d) If p is the defining differential ideal of n in F{y(,....,¥u}, if Ais a
characteristic set of p relative to an orderly ranking of (y,...,y,), and if for
each y; we let E; denote the set of all points (e, ..., e,) € N™ for which 65 --- 8 y;
is a leader of an element of A, then (see Chapter 0, Section 17, Lemma 16)
WyyF = L1 <j<n Vg, — b, where be N. If p=0, then b= 0.

Proof For any A€ A we have A(y) =0 and S,(n) # 0. Therefore w, (1)
is separably algebraic over F ((0n,)sce, 1 <;j<n oy, <u,)- Repeated differentiation
shows that if v is any derivative of a leader of an element of A, then v(y) is
separably algebraic over & ((81,)sc0, 1 <j<n 0y, <»)- L€t V denote the set of all
derivatives fy; (9 € ®, 1 <j < n) that are not derivatives of any u, (4 € A),
and let V'(s) denote the set of all 8y; € V' with ordf < s (s being any natural
number). It follows from the above that & ((6n,)sce(s), 1 < j<n) IS Separably
algebraic over # ((v(m),evs)-

Let W denote the set of all we V such that only finitely many derivatives
of w are in V. By Chapter 0, Section 17, Lemma 16, W is finite. Therefore
we may fix r € N so that W < V(r). Then ¥(r) is finite and therefore has a
minimal subset V"’ such that each w(n) with we V(r) is separably algebraic

3 See, e.g., O. Zariski and P. Samuel, ‘“Commutative Algebra,” Vol. II, Chap. VII, §12.
Van Nostrand, Princeton, New Jersey, 1960.
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over F((0M)sery-vimuyn): I PEP A F[(V=V(r))w V'], then, by the
minimality of ¥, 8P/0v’ e p for every " € V. However, if veV—=V(r), then
veV—W and v is higher than every element of ¥, and it follows from
Chapter I, Section 10, Lemma 9, that éP/dv € p. Thus, (2{n)sev-v(ryuv- is
separably independent over #.

If p contains a nonzero element P reduced with respect to A, then S, =
3P/dup is an element of p (by Chapter I, Section 10, Lemma 8). Choosing P
of minimal degree, we see that we must have 0P/dup = 0, whence p # 0.
Put the other way around: If p =0, then p does not contain a nonzero
element reduced with respect to A. In particular, if p = 0, then V' = V/(r).

By the above, there exists an 5" € N with s’ > r such that each w(n) with
w e V(r) is separably algebraic over F ((2(1)ye(vis) - vy o). It is clear now
that, for any se N with s = 5, (0(1))se(vis)- vy 1S a0 inseparability basis
of Z((9n)sces), 1<j<n) OVET F.

For each y; the number of derivatives d{' - 8imy, that are in V(s) equals
the number of points (i, ..., iy) € N™ with i +---+ i, < s that, in the product
order on N™, are not greater than or equal to any point of E;. Therefore (by
Chapter 0, Section 17, Lemma 16) for all sufficiently big s € N the inseparability
degree of F ((01,)scocs, 1< <n) OVEr F equals Card((V(s)-V()) v V)=
Card V(s) — Card(V(r)= V") = 21 <j<n wg,(s) = Card(V(r)—V"). The poly-
nomial ’

Wyr = y, wg,— Card(V(r)=V")
1<7%n
obviously has the properties (a), (b), and (d) described in the theorem.

To establish (c), let d denote the differential inseparability degree of & (1)
over #. Permuting the indices, we may suppose that 5,,...,1, form a dif-
ferential inseparability basis of # (n) over #. For eachindex jwithd <j <n,
n; is differentially separable over F Ny, ...,n4y; by Section 7, Proposition 7,
there therefore exists a §; € @, of order say r;, such that

0,1, € F (Myy 1> (BN s c 0,09, <09,)-
Fixing 4 € N sufficiently large we then may write
;n; € F((On)scom. 1 <isa>(IM))sce, ay,<o,-yj)~

Repeated differentiation shows that if 6'y; is any derivative of 6;y; with
ordd =r">r;, then

9”!,‘ € 9_"((971.')“9(7'—',“),xsisa»(grlj)ose,oyj<a'y,)~
It follows that if s€ N and s > max(rg4y,...,r,), then

y((gr’j)vse(:),lian) < y((er’i)aee(.ﬂ-h),1$i$d’(gr’j)OeO(s)—9(s—r,-)8,~,d<j$n)‘

- ko IR <t

(AN
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Therefore, for all sufficiently big s € N,
wy#(s) < d-Card@(s+h) + ) Card(O(s) —O(s—r))

d<j<n

o e

so that a,, < d. On the other hand, (81,)sca(s), 1 <i<a 1S Separably independent
over #, so that, for big se N,

w5 (s) > d- Card @ (s) = d(s ;’")

whence a,, > d. This shows that a, =d, and completes the proof of the
theorem.

We shall call the polynomial w,, 5 the differential inseparability polynomial
of  over #. When 7 is separable over # (i.e., & (n) is separable over #),
then for every se N the inseparability degree of & ((67,)scocs), 1<j<n) OVEr
F coincides with its transcendence degree. In this case we shall call v, 5
also the differential transcendence polynomial of n over #.

If A’ is the set of derivation operators obtained by transformation of A
by an invertible matrix over %, and if @'(s) denotes the set of all derivative
operators of order less than or equal to s formed with the derivation operators
in A, then & ((0n,)sc0(s). 15j50) = F((8'n)o co(s), 1 <j<n)- Therefore the A-
and A’-inseparability polynomials of n over & coincide. In other words, the
notion of differential inseparability polynomial is invariant under trans-
formation of A by an invertible matrix over %.

It is easy to see that if &' > # is a differential subfield of an extension
of & (x> such that #’ and #(n) are linearly disjoint over & (or even
algebraically disjoint, provided # (x) is separable over #), then w,, =

W5 -
Proposition 15 Let n=(n,,....,n,) and { =({,,...,{,) be finite families of
elements of an extension of F.

(a) If heN and r’jegr((BCk)aeo(h),lﬁkﬁr) (1 €j<n), then wyg(X) <
w7 (X+h).

(b) If Fnd = F LD, then there exists an h e N such that wys(X—h) <
w5 (X) < wys(X+h).

Proof Under the hypothesis of (a) we have
f((gﬂj)ose(s),mjs:-) < y((BCk)OEO(sﬂ-h).lﬁkﬁr)’
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whence w,,5(5) < wyz(s+4) for sufficiently big s: this proves (a). Under
the hypothesis of (b) there exists an 4 e N sufficiently big to ensure that
n; € F (9 )acom, 1 s (1< j<mand e F ([0nocom. e (L Sk <r);
therefore (b) follows from (a).

In particular, we see that if F(n) =F (), then w5z = Wys.

EXERCISE

|. Let ¥ be a differential vector space over &, and use the notation and
terminology of the Exercises of Sections 8 and 9 and Exercise 6 of
Section 11. Let ® be a finite subset of ¥". Prove the following analog of
Theorem 6: There exists a numerical polynomial wg with the following
properties: (a) For every sufficiently big s € N the vector space over %
generated by ©(s)® has dimension We(s). (b) degwe <m. (c) If we
write wg = So<icm @& (X7"), then a, is the differential dimension of [®].
) Ifwvy,...,v, denote the elements of @, and | denotes the set of all
homogeneous linear differential polynomials in F{y,,...,y.} that vanish
at (vy, ..., 0,), and A is an autoreduced subset of | of minimal rank relative
to an orderly ranking of (yy,...,¥,), and, for each y;, E; denotes the set
of all points (e, ...,e,) € N™ such that 81 --- 8y, is a leader of an element
of A, then we =Y 1 <j<n WE,-

13 Differential type; typical differential inseparability degree

Let ¢ be a finitely generated extension of #. Choose a finite family n =
(1y, .., of generators of ¢ over #. It is an immediate consequence of
Section 12, Proposition 15, that the quantity T = degw,, =, which is an integer
greater than or equal to — 1, is independent of the choice of n, that is, depends
only on % and #. We shall call ¢ the differential type of 4 over F.

We may write w5 = Socic. &(*;), where each g;e Z. If t# —1, then
a,>0; if t=~1, we adopt the convention that a, = 0. Proposition 135
shows that a, also is independent of the choice of n. We shall call a, the
typical differential inseparability degree of & over #. If ¢ is separable over
&, we also shall call a, the typical differential transcendence degree of 4
over #. _

By what we have seen at the end of Section 12, these two notions are in-
variant under transformation of A by an invertible matrix over . Also, if
% is an extension of % contained in some extension of ¢, and if #' and ¢
are linearly disjoint over & (or even algebraically disjoint, provided ¢ is
separable over #), then the differential type and the typical differential
inseparability degree of & over # equal those of F'9 over & ‘.

s e e e
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The following theorem justifies the terminology somewhat.

Theorem 7 Let F be infinite, and let 4 be a finitely generated extension of
F of differential type t.

(@) If t=—1, then 9 is a separable algebraic extension of & of finite
degree.

(b) Ift# —1 and d* denotes the typical differential inseparability degree
of 4 over F, then there exists a set A*, consisting of © linearly independent
linear combinations over € of the elements of A, such that 4 is a finitely gen-
erated A*-field extension of F of A*-inseparability degree d*.

RemMArRK 1 The hypothesis that & be infinite is not needed for (a).

ReEMARK 2 The proof shows that the txm matrices over ¥ yielding
sets A* as in the theorem, form a set that contains a nonempty open set,
relative to the Zariski topology, in the space ¥™ of all txm matrices
over ¥.

Proof Let n=(n,,...,n, be a family of generators of ¥ over #. If
7= —1, then w,,5 =0, so that for all sufficiently big s € N the inseparability
degree of F ((0n)scos). 1 <j<n) Over F is 0. In particular, each 7, is separably
algebraic over #. However, if « is separably algebraic over #, then dx &
F(a) (0 A). Therefore 4 =F (n) = % (n), whence ¥ is separable, al-
gebraic, and of finite degree over &£.

Suppose now that 0 < t < m. If the differential inseparability degree 4 of
4 over & is greater than 0, then, by Section 12, Theorem 6, t =m and
d* = d. In that case, transformation of A by any invertible mx m matrix
over % yields a set A’ of m derivation operators such that & is a finitely gen-
erated A’-field extension of # of A’-inseparability degree d. Assume then
that d = 0. Let (¢;), <i<m, 1 <-<m D€ an invertible matrix over &, let 8,/,...,
3, be the linear combinations of the elements §,,..., 6, of A determined by
the conditions &, = ¥, <;r<m ¢ 0p (1 i< m), and let A, denote the set
consisting of the m~1 derivation operators ,/,...,0,-,. We shall show
that (¢,) may be chosen so that ¢ is a finitely generated A,’-field extension
of & having A,’-type t and typical A ’-inseparability degree d*. This will,
clearly, suffice to prove the theorem.

By Section 11, Proposition 13, there is a nonzero homogeneous polynomial
ge¥[X,,...,X,] such that if g(cyp,.... Cpm) # 0, then for each p;

i+1 { tim
O nj € 5"‘((5/1" O ”j)it+»--+i,,.$r,-+l,i,,,$r,)’

where r; denotes a suitable natural number. It follows that then the finite
family { = (8 n)o<isr, 1<j<n Senerates ¢ as a A 'fleld extension of F.
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Denoting the set of all derivative operators s '-'5;‘;"' with iy 4+ i, <s
by ®'(s) and the set of all derivative operators &{*---d,m7" With iy + -
+i,_,<sby @,’(s), we readily conclude that whenever r > r;, then

din; € F(0,(n;,0,/(r— D énnys e @/ (r—r)) dyiny).
Differentiating s—r times with derivation operators in A" we find, for any
s> r, that if " € @(s), then
&'n; € 97(91’(5) njs @, (s— Dé s 91'(5_",') 5::'711'),
so that
?((e,nj)e’so'(s),1<j$n) < 9'((9115;5'Ij)a,'se,'(s),osisr,,xsjs..)

for all sufficiently big s € N. Denoting the A,’-inseparability polynomial gf(
over # by wy s, We therefore have o5 < @yz. On the other hand, it is

clear that
3"—((61,5:’lj)o,'ee,'(s),osisr,,1sjsm) < ?((e’rlj)ﬁ'ee'(s+rj),l$j$m)
< ‘g:((e,rlj)o'ee'(s’+ro),1$j$m)a
where ro = max(ry, ..., r,), so that wy5(X) < W,y 5 (X +70). It follows from

these two inequalities that & has A, ’-type © and typical A ’-inseparability
degree d* over &.

EXERCISE

1. Let ¥ be a finitely generated differential vector space over %, and use
the notation of Exercise 1 of Section 12. For any choice ® of a finite set
of generators of ¥/, let T = degwe and write wg = Yo<ice ai(*7)-

(a) Show that T and a, do not depend on the choice of ®.
(b) State and prove the analog of Theorem 7.

P A LT T T (e,

CHAPTER Hl

The Basis Theorem and Some Related Topics

There is no direct analog for differential polynomials of the Hilbert basis
theorem for polynomials. There is, however, a weakened analog, the basis
theorem of Ritt and Raudenbush. In this chapter we prove a very general
version of this theorem. The Ritt—-Raudenbush theorem and the known
generalizations of it are corollaries of the present version.

The basis theorem and the lemma on which it is based are applied to the
following varied topics: behavior of prime differential polynomial ideals
under extension of the differential field of coefficients, differential fields of
definition of differential polynomial ideals, universal extensions, and dif-
ferential specializations.

Throughout the chapter R denotes a differential ring, and ¥ denotes a
differential field for the characteristic of which we write p and for the field of
constants of which we write €. For & as well as for F we denote the set of
derivation operators by A, the set of derivative operators by @, and the set of
derivative operators of order less than or equal to s by ©(s). The letters y and z,
with or without subscripts, stand for differential indeterminates.

1 Differential conservative systems

Let _# be a differential module over the differential ring 2. By a differential
conservative system of # we shall mean a conservative system of .# (see
Chapter 0, Section 7) every element of which is a differential submodule of .#.

We shall be interested exclusively in the case in which # = 2. If € is a

121
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differential conservative system of #, then the elements of € are differential
ideals of 2 as in Chapter 0, Section 7, we call them QC-ideals.

The set of all differential ideals of 4 is a differential conservative system
of #. So is the set consisting solely of the element .

Since the set of all perfect ideals of # is a conservative system of A, it
follows that the set of all perfect differential ideals of 2 is a conservative
system of 2, and therefore a differential one. If tis a perfect differential ideal
of #, and s e #, then by Chapter I, Section 2, Corollary to Lemma I, t:s
is a perfect differential ideal of &. Therefore the set of all perfect differential
ideals of # is a perfect differential conservative system of R (see Chapter 0,
Section 8).

Let T be a subset of . The smallest perfect differential ideal of % con-
taining X is called the perfect differential ideal of # generated by X, and is
denoted by {}, or, when there is no ambiguity, by {Z}. In other words, if
we denote the set of all perfect differential ideals of # by €, then {Z} = (Z)¢.
The set £ is said to be a set of perfect differential ideal generators of {Z} or,
if = is finite, a perfect differential ideal basis (or simply a basis) of {Z}.

A description of {I} can be given by defining recursively:

(X}, is the set of all x & # such that x" € [Z] for some ne N;

{Zher = {{E}k}l'

Then it is easy to see that {E} = {J {Z},. When # is an overring of Q, the
nature of {Z} is especially transparent, namely, {Z} = {Z},. This is an im-
mediate consequence of Chapter I, Section 2, Lemma 2.

Let o be a differential algebra over #. The set of all perfect differential
ideals of &7 and the set of all & -separable ideals of & are perfect conserva-
tive systems of &, and therefore their intersection is. Thus, the set of all
F-separable differential ideals of sf is a perfect differential conservative

system of .
Let £ be a subset of o7. The smallest & -separable differential ideal of &/

containing X is called the F-separable differential ideal of s generated by X,
and is denoted by {Z} 5 or, when there is no ambiguity, by {X},5. Of course,
when p =0 then {I},; = {£}. When p # 0 a description of {Z} 5 can be
given by defining recursively:

{Z}/5 is the set of all x e o for which there exists a relation 3 x;”¢; e [Z]
with (c,) a family of elements of % linearly independent over #7 and with
(x) a family of elements of &/ at least one of which equals x;

@ = (D
Then {Z},; = {J{Z}%. Indeed, consider any finite family () of elements
of & linearly independent over #°. Because «//{Z},5 is separable over #,

W**mﬂmm-#mm ST
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(¢;) is linearly independent over (&/{L}z)". Therefore if 3 x7c e {Z},;,
then each x; € {Z}, 5. This shows that {Z}/‘JQ < {Z},7 and therefore, through
an easy induction argument, that the union u = | {Z}/ has the property
that u < {Z},>. On the other hand, if ¥ xfc¢;eu, then 3 xPe; e (T} for
some k, whence each x; e {Z}!%" " < u. Thus (&//u)” and € are linearly dis-
joint over #7, so that by Chapter I, Section 2, Proposition 1, the differential
algebra «//u over & is separable. This shows that the ideal u is #-separable,
so that u> {Z}, 5.

EXERCISES

1. Let o =% {(y);c;} be a differential polynomial algebra over #, and
. be a subset of 7. Show that if each element of £ is homogeneous then
[£], {Z}, and {Z£},; are homogeneous ideals.

2. (Ritt [95, p. 146]) Let F,,....,F.e #{y,,...,y,} and suppose that @
is independent on & . Show that there exist n+ 1 linear combinations
L= Fi++(,F, (I1<ig<n+l) of F,...,F, over & such that
{Fy, ... F,} ={L,...,L,y}. (Hint: Set e = max,¢.¢,0rdF and fix
seNsothat (n+ DCL™ > nC* 4. Let (Zy); <i<ns 1,1 <xgr be a family
of differential indeterminates over F{y,...,y,}, let M, =z, F +--
+2z;, F, (1 i< n+1), and consider the ideal a generated by

oM, BeB®(s),1<ign+])

in the polynomial algebra

R = ng'-|:(6’)’j)ae(=:(s+e),1sjsm(elm)eee(s),1si<n+1,1sksr]
over #. Show that if (1 ;),({s.:.)) is @ generic zero of a prime ideal p
of R with a < p and F, ¢ p, then

Co,i,x € y((Ce',i,k.)G'ee(s),2<k<r)((n0’,j)0'ee(s+e).lSjﬁn)
forall@ e ©(s), 1 < i< n+1,and infer that a contains an element B, Fi»,
where d,e N, B, e R, B, # 0, and B, is free of every dy;. Conclude that
there exist a nonzero C e Z {(za) <i<n+ 1.1 <k<rs and an fe N such that,

for every k, CFJ e [M,,...,M,, ] in FLrhcicn Edicicnrt, 15kr)s
and then take elements {, € # such that C(({,)) # 0.)

2 Quasi-separable differential ideals
The purpose of this section is to prove the following lemma and its corollary.

Lemmal Let & =R{y,,...,y.} be a finitely generated differential poly-
nomial algebra over R, and suppose given a sequential ranking of (y, ..., Va)-
Let p be a prime differential ideal of & that is quasi-separable over &, let A



124 [11 THE BASIS THEOREM AND SOME RELATED TOPICS

be a characteristic set of p, and let V denote the set of derivatives By; that are
not proper derivatives of any leader u, with A< A. Then there exists a finite
set Y < V such that every element of p that is reduced with respect to A is in

the ideal (p 0 Z[Y]) of &

Remark If &/p is of characteristic 0, the lemma is trivial, even when it
is strengthened by omitting the requirement that the ranking be sequential
and by taking Y to be the empty set. Indeed, if there existed an element of p
reduced with respect to A and not in (p N &), then there would exist one,
call it P, of minimal rank. The separant Sp = dP/0up would be in p by
Chapter I, Section 10, Lemma 8. By the minimality of the rank of P then
S, would be in (p N #), and by the hypothesis on the characteristic of &/p
this would force the contradiction that Pe(pnR).

Proof Assume the conclusion false. For each se N let V(s) denote the
set of all elements 8y; € V with ord @ < s, and let g, = Card ¥'(s). Because the
conclusion is false, for each se N there exists an s € N with s’ > s such that
some element of p n #[¥(s)] is not an clement of (p A Z2[V(5)]). In other
words, if f: & — &/p denotes the canonical homomorphism, then the tran-
scendence degree of f(R[V(s))]) over f(R[V(5)]) is less than g, —g;. It
follows that there exists an infinite strictly increasing sequence of natural
numbers s, 5, ..., s, ... such that the transcendence degree of f(Z[V(s®* 1))
over f(Q?[V(s(”)]) is less than or equal to Guvet—Gym— 1. For any heN
the transcendence degree of /(2 [V (s*)]) over f(R) is then less than or equal
to g+ Tocven{Gsorv—gsen— 1) = gym —h, which is less than g —¢, Pro-
vided 4 > g,. Thus, for every s € N there exists a £ € N with ¢ > s such that
the transcendence degree of f(# [V (1)]) over f(#) is less than ¢,—g;.

Let W denote the set of all we V such that only finitely many derivatives
of w are in V. By Chapter 0, Section 17, Lemma 16, W is a finite set, so
that if s(0) is a large enough natural number, then W < ¥(s(0)). Fixing
s(0) large enough for this to be the case, we see from the final remark of
the preceding paragraph that .there exists an infinite strictly increasing
sequence of natural numbers s(0), s(1), .. , (V) .. such that the transcendence
degree of f(R[V(s(v+1))]) over F(R) is less than gyy+ 1y = 9sev)- Each family
(f(@))sevistv+ 1n-VisoN is then algebraically dependent over f(#). Since the
sets V(s(v+1)) = V(s(v)) are disjoint, and J,en (VO +1D) — V(isM)) =
¥ —¥(s(0)), we conclude that the family (f(¢))yey - v(scoy has infinite algebraic
codimension over Q(f(#)). However, by Chapter [, Section 10, Lemma 9,
this family is separably independent over Q(f(#)). This shows that p is not
quasi-separable over #.

Corollary Let Ry be a differential subring of & over which R is finitely
generated (as a differential ring), and let p be a prime differential ideal of %

Avde e dn B e s e
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whf'ch is quasi-separable over R,. Then there exist a finite set ® < R, a
finite set W < p, and an element uc & with udp, such that p,=
([¥1+ (p 0 Ro[@])):w™.

.Proof Since # is finitely generated over &, there exist a finitely generated
differential polynomial algebra & = 2,{y,, ..., y,} over #, and a surjective
A,-homomorphism g: & — #. The inverse image q=g"'(p) is a prime
diﬁ’e_rential ideal of & containing the kernel of g, so that (see Chapter 0
Section 6, the Remark preceding Lemma 5) q is quasi-separable over & ’
By Lemma 1 there exist an autoreduced set A < q with H, ¢ q and a ﬁnitoe:
set ¥ of derivatives 0y; such that every element of q that is reduced with
respect to A isin (g N #,[Y]). Let x € p. There exists an F e p with g(F) = x
By Chapter I, Section 9, Proposition 1, the remainder £, of F with respect.
to A is reduced with respect to A, and Fe ((F,)+[A]): H,®. By the above
F, e.(q A RB[Y]), so that Fe([Al+(qnR,[Y]): H,®. Applying g we’
obtain the relation x e ([g(A)]+(p n B, [g(Y)]):9(H,)*. Thus, the corol-
lary holds with ® = g(Y), ¥ = g(A), and u = g(H,).

3 Differential fields of definition

A polynomial algebra K[X] = K[(X));.,] over a field K has, as a vector
space over K, a basis consisting of the monomials in X'; an ideal is a subspace.
By a field of definition of a polynomial ideal f is meant a subfield K of K that
is a field of definition of the subspace f relative to the basis of monomials (see
Cl*fapter I, Section 5), that is, that has the property that K- (I n K, [X]) = {.
1t is apparent that if K is field of definition of f, then any field of definition
of £ n K, [ X7 is a field of definition of f, and any field K, between K, and X
is a field of definition of f such that K|, is a field of definition of t n K, [X].

If, furthermore, we denote the canonical homomorphism K[X] — K[X]/t

by f, then (by Chapter 0, Section 10, Lemma 9, applied to theideal f n Ky [X])
J(K,[X]) and K are linearly disjoint over K,. 1t easily follows from this that
if the ideal t of K[ X] with field of definition K, is separable, respectively quasi-
separable, respectively regular, over K, then ¥ n Ko[X] is separable, respec-
tively quasi-separable, respectively regular, over K.
‘ A differential polynomial algebra & {(,);<;} in a family of differential
indeterminates (y;);, over a differential field & is a polynomial algebra in
Fhe family of indeterminates (y)gce, ;c; Over the field #, and a differential
ideal is also an ideal. By a differential field of definition of a differential poly-
nomial ideal ¥ over & we shall mean a differential subfield of & that is a
field of definition of L. It is an immediate consequence of Chapter I, Section 3,
Lemma 3, that the smallest field of definition of a differential polynomial ideal
over % is a differential subfield of F.
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Proposition 1 Let p be a prime differential ideal of the finitely generated
differential polynomial algebra F P, ...» v} over F, with p quasi-separable
over F. Then the smallest field of definition of p is a finitely generated dif-
ferential field extension of the prime field.

Proof By Section 2, the Corollary to Lemma 1, there exist an Le
F{y, ..,yap with L¢pand anseN such that

p=[p 0 FLOy)scow. 1 <i<nl): L”-

By Hilbert’s basis theorem the polynomial ideal p A Z[(0Y)scoes, 1 <j<n]
is finitely generated. Therefore p has a finite subset ® such that p = [®]: L”.
Let &, be the differential field generated by the coefficients in L and in the
clements of @, and let (¢,) be a vector space basis of # over #,. For any
G e p we may write G = 3 G; p; with each G, & #, {y,,...,Vn}- By the above,
there is an r e N such that ['Ge % -(p " F {y,, ..., ¥a}), and by Chapter 0,
Section 10, Lemma 9, this implies that LG, e p N % {yy,---»¥n}. Therefore
each G,ep N F {y,...»¥a}, so that G e FpnF Ay, Va),and F isa
differential field of definition. Thus, we conclude that p has a finitely generated
differential field of definition. Now let %, be the smallest field of definition
of p. By our earlier remarks, %; is a differential field and p N FH{y1, ..o Vs
is a prime differential ideal quasiseparable over %,. Arguing for this ideal
as we just did for p, we conclude that p N Folyy,.-eryn has a finitely gen-
erated differential field of definition %,,. However, %, is a field of defini-
tion of p and is contained in %, Therefore % = For-

4 The basis theorem

We are now in a position to prove one of the main results of this chapter.

Theorem 1 Let R, be a differential subring of & over which R is finitely
generated (as a differential ring). Let € be a perfect differential conservative
system of R. If €| R, is Noetherian, and if every prime G-ideal is quasi-separable
over R, then € is Noetherian.

Proof Assume the conclusion false. By Chapter 0, Section 9, Lemma 8,
there exists a maximal @-ideal n that is not finitely €-generated, and 1 is
prime. By Section 2, Corollary to Lemma 1, there exist a finite d <= A, a
finite W = m, and a u € & with u ¢ m, such that um = ((¥] + (nn %, [®D)e-
By Chapter 0, Section 9, Proposition 3 (applied to the perfect conservative
system €[22, [®] of the ring %, [®]), there exists a finite set A =« m n 2, [P]
such that m A 2 [®] = (A)gjagey, Whence mn 2, [®] = (A)g. Thus,
um < (¥ UA). By the maximality of m, (4, m)g is finitely @-generated. It

R
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follows (by Chapter 0, Section 7, Lemma 6) that there exists a finite set
M < m such that (¥, m)g = (4, M)¢. By Chapter 0, Section 8§, Lemma 7, then

m=1mn Ume=1mn M) = (M) < (¥ uA), M)
=MW uAu M,

so that m is finitely @-generated. This contradiction proves the theorem.

Corollary 1 Let ne N, n # 0, and consider the differential polynomial algebra
S =R{Yy,...,Va} over R. A necessary and sufficient condition that the set of
all perfect differential ideals of & be a Noetherian conservative system is that
the set of all perfect differential ideals of R be a Noetherian conservative system
and, for every prime differential ideal p of &, Q(#/p) be differentially quasi-
perfect.

Proof If the condition is satisfied, then every prime differential ideal of
& is quasi-separable over £, and the theorem therefore applies to the con-
servative system formed by all the perfect differential ideals of &.

Let the condition not be satisfied. If T is a perfect differential ideal of £,
then 1 is a perfect differential ideal of & (see Chapter 0, Section 3), and
St~ R =1. It follows that if-the set of all perfect differential ideals of 2 is
not Noetherian, then neither is the set of all perfect differential ideals of &.
Therefore we may suppose that there exists a prime differential ideal p of #
such that the differential field %, = Q(Z/p) is not differentially quasi-perfect.
Now, % {¥i,....y,} is the differential ring of quotients of (2/p){y,, ..., .}
over the multiplicatively stable set of nonzero elements of #/p, and (%/p)
{y(,.-»¥n} is 2 homomorphic image of &. It follows from Chapter 0,
Section 9, Proposition 2 and its first corollary, that to prove that the set of all
perfect differential ideals of & is not Noetherian, it suffices to prove the
same thing for % {y,,...,y.}- Since %, is not differentially quasi-perfect we
see by Chapter 11, Section 3, Proposition 5, that the characteristic p of %, is
not 0 and there exists an infinite sequence cg, ¢y, ..., ¢y, ... of constants in
F, such that ¢, ¢ F7(cy, ..., i) for every k. Fixing some § € A we see that
the ideals q, = (3,7 —co, (0¥ )P — ¢y, .-, (¥ )P —¢) of Fo{yy, ..., ¥, form an
infinite strictly increasing sequence; each g, is obviously a differential ideal,
and by Chapter 0, Section 3, Lemma 2, is prime (hence perfect).

Corollary 2 Let ne N, n# 0. A necessary and sufficient condition that the
set of all perfect differential ideals of the differential polynomial algebra
F{y1,-..,Ya} be a Noetherian conservative system, is that F be differentially
quasi-perfect.

Proof This is a special case of Corollary 1.
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Corollary 3 A finitely generated extension of a differentially quasi-perfect
differential field is itself differentially quasi-perfect.

Proof Let & be differentially quasi-perfect and ¥ = FAay, .y
. Pns 1,y be differential indeterminates and £ be the set of non-
zero elements of F {ay,...,a,}. There exists a surjective homomorphism
?{yl,...,ynﬂ}a?{al,...,an,y} over &, and if T is its kernel, then
i e F (g ) Also, ZTUF (e, ) = 9 {0} By
Corollary 2, F{y1,--»Va+1} has the property that the set of all its perfect
differential ideals is a Noetherian conservative system. By the above and
Chapter 0, Section 9, Corollary 1 to Proposition 2, % { y} has the same property.
Hence, by Corollary 2, ¢ is differentially quasi-perfect.

Let yy,.

Corollary ¢ LetneNandletpbea prime differential ideal of # {Vis-sVnt-
If p is quasi-perfect over F, then p = {®@)} for some finite set O cp.

Proof By Section 3, Proposition 1, there is a finitely generated extension
%, of the prime field such that if we set po =P O Fol{yi, .2 Va}s then p=
Fpo. By Corollary 3, % 1s differentially quasi-perfect; hence by Corollary 2
there is 2 finite set ® < po such that po = { P}z, .y Then

P> {(D}f{yl,....yn) = ?'({(D}f{yl,...,yn) N %{yb"':yn})
> F {5y vy = FP0 =P
whence p = {®} 51, .. yn)-

Corollary 5 Let neN. The set of all F-separable differential ideals of
F{P1,..-yat is a Noetherian conservative system. If a is any F -separable
differential ideal of F{yi,....Va}s then a = {®} for some finite set < a.

Proof Every prime % -separable differential ideal is quasi-separable over
#, 5o the first assertion follows from the theorem. Thereforea = p, N -—- N p,,
where each p, is an F-separable prime differential ideal, anq by Corollary 4,
», = {@,} for a finite set @, = p;. Hence by Chapter 0, Section 8, Lemma 7,
a={®}n-n{d}={® @}

ReMaRK The first result in the direction of a basis theorem was obtained
by Ritt [79, 81]. Working with a differential field & of.function.s mero-
morphic in a region, and using the language of differential equapons, he
proved (a) that if T is a subset of & {¥(, s Vn}, then the system of dlﬁ”erenQaI
equations G =0 (Ge L) is equivalent to (has the same solutions as) a finite
subsystem, and (b) that if for an element FeF{y, ...,.y,,} every solution of
the above system is a solution of the differential equation F‘= 0, then some
ﬁower of Fis in [Z]. (We shall take up this point of view in Chap.ter.IV.)
This led Raudenbush [73] to formalize the notion of perfect differential ideal

“
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and to prove for an abstract differential field & of characteristic 0 that every
perfect differential ideal of # {y,,...,»,} has a basis. The same conclusion
was obtained by Kolchin [37] for more general coefficient domains (includ-
ing any perfect differential field, and also certain differential rings); in the
same paper a counterexample was given for a nonperfect differential field #.
[t was Seidenberg [108] who reestablished the Raudenbush result for an
arbitrary differential field & by requiring that the perfect differential ideals
be separable over &, that is, who first proved the first part of Corollary 5
above.

EXERCISES

1. Let A, denote the set of all #-separable prime differential ideals of
F{yi,-»Vn}- Show that Card A, = max(N,, Card #). Corollary: If &¥
is a semiuniversal extension of ¥ (see Chapter 1, Section 2), then there
exists a family (&,),. of differential subfields of & such that each &, is
a finitely generated separable extension of ¥, every finitely generated
separable extension of F is & -isomorphic to some &,, and CardA =
max(Ny, Card #).

2. Show that & always has a separable semiuniversal extension & such that
Card & = max(X,, Card #).

5 Differential dimension polynomials

Let p be a prime differential ideal of a finitely generated differential poly-
nomial algebra #{y,,...,y,} over &. The canonical homomorphism of
F{yis-s Yar Into Q(F {yy, ..., yu}/p) maps (y,,...,y,) onto a family y =
(¥, ..., 7a), and maps & isomorphically onto a differential field that we may
thus identify with &. After this identification Q(# {y,,...,¥.}/p) may be
written as F () = F {(J,,-.., J»», and the canonical homomorphism be-
comes the substitution of (¥,,..., ¥,) for (y,,...,y,). The differential insep-
arability polynomial w;, 5 of 7 over # (see Chapter II, Section 12) we now
call the differential inseparability polynomial of p, and we denote it by w,.
We have at our disposal in connection with w, all the results of Chapter I,
Sections 12 and 13. In particular, @, is a numerical polynomial with
degw, < m (the cardinal number of the set A of derivation operators), and
if we write @, = T o<icm @ (¥, then the coefficient a, is the differential
inseparability degree of & (j) over & ; we call this number the differential
inseparability degree of p. The differential type t of % (jy) over & (see
Chapter II, Section 13), which is defined as 7 = degw,, we now call the
differential type of p. The typical differential inseparability degree a, of
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F(y) over F we now call the typical differential I:nseparz.zbilif.y deg.ree of p.

If p is separable over #, we also call w, the differential dzmensto'n po[.y-
nomial of p, call a,, the differential dimension of P, and call a, the typical dif-
ferential dimension of p. Since for a separable finitely generated field .ext.en-
sion the notions of inseparability degree and transcefxdence degree coincide,
we see by Chapter iI, Section 12, Theorem 6, that if for each s e N we let
p, denote the polynomial ideal p N FOy)ecas). 1 <j<nl, then w,(s)=
dim p, for all sufficiently big s € N.

Proposition 2 Let p and p’ be F-separable prime differential ideals of a
finitely generated differential polynomial algebra F{P\, . ya} over F, with
pcyp andp #p'. Then @, > 0.

Proof For each seN let p,, respectively pJ, denote the prime poly-
nomialideal p N & [(0¥)ecos). 1 <j<nds respectwe.ly p nFUByecas. S‘js,,].
Since p and p’ are separable, for all sufficiently big values of s, w, (s} = dim p,
and w,.(5) = dim p,’. However, for all big values of 5, p, = p,” and p, # p,

P s .
so that (by Chapter 0, Section 11, Proposition 4) w,(s) > w, (s). Therefore
wp > wp" - . ' g - . d

The proposition becomes false if the hypothesis of separability is omitte

(see Exercise | below).

EXERCISE

1. Let p# 0, let A be any subset of @, let (¢p)p.n be a family of consFants
in & separably independent ‘over %P, and let p(A) de.note tbe ¥dea1
(((B9)P + coloen) of Z ¥} Show that p(A) is a prime differential ideal
and that ) = (5™, where m = Card A.

6 FExtension of the differential field of coefficients

Let @ be an extension of & and let (¥)ics be a family of diﬁver.ential in-
determinates over 4. We are interested in the behavior of a perfect differential
ideal a of & {(¥)ie;} when & is extended to ¥, that is, we ask about.the
nature of the differential ideal ¥a of % {(y)ie}- The question reduces, in a
certain sense, to the case in which a is prime. Indeed, if T1 is the set of com-
ponents of a, then {by Chapter 0, Section 8, Proposition 1) a = (Noen P;
if Fe%{(y)ie} and we write F = S v Fy, where e_ach Foe F{(y)ies} and
(y,) is a basis of 4 over &, then by Chapter _0, Section 10, Lemma 9, Fe {fa
if and only if each Frea={\pen P that is, each F,fe p.(p e.ﬂ), tha.t is,
Fe%p for every pell; thus, a= Npen #p. The situation 1s especially
good in this respect when [ is finite and a is separable over &, for then (by
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Section 4, Corollary 5to Theorem 1, and by Chapter 0, Section 9, Theorem 1)
M is finite and each p e [T is separable over .

Proposition 3 Let p be an F-separable prime differential ideal of a finitely
generated differential polynomial algebra F{y,,...,y,} over ¥, and let G be
an extension of F.

(a) 9%p is a Y-separable differential ideal of ${y.,...,¥ay. If p is regular
over F, then 4p is regular over 4.

(b) ¥p has finitely many components, and each of them is a 9-separable
prime differential ideal. If v’ is any one of them, then p' N F {y,....,¥,} = P,
and w, = w,.

(c) There exist, independent of 4, an irreducible polynomial P with co-
efficients in & and with some partial derivative not equal to 0, and a differential
polynomial He F {y,,...,y,} with H¢p, such that for each extension 4 of
F, the number of components of Yp equals the number of irreducible factors
into which P splits over 4, and the sum of any two distinct components of 4p
contains H.

Proof For each se N let

A= 'g’_[(e)’j)eee(s),lsjsn], B, = g[(eyj)ose(ﬂ.lﬁs»;]'

It is obvious that @p is a differential ideal. Hence (a) follows from Chapter 0,
Section 12, Proposition 7.

By Section 4, Corollary 5 to Theorem 1, and by Chapter 0, Section 9,
Theorem 1, @p has finitely many components p, ..., p,, these are ¥-separable
prime differential ideals, and ¥p = p, n .-~ p,. It is an easy consequence
of Chapter 0, Section 10, Lemma 9, that ¢-(p n 4;) = (¥p) N B, so that

g(P mAs) = (pl nBs) NN (prmBs)

No one of the ideals p,, ..., p, contains any other so that if s is sufficiently
big, no one of the prime ideals p, n B,,...,p, © B, contains another, and
hence these must be the components of %-(p n 4,). By Chapter 0, Section 12,
Proposition 7, then (p;~ B,) N A, =p N A, whence p, N F{y(, ...,y = P,
and dim(p;n B,) = dim(p n 4,). For sufficiently big values of s the last
equation is equivalent to the equation w,,(s) = @,(s), so that w,, = w,. This
proves (b).

To prove (c) let s5(#%) denote the smallest natural number such that no one
of the ideals p, n Byg,, ..., p, N Byg contains any other. Then for every
s = s(%), the ideals p, N B,,...,p, N B, are the components of -(p n 4.
We shall show below that s(%) is an increasing function of ¢, that is, whenever
% and # are extensions of &F with ¥ < #, then s(¥9) < s(s#). Assuming
this result, let us see how we can prove (c). We may suppose that p # (0),
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for otherwise (c) becomes trivial. By Chapter 0, SecFion 12, F’roposxthn 7(b.),
for each s N there exists an irreducible polynomial P, with coefficients in
% and with some partial derivative not equal to 0, such t.hat for. any ¢ the
number of components of 4-(p N A,) equals the number of irreducible fac.:tors
into which P, splits over ¥. Let &, denote the separable closure of & in %,
let #' denote a separable closure of %, (and therefore of #), and set P =
Py sy I pors -5 Pog denote the compom.ar_lts of %, p, then ¥pyy,..., gpoq are
prime (by Chapter 0, Section 12, Proposition 7(c)). As no ¥py, contains any
other (by Chapter 0, Section 10, Lemma 9), they are the components of %p.
Thus, the number of components of ¥p equals that of %, p. By the result we
are assuming s(%) < s(F’), so that the number of components of % p
equals that of % (p N Ay5), which by the above equals t.he number of
irreducible factors of P over %,. However, by Chapter 0, Section 12, Lemma
12, this last number equals the number of irreducible factgrs of P over 4.
Finally, by Chapter 0, Section 12, Propos_ition .7 (b), there exists an H e_A,.( #
with H ¢ p N A5 such that H is contained in the sum of any two distinct
components of ¥-(p N Ay5-). However, the components of ¥-(pnAysy)
are the intersections with By s, of the components of ¥p. Thus, A ¢ p and
H is contained in the sum of any two distinct components of ¥p.

We now show that s(%) is an increasing function of 4. Let # be an exten-
sion of ¢ and set C,=H#[(0y)scoc), 1 <j<n)- Then Hp= H-Yp =
H-(p aap)=Hp n--nHp,. Ifi#1 thena compoqent q of #p;
cannot be contained in a component g’ of #p;., for otherwnse. we should
havep, =q A G{y, 0¥} 8 A G{y1, s Vn} = Po- Thereformfp,-l, o> Pige
denote the components of #p; (1 <i<r), then the ideals .p,-j.(l S i S r.:
1 <j < g,) are the components of #p. If 5 < 5(%), there exist indices i,{
with i % i’ such that p; A B, = py n B,. For these i,i’ we have

(pir N C) M (Prg 0 C) = #p; 0 Cy=H - (pi0y B) = H# - (pr 0 By)
=#py " C,=pry 0 G,

so that, for some j, p;; " C; S ppy O C, whence s < s(o#). Thus, whenever
5 < 5(%), then s < s(o#), so that s(%) < s(F).

Corollary Let (y);c; be a family of differential indetermx:nates, ‘Iet .([ Diea
be a partition of I, for each A€ A let p, be an F-regular differential ideal of
F{(¥ier,}, and let t be the ideal of F{(¥)ics} generated by \ Jaea Pa- The.n
t is an F-regular differential ideal with t © F {(Jic1,} = P2 (AeA). IfLis
finite, then ©, =2 1 @y, -

Proof It is obvious that t is a differential ideal. By Chapter 0, Section 12,
Corollary 2 to Proposition 7, t is #-regular and rtn F{(Vdier,} = pa
(A€ A). For the final part we may suppose that A consists of two elements,

%)
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say the numbers 1 and 2. Let 7 =(§),., denote the image of y = (y),.,
under the canonical homomorphism & {y} — & { y}/r, so that V1€ Q(F {y}/v)
and r is the defining differential ideal of § over #. Setting 7 = (Pdics, and
V' =(Fier,, we see that v F{(y);e;,) =p, is the defining differential
ideal of 7" over # and p, is that of §” over #. Also, the defining differential
ideal of 3" over # (j') is the F {j )-regular ideal F ("> p;- Now,

trdeg'g’-((e)—’i)ose(n,iﬂ)/y = [rdeg‘9;((6)—)1')650(:),1'&!‘)/‘?

+trdeg9'_((9)71')9&0(:),isl)/g"_((Ofi)ese(s),iell)-

For big values of s € N the first term of the second member here equals w,, (s),
whereas the second term is less than or equal to tr deg F((07)scoes.ic1)|F =
w,, (s) and is greater than or equal to tr deg # (7' ((BFDscesy, i)/ F D =
Oz (539, (8) = 0,,(s). Hence . (s) = w,, (5)+w,, (s).

7 Universal extensions

Let % be an extension of #. We shall say that % is universal over F, or
that % is a universal extension of &, if % is semiuniversal (see Chapter 11,
Section 2, especially the Corollary to Proposition 4) over every finitely gen-
erated extension of & in %. By a universal differential field we shall mean a
differential field that is universal over its prime field.

Our results on universal extensions- depend on the following lemma on
semiuniversal extensions. )

Lemma2 Let &, F' %', & be differential fields with F c F' =« &' < .
If & is semiuniversal over ', then & is semiuniversal over F.

Proof” Let p be any #-separable prime differential ideal of & {¥is 0 ¥a).
By Section 6, Proposition 3, #'p is an & '-separable differential ideal, and
has a component p’ that is an %’-separable prime differential ideal with
P’ 0 F{y ...y} =p. Because &’ is semiuniversal over F’, there exist
elements n,,...,7, € ¥" < & such that p’ is the defining differential ideal of
(M, --5m) in F'{y,,.,y,}. Then p=p' '~ F{y,,...,y,} is the defining

differential ideal of (1,,...,n,) in F{y,,...,y,}. Thus, & is semiuniversal
over #.

Proposition 4 Let &, F', U be differential fields with F < F' = Y.

(@) If % is universal over F', then U is universal over F.

(b) If % is universal over ¥, and F' is finitely generated over &, then %
is universal over &',
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Proof (a) Let # be a finitely generated extension of & in %. We must
show that % is semiuniversal over #. Now, #'#, is finitely generated over
. Since % is universal over #’, then % is semiuniversal over #'%,. By
Lemma 2 then % is semiuniversal over Z,.

(b) If #/ is a finitely generated extension of F~ in %, then &' is also
finitely generated over &, so that % is semiunjversal over &'

We have the following existence theorem for universal extensions.

Theorem 2 Every differential field has a separable universal extension.

Proof Let & be the differential field. By Chapter 11, Section 2, Corollary
to Proposition 4, there exists an infinite sequence (%) o~ of differential fields
such that &% =% and &%, is a separable semiuniversal extension of &
(keN). Then % ={J,n % has a unique differential field structure for
which % is an extension of every &. It is obvious that % is separable over Z.
Let #, be any finitely generated extension of & in %. There exists a ke N
such that %, < &%. Then Fc K Fhu U and %, ,, is semiuniversal
over %,. By Lemma 2 it follows that % is semiuniversal over #,. Thus, % is
a separable universal extension of #. ‘

EXERCISES

1. Let % be a universal extension of &#.
(a) Show that % is separably closed.
(b) Show that if #’ is an algebraic extension of & in %, then % is
universal over .

2. Let % be a universal extension of #. Let &, (ne N) and ¢ be differential
fields such that %, = &, &, , is a finitely generated separable extension
of # (neN), and & = { J,.n %,. Prove that there exists an F-homo-
morphism ¥ = %.

3. Let % be a universal extension of &, let # be a finitely generated exten-
sion of # in %, and let % be a finitely generated separable extension of
% . Show that there exists in % an extension ¢’ of & that is #-isomorphic
to @ such that the compositum #%¥’ is a finitely generated separable
extension of #. (Hint: Write 9 = F {n,.... 1., let p be the defining
differential ideal of (3, ...,7,) over &, and consider #'p.)

4. Let % be a universal extension of %, let %, #,..., %, be differential
subfields of % such that &, = # and & is a finitely generated extension
of Fi_, (1 <j<n)andlet¥; be a finitely generated separable extension
of %, (0 <j < n). Show that there exist differential subfields 4,",9,’, ...,
@, of  such that ¢;' is an extension of Z; that is #-isomorphic to &;

k.
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(0 €£j<n) and the compositum ¥,'9,"--- ¥, is a finitely generated
separable extension of &,. (Hint: Use induction and Exercise 3.)

5. Prove: [f % is denumerable, then & has a denumerable separable universal
extension 9, such that every universal extension of ¥ contains an % -
isomorphic image of %, . Outline of proof: (a) Let % be a universal
extension of & (Theorem 2). Show that for every finitely generated
separable extension ¥ of % in % there exists an infinite sequence
(€,(9)),cn of differential subfields of % such that each &,(%) is a finitely
generated separable extension of ¢ and every finitely generated separable
extension of ¢ is ¢-isomorphic to some &,(¥). (Hint: Use Proposition
4(b), and see Section 4, Exercise 1.) (b) Show that there exists an in-
finite sequence (%,),.n of differential subfields of % such that #, = #,
Z, ., is a finitely generated separable extension of %, and &, , contains
an F-isomorphic image of &,_;(%;) (0 <j< n). (Hint: Define the
sequence inductively, using Exercise 3.) (¢) Let %, =|J,.n %, and
show that %, is denumerable, and is separable and universal over #.
(d) Show that if %’ is any universal extension of %, then there exists
an Z#-homomorphism %, — %'. (Hint: Use Exercise 2.)

6. Let p be either 0 or a prime number. Show: There exists a denumerable
universal differential field %, of characteristic p such every universal dif-
Serential field of characteristic p contains an isomorphic image of U,.
This is a special case of the result in Exercise 5.

7. Prove: If & has characteristic O, then two universal extensions of F
always contain universal extensions of % that are isomorphic to each
other over #. (Hint: Let % and %’ be universal extensions of #. The
set of all mappings each of which is an % -isomorphism of an extension
of # in % onto an extension of & in %’ can be ordered “by extension,”
and when so ordered has a maximal element f (Zorn’s lemma). Let ¥~
be the domain and ¥’ be the image of f, and show that ¥ and ¥’ are
universal over %)

8 f-Coherent autoreduced sets

The purpose of the present section is to lay the groundwork for the proof
in the following section of analogs for differential integral domains of some
of the results on specializations described in Chapter 0, Section 14.

Throughout this section & = #{y,,...,y,} denotes a finitely generated
differential polynomial algebra over 4.

Let A be an autoreduced set in & relative to some fixed ranking, and let
t be an ideal (not necessarily a differential one) of &. We shall say that the
autoreduced set A is f-coherent if the following three conditions are satisfied.
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Cl The ideal t has a set of generators that are partially reduced with respect
to A.

C2 [t ([Al+D:HL".

C3 Whenever A, A’ € A and v is a common derivative of u,, Uy, say v =
Qu, = O'u,, then S, 0A4—S,6°A" € ((A,)+%): H\®, where A, denotes the set
of all differential polynomials ©B with B € A, T € O, and tug of lower rank than v.

REmMARK This notion extends one previously introduced by Rosenfeld
[105] for the same purpose. Limiting himself to the case in which Z = &
and p =0, he called an autoreduced set coherent when it is (0)-coherent in
the present sense. For this case this more special notion suffices.

Lemma 3 Let p be a prime differential ideal of & that is quasi-separable
over R, let there be given a sequential ranking of (y,, .y V), and let A be a
characteristic set of p. Then there exists a finite set Y of derivatives of the y;,
each partially reduced with respect Lo A, such that if we set p, =p 0 Z[Y],
then A is &p,-coherent and p = ([A]+ Fp.): Hy®. The set Y may be re-
placed by any larger finite set of derivatives of the y; partially reduced with
respect to A.

RemARk If &/p is of characteristic 0, then the ranking need not be
sequential, and we may take ¥ = . This is evident from the proof and
Section 2, the Remark following Lemma 1.

Proof Foreach A€ A we have S, ¢ p (by definition of characteristic set)
and I, ¢ p (by Chapter I, Section 10, Lemma 8); therefore H, ¢ p. By Lemma
1 we may choose a finite set ¥ of derivatives of the y;, all partially reduced
with respect to A, so that every element of p that is reduced with respect
to A is in &p,, where p, =p N R{Y]; obviously any larger ¥ will do.
Since the remainder with respect to A of any element of p is reduced with
respect to A (see Chapter [, Section 9, Proposition 1), we conclude that
p < ([Al+ ¥p,):H,® and that the condition C3 (with k = &p,) is satis-
field. As the inclusion p = ([A]+ % p,): HL” is obvious, the lemma follows.

Lemmad Let A be a f-coherent autoreduced set in &, and let f-R— R be
a differential ring homomorphism with H J#0. Then A/ is a V-coherent
autoreduced set in 7 =f(RY{Y1s -1 Vn}-

Proof Since H,' #0, A/ is an autoreduced set in ! with Hy, = H';
as the homomorphism G — G’ of & into %1 obviously preserves the con-
ditions C1-C3, A/ is ¥/-coherent.
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Lemma 5 Let A be a t-coherent autoreduced set in &, and suppose that for
each A € A the separant S, is not a divisor of zero in . Then every element
of ([A]+1%): H,™ that is partially reduced with respect to A is in (A)+£): H, ™.

Proof Let Ge([A]+D):H,™ be partially reduced with respect to A
We must show that G e ((A)+1): H,*. We may write .
HAhG = \ Z Cib; 4, + Z D;K;, (M
<isr 15)€s

yhere Cie¥, 0,e® and ord8, >0, 4,€A, D;e ¥, K;e(A)+1, and K;
1s.partially reduced with respect to A. If there exists forJG an equ’ation (I;
w1-th r =0, then certainly G € ((A) +1): H,®. We assume that there does not

exist for G an equation (1) with r = 0, and seek a contradiction.

Let v be the element of highest rank in the set consisting of 6, u, ,..., 8. u
anq suppose that among all possible equations (1) for G oursl’is (;nre Fc;;
which v has lowest rank. Choose the notation so that §;u, is lower than
v for 1 <i<q and fu,, = for 4 <i<r. Multiplying both sides of (1)
by S, we may then write '

S, HA'G = ¥ S, COA+ Y S,D;K;

Psi<q 15jss
+ ) CilS40:4,~5,60,4)+ ) CiS,6,.4,.
qeisr adisr it

From this equation, condition C3, and the fact that H, is a multiple of S
we obtain o

H*G = Z C/o/A/ + Y D/K;+ Eb,4,, 2)
1<7%r 17y

where C' %, 6/e€® and ordd, >0, 4/’ €A, 6/u,. is lower than v
Di'e &, K/ e (A)+f, K,/ is partially reduced with respelct to A, and Ee 5"’
By Chapter I, Section 8, Lemma 5, we may write 6,4, = S, ,v+T where.
T'e & anq T has lower rank than » (and therefore is free ofru, as ’is S
Smce S,, is not a divisor of 0, & may be isomorphically embedded in tere
ring of quotients Z7'S, where X is the set of all powers S (/e N). Substitut-
ing — 7/S,, for vin (2), and then multiplying by a suitable power of H,, we
obtain an equation of the same form as (1) in which either r is replaced l;y 0
or e.lse v is replaced by a derivative of a y; of lower rank than . This contra-
diction completes the proof.

Lemma 6 Let A be a t-coherent autoreduced set in &, and suppose that for
e"ach A € A the separant S, is not a divisor of zero in . Then ([A]+1):H,®
is a differential ideal of &, and is prime, respectively perfect, respectively A@-
separable if (A)+%):H,® is prime, respectively perfect, respectively R-
separable.
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Proof Set a=([Al+D):H,\" and a, = ((A)+1):H.™®. By C2, a=
([A]+[1]): Ha™. Hence (see Chapter I, Section 2, Corollary to Lemma 1)
a is a differential ideal, and a: H,” = a.

Let F,Ge ¥, FGea. Denoting the remainder with respect to A of F,
respectively G, by Fo, respectively G,, we know that Fy Goea and F, G, is
partially reduced with respect to A, so that (by Lemma 5) Fy G, € a,. Hence,
if a, is prime, then Fy or G is in ag, so that F or G is in a, and therefore a is
prime (an even easier argument showing that 1 ¢ a). A similar proof (starting
with F? & a instead of FG € a) shows that if a, is perfect, then so is a.

Suppose finally that ag is #-separable. We must show thata is #-separable,
and we may evidently suppose that a # &. By what we have already proved,
a is perfect. if ae &, a¢a, B€ &, B¢ q, let B, denote the remainder of B
with respect to A, so that By is reduced with respect to A and Bg ¢ a,. Since
a, is #-separable we infer that aB, ¢ a, and therefore (by Lemma 5) that
aB, ¢ a, so that aB¢a. To complete the proof we may suppose that the
characteristic of Z/(an %) is p # 0. We must then show that ¥? and Z are
linearly disjoint (mod a) over #°. To this end let (¢;) be a family of elements
of # linearly dependent (mod a) over &P Then there exist elements D, € &,
not all in a, such that ¥ D/¢;€a. By Chapter 1, Section 9, Corollary to
Lemma 6, there are an exponent e and differential polynomials E; € & par-
tially reduced with respect to A such that H,° D, =E; (mod[A]) for every i.
Not every E; is in aand ¥ E¢; € a, 50 that not every E; is in ay; by Lemma
5, Y Efc; € a,. Since ag is R-separable this implies that there exist elements
a;e # not all in a4 such that ¥ a”¢; € a,. Hence (again by Lemma 5) the
elements a; are not all in a, and Y a/c; € a. This shows that &P and # are
linearly disjoint (moda) over %7, and completes the proof.

EXERCISE

1. Let the hypothesis and notation be the same as in Lemmas 5 and 6. In
addition, suppose that T has a set of generators that are reduced with
respect to A and that each element of A is of degree 1 in its leader.

(a) Prove that every clement of ([A]+D:H,” that is reduced with
respect to A is in B H,\™.

(b) Prove that ([A]+1): H,® is prime, respectively perfect, respectively
R-separable if T:H,” is prime, respectively perfect, respectively Z-
separable.

9 Differential specializations

We suppose in this section that # is a differential integral domain.
A homomorphism of # into a differential field ¢ is called a differential

A e

9 DIFFERENTIAL SPECIALIZATIONS 139

speczja/ization of Z into 4. If Z and % happen to have a common differential
subrlr.xg #A, and the homomorphism leaves invariant each element ofnﬂ}a
the differential specialization is said to be over Z,. v
LeF & =(E)ier and &' =(&);.; be families of elements of # and %, r
specn.vely. If there exists a differential specialization f: 2,{f} > ¢ over’ ﬂé-
Tnappmg ¢ onto ¢’ (that is, having the property that f(g-) = ¢/ for everO
iel), we Sé?.y.that &' is a differential specialization of & ovelr R 'lwhen sucl};
an fexns.ts it is obviously unique. A necessary and sufficient c?),ndition that
;’ be a differential specialization of ¢ over &, is that the defining differential
ideal of { over Z, be contained in the defining differential ideal of &
Ao. Another necessary and sufficient condition is that (8¢,) l;wer
Speciali.zation of (68)gco.icr OVET Ry. Hoeouer B8
If.q“’-ls a differential specialization of ¢ over %, such that & is a differential
fﬁ)e:l;l’lganon;f f’;_}(l)-ve.r Ry, we say that &’ is a generic differential specializa-
over %,. This is the case i i i i i
e {gr(}) — eg zji;f?d only if there exists an #,-isomorphism
The following result is analogous to Chapter 0, Section 14, Lemma 14

Proposition 5 Let R be a differential integral domain, let & = R{y }
be a finitely generated differential polynomial algebra over &, let p ble, an’yé
separable prime differential ideal of & with p N & = (0) ,and let U 55"-
U p. Then there exist a nonzero element ue & and a diﬁ”er’ential polynomia}
Efe yfs:‘od.l that, for every differential specialization f: R — 4 with f(u) # 0
v/ H(EN) is an f(R)-separable differential ideal of &7 = f(R) {y }n ;
containing «U'EY for any nonzero element « ef(é?). hon s e

Pr.oof By Section 8, Lemma 3, there exist an autoreduced set A in p, and
a ﬁmFe set Y of derivatives of the y; partially reduced with respect to A ’such
that if we set. P =pNnR[Y], then p=([A]+Fp,):H,® and A is ,5/’p -
coher_ent; P, is obviously an #-separable prime ideal of Z[Y]. Denote thle
remainder of U with respect to A by U,. By the last part of Lemma 3 we
may suppose that A< Z[Y] and U, e 2[Y], so that H, U, e #[Y] and
H, U, ép,. By Chapter 0, Section 14, Lemma 14, there exist a nonzero
ue#Z and a DeZ[Y] such that, for every specialization f: # — L with
S # 0, p7:(D)® is an f(#)-separable ideal of f(#)[Y] not containin
aH, U9f D’ for any nonzero element a € f(2). :

Con51d~er any differential specialization f: & — % with f(u) # 0. From what
we r‘xave Just seen, it follows that &#7.(p,7:(D/)®) is an f(#)-separable ideal
of .')“’f not containing aH,’ U,/ D/ for any nonzero element « € f(#). By
Section 8, Lemma 4, A’ is an &/ p,/-coherent autoreduced set in &/ ‘ We
now prove that Al is &7 (pf:(DF)®)-coherent. All that we must sho»;/ for
this is that [p,”:(D/)*] = ([A/]+ %7 -(p,7:(D!)®)):(HT)®, that is, given



140 {1 THE BASIS THEOREM AND SOME RELATED TOPICS

any Ge ¥ with G/ € [p,”:(D’)®], we must show that
G e ((A1+ 57 (p,7 (D)) (HA)™
Now, G/ is the sum of finitely many terms Crolf with Ce &, 0€®, Le
#([Y], and I/ e p,/:(D/)™; the last relation here means that (DY) L/ e p,/
for some /e N and this implies (by Chapter [, Section 2, Lemm_a 1) that
(Df)kOLf e [p,’] for some k € N. Thus, (D')*G’ e [p,’]. Since A is 5_/’fp1f-
coherent this implies that (DYGT e ([Af]+5"fp,.f):(.HAf)°°. Denotlilg tfhe
remainder of G with respect to A by G,, we easily infer that (Df)kG0 €
([AT]+S p)):(H, )™, whence (by Section 8, Lemma 5) (D) Gyl e
(AN + S, ) :(H)™ = (7 p./):(H\)™. Hence
Go' € ((yfmf)i(HAf)m)i(Df)” = (T pH):(DY?):(H)”
= (yf'(Pxfi(DI)m))i(HAf)m,

so that G'e ([A’]+5"f~(p1f:(Df)°°)):(H,;f)°°. This shows that A is
#7-(p,f:(D’)*)-coherent. . N
By Slection 8, Lemma 6, then ([Af]+5"f~(p1f:(Df) N:(H™ is anf(Z)-
separable differential ideal of &/ that (by Lemma 5) dges r}ot contain
aH,’ Uy D’ for any nonzero element o e f(®). The same'is evidently trge
of ([Af]+5"f-(plf:(Df)“’)):(HAfo)“" However, p < ([Al+%p):H\",
and therefore p/ < ([A]+ %7 p,):(HA )™, whence
pf:(HAfo)‘” c ([Af] + 7. (plf:(Df)‘”)):(HAfo)‘”.
Since the last inclusion can evidently be reversed, we see that p’: (H,' DN)® =
([A1] + P (p (D)) :(HA DYY*. Setting E= H, D, we t‘hl'ls see that
p’ :(E7)* is an f(2)-separable differential ideal of &/ not containing aUp’ Ef
(hence not containing «U’ EX) for any nonzero element « e f(R).

From Proposition 5 we deduce the following theorem (analogous.to
Chapter 0, Section 14, Proposition 9(c)) on the possibility of extending
differential specializations.

Theorem 3 Let R be a differential integral domain, let R, be a differential
subring of R over which & is finitely generated and separable, and let u be a
nonzero element of #. There exists a nonzero element uy of R, such that. every
differential specialization fq : Ry~ U with U a semiuniver‘sal exte'ns'zon .of
0(fo(Ro)) and fo(ug) # 0 can be extended to a differential specialization
f: R — U with f(#) separable over f(Ro) and f(u) # 0.

Proof By hypothesis we may write & = Rg M5 ---»Na}> a0d the defining
differential ideal p of (7,...,n.) in the differential polynomial algebra
Ro{¥1»---»Va} is prime and R,-separable with p N &y = (0). Also, there
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exists a differential polynomial Ue Z,{y,,...,ynt With U(ny,....,n) =1,
and obviously U ¢ p. By Proposition § there exist a nonzero element u, € %,
and a differential polynomial Ee Z4{y,,...,»,} such that, for every dif-
ferential specialization f, : Z, — % with fy(uy) # 0, p/°:(E/9)™ is an f,(%R,)-
separable differential ideal of f,(#,){y, ..., y,} not containing aU/° for any
nonzero element « e f,(#,). The set €, consisting of the unit ideal and all
fo(R,)-separable differential ideals of f,(%,){y,,..,V.} not containing any
nonzero element of f, (%), is a perfect differential conservative system (see
Chapter 0, Section 6, Lemma 5), and p/°:(E7°)® & €. Therefore there exists
a G-component p’ of p/°:(E/%)® with U/° ¢ p’ (see Chapter 0, Section 8,
Proposition 1). If % is a semiuniversal extension of Q(f,(2,)), then there
exist elements n,’,...,n,’ € % such that p’ is the kernel of the substitution
homomorphism

6 fo(R) {715 r ¥a} = Fo(Ro) (s -0’}

Denoting the homomorphism G G of Ro{y;,....,»,} into fo(R,)
{y1,...,¥a} bY @,, We see that the composite homomorphism

oo Rolyis-¥a} = fo@R){ny's oM’}

has prime kernel containing p but not containing U. Since the kernel of the
surjective substitution homomorphism

T go{yl""’yn} - g(){r’h""rln} =2

is p, there must exist a homomorphism /: & — f,(Zo) {n’, ..., n,'} such that
fot = go@,. It is now a simple matter to see that f agrees with f, on %,
f(2) is separable over f(%,), and f(u) # 0. This proves the theorem.

REMARK The earliest version of Theorem 3, proved by Ritt [91], dealt
with the case in which 2, is 2 finitely generated differential algebra over an
ordinary differential field of functions meromorphic in a region of the complex
plane. This was extended, independently and by different methods, by Seiden-
berg [110] and Rosenfeld [105], to the situation in which 2, is a finitely
generated differential algebra over an arbitrary differential field of charac-
teristic zero. The above proof of the present general theorem entails a further
development of Rosenfeld’s methods.

It is noteworthy that the analog for differential specializations of Chapter 0,
Section 14, Proposition 9(b), is false. There exist elements 7, { of 2 universal
extension % of & having the following property: 0 is a differential specializa-
tion of n over & but there does not exist an « € % such that (0,a) is a dif-
ferential specialization over & either of (1, ) or of (5, {™"). This is more easily
shown at a later stage (see Chapter IV, Section 6, Exercise 6(c)).
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Another curious phenomenon is the existence of elements n,{ e % such
that O is not a differential specialization of  or { over & but is a differential
specialization of n{ over & (see Chapter 1V, Section 6, Exercise 7(d)).

10 Constrained families

A family 5 = (1,)ic; of elements of an extension of F will be said to be
constrained over F, ot to be F-constrained, if n is separable over & (that is,
F(n) is separable over #) and there exists a differential polynomial Be
F {(3)ics} With B(n) # 0 such that B(n’) = 0 for every nongeneric differential
specialization 5’ of n over # that is separable over & . Any such B will be
called a constraint of n over %. (When Card/ =1, that is, when the con-
strained family n has just one coordinate n;, we identify the family with its
coordinate and call it a constrained element.)

If # = (n.)ie; is separably algebraic over & (that is, F {n> is a separable
algebraic field extension of &), then n is constrained over & with constraint
1. For a familiar transcendental example see Exercise 2 below.

Proposition 6 Let 1= (1,);c; be a family of elements of an extension of F,
with n separable over F, and let B e F{(¥Dic1} be a differential polynomial
such that B(n) # 0. There exists a differential specialization ' of n over F
such that n' is constrained over F with constraint B.

Proof By Zorn’s lemma,.in the set of all & -separable prime differential
ideals of # {(¥);.,} that contain the defining differential ideal of n over #
but do not contain B, there is a maximal element, say p’. This p’ is the defining
differential ideal over & of a family n’ with coordinates in an extension of
&, and obviously #’ is a differential specialization of n over & and is &-
separable, and B(n’) # 0. If n” is any nongeneric differential specialization
of ' over # and is F-separable, then the defining differential ideal of 1" in
F{(p)ie;} is F-separable and properly contains p’ and hence contains B,
so that B{(n") = 0. Thus, n’ is constrained over # with constraint B.

Proposition 7 Let n = (n)ie; and { = ({})jes be families of elements of an
extension of F.

(@) Let F(n) =F ) and I be finite. If 1 is constrained over F, then
so is C.

(b) Let # (n,{> be separable over F {n). If (n, {) is constrained over F,
then { is constrained over F {n and, provided J is finite, n is constrained over F .

(c) Let the field of constants of F (n) be separable over F (nyP6. If { is
constrained over F (n) and n is constrained over F , then (n,{) is constrained
over F.

Vaw
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(d) Fet 1 be finite. If n is constrained over F, then the field of constants of
Fny is separably algebraic over F {n)P¥%. ‘

Proof (a) There exist differential polynomials M, NeF{(z).,} with
N({) # 0 such that g, = M ({)/N({). Also, n has a constraint B e ,;"j{e(y-). .
For a sufficiently big he N, N"B(M/N) is a differential polynomial, »‘vlheich
we ('ienote by C; clearly C({) = N(0)"B() # 0. Let {’ be a differential special-
ization of { over & with { separable over & and N({) C({’) # 0. Then we
may set 0’ = (M, ({")/N(("). It is clear that ' is a differential specialization
of n over & with n’ separable over # and B(y') # 0. Since B is a constraint
of n it follows that n’ is a generic differential specialization of  over #, and
hence that {" is a generic differential specialization of { over %. Thus’ NC
is a constraint of { over &. Since ¢ is obviously separable over &, this Si’lOWS
that { is constrained over . 7

.(b) Lpt BeF {(¥icr>(2))jes} be a constraint of (n,{) over F. If {' is a
differential specialization of { over & (n) with ¢’ separable over F{n> and
B(n,{’) # 0, then (n,{’) is a differential specialization of (y,7) over & with
(, C'A) s.eparable over & and B(n,{’) # 0, so that (,{’) is a generic differential
§pec;1ahzation of (n,{) over &, and therefore { is a generic differential special-
1zgtxon of { over & (n). Thus, B(n, z) is a constraint of { over & (1, so that
{ is constrained over & (n). ’

Now suppose that J is finite. By Section 9, Theorem 3, there exists a U, €
F{(ydier} with Uy(n) £ 0 such that for every differential specialization r’
of over F with Uy(n’) # 0 there is a {’ separable over & (i) for which
(’7’35/) is a differential specialization of (n,{) over & with B(y',{’) #0. If
f” is sepal.'able over &, then (n',{’) is separable over &, and therefore (', (")
Is-a generic differential specialization of (1,{) over #. Thus, U, is a constraint
of n over &, so that 5 is constrained over &.

.(c) It is obvious that (4,{) is separable over %#. By hypothesis, there
exists a constraint Be & {(y);.;} of n over F, and there exists a Ce
F{(¥die1>(2))je,} such that C{n,(z);es) is a constraint of { over F{(n).
We shall show that BC is a constraint of (1,{) over &, thereby proving that
({7, {) is constrained over #. Indeed, let (5',¢’) be any differential specializa-
tion of (n,{) over # with & (', (') separable over # and B(y') C(n’,{") # 0.
Then r" is a differential specialization of  over # with n’ separable over &
and B(n") # 0, so that n’ is a generic differential specialization of 5 over #.
Hence, there exists an isomorphism # (') ~ # (n) over # mapping 7’
onto #. This isomorphism can be extended to an isomorphism of % {n’,{">
onto an extension of & (n). Denoting the image of {’ by {”, we see that
{n, {") is a generic differential specialization of (', (") over # (so that (n,{")
Is separable over &), and is a differential specialization of (y,{) over #,
so that {” is a differential specialization of { over & (n)> with C(n,{") # 0.
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If we can show that # (, {") is separable over # (n), this will therefore imply
that ¢ is a generic differential specialization of { over # (1), hence that
(1,2") is a generic differential specialization of (1,{) over &, and therefore
that (', ) is a generic differential spectialization of (n, {) over &, establishing
the fact that BC is a constraint of (n,{) over #.

If p = 0, there is nothing to prove, so we may suppose that p # 0. Since
the field @ of constants of & (n)> obviously has the property that 2° <
F{n)*¥, and since by hypothesis P is separable over # ()%, we must
have 9 = F (n)P¥. By Chapter 11, Section 2, part (b) of the corollary to
Proposition 2, it follows that #n, {"> is separable over F (n).

(d) Lety be any constant in # (1. By part (a) of the present proposition,
(y,n) is constrained over #. If ye F {n>?%, then certainly y is separably
algebraic over &% (n)"¥. Suppose then that y ¢ F {n)’¥. By Chapter II,
part (c) of the Corollary to Proposition 2, the differential field # () =
F {y,n) is separable over F (y). By part (b) of the present proposition, then
y is constrained over &. However, it is obvious that if a constant c is tran-
scendental over &, then every constant is a differential specialization of ¢
over Z and therefore ¢ cannot be constrained over #. Hence y is algebraic
over #. Because & (n) is separable over & it follows that y is separably
algebraic over . Since # and ¥ (y) are linearly disjoint over & (see Chapter
11, Section 1, Corollary 1 to Theorem 1) we conclude that y is separably
algebraic over %, and a fortiori over F (q)HPE.

EXERCISES

1. Letn = (17,);cs be & family of elements of an extension of &, let p denote
the defining differential ideal of n in # {(y)ic;}, and let a be the inter-
section of all the F-separable prime differential ideals of # {(yic1}
that properly contain p. Show that 7 is constrained over # if and only
if p is F-separable and a # p, the set of constraints of n over & being
a-p.

9 Prove that e* is constrained, with constraint y, over the ordinary dif-
ferential field of rational functions of a complex variable x (the deriva-
tion operator being d/dx).

3. Let 4 be any separable extension of #. Show that the family (Waeq is
constrained over & with constraint 1.

4. Show that in Proposition 7(a), (b), and (d), the finiteness conditions
cannot be omitted.

5. Let &, be a separably algebraic extension of &, let n be a finite family
of elements of an extension of %, and suppose that 7 is constrained
over %,. Show that n is constrained over &#.

ehnd
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CHAPTER lV

Algebraic Difierential Equations

Throughout this chapter U stands for a universal differential field fixed once
for all, and the characteristic of U is denoted by p. The set of derivation operators
of U is denoted by A, the cardinal number of A by m, and the elements of A
by 8y, ...,0,. The set of derivative operators of U is denoted by @ and the set
of elements of © of order less than or equal to s by ©(s). The field of constants of
U is denoted by A, and (¥,2,(¥,);en, (Zdkens (Vin)jeN.ken) denotes a family
of differential indeterminates over % .

PART A. CHARACTERISTIC p ARBITRARY
1 Differential affine space. The differential Zariski topology

By a differential affine space we mean any one of the sets 4" (ne N). An
element (n,,...,n,) of %" will be called a point.

If Z is any subset of the differential polynomial algebra # {y,, ..., y,} over
%, by a zero of £ we mean a point of " at which every element of T vanishes.
If n=(,,...,n,) is a zero of X, we say also that n is a solution of the system
of (algebraic) differential equations

P=0 (PeX).

We denote the set of all zeros of £ by 3 (Z). If £ consists of a single differential
polynomial 4, we write 3(A4) instead of 3(Z).

145
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i £ (%), is a family of subsets of U{y,,...,Va}, then
mt,lio,?ggafgt(&ﬁ gi)(; zlx)llseol, @ = 3(1). Finally, if Zand T are SUb,S;:S gf
J?ll{yl, oy Va), then J(E) 3(T) = 3(ET). Thus, the subsets ¥~ of U" for
which there exists a set £ < WY s Vnt with v = 3(2) are the clo:‘ved sets
for a topology on U". We call it the differential Zar.zskz topology on %.. Wh.en
we use topological terms in conneclion[wzith )7/1(" thth;):gtyspecyﬁc qualification

[ to the differential Zariski topology.
thel)t)‘ ;/V;[ils‘;l:;)s)zbr:efte:)f Y", we (ji?;note by .# the closure of .# (i.e., the smallest

closed set containing .#).

2 Generic zeros. The theorem of zeros

Let % be a differential subfield of % over which % is semiuniversal {Chapter
H,I?:Ctil:: é)o"mt of ", the defining differential ideal of 7 in ?{yl,' yf}o;-
prime. [f p is any prime differential idegl of ?{yl,...,yf,}, alpgmt of %
having p as its defining differential ideal in # {yy, ,..,.y,,} is calle . z;gene?rtlc:
zero of p. If n is a generic Zero of p, then every zero of pis a differentia s;.)ec:ff
ization of n over F. In particular, two genenc zeros of P are generllf: if-
ferential specializations over & of each other. The:fol.lowmg propo}smon is
an immediate consequence Of the definition of semiuniversal extension.

Proposition1 IfF isa differential subfield of U over which U is semiuniversa.l,
then every F-separable prime differential ideal of F {y1....,Va} has a generic

zero.

Consider now the F-separable differential ideal {Z} g, ...ytiF = (£} .O}f
F{y,, ...y} generated by a set £ F{pis..or V), and let f.:)e anzed;r—1
ferential polynomial in Fly, ..y I B¢{‘L},,, then B fails to I
element of some component p of {¥},7; p is an & -separable prime Cil-
ferential ideal. Hence p has a generic zero 7, and B(n) # 0'. By (;hapt?r Ifll,
Section 10, Proposition 7, there exists a differential specialization 1 of 1
over & such that 1’ is constrained over # and B(p') # 0; Because U is ser}xln-
universal over & we may suppose that n’ e %". Thus, 7’ 15 @ ZeT0 of‘; t gt
is constrained over & and that is not a zero of B. On tk%e oth.er hanc'l, ‘f“ 151
any zero of % that is separable over &, then. the defining (.ilﬁ”erennacl1 idea
of @ in F (V- Va 18 F-separable and prime anfl contains X, and con-
sequently contains {3},5. Thus, we have the following result.

Theorem 1 Let F bea differential subfield of U over which % is sem.iuniversal,
let S be a subset and let B be an element of the differential polynomial algebra

s
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F{Yir..o¥s}. If Be (L}, then B vanishes at every F-separable zero of X.
Conversely, if B vanishes at every F-constrained zero of £, then Be {L}5.

3 Closed sefs and %-separable differential ideals

A topological space is said to be irreducible if it is not empty and is not a
union of two closed proper subsets (or, equivalently, if it is not empty and
the intersection of two nonempty open sets is always nonempty). A set of
peints in a topological space is called irreducible if it is an irreducible sub-
space. It is easy to see that an irreducible set must have an irreducible closure.
By an irreducible component of a topological space is meant a maximal element
of the set of irreducible sets in the space. By the preceding remark, an ir-
reducibie component is closed. Every point is contained in an irreducible set
(e.g., the set consisting solely of the point). Also, a nonempty totally ordered
set of irreducible sets is easily seen to have an irreducible union. Hence, by
Zorn's lemma, every point is contained in an irreducible component, that is,
a topological space is the union of its irreducible components.

A topological space is said to be Noetherian if every nonempty set of closed
sets has a minimal element. A closed set that is not a finite union of irreducible
closed sets is, in particular, not irreducible, and hence is the union of two
closed proper subsets. As one of these must evidently fail to be a finite union
of irreducible closed sets, we see that among the closed sets that are not finite
unions of irreducible closed sets there cannot be a minimal one. It follows
that in a Noetherian topological space every closed set V' is a finite union of
irreducible closed sets. If from such a union the superfluous irreducible closed
sets are discarded, the remaining ones are, as is easy to see, the irreducible
components of V. Thus, in a Noetherian topological space every closed set has
only a finite number of irreducible components.

Let us return now to the differential affine space #". For any subset .# of
" we denote by A(.4) the set of all differential polynomials in % {Vir-sVn}
that vanish at every point of 4. In the special case in which .# consists of a
single point a = (x,, ..., 4,), we see that the set W(x) = A(A) coincides with
the differential ideal [y, —%y, ..., Ya—&,) Of #{p1, ..., Y}, which is %-separ-
able and prime. In the general case evidently W(H#) = (4.« A(2), 0 that
A(H) is a U-separable differential ideal of U{ Yy, ... Vn}-

Theorem 2 (a) For any subset . of A", M = J(U(A)).
(b) For any subset T of U{y\, ..., va}, {T}a = W(IS(E)).

Proof (a) For some T, .Z = 3(T), and obviously T < (#). This
implies that . = 3(T) > 3(A(4)). However, J(A(HA)) is a closed set
containing ., and therefore contains 4.
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(b) By Chapter 111, Section 3, Q((3(Z)) and {Z}4 have a corpmon dif-
ferential field of definition & that is a finitely generated. extens.xon. of the
ime field, and {X};& 0 F{p1,--»Ya} 15 a1 F-separable dlﬁ"er‘entxal 1Qea1 of
I;l{ y ;1} By Chapter Il Section 7, Proposition 4, % is 2 universal
extenls’ion,ogﬁ. Every zero of {Z}2 0 F (Y1, -2 Vny 133 ZE10 of U -({Z}a N

f A(3()), and hence of
F v} = {Z}a, hence of X, hence o
;;({3};(12)) r{;{yl,..{?]yn}. It follows by Theorem 1 that A(3E) N

'9;{}’1,--‘»}’;-} < {Z}/W n 3’_{_})‘, "'7yn}: whence
ABE) = % (ABEN N~ F e s Va})
c¥-({Za " F{y v Yal) = {Z}ya

However, A(3(Z)) is a % -separable differential ideal containing X, and
therefore contains {Z}a-

Corollary 1 The mapping ¥ W(¥") of the set of all closed ilet_;l in U" trfto
the set of all -separable differential ideqls of@{ {y.,, ...,y,,},%an the map[;;r;i
a+— 3(a) of the set of all 9 -separable dlﬁ’erenfzal ideals ofh {);ll, T

the set of all closed sets in ", are bijective and inverse to eac other.

.« i immediate from the theorem. o .
’11;2::21?5; r‘;l(“tﬂ uY) =) N A(77), a closed set v in %" is irreducible

if and only if the corresponding ideal A )of U{y1, - ¥,} is prime. Because
of the obvious equivalence
¥, =¥, < A 2 A0,

¥ is an irreducible component of ¥ if and only if A(¥7) is a component of
Q(l(“f ). The same equivalence together with Chapter 111, Section 4, Corollary
5 to Theorem 1, yields the following corollary.

Corollary 2 The differential affine space U" is Noetherian.

For any irreducible closed set ¥, we define the. diﬁerential dimgnszc;;tl pczg}:
nomial wy of ¥ by the formula wy = Quy)- Similarly, we flelr;et e i
ferential dimension of ¥, the differential type of “V , an(.i the t'ypzcaf Q;ﬁ:i;renme
dimension of ¥, to be, respectively, the d1ﬂ'er.ent1a1 <.11meflsxon o g Qz,(y)
differential type of 2A(¥), and the typical d.lfferentlal dimension 0 ) seté
We shall not take the trouble of translating into the language of close
all the material of Chapter [11, Section 5.

4 The relative topologies; differential fields of definition

Let & be a differential subfield of %. We shall calla set ¥ <« %" F -clos:f
if there exists a set T< F {y1, ..., ya} such that ¥~ = 3(Z). The same coO
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putations that we used in the case of the differential Zariski topology in
Section 1 show that the %-closed sets are the closed sets for a topology on
g, which we call the differential Zariski topology relative to &, or simply
the Z-topology, of A". In the special case & = % we regain the “absolute”
differential Zariski topology of Section 1.

If 4 is another differential subfield of %, and if # < ¥, then every #-
closed set is 9-closed. In particular, every & -closed set is closed. It follows
from this and Section 3, Corollary | to Theorem 2, that %" is Noetherian
with respect to the F-topology. We use the terms F-irreducible and #-
irreducible component in the obvious sense.

If ¥ is #-closed, then the intersection a = W(¥) N F {y,...,y,} Is 2
perfect differential ideal of # {y,, ..., y,}. Since evidently 3(a) = ¥, Section

3, Theorem 2, shows that {a} 4 = (3 (a)) = U(¥"), so that a has the property
that

{a}/"il a g;{yl"'ﬂyn} = a. (l)

Conversely, if a is any perfect differential ideal of % {y,, ..., y,} having this
property, then 3(a) is F-closed and W(3(a)) N F{y;, ...y} ={a}a O
F{y,,....y.) = a. Thus, the mapping ¥ — W(¥) " F{y\,...,V.} from the
set of all F-closed sets in U™ into the set of all perfect differential ideals a of
F{y,....y.) satisfying (1), and the mapping a— 3(a) in the opposite direc-
tion, are bijective and inverse to each other.

If M is any set of perfect differential ideals a of # {y,...,y,} satisfying
(1), then

ﬂ a C{ mnu}/?l a 'ajj‘{ylj""yn}

ae

< m {u}/q{ N 'a/'-’{yh”"yn} = m a,
asdM aed

0 that (\,.m a satisfies condition (1). Similar computations show that if
M is nonempty and totally ordered by inclusion, then | J,.m a also satisfies
(1), and that if Se€ % {y,,...,»a}, then a:S satisfies (1) whenever a does.
Thus, the set of perfect differential ideals a of F {y,,...,ya} that satisfy con-
dition (1) is a perfect differential conservative system. Since the bijection
V> A(Y)Y A F{py,...,ys} of the set of F-closed subsets of %" onto
this conservative system reverses inclusions, and since %" is Noetherian
relative to the #-topology, we conclude that this conservative system is a
Noetherian one.

We shall say that a closed set ¥~ of ¥" is defined over # (or that # is a
differential field of definition of ¥°) if # is a differential field of definition of
A(¥), that is (see Chapter 111, Section 3), if %-(UM) A F{y,...0a}) =
A(¥"). It is obvious that every closed set defined over & is # -closed. Further-
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more, since W (¥") is %-separable, we see by a remark in Chapter I, Section
3, that if ¥ is defined over &, then U(¥") N F {y,...,y.} is F-separable.
Conversely, if a is any #-separable differential ideal of # {y,, ..., y,}, then
by Chapter 0, Section 12, Corollary 1 to Proposition 7, #a is %-separable
and hence coincides with {a} 4, so that by Chapter 0, Section 10, Lemma 9,
a satisfies condition (1). Furthermore (3 (a)) = {a},4 = %a, so that the
closed set 3(a) is defined over #. Thus, the mapping ¥ — U(¥) N
FLy,, ..., .} from the set of all closed sets in U" that are defined over ¥ into
the set of all F-separable differential ideals of F {y,, ..., ya}, and the mapping
a— 3(a) in the opposite direction, are bijective and inverse to each other.

It follows easily from this that if ¥” is a closed set defined over #, then
so are all the Z-irreducible components of ¥". Also, if ¥” and ¥ are closed
sets defined over &, thenso is ¥ v ¥,

Of course, if Z is differentially perfect (in particular, if p = 0), then every
F-closed set is defined over #.

If ¥ is an #-closed set and 7 is a point of %", we say that n is a generic
point of ¥ over F if n is a generic zero of U(¥") N F {y\, ...y}, O equiv-
alently, if ¥ is the set of all points of %" that are differential specializations
of 7 over &, or again equivalently, if ¥” is the & -closure (i.e., the closure
relative to the & -topology) of the set consisting solely of the point 5. If
is a generic point of ¥ over &, then ¥  must be F-irreducible, and if 7 is
F-separable, then #* must be defined over 4. Section 2, Proposition 1
shows that, conversely, if ¥~ is an & -irreducible F-closed set defined over F
and if U is semiuniversal over ¥, then ¥~ has a generic point over F .

It follows from Chapter 111, Section 6, Proposition 3, that if ¥" is an ir-
reducible closed set in %" and % is any differential field of definition of ¥,

then @y = Gyvyn 51y, ..0ym -

5 Linear differential ideals

For any differential field # we denote the set of all homogeneous linear
elements of #F{y,...,y,} by F{¥i, -, Vu}1-

If (X));c; is a family of indeterminates over a field K, and A, is a set of
homogeneous linear polynomials in K[(X));/], then the ideal (A,) is regular
over K (in particular, is prime) and is homogeneous. It follows that if A is
any subset of % {y,,...,y,},,» and & is any differential subfield of # with
F{Y1,-.,7a} D A, then the differential ideal [A] = (@A) of # {y,,...,y,} is
regular over # and is homogeneous. In particular,

[A] n y{yl”"’yn}l = z ,979L
6ec®,LeA
We shall call a differential ideal of % {y,,...,»,} linear if it is generated by
a subset of F{y,, ..., 7,},. By what we have just seen, every linear differential

#
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ideal of #{y,,...,y,} is homogeneous and #-regular. Also, the mapping
that to each linear differential ideal p of % {y,,...,y,} associates the dif-
ferential subspace p~ F {y,,...,y.}, of the differential vector space
F{Yi,--»Vn}1 Over F, and the mapping that to each differential subspace
&L of F{y,,..., v}, associates the linear differential ideal [&£] = (&) of
F {y,---,Va}, are bijective and inverse to each other.

If % is any extension of & in %, then & and & {y,,...,y,}, are linearly
disjoint over & . Hence the codimension of the subspace 3y g 1o -Z -0L of
F{yi -, yap1 equals the codimension of Y4.e rea % 0L in the vector
space 4{y,...,y,}, over 4. In other words, for any set A = % {y,, ..., Va},»
the codimension of Yg.e rea & 0L in F{y,,...,y,}, does not depend on
the choice of the differential field & with # {y,...,y,} 2 A.

If p is any linear differential ideal of # {y,, ..., y,}, we call the codimension
of p " F{yi, ., yab1 InF {¥y,..., Ya}, the linear dimension of p. This number
need not be finite. By the above, for any extension ¥ of &, ¥p is a linear
differential ideal of 4{y,,...,y,} having the same linear dimension as p.
Conversely, it is easy to see that if q is a linear differential ideal of ¥ {y,, ..., y,}
for which & is a differential field of definition, then q n F {y,,...,y,} is a
linear differential ideal of # { y,, ..., y,} having the same linear dimension as g.
It is obvious that 3(A) is a vector subspace of the vector space %" over X .
A basis of 3(A) is called a fundamental system of zeros of A (or of the linear
differential ideal [A] of #{y,,...,y,}, & denoting any differential subfield
of % with F{y,,...,y.} 2 A).

Proposition 2 Let e N. If ¥ is any I-dimensional subspace of the vector
space U" over A", then ¥ is closed and N(¥") is a linear differential ideal of
WU{Yyis-.ya} Of linear dimension I If p is any linear differential ideal of
WUL{Yy, - s Va} of linear dimension [, then 3(p) is an I-dimensional subspace of
the vector space U" over A .

Proof Let p be a linear differential ideal of % {y,, ..., y,} of linear dimen-
sion . Setting X =p " ¥{y,,...,¥n}1, we see that there exist / operators
0,,...,0,€ ® and ] indices k(1), ..., k(/) such that the cosets 8, y,+Z, ...,
O,y +Z form a basis of the vector space #{y,...,V.},/&. For every
0 € O and every index k, the derivative 8y, is congruent (mod &) to a linear
combination of 0, yy), ... 01y over %. It follows that if (7, ... M1ahs -,
(Mis 1, 15> Mis 1) are any I+ 1 elements of 3(&) = 3(p), and if we fix any
operators 8,°,...,8;, , € © and indices k'(1), ..., kK’(/+ 1), then each row of the
matrix (0,0 v)1<ici+1,1<j<i+1 1S @ linear combination of the I vectors
O 11,61y - 0 s 1y d - O kiys -+ Bl 1, kpy)» 5O that the determinant
of this matrix is 0. Then by Chapter II, Section 1, Theorem 1, the /+1
elements of J(p) are linearly dependent over #". Hence

dim3(p) < L (2)
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Conversely, let ¥~ be an /-dimensional subspace of the vector space %"
over A, and fix a basis (7, .., Min)s > (M1s -~ M) OFf ¥7. By Chapter II,
Section 1, Theorem 1, there exist 6,,...,6,€ ® and indices k(D), .., k()
such that det(8;n; i <i<i, 1<t # 0. For any 6 € ® and any index k the
differential polynomial

Oy e - Oy
det 91}’k(1) 91'71,k(1)"‘91'lt,k(1)

&y 0wy 1,k

in (y,, ..., ys) is homogeneous and linear and vanishes at each (11, ..., a)s
and hence is an element of WA(¥) N U {yy, ..., Ya}1- Since the coefficient
of By, is det(6:m wipi<isy,1<jst #0, we see that 8y, is congruent
(mod U(¥) N U{yy,...,¥a}1) to a linear combination over % of 0, yiyy ---»
8, Yxqry - This shows that W) U{y,, ., ya} has a finite codimension /' in
U{y,, ..,y Applying (2) to the linear differential ideal [AF) N
U{py,...,y.},] in place of p, we therefore find that

I = dim¥ < dim 3(AG) A 2y pads) < U<,

so that ¥ is closed and U(¥) = {UF) N U{Yis-s Yabi}ja = [UF) 0
U{y,,....y.}:], and hence A(¥") is linear and has linear dimension {. This
proves the first part of the proposition. Applying this part to the vector
space 3(p), we see that /, the linear dimension of p = W(3(p)), equals

dim 3(p)-

Corollary 1 The mapping that to each finite dimensional subspace ¥ of the
vector space U" over A~ associates W(¥"), and the mapping that to each linear
differential ideal p of % {y,, ...y} of finite linear dimension associates 3,
are bijective and inverse to each other.

Corollary 2 Let p be a linear differential ideal of F{y,,....y.} of finite
linear dimension 1. Then p has a fundamental system of zeros

(r’ll’ ""nln)7 ""(r’ll’ ""nln)

such that the differential field 4 = % {(N:)1 <i<1,1<j<n) 15 @ separable extension
of F and the field of constants of ¢ is a separable algebraic field extension of
GPG of finite degree, € denoting the field of constants of F.

Proof The substitution of (y;(,...,yw) for (y,...,»y,) maps p onto a
linear differential ideal p; of Z {yi, ..., i}- The ideal (p, U--- U p) of
F{(yi)1<i<1,1<j<n} 18 evidently a linear differential one, and therefore
has a generic zero ({;);<i<i,1<j<n that is F-separable. By Proposition 2,

of

onida
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p has a fundamental system of zeros ({,,.-»C4n)s -, ({l1s -, s @and we
may fix operators 6,,...,0,€ ® and indices k(I),...,k(/) such that
det (8,8} wmr sast, 1 <ise # 0. It is evident that (i), <i<, 1<j<n 1S @ zero of
(p, v - U py) and hence is a differential specialization of ({i});<i<i 1<j<n
over & . Therefore ({;;) <i<i, 1 <<« 15 DOt a zero of the differential polynomial
W = det(8, i km)1 <n<i, 1 <i<i- By Chapter 1L, Section 10, Proposition 6,
(i1 <ist 15j5n has a differential specialization (7}, <i<, 1 <j<n OVEr F that
is constrained over & with constraint W, and by Chapter 11I, Section 10,
Proposition 7(d), if we set 4 = F {(1;;)1 <i<1, 1 <j<ny, then the field of con-
stants of % is separably algebraic over ¥°%. Since W does not vanish at
(:)1<i<s, 1<j<n, the rows of this matrix are linearly independent over ¢
and therefore evidently form a basis of the /~dimensional vector space 3(p)
over A,

Corollary3 Let ne¥% (1<i<1<j<n), let 8,,e® (1<h<), let
kK'(1),...,k'(I) be integers between 1 and n, inclusive, and suppose that
det (04 n: wm)r <nst, 1 it #0- I (it Mimds oo (it oo, Min} form a funda-
mental system of zeros of some linear differential ideal of F {y\,...,y,}, then,
for every choice of operators 8,,...,0,€ O and of indices k(1), ..., k(l), all the
coordinates of the matrix

-1
(gh”i,k(h))l €hs€l 1 Si$l(9h,rli,k’(h))l$h$l, 1gisl

are in . Conversely, if, for every choice of operators 8,,...,0,€ @ with
0,e®(h) (1 <h<!) and of indices k(1),...,k(l), the determinant of this
matrix is in F, then (1, .-, Nin)s ---» (it ---» Nim) JOrm a fundamental system
of zeros of a linear differential ideal of F{y,,...,ya}.

Proof Suppose (yy,---sN1n)s---»(Mits ---s M) form a fundamental system
of zeros of a linear differential ideal p of &# {y,, ..., y.}, and therefore also
of the linear differential ideal #p of #{y,,...,y.}. By the proposition, %p
has linear dimension /, hence p does too, so that we may fix operators
g7,...,07 and indices k”(1),...,k"({) such that 87y, .... 0 Y form a
basis of F{y,,....¥s}: (modp N F {y,,...,¥s},). For any 8 © and any
index k, there exist elements ag, ..., dy; € F such that

Oy, = Z aek;ﬂ:{}’k"u) (modp N F{y,..0s Vat1)-

1sis!

Hence for any §,,...,0, € ©® and any indices k(1),...,k(/) we have

(gh"i.k(h))IShSl,lSiSl =( Z ao..k(hug:{'h.k"u))1shs1,1sisz
1

<aisl

p— L
= (”o,.k(h)i)1shst.1sis1(9h'li,k~(h))1shsl,1sis1,
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and from this we see that the matrix in the statement of the corollary has all
its coordinates in #.

Conversely, suppose the determinant of this matrix is in # whenever
8, € O(h) for every h. Because det(8,'n; v m)i<nsi15i<s # 0, the [ elements
(MitsoeosMinds -oos (Mirs ooy M) Of %" form a basis of a vector space ¥~ over £
Also, we can fix operators 8, e @(h—1) (I <A< /) and indices £"(1),...,
k”(1) such that det(8;n; i-m)1<n<r, 1<i<t # 0. For each 6e@®(/) and each
index k, the differential polynomial

0y, O -+ Ong

4 4 " . 9// o , _
Lp . = det glyf"(‘) 9"7‘.’" W 1'71,.1( | det (O ni )1 <ne, 1 <i<h
9;'}’1‘"(1) 0y wenay 0711, -y

is of the form afy, +o; 0 yer(yy + -+ 4 0] Yioyy, Where a, a4, 0, F and
a # 0. It easily follows that the linear differential ideal p = [{Ly ooy, 1 <k <nl
of F{y,,...,y.} has the property that '
'd/—g?yk”(i) + pN ?—{yl’ ""yn}l = ‘9’—{}11’ "'!yn}la
1<€igl .

so that p (and therefore also %p) has linear dimension less than or equal
to /. Since obviously 3(p) > ¥*, we see by the proposition that this linear
dimension is equal to dim 3(#p) = dim 3(p) = dim ¥~ = /. Hence the linear
dimension of p is / and (7,1, --sM1n)s s (Mi1s > Min) fOorm a fundamental
system of zeros of p. :

Proposition 3 Let a;=(a;;;);<j<n 1<j<s D€ an nxn matrix over F
(I1<i<m), let A;j =0y, —Fi<ica@jpyy U Si<m 1<j<n), and let
p denote the linear differential ideal [(Aij)i<i<m 1<j<n)] O F{Vis-- s Vn}-
Then the linear dimension of p is less than or equal to n. A necessary and suffi-
cient condition that it be equal to n is that a,, ...,a, satisfy the integrability
conditions
dia. +a.a, = d,a, + a;a; (I<ig<m, 1<i'<m).

When this is the case then p does not contain a nonzero differential polynomial
of order Q.

REmMARK If a = (a,;) is a matrix over % and 6 € A, then da denotes the
matrix (da,).

Proof It is obvious that every 8y; (6 € ®, 1 <j < n) is congruent (mod p)

SR b b i b B LB ) ek v
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to a linear combination of y,, ..., y, over #; hence the linear dimension of
p is less than or equal to n. A simple computation yields the equation

J; Ai’j -0 A = Z (5r a;, + Z iy ai’j’v) Yy + Z Qi Apj
B J

v

"Z (5i yjy + Z Apjy aij’v) Y — Z Ay Aij"
v J J

[t follows that if the integrability conditions are not satisfied, then y,, ..., y,
are linearly dependent over # (mod p), so that the linear dimension of p
is less than n. Suppose that the integrability conditions are satisfied, that is,
that

O Ay = O Ay = Z(au‘j'Af'j' — Ay i)
o

Fixing an orderly ranking, we see that the 4;; form an autoreduced set, and
that this autoreduced set is (0)-coherent (see Chapter III, Section 8). It is an
easy consequence of Chapter 11, Section 8, Lemma 3, that p does not con-
tain a nonzero differential polynomial of order 0. In particular, y,, ..., y, are
linearly independent (mod p) over &, so that the linear dimension of p is n.

EXERCISE

I.  Let # be an ordinary differential field. Show that a differential ideal p of
F {y} is linear and of finite linear dimension / if and only if there exists
a homogeneous linear differential polynomial L =y 44, y'™ P +...
+a,ye #{y} of order / such that [L] = p.

6 General components

Let Ac¥U{y,,...,y.}- A point n of " is called a nonsingular zero of A (or
a nonsingular solution of the differential equation 4 = 0) if 5 is a zero of 4,
and there exists a ranking of (y,,...,y,) relative to which 4 is pseudo-led
(see Chapter I, Section 11) and has pseudo-separant that does not vanish at ».
A zero of A that is not nonsingular is called a singular zero of A (or a singular
solution of the differential equation 4 = 0).

Theorem 3 Let F be a differential subfield of U and let A be an irreducible
pseudo-led differential polynomial in F {y, ..., ya}.

(a) Among the components of {A},s there is one, which we denote by
p#(A), that does not contain any pseudo-separant of A. Each of the other com-
ponents of {A},5 contains every pseudo-separant of A.
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(b) If S is any pseudo-separant of A, then pz(A) =[A]:S° = {4}:5 =
{A},5:S. An element of pg(A) that is partially pseudo-reduced with respect
to A must be divisible by A.

(c) If ¥ is an extension of F in % and A = A, --- A, is the representation
of A as a product of irreducible factors in 4{y,,...,y,}, then every pseudo-
leader of A is a pseudo-leader of each A;, pg(A;) & py(A;) whenever i 5 i’,
and Gpz(A) = pg(A4;) N+ N pg(4,).

Proof Let S be a pseudo-separant of A relative to some ranking. Suppose
B CeF{y...,ys} and BCe[A]:S™. By Chapter I, Section 11, Corollary
1 to Lemma 10, we may write S°B = B,, S°C = C, (mod[A4]), where B,, C,
are partially pseudo-reduced with respect to A4, so that B, C, is partially
pseudo-reduced with respect to 4 and B, C, e [4]:S*. By Corollary 2 to
the same lemma we conclude that, for some s, S°B, C, is divisible by 4.
Since A is irreducible and deg S < deg A this implies that B, or C, is divisible
by A4, so that Bor Cisin[4]:S®. The same reasoning shows that | ¢ [4]:S%.
Thus [A4]: S is a prime differential ideal. If ' denotes the set of all derivatives
y; that are not derivatives of the pseudo-leader v of 4, and if, for each 0 € O,
A(0) denotes the set of all derivatives of v that are of lower rank than v,
then we see by the same Corollary 2 that (#[I']) n ([4]:5*) =0, and we
see by the lemma referred to above that 84 e (F [T, A(6),00]) n ([4]:5%)
and 8(64)/3(0v) = S ¢ [A]:S™. It follows that the canonical homomorphism
of F{yy,....ys} into Q(F {yy,....,¥a}/([A]:S®)) maps I' onto a separat-
ing transcendence basis of-that field over & ; hence [A]:S® is separable
over #. Therefore we may write {4}, = [A4]:S" c {4}:Sc{d},5:S<
([A]:5%):S = [4]:S™, so that [A]:S® = {A4}:S = {4},5:S. By Chapter 0,
Section 8, Lemma 7,

{A}/y < ({A}/yis) N {A,S}/sr
< {({A}/yis)A,({A}/JZS)S}/:? < {A>{A}/5f}/§ = {A}/y,

so that if we denote by p,,...,p, the components of {4,5},5 that do not
contain [4]:S*®, then [4]:5S%, py,...,p. are the components of {4},5.
Precisely one of these components, namely [4]:5%, fails to contain the
pseudo-separant S. If S’ is a pseudo-separant of A4 relative to another ranking,
then, of the r+1 components of {4}, 5, precisely one fails to contain S".
Since S’ is partially pseudo-reduced with respect to 4 and is not divisible
by A, we conclude by the Corollary 2 used above that S’ ¢ [4]:S®. It is
clear that (a) and (b) are proved.

Suppose now that 4 = 4, --- 4,, with each 4, irreducible in 4{y, ..., ya}»
and that v is a pseudo-leader of 4. Obviously no proper derivative of v can
be present in any A4;. As A is irreducible in F{y,,...,y,} and 84/0v # 0,
A and dA4/dv have no common factor, so that in the first place 4,, ..., 4, are
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distinct, and in the second place dA4,/0v # O (for otherwise A; would divide
both 4 and 04/0v). If w is a derivative 0y; of higher rank than v, then
(04, jow)A, - A, +A,0(A,--- A)/0w = 3A4]dw =0, A, is irreducible in
%{y.,...,y,} and does not divide A4,,...,4,, hence divides d4,/dw, so that
0A4,/0w =0, and similarly every 04;/dw = 0. Thus, v is a pseudo-leader of
every A4;. As A,,...,A, are distinct and are obviously partially pseudo-
reduced with respect to each other, we see by (b) that 4; ¢ py(A;) whenever
i#i'; hence py(A;) € py(A4;), and also 04/0v ¢ ps(A;), whence py(A,) =

(Adeiy,. .y (@A])® = {4} i, ... yuysa:0A4/0v. Therefore
(Vps(4) = {4y, ...yn119:0A4/00
= {A}gy,. . e 04/00 = G - {A} 5, 50400
=Yps(A) =9 [Alsy,, .., (04/00)°
= [Aly,, .. @4[00)° = (V[Adgy,, .., 5 (04/00)
= () pg(4).

This completes the proof.

The #-separable prime differential ideal pz(A4) is called the general com-
ponent of A in F{y,,...,y,}; every other component of {4}, is said to be a
singular component of A in F{y,,...,y.}.

If A is irreducible over the universal differential field # or, what is the
same thing, is absolutely irreducible, then, by Theorem 3 and the results of
Section 3, the closed set 3(A) in U™ has one irreducible component that contains
all the nonsingular zeros of A, namely 3(pa(A)); the other irreducible com-
ponents consist solely of singular zeros of A. The irreducible component
3(pa(4)) is called the general irreducible component of A, or the general solution
of the differential equation 4 =0, and the others are called the singular
irreducible components of A. Of course, it may happen that there is no sin-
gular irreducible component. This will be the case, for example, if 4 is linear.
On the other hand, the general irreducible component of 4 may contain
some singular zeros of A (see Exercise 2(b) below). But since py(d4) does
not contain any pseudo-separant of 4, the nonsingular zeros of 4 form a
nonempty open (and therefore dense) subset of the general irreducible com-
ponent. The general irreducible component of A is defined over any dif-
ferential field # in % containing all the coefficients in 4, for p,(4) = Zp&(A)
by Theorem 3(c).

EXERCISES

In the following exercises # denotes a differential subfield of # and ¢
denotes the field of constants of &.
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(a) Show that if p=0, and 4 and B are irreducible elements of
F{Y1,..rya} With ps(4) =ps(B), then B=ad for some nonzero
ae#. (Hint: Use Theorem 3(b).)

(b) Show thatifp #0,and 4 =y, =y, +(8,72)", B=y =2+, 3),
then A and B are pseudo-led and absolutely irreducible, and pz(4) =
(4] =[B] =p5(B).

Let m = 1 (that is, let % be an ordinary differential field) and suppose
that p # 2. Let x be an element of % with x" = L.

(a) Show that y'*—4y is pseudo-led and absolutely irreducible, has
general component (y'2—4y)+[y"—2], and has one singular com-
ponent [y]. (Hint: (y'*—4y) =2(y"=2)y") Show that the general
irreducible component consists of all (x+¢)* with ce .

(b) Show that y'2—4y* is pseudo-led and absolutely irreducible, and
has no singular component. (Hint: Show that {y*—4y°} = (y’2—4y3)
+[y"—6y?].) Show that 3(y'*—4y®) consists of all (x+c)”* with
ceA, and of 0.

Let m = 1 and suppose that p 0.

(a) Show that y’?*'+y” is pseudo-led and absolutely irreducible, and
has no singular component.

(b) Show that yyP+y"?+y”?y"?*! is pseudo-led and absolutely ir-
reducible, and has one singular component [y'].

(c) Show that z’”+yPz +y”z'"* ! is pseudo-led and absolutely irreducible,
has general component (z'?+y?z+y?z'*"') + [14+2'°7'z"], and has two
singular components [z] and [y,z’].

(d) Showthaty,” +y5*! +y,”y, is pseudo-led and absolutely irreducible,
has general component (y,”+y5"! +y,%y3) + [»3'], and has one sin-
gular component {y,,y,+7;].

Show that if 4 is an irreducible pseudo-led element of # { y} of order 9,
then A has no singular component and {4}, = [4].

Let x,,...,x, be elements of & such that d;x, =0 or I according
as i#i or i=i' (1<i<m 1<i'<m). Set A=F <icn®p)?
—Zicism X0y +Y.

(@) Show that A4 is pseudo-led and absolutely irreducible.

(b) Show that if p # 2, then A has general component

{A,det(8;0; »)1<i<m, 1<i<m)

and one singular component [y —31 ¥, ci<m xi°].

(c) Show that if p = 2, then 4 has no singular component.

Let m = 1 and assume that % is semiuniversal over #. Let ne N, n > 2,
ptn Let Pe¥[z], P#0, degP =2n—1 or 2n, and suppose that P,
dP/dz are relatively prime. Set 4 = yz'"+ P.
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{a) Show that A is pseudo-led and absolutely irreducible.

(b) Show that pz(d4) = {d4,nyz""" 27" 4+ y'z2" "' +dP/dz} and that the
singular components of 4 in Z {y,z} are the differential ideals [Q]
generated by the irreducible factors Q of P.

(¢) Let (5,0) be a generic zero of pz(4). Show that 0 is a differential
specialization of n over & but there does not exist an x € % such that
(0,) is a differential specialization of (n,{) or (n,{~ Yy over #. (Hint:
(1,1 is a zero of yz"+(—1)"z*"P(z™").)

(Example due to Ritt; see [91, Section 13]) Let m = | and suppose that
% is semiuniversal over &. Assume that p # 2,3. Let 4 = 2yy” —3y?
+2y, B=3yy"=2(y"=1D(y"+1).

(a) Show that A is pseudo-led and absolutely irreducible, and that
(V' +1) A’ —y"A =y'B.

(b) Show that ps(4) = {4, B}, and that 4 has one singular com-
ponent [ y].

(c) Show that the differential ideal r = {4(y), B(y), A(2), B(z)} of
F{y,z} is #-separable and prime, and that if (7,{) is a generic zero
of r, then # and { are generic zeros of py(4). (Hint: See Chapter 0,
Section 12, Corollary 2 to Proposition 7.)

(d) Show that 0 is not a differential specialization of n or { over & but
is a differential specialization of n{ over #. (Hint: Prove that for any
nonzero ce A, the differential polynomial E, =y ?—c™'y*—y is
pseudo-led and absolutely irreducible and yE.' —3y E. = Ay’; conclude
that p,(d4) < pa(E,). Also, c“zy“E (ey™") = E_; conclude that if « is
a zero of p,(E,), then so is ca™'. Deduce from this that every nonzero
ce A is a differential specialization of n{ over #.)

Suppose that p =0. Let 7,...,t,€ % be differentially algebraically in-
dependent over #, let P,Qe F{y,,...V.}, PQ¢F, ged(P,Q) =1,
and set u = P(¢,...,1)/Q(t, ..., 1,). Prove that u is differentially tran-
scendental over %, P—uQ is irreducible in Fu){y;, - Vu}s and
(t,,...,,) is a generic zero of p;,@)(P uQ). (Hint: After establishing
the first two points, fix a generic zero (¢,', ..., 2,") of Ps(u(P— uQ), show
that (¢,’,...,¢,) is differentially algebrarcally independent over #, and
infer that there exists an isomorphism F {t;,....t,> = F <t ..t P
over # with ¢, t;/ (1 <j < n). Note that this is an 1somorpmsm over
F{ud, and conclude that (¢,,...,¢,) is a generic zero of pr (P — uQ).)
(a) Suppose that p=0. Prove that if u,t e % are differentially tran-
scendental over # and % (u) = F (1), then there exist elements
a,b,c,de F with ad—bc#0 such that u=(at+b)/(ct+d). (Hint:
Write u = P(1)/Q(t) with P,Q e # {y} and gcd(P,Q) = 1. Observe that
¢ is a generic zero of pg(,,(P—uQ) by the result in Exercise 8, and also
of pz,(y—1), and then apply the result of Exercise 1(a).)
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(b) Give an example to show that when p #0, the result of part (a)
is in general false. (Hint: See Exercise 1(b).)

7 General components and differential dimension polynomials

The following result characterizes general components in terms of their
differential dimension polynomials. We recall (Chapter 1, Section 11) that a
differential polynomial A in (y1, ..., ¥s) has essential order e if there exists a
derivative u = y; of order ¢ with 04/du # 0 but there does not exist such
a derivative of order greater than e.

Proposition 4 Let F be a differential subfield of %, let p be an F-separable
prime differential ideal of F{yy,.--»Va}, and let e € N. A necessary and suffi-
cient condition that p = pg(A4) for some irreducible pseudo-led differential
polynomial Ae F{y,,...,ya} of essential order e, is that

(X+m> (X—e+m>
w, =n - .
m m

ReMaRK The proof shows that when the condition is satisfied then for
any orderly ranking of (y,...,y,) there exists an 4 with pseudo-leader of
order e such that p = ps(4). (When p # 0 two essentially different poly-
nomials may have identical general components, but when p =0 if two
differential polynomials have the same general component, then one of them
is a multiple of the other by a nonzero element of & See Sectton 6, Exercise 1.)

Proof 'We may, by Section 6, Theorem 3(c), and by Chapter 11, Section 6,
Proposition 3(b), replace # by any smaller differential field of definition
of p. By Chapter 111, Sections 3 and 7, Propositions 1 and 4, we may there-
fore suppose that % is a universal extension of . Then p has a generic zero
n=0(....n,). For each seN let A, denote the polynomial algebra
F[(0)scois), 1<j<nls let py=p N 4, and let N = (0n)sce(s). 1<j<a- Then
p, is an F-separable prime ideal of 4, with generic zero 7',

To prove the necessity of the condition, suppose that p = ps(4), where
AeF{y,,...,y} is irreducible, has essential order e, and (relative to some
ranking) has pseudo-leader v. Let s> ord 4. For any e ®(s—e) then
04 e p,. Also, by Chapter I, Section 11, Lemma 10, 6 A4 has pseudo-leader
v and pseudo-separant 94/dv, so that 3(84)/3(6'v) =0 whenever 8'v > 0v.
Hence

det(a(gA)/a(G,U))Oee(s—e),a'ee(s—e) = (aA/aU)qy

where ¢ = Card @(s—e) = (*75"™), so that this determinant is an element of
A, not vanishing at 7, It follows (by Chapter 0, Section 16, Corollary 4 to
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Proposition '11) that the perfect ideal of A, generated by the polynomials
64 € A, with 0 € ®(s—e) has a unique component p'® that admits the zero
7, and that p* is F-separable and of dimension n(*}™)~(*~5"™). Since
7" is a generic zero of p,, we have p* < p,. To prove the necessity of the
condition in the proposition it suffices to show that p, = p'. Suppose then
that Be p,. By Section 6, Theorem 3(b), (34/3v)°B e [A] for some b e N.
Introducing a new ranking that is orderly, let u be the derivative of a y; with
0A[du # 0 which is of highest rank relative to the new ranking. Eviéently
ordu = e, and (because 0A4/du is obviously partially pseudo-reduced with
respect to A relative to the old ranking) d4/du ¢ p. By Chapter I, Section 11,
Corollary 2 to Lemma 10, we may write (04/0v)° B e (@, A):(0A/0u)>,
where @, is the set of all 8, @ such that rank 0,u < rank 4 (34/0v)’ B.
gvide(n)tly ®, = O(s—e), so that (04/3v)’ B e p®:(34/0u)® = p*, whence

e p'®.

To prove the sufficiency of the condition, suppose that it is satisfied and
fix any orderly ranking. Let A be a characteristic set of p, and let s>
maxg., ord C._For gach y; let E; denote the set of lattice points (i}, ...,i,) €
N™ such that 87 --- 8,7y, is a leader of an element of A. By Chapter 11, Section
12, Theorem 6(d), then w, = 3 wg,—b for some b € N. However, by Chapter
0, Section 17, Lemma 16(c), if E; # ¢, then degwg, < m and if E; =
then wg, = (*1™). Since by hypothesis ' ’ ’

wmeen(5) () 77)

we conclude that E; # ¢ for precisely one index j, say for j =k, so that

@, =(n—1)< Xtm >+wEk—b.

m

Thus, the leader of every element of A is a derivative of y, and

X+ -
wE,(=< mm)_(X ;+m>+b.

By double use of Chapter O, Section 17, Lemma 16(e), we infer first that
there exists a lowest derivative w = §§' --- 85y, such that the leader of every
element of A is a derivative of w and every derivative of w with only a finite
number of exceptions is a derivative of a leader of an element of A, and
second that if the number of these exceptions is denoted by a, then

Wg,, =< X:’m )"< X—Zr:,+m )+a

By Chapter I, Section 10, Lemma 9, if P e p is free of every derivative of
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w, then dP/dv € p for every derivative v of any y;. This means that the deriv-
atives

o, (0€©, 1<j<n, Oy;¢0Ow)

are separably independent over . Since # (i) is separable over #, they
are even algebraically independent.

Now, if m > 1, then the two equations for wg, above show thate = X e; =
ord w, so that the number of algebraically independent derivatives fn; con-
sidered above with ord @ < s is equal to

n( s+m >_< s—e+m > - 0,(8),
m m

which for big s is the transcendence degree of F ((0n)sc00s). 1 <j<n) OVET F.
Hence the element w(y) = 8% -~ Ounyi Is algebraic over the field extension
of # generated by all the algebraically independent derivatives considered
above. 1t follows that in this case there exists an irreducible 4 € p that in-
volves w but no proper derivative of w, and that each element of p free of every
proper derivative of w is divisible by A.

On the other hand, if m = 1, then A contains just one differential poly-
nomial (because y, cannot have two derivatives neither of which is a deriv-
ative of the other) which we denote by C, and evidently w =y, and a=
ord C. This time the two equations for wg, show merely that e+b = a, so
that @ > e. The algebraically independent derivatives considered above that
are of order less than or equal to s are the derivatives S/n; 0<i<s,
1<j<n, j#k), and the number of these is (=1 (s+1)=@-DCH.
Hence these together with the e+ 1 derivatives 8,7, (0 < i < €) are in number

equal to
() e

and therefore are, for big s, algebraically dependent over #. It follows in
this case that there is a smallest number d e N such that p contains a non-
zero differential polynomial free of every proper derivative of §,%y,, and of
course d < e < a, and there exists an irreducible 4 € p that involves 3.
but no proper derivative of 5,%.. Each element of p free of every proper
derivative of §,%, is divisible by 4.

We now treat both cases simultaneously, setting

if m>1,
if m=1.

¢ =e, Wo=w = 8% - 8,
d
e =d, w o= 08,"y

We observe that if for a derivative v of some y; we have d4/dv e p, then
9A/ov = 0, because dA/ov must be divisible by A. 1t follows by Chapter I,
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Section 10, Lemma 9, that d4/dv = 0 for every v of higher rank than w'.
’?mong the derivatives 8 yi,...,0,, 7 let J,y, be the one of lowest rank.
hen

Sy A = A% + Y (8A/év) S0 = A% + Y (34/dv) b, 0.
pr, it is easy to verify that the only v < w' for which §,v is a proper deriv-
ative of w’' is w’. Therefore we may write

Sy A = (3AJow') S,w' + B

with B free of every proper derivative of w'. If d4/0w’ were O, then §, A
would be free of every proper derivative of w' and hence would be divisible
by A. By Chapter [, Section 8, Corollary to Lemma 5, 4 would then be in
F((8Y)")pco,1<j<n)s but this is impossible because elements of # () that
are algebraically dependent over & must be separably dependent over &#
so that some partial derivative 04/0v must be different from 0. Thus
0A/dw' ¢ p, and we see that w’ is pseudo-leader of 4 and ¢’ is the essential
order of A. By the necessity of the condition (already proved),

X+ —e'
ww,:,,( mm>_<X fn+m>.

Since €’ £ e this implies that w, _ 4, < w,. However, p; (4) = {4}:04/0w' <
p:0A/0w" = p, so that by Chapter I1I, Section 5, Proposition 2, p = ps(A)
and e=¢'.

EXERCISES

1. Suppose that m = 1.

(a) 'Let p be an F-separable prime differential ideal of F {y,,...,y,}
of differential dimension n—1. Show that there exists an irreducible
AeF {y,,...,y,} such that if we set e =ord 4, then 3A4/dy\) # 0 for
some index j and p = pg(A4).

(b) Show that every #-separable prime differential ideal of & {y}
ther than (0) is the general component of some pseudo-led irreducible
differential polynomial in & { y}.

2. Suppose that p=0and m=1.

(a) (Ritt’s analog of Liiroth’s theorem. See Ritt {957, and also Kolchin
[39, 40].) Let t e % be differentially transcendental over &, and let ¥
be a differential field with # =« 4 < # {¢> and ¥ # . Show that there
exists an element ue 9 such that # {u) =%. (Hint: Use Exercise 1
to show that the defining differential ideal of r in 4 { y} is py(A) for some
irreducible 4 € 4{y}, of order say e, with some coefficient in 4 equal
to I and not every coefficient in 4 an element of & ; these coefficients
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are quotients of elements of # {¢}. Fix De F {z} so that D(¢) is a lowest
common denominator of the coefficients in 4, and define Be # {y, z}
by the condition B(y,t)= D(r)A. Show that B¢ @{y} v F{z},
ord, B = e, and the irreducible factors of B in & {y,z} are distinct and
of order e in y and involve z differentially. Set f=ord, B. Let u be a
coefficient in A with u¢ %. Show that u= H(t)/K(¢), where H,Ke
F{z}, HK # 0, ged(H,K) = 1, the orders of H and K inlz are less than
or equal to f, and for each index i < f the degrees in @9, .,z of H
and K are less than or equal to the corresponding degree of B. Show
that uK(y)— H(y) € pg(A), and infer first that e <f, and second that
HOK(y)—K(z)H(y) e ps(C) for every irreducible factor C of B.
Show in succession that H(z) K(y)—K(z) H(y) 1s divisible by every
irreducible factor of B of order fin z, by every irreducible factor of B
of order f—1 in z, etc., and finally that H()K(y)—K(z) H(y) = aB,
where a € &. Infer that e = f and uK(y)— H(y) = vA, where ve ¥, and
therefore that 4 € & <ud{y}. Use this to show that F# <u){t) and ¥
are linearly disjoint over & <u), and conclude that ¢ = # <{u).)

(b) Prove the following generalization of the result in part (a): If
ty,....,t, €U are differentially algebraically independert over &, and g.ls
a differential field with F < 9 < F{t,,...,1,) such that the differential
transcendence degree of 4 over F is |, then there exists an element u € 4
such that F (uy = 4. (Hint: Copy the proof for part (a).)

8 Multiplicity of zeros

Let AcU{p,,....ya} and n=(ny,....,n,) € ¥" If 4+ 0, then there is a
smallest natural number y such that A(n,+y;,...,M,+y,) has a nonzero
term of degree u; we call this smallest u the multiplicity of A at n. The multi-
plicity of 4 at n can also be defined as the biggest ueN such that 4 e
(V=M1 Ya—=Nad If A =0, we define the multiplicity of 4 at 7 as .

If A(n) = 0, then the multiplicity of 4 at 7 is some p > 0. We say .m.t}_ns
case that 7 is a zero of A of multiplicity u. Every zero of A has multiplicity
greater than or equal to 1. If 4 is pseudo-led, the non-singular zeros of 4
evidently have multiplicity 1. At the other extreme, every zero o'f A has
multiplicity less than or equal to deg 4. If A is a power of a differential poly-
nomial of degree 1, then every zero of 4 has multiplicity deg A. The
following converse is used in Section 10.

Lemma 1l Let A be a pseudo-led element of F{y,,...,y.} of degree t, aarid
suppose that every zero of A has multiplicity t. Then A = oL where p € Z,

LeF{y,....Vn}, and deg L = L.

o
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Proof Replacing & by a smaller differential field, we may suppose that
% is universal over #. Let v be pseudo-leader of A4 relative to some ranking.
Writing 4 = @AY .- A%, where pe F and A4,,..., 4, are the distinct ir-
reducible factors of 4, we see that 0(A:)/0v # O for at least one k, say for
k = 1. Then a, is not divisible by p and 84 ,/dv # 0. If v’ is any derivative of
a y; with v" > v, then 04/dv’ = 0, and this implies that d4,/6v" is divisible
by A, so that 6A4,/6v" = 0. Thus, v is pseudo-leader of 4,. Let n be a generic
zero of pz(A,). Each A, with k # [ is partially pseudo-reduced with respect
to A, and is not divisible by 4,. By Section 6, Theorem 3(b), 4,(n) # 0.
As 1 is a zero of A of multiplicity 1, n must be a zero of 4 of multiplicity a,,
so that a; =¢. However, obviously t =Y <<, a,deg 4,. Therefore r = 1
and deg4, = .

PART B. CHARACTERISTIC p=0

Throughout this part of Chapter IV it is assumed that p = 0.

We now turn to some of Ritt’s deeper work, and for this we must assume
that p = 0. The results that are most complete deal with the components of
a differential polynomial. In his original treatment (Ritt [85, 86]) he dealt
with algebraic differential equations with meromorphic coefficients, and his
proofs were in part function-theoretic. The first step at algebraization in this
connection was taken by Levi [49, 50] who proved a lemma obviating some
of Ritt’s dependence on analysis. The rest of the function theory was removed
by Ritt himself ([93], see also [95]) by adapting his Newton polygon method
to the abstract case. The whole complex of results was then studied anew
by Hillman [19] and Hillman and Mead [20], who clarified their inter-
dependence and simplified the exposition. It is this exposition that we follow
here in the main lines, but with alterations and additions. After a preliminary
section (Section 9) on finite sets of differential polynomials, containing a
constructive result and a nonconstructive one due to Ritt and an improve-
ment (Lemma 2) due to Rosenfeld, we turn to Ritt’s main work on singular
solutions. In the present development everything flows from two sources:
Hillman’s leading coefficient theorem (generalizing Ritt’s lowest degree
theorem, which played only a minor part in Ritt’s treatment), and Levi's
lemma. These are established first (Sections 10 and 11, respectively). With
the view of improving some of Levi’s improvements of some of Ritt’s resuits,
we formalize in Section 12 the notion of domination of differential mono-
mials, and generalize a special case of Levi’s lemma. Following a section
devoted to the preparation of a differential polynomial with respect to a
characteristic set, come Ritt’s definitive resuits on the components of a dif-
ferential polynomial: in Section 14 the component theorem, and in Section
15 the low power theorem. The remainder of the chapter is devoted to partial
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results on the Ritt problem concerning the distribution of the singular zeros
of an irreducible differential polynomial among its irreducible components,
and to a few other topics.

9 Finite sets of differential polynomials

Let &% be a differential subfield of %, and suppose given a ranking of
(y1,..»Vn)- As we shall see in Lemma 2, below, a prime differential ideal p
of #{y,,...,ya} is completely determined by its characteristic set A through
the equation p = [A]: H,®. Thus, if we are given a set ® < F {y,,...,y,},
the problem of finding the components of {®} is equivalent to that of finding
characteristic sets of the components. This problem can be separated into
the following two problems.

PrOBLEM | To find a finite set U of autoreduced subsets of F {y, ..., Vn},
each of which is a characteristic set of a prime differential ideal containing ®,
such that I contains a characteristic set of each component of {®}.

PROBLEM 2 Given an autoreduced subset of F {y,,...,V.}, to determine
whether or not it is a characteristic set of a component of {®}.

(We should, strictly speaking, also include another problem: Given that A
and B are characteristic sets.of prime differential ideals, to determine whether
or not these ideals are identical. However, this problem is trivial. See
Exercise 1.) '

A solution of Problem 2 in the general case is not known, but in an impor-
tant special case, that in which ® consists of one differential polynomial, a
complete solution is given by two theorems of Ritt, the component theore.m
(Section 14) and the low power theorem (Section 15). Beyond this special
case, results are fragmentary.

The problem of finding the components of {®} can be decomposed also
into Problem | and the following problem.

PROBLEM 3 Given that A and B are characteristic sets of prime differential
ideals p and q, respectively, to determine whether or not p — q.

Despite the similarity between this problem and the problem mentioned
parenthetically above, Problem 3 seems to be very far from solution. A special
case, that in which A consists of a single irreducible differential polynomial 4
(so that p = ps(4)) and g is the differential ideal [ y,, ..., y,], is the problem
of determining whether the point (0,...,0) is in the general solution of the
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differential equation 4 = 0. This is discussed in Section 16, but even here
the results are meager.

The main purpose of this section is to give a solution of Problem 1 in the
case of finite sets ® = # {y,,...,y,}. We shall do so “in principle” by an
inductive procedure that depends on the possibility of solving certain ““easier”
problems about polynomials in finitely many indeterminates over & ; that
is, we reduce our problem in algebraic differential equations to a problem in
algebraic equations.

To do this we require a criterion for an autoreduced set to be a character-
istic set of a prime differential ideal. Let a ranking of (¥1>..»p,) be fixed.
An autoreduced set A = F {y,, ..., y,} is called coherent if it is (0)-coherent
in the sense of Chapter 11l Section 8, that is, whenever A, A eAandvisa
common derivative of u, and u,., say v = Ou, = 0'u,,., then S,. 04—-S5,04 ¢
(4,): H,®, where A, here denotes the set of differential polynomials 874”
with 4" € A, 8" € @, and 0"u,. < v. We observe that it suffices to verify this
condition when v is the lowest common derivative of u,, u, . Indeed, let
the condition be satisfied for a given v as above, and let w = dy = 00u, =
80'u,. with 6 € A. Since S,. 04— S, 04" € (A,): H,®, it follows from Chapter
I, Section 2, Lemma 1 that 6(S,.04—S,04") € (A,,): H,® = (A,):H>,
so that

S, 504 — S, 004
= 0(S, 0A—S,0°4') ~ 8S,.- 04 + 65, - 04" € (A): H,™.

Therefore we can argue by induction on ordv.
The criterion given by the following lemma is due to Rosenfeld [105],
who introduced the notion of coherent autoreduced set.

Lemma 2 If A is a characteristic set of a prime differential ideal p of
F{Vis-sVu}s then p=[A]:H,®, A is coherent, and (A):H\™ is a prime
ideal not containing a nonzero element reduced with respect to A. Conversely,
if A is a coherent autoreduced subset of F {y,, <oy Y} Such that (A): H,® is
prime and does not contain a nonzero element reduced with respect to A, then
A is a characteristic set of a prime differential ideal of F { Vise-sVa)-

ReEMarRk Let U denote any set of derivatives of the differential indeter-
minates such that A « #[U]. It is easy to see that the ideal (A):H,® of
F{yi,...,y,} is the ideal generated in F{yi,.-, Yo} by the ideal (A): H,*
of #[U], and that the ideal (A): H,” of F[U] is the intersection with
F [U] of the ideal (A): H,® of # {y,,...,»,}. It follows that the condition
that the ideal (A): H,® be prime is independent of the polynomial algebra
in which the ideal is taken. In particular, we may take U to be the set of all
derivatives fy; that are present in at least one element of A. A similar remark
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holds for the condition that (A): H,* not contain a nonzero element reduced
with respect to A.

Proof Let Abea characteristic set of a prime differential ideal p. Then
p does not contain a nonzero element reduced with respect to A (see Chapter
111, Section 2, the Remark following Lemma 1); therefore H, ¢ p. The
remainder with respect to A of any element of p is in p and is reduced with
respect to A, and therefore is 0. It follows from Chapter I, Section 9, Proposi-
tion 1, that p = [A]:H,”, that whenever 4, A’ € A have leaders with a
common derivative v = fu, = 0'u,., then S04 =S, 04e(A) H™ (so
that A is coherent), that the ideal (A):H,® of F[V], where V is the set of
derivatives of the y; that are not proper derivatives of any u, (4 € A), co-
incides with p n # [V] and therefore is prime, and that (A): H,” contains
no nonzero element reduced with respect to A. Conversely, let A be a coherent
autoreduced set such that (A): H,® is prime and contains no nonzero element
reduced with respect to A. By Chapter 111, Section 8, Lemma 6, [A]: H\"
is a prime differential ideal of Z {y1,..-,Va}- BY Chapter 1II, Section 8,
Lemma 5, an element of [A]: H,” reduced with respect to A is contained in
(A): H,® and therefore must be 0. From this it easily follows that [A]: Hs”
does not contain an autoreduced set of lower rank than A, that is, A is a

characteristic set of [A]:H,”. N

We are now in a position to solve Problem 1 when posed for a finite set @.
In what follows we enlarge the set of all autoreduced subsets of F { ¥, .. Y}
by adjoining to this set, as a new element, the set E consisting solely of the
element 1 € #. We define E to be of lower rank than every autoreduced set.
For every finite set ® = # {y,, .., ¥n} we let A(®) denote the set E in case
® contains a nonzero element of & and denote an autoreduced subset of ®
of minimal rank otherwise. In general A(®) is not unique, but its rank is.

If A(®) =E, then 1 {®}. In this case {®} has no component, so that
our problem is solved by taking A = .

Let A(®) # E, and assume we can solve Problem 1 when posed for any
finite set ¥ such that A(¥) has lower rank than AD). f GeF {y1,-->Val
is nonzero and reduced with respect to A(®), and if we let &g denote the
union of @ with the set having the one element G, then A(®;) has lower
rank than A(®). Also, if G, Gy¢€ F{y0,...ya and G G, € {®}, then
{®} = {®g,} N {®g,}, so that if ¥, solves Problem 1 posed for ®g, (j = 1,2),
then %, U A, solves the problem posed for ®. From this we deduce the
following general principle: 1f we can find nonzero differential polynomials
G,,...,G, reduced with respect to A(®) such that G, --- G, e {®}, then we
can solve Problem 1 posed for .

The remainder R of any element of ® with respect to A(®) is in {®}. Also,
if any 4,4’ € A(®) have the property that u,,u, have a lowest common
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derivative 0u, = 0'u,., then the remainder D of S,. 04— S,6'4" with respect
to A(®) is in {®}. [t follows by the general principle, above, that if some R
or some D is not 0, then we can solve Problem 1.

Suppose that every R and D as above is 0. By the observation preceding
Lemma 2 (and by Chapter I, Section 9, Proposition 1) A(®) is then coherent.
If (A(®)): H,, is not prime, it contains either 1 or a product PQ, where
P and Q are not in (A(D)): H3e, and (see the Remark following the state-
ment of Lemma 2) are free of every fy; not present in the elements of A(®).
In the latter case, we may replace P and Q by their remainders with respect
to A(®), and may therefore suppose that P and Q are reduced with respect
to A(®). Since S, and I, are reduced with respect to A (D) for each 4 € A(D),
we thus see by our general principle that if (A(®)): Hie) is not prime or
contains a nonzero differential polynomial reduced with respect to A(®),
then we can solve our problem.

Suppose, finally, that (A(®)): Hs, 1S prime and contains no nonzero
element reduced with respect to A(®). By Lemma 2, [A(®)]: H s, is a prime
differential ideal with characteristic set A(®). Also

(@) = [A@):HZe) 0 ) (@13~ [} {®54
AcA(D) ACA(®)

From this it is apparent that we can solve our problem.

This completes the discussion of Problem 1, except for the following
comments. Finding A(®), given a finite set ®, is simply a question of making
a finite number of comparisons of rank. Finding the remainder of a given
differential polynomial with respect to a given autoreduced set is a question
of applying the definition of remainder (see Chapter [, Section 9) which is,
in effect, an algorithm for computing it. Therefore the effectiveness of the
above solution “in principle” of Problem 1 depends on our ability to solve
the following algebraic problem.

ProsLEM (a) Given a finitely generated polynomial algebra F [X,, ..., X{]
over &, and an r e N with r <5, and s—r nonzero polynomials f,,4,..../s €
F[X,,...,X,] such that each f; is free of X;,,,..., X, is of some degree
d, > 0in X;, and is of degree less than 4; in X; (r < i <), to determine whether
or not the ideal = (f,,,....f.):h® of F[X,, ..., X] is prime and contains
no nonzero polynomial of degree less than d; in X]; for each j, h here denoting
the product [T, ;< /;3/;/0X;, where I; is the coefficient of X¢ in f; when f;
is regarded as a polynomial in X;; further, in the event of a negative determin-
ation, to find either two polynomials g,,9, ¢ f with g, g, et or else one non-
zero polynomial in f of degree less than d; in X; (r<j<s). If r =5, this is
a trivial matter as then I = (0) and the determination is in the affirmative.
If r<s, and if we set ¥ =(f,r1,...[e=1) '™ In F[X,,....,X,-1), where
B =TT,<j<s [;0f;/0X], then it is not very difficult to show that the determina-
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tion for f will be affirmative if and only if the determination for t' is affirmative
andf,(x, ..., Xs—1, X;) 18 irreducible in & (x|, ..., X~ ) [XJ when (x, ..., x,_ )
is a generic zero of .}

It should be remarked that although a prime differential ideal p of
F{yy, ...y} is determined by its characteristic set A, it is not always easy,
given A, to find a basis of p. The problem, given a finite set ® = F {y, ..., y,},
of finding finite sets ®,, ..., P, such that {®,},...,{®,} are the components
of {®} is in general an unsolved one. The following proposition, due to
Ritt [95, pp. 118-120], is only a partial solution.

Proposition5 Let ® be a finite subset of F{y,,...,y.}, and set e=
maxg. ord F. For each seN let A, denote the polynomial algebra
F[(0Yscow, 1<j<nls o denote the perfect ideal of A.., generated by
O(s)D, and X denote the set of components of a® in A, . Then, for every
sufficiently big s € N, the components of {®} in F {yy, ..., y,} are those elements
of the set of perfect differential ideals {p} (p & X)) that are minimal in that set.

RemARk Thus, to be able to find sets @, ..., ®, such that {®},. ., {®,}
are the components of {®} it suffices to be able to solve the following three
problems: (i) Given @, to find a value of s that is sufficiently big in the sense
of the proposition. (ii) Given a finite subset ¥ of a polynomial algebra
R=%#[X,,..., X], to find finite subsets ‘¥, ..., '¥, of R such that the perfect
ideals of R generated by the \¥; are the components of the perfect ideal of
R generated by W. (iii) Given an s e N and two finite subsets ¥, and ¥,
of A, such that the perfect ideals p, and p, that they generate in A, are prime,
to determine whether or not {p,} < {p;}.

Problem (ii) can be effectively handled provided the algebraic Problem (a)
mentioned above can be solved (see Ritt [95, Chapter 1V, especially pp. 95—
1037). Problem (iii) can be reduced to Problem 1 and therefore to Problem
(a) as follows: By solving Problem | posed for ¥,, we find characteristic
sets Ay, ...,A, of prime differential ideals containing p,. A necessary and
sufficient condition that {p,} = {p,} is that the remainder of every element
of W, with respect to each A; be 0.

The status of Problem (i) is much less satisfactory. There is no way known
in general to tell in advance how big s must be or even to recognize whether
a given s will do.

Proof of Proposition 5 Let p,, ..., p, denote the components of {®}, and
let ¥, be a finite set with {¥,} = p, (1 < k <r). The finite set ¥, ---\¥, is

' For an introductory discussion of the question of factorization in finitely many steps,
see B. L. van der Waerden, “Moderne Algebra,” Vol. I, 2nd ed., § 25, 42. Julius Springer,
Berlin, 1937,
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contained in {®}, hence in o for sufficiently big s, and hence in every p e
X®. Fixing s big enough, we see that each p € X* must contain some ¥,,
so that each {p} with p € ¥ (in particular, each minimal one) must contain
some p,. On the other hand, p, = {®} = {O ()} = (a9} = {Nyex0 P} =
(Npex {p}, so that each p, must contain some minimal {p} with p e ¥

EXERCISES

I. (a) Let p be a prime differential ideal of #{y,,...,y.}, let A be a
characteristic set of p, and let Fe & {y,...,»,}. Show that Fep if
and only if the remainder of F with respect to A is 0.

(b) Let p, respectively g, be a prime differential ideal of # {y,,...,»,}
with characteristic set A, respectively B. Show that p = q if and only if
Beop, Hp¢pand Acg, Hy ¢ g

2. (Ritt[90; 95, pp. 144-146]) Showthatifa = («,, ..., «,) is a zero of multi-
plicity lof Fe % {y,, ..., y,}, thenais azero of only one component of { F}.
(Hint: Let u be the leader, relative to an orderly ranking, of the linear
part of F(a,+yy,...,2,+,). Show that det(3(0F)/d(0'w))scos), o <o
does not vanish at o, and apply Chapter 0, Section 16, Corollary 4 of
Proposition 11, and Proposition 5 just proved.)

3. (Ritt [95, pp. 10, 172]) Let p be a prime differential ideal of # {y,, ..., y,}
and let A be a characteristic set of p (relative to a fixed ranking). Prove
that p = {A}:[Tsca S4. (Hint: For any Fep, let F denote the partial

remainder of F with respect to A, let o, ..., v, be derivatives of the y; that
are reduced with respect to u, (4 € A) such that F and each 4 € A are
elements of the polynomial algebra R= F[v,,...,v,,(#4)4e4), and let

po denote any component not containing [ ],.. S, of the perfect ideal of
R generated by A. Using Chapter 0, Section 16, Corollary 4 to Proposi-
tion 11, show that dimp, =¢q and po n F[v,,...,v,] = (0). Infer that
no nonzero element of R that is reduced with respect to A can be in pg,
and therefore that p, = (A): H,®, Fep,, and Fe {A}:[1iea Si.)

10 The leading coefficient theorem

Let ¢ be a transcendental constant in an extension of # {y,...,y,», and
let & denote an arbitrary differential subfield of #. Then (see Chapter I,
Section 12) we may form the differential algebra #{y,,...,y,} ((¢)) of power
series in ¢ over F {y,, ..., ¥a}-

For each power series Pe % {y/, ..., ¥.} ((¢)) we denote the series-order of
P by v(P). If v(P) # o0, that is, if P # 0, we denote the leading coefficient
of P by Jp; thus, P = Jpc"P + ..., the dots denoting a power series of series-
order greater than v(P).
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Theorem 4 Let A and B be nonzero power series in F{y,, ..., ya} ((¢)) such
that Be {A} in F{yy,...,ya () Then Jge{J,} in F{yi, ..., Vab

Proof Because p =0, some power B" of B is in [A] (see Chapter IlI,
Section 1). Since Jgn = Jg", we may replace B by B that is, we may suppose
that B e [4], so that

B= Y M,04, 3)
:2 1
where @ is a finite nonempty subset of © and for each 0@, Mye
F{y1, - Va} ((€)). Multiplying both members of this equation by a suitable
power of ¢, we may even Suppose that v(4) =0 and v(My) 20 (B @),
from which it follows that v(B) 2 0. Thus, we may write
A=Y A Ay e Fiynoy  (k20), 4, #0,

k20

Ma = Z Mo,kcky Mﬂ,k € ?—{yl)"'!yn} (k 20) (96¢)7 (4)

ot
<

B =Y B Boe Fl{yn,..oyp (k=b), By #0,
K>
sothat b=v(B) =0, J, = Ay, Js = By. By Theorem 1, it therefore suffices
to prove that every zero of 4, is a zero of B,. However, if (1, ...,n,) is any
zero of A,, then the substitution Of (N1 +V1 -2 at¥a) fOr (¥1,.., V4), which
is an automorphism of % {y,, ..., Vu}» extends in an obvious way to an auto-
morphism of % {y,, ..., ya} ((c)) (cach X C(y,--»7n) c* being mapped onto
S ColMy+715 -, In+ Y. ¢*). This extended automorphism transforms (3)
into a similar equation, and shows that it suffices to prove the following
assertion: Given (3) and (4), if 4, vanishes at (0, ...,0), then so does B,.
Denoting the multiplicity of (0, ...,0) as a zero of A4, by t,, we suppose
inductively that our assertion is valid for lower values of (¢, 6) in the lexico-
graphically well-ordered set N2, and then prove its validity in the present
case. To do this we assume that B, (0, ...,0) # 0 and seek a contradiction.

Obviously

-

By, = Z Z Mo,b—kgAkx

ge® 0<K<H
so that there exists a smallest # € N with 4,(0, ...,0) # 0; of course O0<h<gb.
We denote by ¢, the multiplicity of (0, ...,0) as a zero of 4, (0 < k < h), and
define p = maxg ¢y <4 (A—k)/t. Since p is a strictly positive rational number,
we may write p = r/s, where r and s are relatively prime nonzero natural
numbers. Substituting (c%,¢"yy, ..., cyn) for (¢, ¥y, ..., V), we obtain from
(3) and (4) similar equations

B/ —_ Z MorgAl (3/)
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and
A=Y 4’ A, =400+ Y A
kZhs O<k<h
(h=k)tx=p
(4,, denoting the homogeneous part of A, of degree 1), @)
My = Y M;,c* Bed),
k=0
B'= Y B/, B, = B,(0,...,0).

kzbs

Clearly A}, # 0 and 0 < deg 4,, < ty, and deg 4, = 1, if and only if pty = 4.
Since p = 0 this implies, in particular, that 4 has a zero (for example, any
zero of the general component of an irreducible factor of 4, in% {y,, ..., y.}).
Let (a,,...,a,) be a zero of 4;; of minimal multiplicity #,. Then 0 < i, < 1,
and ¥, = t, only if ptg = 4 and every zero of 4,, has multiplicity . It foillows
from Section 8, Lemma 1, that if iy = 1, then pt; = h and 4, = ¢-(B+ H)"*°
for suitable ¢@,fe % with ¢ # 0 and nonzero homogeneous linear He
F{y1,.-»Ya}; by (4) then

(p'(ﬁ'0+t0ﬁto—lH+"‘+H'o)=A’|(0""’0)+ 0; . Ak‘ (5)
k<
(h~k)/tx=p

whence @B = 4,(0,...,0), so that B # 0 and hence the homogeneous part
of degree 1 of the left member of (5) is different from Q; therefore there must
exist 2 ke N with 0 <k <h, (h=k)/t, = p, t, = |, that is, with p=h—k.
Therefore if fy = tg, then p e N so that s = 1.

Substituting (@, + y1, ..., %, +y,) for (y,...,»,) in (3') and then dividing
both members by ¢, we find by (3') and (4') equations

=Y M,04
Becd

and

Ay = Ap @+t yy) #0,

My= 5 Myt (Be®),
k20

A

B=7Y B

kzb

b=bs—hs, By=B =B,0,...,0)#0,

so that b = v(B) and i, is the multiplicity of (0, ...,0) as a zero of 4,. By
what we have seen, either T, <o, or else ig=1o, s=1, b=bs—hs=
b—h < b. Thus, in either case (fy, b) < (5, ) in the lexicographic order on
NZ. By the induction hypothesis then By must vanish at (0, ..., 0). This contra-
diction proves the theorem.
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It is easy to see that if Z and %’ are differential algebras over Q, if a e Z,
and if f: # — &' is a ring homomorphism such that f(fa) € {f(a)} for every
derivative operator § of #, then f maps {a} into {f{a)}. We therefore have
the following corollary to Theorem 4.

Corollary 1 Let R be a differential algebra over Q, let a,be R, and let
FiR— ULy, ya) (€)) be a ring homomorphism such that f(a) f(b) # O and
f(¥a) € {f(a)} for every 0 ®. If be {a}, then Jpuy € {J )}

Ring homomorphisms like f above can be constructed as follows. Let #,
and % be differential subfields of % with %, < &, and suppose given an
mxm matrix C = (Cii-), <igm 1 <i-<m OVEr J((c)) with det C # 0 and 2 ring
homomorphism f; : # — % ((c)) such that

foldi0) = Z Cii 00 fo ()

1€i'<m

(Igigsm

for every o € %,. Choose any n-tuple P = (P})),<;<n € %({(c))" and any nxn
matrix Q =(Q;;);<j<n 1<<n OVEr %((c)) with detQ # 0. There exists a
unique ring homomorphism f: F{y, ..., va 2> %{y,, ...,y’,,} ((c)) extending
fo such that

S8 85y

=< ) Cli'éi'> (1 Z Cmi'ér> (PJ+I; ij.yj.> (6)
1<T<m _ \i<Fem Gen

for every (ey,...,e,) € N" and every y;. It is now easy to see, for any 4 €
Fo{Viserypa), that f(8;,4) =3, <i-<cm Cii 0:/(4) (1 i< m), and therefore
that f(0A4) € [ f(4)] (0 € ®). Hence f has the desired property.

Given & and an Ae F{y,,...,V.}, we define an A-permissible homo-
morphism to be any ring homomorphism

fzg'—{yh"'ayn} - %{yh’yn}((c))

that can be obtained in the manner just described. That is, fis A-permissible
if f maps & into % ({c)) and if there exist an invertible m x m matrix C =
(Ciw) over A ((c)), an n-tuple P = (P;) over %((c)), and an invertible nxn
matrix Q =(Q;;) over #%((c)), such that f(3:¢) =3, <ir<m Ci 6: /(%)
(1 < i< m) for every element ¢ of the differential field generated by the
coefficients in 4 and such that (6) holds for all (e}, ...,e,) e N"and 1 <j < n
It is evident that C, P,Q are unique for a given f.

Corollary 2 Let & be a differential subfield of U, let A and B be nonzero
elements of F{y,,...,ya}, and let £ F{y,, ...y} > U{y\,...,¥a} (¢)) be an
A-permissible homomorphism. If B e {A}, then Jyg € {Jp 4}
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Proof This is a special case of Corollary .

An example of an A-permissible homomorphism is given by the sub-
stitution of (c™'y,,...,¢"y,) for (yi,...,¥s)s Vi,.on v, denoting arbitrary
rational integers. Here C is the unity matrix, P = (0), and Q is the diagonal
matrix with main diagonal (¢*, ..., ¢"™). In this case J 4y coincides with A,
the nonzero homogeneous part of 4 of lowest degree relative to the dif-
ferential permissible grading of # {y|, ..., .} determined by vi,..0sv 0,...,0
(see Chapter I, Section 7). If we use —v,,..., —v, instead of v,,...,v,, then
Jyay coincides with A*, the nonzero homogeneous part of 4 of highest
degree relative to the same grading. If the coefficients in 4 all are constants
and (uy, ..., 4,) € Z™, then the F-algebra homomorphism & {y,, R
U{y1s s ya} (¢)) mapping 65 - S5y, onto ¢WtHIET I Tunemges L fomy
((ey,...,em) e N", 1 <j< n) is also A-permissible. Here C is the diagonal
matrix with diagonal (c*, ..., ¢#) and P, Q are as before. In this case Jrwy =
Ay is the nonzero homogeneous part of 4 of lowest degree relative to the
permissible grading of F{y,,...,y,} determined by v,,...,t, Hy,...,4,.
Corollary 2 therefore has the following special case.

Corollary 3 Let A and B be elements of F {y,,...,y,} with AB#0 (re-
spectively with AB # 0 and the coefficients in A constant). Fix an arbitrary
differential permissible grading (respectively arbitrary permissible grading),
and, for each nonzero Fe F{y,,...,y,}, let F, denote the nonzero homo-
geneous part of F of lowest degree relative to this grading and let F* denote
that of highest degree. If Be {A}, then B, € {A,} and B* e {4*}.

This corollary is false without the hypothesis p = 0 (see Exercise 2).
We shall say that an 4-permissible homomorphism f is strictly positive if
the C, P, Q that correspond to f as above have the properties

v(iCi) 20 (<ig<m, 1<i'<m) and  v(detC) =0,
v(P) >0  (1<j<n),
v(Qi;) >0 (I<j<n, 1<j<n).

When f is the A-permissible homomorphism associated with a differential
permissible grading (or, if the coefficients in 4 are constants, with a per-
missible grading) in the manner described directly after Corollary 2, f is
strictly positive if and only if the grading is (see Chapter I, Section 7).

EXERCISES

1. Suppose that the differential subfield # of % is the differential field of
quotients of K[{X,,...,X,]], K being a field of characteristic 0 and §,
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operating on K[[X;, ..., X,]] according to the formula §,¢ = dp/dX;
(1 < i< m). Let (Cy) be an m x m matrix over K({¢)) with inverse (D;;),
let (P) e %((c))", and let (Q;;) be an invertible n x n matrix over % ((c)).
Show that there exists a unique ring homomorphism f: # {y,,...,y,} =
U {y,, ..., ys} ((c)) that coincides on K[[X|, ...y Xn]] with the substitu-
tion of (¥, <i<m Dii Xi)1 ci<m 0T (X)) <ixm and that maps 6% --- o7y,
onto

( > Cii15i1> (1 > Cmim‘sim> (P’+1,-Z Q,—,~y,~>
1<i,€m Lim<m <j’<m

((er,...,em) €N™, 1 <j<n). Show that f is A-permissible for every
nonzero A € F{y,..,Vn}-

2. Working over an ordinary differential field of characteristic g # 0, let
A=y +yitieyy*t and B = A'. Show that relative to the usual
grading B, ¢ {44}

3. Let & be a differential subfield of #, let Ae F{y,,..., .}, A ¢ F, and
let 0 ©.

(a) Letpbeacomponentof {84} in F{y,...,y,}, letn =(ny,...,n,) bea
generic zero of p, and let fdenote the substitution of (7, +y, ¢, ..., M+ ¥a €)
for (y,, ...,y,)- Show thatif F e p,then J ) € {0} InF 1) {py, ., 7a)-
(Hint: Let E¢p be in every other component of {64}, so that EF e
{64}, and apply Corollary 2 of Theorem 4.)

(b) Prove the following result of Hillman: If ord® >0, then every
component of {A} properly contains a component of {04}. (Hint: 1f a
component p of {4} were also a component of {#4}, part (a) would
yield Jp 4y € {8J 104y}

{¢) Prove the following result of Hillman: If ordf > ord 4 (more
generally, if a separant of A is reduced with respect to 0y, ...,0p,), then
{04} is prime. (Hint: Show that {#4} has precisely one component
not containing S,. Assuming that {4} has another component p, apply
part (@) to F=S5,.)

11 Levi’s lemma

In this section we deal with differential polynomials over Q in z,,...,2,
and a number of other differential indeterminates which we denote by u,,
(I1<p<r,0<y<y,) Herer, g,..,9, are natural numbers with r # 0.
The words “degree” and “homogeneous™ refer to the usual grading. We
also use the notions of “weight” and “isobaric” as defined in Chapter I,
Section 7.

e
=4
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Lemma 3 Let G,...,G, be differential polynomials in
Q{Zla ~~-yZr:(upy)1$p$r,0$y$g,}

of the form
G, = uyzlr + Z U, M,

1<y<g,

(I1<p<r),

where (for each p) q,e N and M,,,...,M,, are differential monomials in
(z1,...,2,) of degree greater than q,. Then there exist a monomial U =

udy - uk and a differential polynomial

Ze Q{ZI’ '"1zr9(upy)1$p$r,0$y$g,}

with Z € [z,, ...,2,] and with Z homogeneous in (Ou,,)sce,0<y<4, Of degree d,
(1 < p < r) and with the degree of Z in (Quyg)geo, 1 < o<, Strictly smaller than
d, +---+d,, such that

2,(U+Z) € {G,,..,G} (1<p<r).

Proof Replacing G, by z97%G,, where ¢ = g, (1 < p <r), we may sup-
pose that g, ..., 4, all have the same value ¢ and that ¢ > 0.

Let k denote the maximum of all the numbers witM,, (I1<p<r,
1 <y <g,). By Chapter 1, Section 7, Lemma 4 (case / = 0), there exists a
natural number e = e(r, k, g, m) such that every differential monomial N in
(zy,...,2,) of degree e and weight less than or equal to ke is in one of the
differential ideals [z,%]. Since each derivative 8(z,%) is homogeneous of
degree ¢ and isobaric of weight ord 8, we may write

N= Y 4,09,
ord@<wtN

where 44 Q{z,,...,2,} is homogeneous of degree e—g and isobaric of
weight wt N—ord 8. However, by Chapter 1, Section 2, Lemma 1, we may
also write

upl(;-‘"d 99 (qu) = 0;0 UO,O',pgl(up() zpq),
where Uj 4, € Z{u,0} is homogencous of degree ordf. Furthermore,
Upo 2," = =21 <y, Upy M,y (mOd[G,]), so that
9’("‘90 zﬂq) - Z 9’(uw Mpv)

1<y<g,

I

It

us U
by g 0", 8" M,

1<y<g, 0797 =¢"

(mod[G,]),
where by ¢ € Z. Therefore
u;g— keN = Z Z z Z A0 u:%— ord § UG, o.p bg»’ o gnupy gmMpy

ord S wiN 0°]8 1 <y<g, 070" =8
(mod [G,,]).
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Consider any differential monomial L appearing with a nonzero coefficient
in any A4,0"M,, here. Clearly, degL >e—qg+q+l=e+ 1 and wtL =
wtN—ordf+ord0” +wtM,, < ke+k. If all the derivatives of z,...,z,
dividing L have order less than or equal to k, then the product of any e of
them is a differential monomial of degree e and weight less than or equal to
ke, whereas if one of these derivatives has order greater than k, then the
product of e of the others has weight less than ke. Thus, in either case, L is
divisible by a differential monomial in (z,, ..., z,) of degree e and weight less
than or equal to ke. Let us denote all these differential monomials by
N,,...,N,. What we have done shows that for each N, there exists an index
p = p(j) such that

wpireN; = 3 Vi Ny

1< <h

(mod[Gy,...,G.]),

where V. € Q{zy,.., 2, (Uyjy,)osy<q,) 18 homogeneous in (Bu,y0)pc0 Of
degree ke, is homogeneous in (0, ), )sco, 1 <y<q,,, Of degree I, and is an
element of [z,,...,z]. Transposing the sum to the left side, we obtain a
system of homogeneous linear congruences in N,,..., N,. The determinant
of this system can evidently be written in the form U+Z with U and Z as
described in the statement of the lemma. Solving the system of congruences
we therefore find that (U+Z)N; =0 (mod{G,,...,G,]) for every j. Since
each z,° is an N; we see finally that ,(U+2)e{G,,....G (1 <p<r).

12 The domination lemma --—

Before applying the results of the last two sections to the study of dif-
ferential equations, we generalize the case r = 1 of Levi’s lemma. To this
end we introduce some definitions and two preliminary lemmas.

As before, we deal with differential monomials in (z,,...,z,). By a prime
factor of such a differential monomial M, we mean (as in Chapter 1, Section 6)
a derivative 0z, that divides M. For any set ¥ of derivatives 0z, we let M,
denote the product of all the prime factors w of M with w e @V, each w taken
the same number of times as it occurs in M. Thus, if @ contains no prime
factor of M, then M, = 1, whereas if ®V contains every prime factor of M,
then M, = M.

Let M and N be differential monomials. We shall say that N dominates M
if, for every set ¥V of derivatives 8z, the following condition is satisfied:
either deg M, < degh, or M, = N,.

Since M, = Mgy = Mey)nym» Where V(M) denotes the set of all prime
factors of M, it suffices to verify this condition for every nonempty set ¥/
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with ¥V < V(M). If, for every nonempty ¥ with ¥V < V(M), N satisfies the
stronger condition
deg M, < deg¥N,,

then we shall say that N strongly dominates M.

If N, dominates (respectively strongly dominates) M, (1 <y <g), then
[1i<,<, N, dominates (respectively strongly dominates) [T, ¢,¢, M,. If N,
dominates M (1 €y < g) and, for at least one y, N, strongly dominates M,
then [T;<,<q &V, strongly dominates M?. [t follows that if v, ..., 5, are the
distinct prime factors of M and M =v{' ---v%, and if N can be written in
the form N = [, <.« 9. with Q. dominating (respectively strongly dominat-
ing) v% (1 <t <t), then N dominates (respectively strongly dominates) M.
We shall say in such a case that N dominates (respectively strongly dominates)
M factorially.

If &, dominates (respectively strongly dominates) M, factorially (1 <7< g),
then [7,¢,<, N, dominates (respectively strongly dominates) [T,<,<, M,
factorially. If N, dominates M factorially (1 <y < g) and, for at least one y,
N, strongly dominates M factorially, then [],<,<, ¥, strongly dominates
M7 factorially.

It is easy to see that there exists a biggest set W of prime factors of M such
that M, = Ny . It is clear that if N dominates M, then a necessary and suffi-
cient condition that ¥ strongly dominate M is that W be empty. We call
W the weakness of N over M. If N, dominates M (I <y < g) and the weak-
ness of N, over M is W,, then the weakness of [ <,<, &, over M? is

ﬂlSySg Wy'

Lemma 4 If N, strongly dominates M (1 <y < g), then, for all (iy,....i;) e
N for which the sum h =Y, <, <, I, is sufficiently big, T1,<,<s N strongly
dominates M" factorially.

Proof Write M =[I,.xv> with K a finite set and the v, (k € K) the
distinct prime factors of M. For each nonempty set J < K let x,” denote
the number of prime factors v of N, such that v is a derivative of v, for every
k e J and v is not a derivative of v, for any £ € K—J (each v being counted
as many times as it occurs in N,). Because N, strongly dominates M we have,
for each y,

x>y aq
JeP(Ky=PB (K- iel

(1e B(K)),

where, for any set S, P'(S) denotes the set of nonempty subsets of S. By
Chapter 0, Section 18, Corollary to Lemma 17, there exists an hy e N and,
for each (J,j) with Je B'(K) and je J, there exists a y} ;€ N, such that
Sies Vi j=hox;and T, ¥} ;> hga;. Tt follows that we may write Nho =
[T;ck N,;, where, for each je K, N,; is a differential monomial in (z,,...,2,)
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of which the degree in (00)pco is greater than or equal to hga;+1. Let

ﬂg an(l write 1, = q h + 7 Wltll r, € N and r, < h . Ille“
(l ceeal )E b4 y 0 v qy’ Y 0
12 :::27g Y
‘ I vV o= . ‘ I [ = ‘ I I l v . I l N ¥
ks I l ayho V’v Nq r
y< N <Y<9N <y<yg ! J <y<g 1<ysg9
IESA Y] 1sys 1<y eK 1y <

For each j € K the degree of [Ti <,<q Vo in (0v))pce is greater than or equal to

Y. glhoatl) = Y (i,=r)he thog;+1)

<£v%
1€£y<9 1€y<g

= (h- glhe— 1))hg‘(h0aj+ b,

i so that this degree is greater than a;h provided /2 >

= < ’ . h .
ngél: re— }ll) (hoza1 iyi; therefore iy Yy strongly dominates M factorially
o j

whenever 4 is sufficiently big.
In the next lemma (ug, Uy, -.., %) denotes a family of differential inter-
n y UL, s

mediates over Q{zy,..-,Z)-

ey Zp, Ug, Uy s Ug)s where
5 Let F= ZOS <g uyMy E.Q{z.la s4rs Ly
Le’";“ M, are diﬁ"erent;al monomials in (z,,...,z,) with 'M 0 #0 an[d
w M ~-~(,1 <g < g). If each M, with y # 0 dominates (respectively _?trong y
%];nfnat;s) A; ! t\hen the ideal (F) contains a differential polynomtal' S} :1
(134 :
0, each Uy is a monomia

aprs a <p<» Us Ng» where ae N, a# 4, L . : §
- +Zul)\'go\tll;erﬁthan u,® of degree a, and each Ny is a differential m;no
(u(')z;lu :r’l(z, ’ 2,) other than M" that dominates (respectively strongly dom-
mi s -oosZr
inates) M® factorially.

Proof Assume that each M, with y # O satisfies the stronier 'Zf theft:\}'lz

ro -
i i If we raise both sidaes o
that is, strongly dominates M. .
}clgggsll::;zse’ Uy My == <y<a hy M, (mod F) to the ath power,( w1t(§1Fa) Odg)’,
¢ o Y = eu. M. My mo )

e find the congruence up*Mo"=— i, Uy, M, . o
zemma 4 we may choose a so thateach M, - My‘;x straongly dommat}e‘; MO ;{c
torially. Then the differential polynomial G = uy*M, -{—.Z u, iy, My, e
is in (F) and satisfies the stronger of the t»/:!o c(:c;nj;xs;o;:. Lot I denote the

erely that M, dominates M, (1 <y < g)- L€t 1o

tN oof“i/niisiscl:sn; :ith )?, #0 sucix that M, dominates M, fact.orxally. For ;i;l;
iS:dex with y # 0 and y ¢ [ the weakness of M, over M, 1sa subset o he
set of yprime factors of M,. Denote the distinct weaknesses of }:hf ;/ar1< s

i W, and for each ke N with l S K%
M. withy #0 and y ¢ I by Wi, ... Wi, (s
letyI“ den):)te the set of indices y with y # 0 and y ¢ I such that the weakn

of M, over M, is W,. Then
F=uMy+ ) Y uM,.
0

<x<kyvel
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Set = Card J, <<k B(W,), where, for any set S, B(S) denotes the set of
all subsets of S.

If © =0, then £ =0 and we may take G = F.

Let 7 >0 and suppose the result proved for lower values of 7. Then
k> 0. We may choose the notation so that W, is not a subset of any W,
with k # k. Let ke N be odd. Raising to the Ath power both sides of the
congruence uo Mo+, r o u, M, = -3 c <k 2yerc 4, M, (modF), we ob-
tain on the left uy*My" plus a number of terms UN with U a monomial in
(w0, (,)yer,) different from u," of degree 4 and with N a differential mono-
mial in (z,,...,z,) different from M," which dominates M, factorially. On
the right we obtain a sum of terms — UN = —Uy -uy, M, - M, . For any
such term either some index y,is ina I, with | < x < k or vielL (1 <igh).
In the former case the weakness of N over M," is a subset of W, for some
k with 1<k <k. In the latter case we may write M, =M, M,, =
M, Myy (1 <i<h)and My = My My, , and’each M, strongly dominates
M,'. By Lemma 4 then we may choose 4 so that M, --- M, strongly dominates
M¢" factorially, in which case N = M,, --- M, = M; - M, M}, dominates
Mo" = M"M}b,, factorially. Transposing to the left side all the terms on the
right, we obtain on the left a differential polynomial

Fr=0Me*+ 3 Y UM e (F),
O<k<k* yel,*
where To* I1*, ... ¥ are disjoint finite sets not containing 0, Up* = uy*,
each U,* with ys 0 is 2 monomial in (4o, uy, ..., u,) different from uy* of
degree h, My* = M,", every M,* with ye I* is a differential monomial in
(zy,...,z,) other than M " that dominates Myt factorially, for each index x
with 1 <x <k* all the M,* with yeI,* are differential monomials in
(zy,...,2,) other than M," that dominate M,* and have over My* one and
the same weakness W, * and each of these weaknesses W* . Whisa
subset of some W, with | < x < k. It follows from the last remark that the
number 7* = CardJ, ¢, <4 B(W,*) has the property that n* < r. There-
fore we may apply the lemma to F*, and the existence of a differential poly-

nomial G € (F) with the required properties quickly follows. This completes
the proof of Lemma 5.

We now come to the main point of this section, namely, the following
domination lemma that considerably generalizes the case r =1 of Levi’s
lemma. The notation is the same as in Lemma 5.

Lemma 6 Let F = Qosysgy M, € Qlzy, ..., 2, up, Uy, .y Uy}, where
Mo, M,,..,M, are differential monomials in (zy,..52,) with My # 1 and
M, # M, (1 <y<g). If each M, with y # 0 dominates (respectively strongly
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dominates) M, then there exist a nonzero € € N, and a differential polynomial
ZeQ{z,,..r 2 Uy Uys s g} with Z € [z, .- 2,] (respectively with Z € {M,})
and with Z homogeneous in (0u,)sc0,0<7<9 of degree e and with the degree of
Z in (Bug)gee Strictly smaller than e, such that

M, (uf+2) € {F}.

Proof Write My = vf' -+ v where vy, ..., v, are the distinct prime factors
of M,. Suppose first that = 1. For each index y with y # 0, either M, is
divisible by v or else M, strongly dominates v4'. Therefore, we may write

F= <u0 + Z uyLy> vit + Z uvLyNy(Ul)a
yel’ vel”
where I, I are disjoint sets whose union is the set of indices 1,2,...,9
(I being empty if each M, with y # 0 strongly dominates M), each L, is
a differential monomial in (z,,...,z,), deg L, >0 (yeI"), and each N, with
yeI™ is a differential monomial (in some new differential indeterminate z)
of degree greater than ¢,. We may apply Section 11, Lemma 3 (case r = 1)
to the differential polynomial F’ = Uy'Z + %, er ) N, (uo and u,’ (yel™)
here denoting additional differential indeterminates) to prove the existence
of a differential polynomial z'(us+Z2')€ {F} with Z'e[z'] and with
Z' homogeneous in ((Guo')ese,(Huv’)eee_.,ern) of degree e and with the
degree of Z' in (fug')geo Strictly smaller than e. Since substitution of
(v o+ yer Uy Ly 4y Ly)yer-) for (z',4g’, (,)yer») maps F' onto F, the
desired result follows.
Now let > 1, and suppose the lemma proved for lower values of ¢. By
Lemma 5, the ideal (F) contains a differential polynomial
G = u v o + Y UgNgNy,
1€8<h
where each Uj; is a monomial in (ug, #,, ..., 4} Other than uy® of degree a,
each N, is a differential monomial in (zy, ..., z,) that dominates (respectively
strongly dominates) v{'%, each Ny is a differential monomial in (zy,...2,),
that dominates (respectively strongly dominates) 0% .- v%?, and Ny Ny #
M. We observe that if Ny, and Nj, both equal v%*--- 024, then Ny, and
Ny, both differ from v{*¢, and therefore both have degree greater than or
equal to g;a+1 in (6v,)gco- Then Ny, Nj, can be written in the form NOv,,
where N dominates 24, so that Ny, Nj,-Ng, Nj, can be written in the form
NN’ where N’ dominates 529 ... p2%@ and is distinct from it. Since we may
evidently replace G by ("M’ +(Zi<p<o Up Vg Ng')?, it follows that we
may suppose that N,/ # v v (1< p<h).
Then we may apply our lemma (case 1—1) to the differential polynomial
F' = uyvP® - 08+ Y <pep Ug'Ng' 1N Q{z(, s 2oty s 1y, .. Uy'}, tO prove
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the existence of a nonzero ¢'eN and a Z' € Q{z,,..,z,,uy ,u,’ u,'}
with Z' e [z,,...,z,] (respectively with Z' e {v,---1,}) and,;vi(t)l{ Zl/’ .ﬁ;;mbo-
geneous in (Buy')gc0,0<5<p Of degree ¢’ and with the degree of Z' in (u,’)

strictly smaller than ¢/, such that v, v, +2’) e {F'}. Substitout‘i,xgle
(Lfo"v‘“”, _Ul N oo UgNy) for (uy',uy’,...,u,'), we find that {F} contains f
differential polynomial v, - v, (ug'05' + X 1ea, U 2 M|;), where @, and ¢, are
nonzero natural numbers, each U, is the product of a rational nurlnber
with a differential monomial in (ug,u,,...,u,) of degree a, having degree
le.ss than a, in (Bug)e. e, and each M, is a differential monomial in (z gz )
different from o' that dominates (respectively strongly dominates; 1v";“,Lc;t
Af denote the set of indices Ae A, such that M, strongly dominatleé v
and set A= A;—Af{ (so that under the strong hypothesis, namely thfag
each M? with y # 0 strongly dominate My, A" = ¥). For ea,ch le A we
may write M, = L,,v{* with L, a differential monomial in (z, ... zl) of
degree greater than 0. Thus, {F}: M, contains (u®+ 3,4, U I:r)v“
+3ienrs Uss My, Similarly, for cach 7 e N with 1 < ¢ < £, {F} - M, contain
a differential polynomial , ° e

(u()a + Z Ur}. Lr/l> Uﬁ‘ + Z Ud M\'A
AeA: AsA”

with entirely analogous properties. An easy application of Section 11, Lemma

3 (case r = t) now completes the proof.

13 Preparations

Let p be a prime differential ideal of & {y,,...,y,}. Fix a ranking of
(¥15---»¥s), let A be a characteristic set of p, and denote the elements of A
by 4,, ‘.“’A" For each element v e | )| <4<, Ou,, there exist a 6 @ and a
ke Nwith 1 <k < rsuchthatv = 0u,,, but the pair (8, k) need not be unique
We may, of course, choose for each v a particular pair (6,,k(v)) with v =.
0,u,,,,- We shall call the resulting function v — (8, k(v)) a choice function
for the characteristic set 4,,..., 4,.

ALet thf:re be given such a choice function v — (8,, k(v)), and consider any
dlﬁ'erentlal polynomial Fe # {y,,...,».}. By a preparation equation of F
with respect to 4, ..., 4, we shall mean an equation

HF = Y C,M/(4,,...,4,),
0<y<yg
where H,C,,...,C, are elements of # {y,,...,y,} not contained in p, and
M,, ..., M, are distinct differential monomials in (z,,...,z,) every ;;rime
factor of which is of the form 8,z,,,. This notion depends not only on F
and on A4,, ..., 4, but also on the ranking and the choice function. It is an
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easy consequence of Chapter I, Section 9, Lemma 7, that a preparation equation
always exists. . .

Suppose £ # 0, and set g = ming ¢, <, deg M,. If we denote tk}e dlffereanal
monomials M, of degree ¢ by N,,...,N,, then the preparation equation
yields a congruence

HF= Y D;Ni(4,,..,4)
1<7¢t

where e N, [ #0, H,D,, ..., D, are elements of # {y,, ..., y,} not contained
in p, and N, ..., N, are distinct differential monomials in (z,, ..., z,) of degree
g all the prime factors of which are of the form 6, 2,,,. We shall call any suc.h
congruence a preparation congruence of F with respect to A,, ..., 4,. Tl:ns
notion, too, depends on F, on A4, ..., 4,, on the ranking, and on the choice
function. Moreover, given these, the preparation congruence is in general
not unique. However, the set of differential monomials N, ..., N, is unique.
This is an almost immediate consequence of the following lemma due to
Hiilman.

(mOd[Als “'9Ar]q+ 1)’

Lemma7 If A,,...,A, are the elements of a characteristic set of a prime
differential ideal p of F{yy,...,Va}, and Ny, ..., N, are 1 (# 0) distinct dif-
ferential monomials in (z4, ...,2,) of the same degree q having the property that
whenever 0z, , 0z, are distinct prime factors of N, --- Ny, then Qu,, # 0u,,,,
and D, ..., D, are elements of F {y\, ..., Y} such that S D;N(4,,...4)=0
(mod[A,,...,4,]°*"), then D;ep (1 S A< D).

Proof Letn=(q,,...,n,) beageneric zero of p. For eachGe F{y,,....Vn}
let G denote the sum of the nonzero terms of G{(n; + ¥y, ..., 1.+ ,) of lowest
degree. Since 04,/0u,, = S, ¢ p, A/ has degree 1 and leader u,, . It follows
that, for every 8 € ©,04,’ (=(04,) = 8(A,)) has degree 1 and leader 6u,, .
Hence, if 6, 2,4y, ---» 05 2u(s) are the distinct prime factors of N, -+ N,', t}?en
0 Aigrys - 05 iy a1 algebraically independent over %. Substituting
(M +¥1s -ty fOr (¥4, ..., y,) in the congruence of the lemma, and then
looking at the terms of degree g, we find the equation

Z D, (n) N (4,,...,4,) = 0.

1€as!

. Therefore D, () =0, whence D;ep (1 <A<). '

The same substitution applied to the above preparation congruence of F
with respect to A4, ..., 4, shows that ¢ = deg F' is the multiplicity of F at #,
and that

HmpF = Z D;(m N4/, e AS).

1<asl

R o K1 B b e
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In particular, g depends only on F and p, being independent of the preparation
congruence, the choice function, the characteristic set, and the ranking.
Also, if q#0, then the highest derivative v = 0u, such that 8z, divides
N, -~ N, is the leader of F'. Thus, v depends only on F,p, and the ranking,
being independent of the preparation congruence, the choice function, and
the characteristic set.

The case r = | deserves special mention. In this case if we take A4, ir-
reducible, then p = pz(4,) and A, constitutes a characteristic set of p rela-
tive to every ranking of (y,,...,»,). Furthermore, for distinct derivative
operators 6,0, the derivatives 8, u,,, 8, u,, are distinct, so that the question
of choice function does not arise (there being only one).

14 The component theorem

We saw in Section 5 that if an irreducible differential polynomial 4 e
F{y».--»Yay i1s pseudo-led (which, under the present circumstance p = 0,
is always the case), then the set of components of {4} = {4},; consists of
the general component pz(A4) and a certain number (perhaps zero) of sin-
gular components. The following theorem shows that each singuiar com-
ponent is the general component of some other irreducible differential
polynomial in F{y,...,y,}.

Theorem 5 Let F be a differential subfield of % and let F be a nonzero dif-
ferential polynomial in F{y,,...,y,}. If p is any component of {F} in
F{V1s.-»Vn}, then there exists an irreducible differential polynomial B e
F{Ys.erVa} Such that p = pz(B).

Proof Let By, ..., B, be the elements of a characteristic set of p relative
to some ranking of (y,,...,y,), so that p={B,,...,B,}:Ig, Sp, - I5_ Ss,-
We may suppose the notation chosen so that up, <:-- <y, and we may
take B, irreducible. Let

HF = D;N,(B,,...,B)
i

14

(mod[B,, ..., BT

A

be a preparation congruence of F with respect to B,,...,B,. Let =
(n¢»-..,n,) be a generic zero of p, and for each nonzero differential poly-
nomial Pe F{y,,...,y,} let P’ denote the sum of the nonzero terms of
lowest degree of P(n+y,,...,n,+y,). Then (see Section 13) deg F' =g¢, so
that ¢ > O (since F() =0), and u,. is the highest derivative fuy, such that
8z, is present in N, --- N,. Therefore up, < u.. Letting G denote an irreducible
factor of F' in Z () {y,, ..., y,} with leader u., we see that B,  is partially
reduced with respect to G.
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There exists an Ee€ F {y,,...,y,; with E¢p that is contained in every
component of {F} in #{y,,...,y,} other than p. For each &, EB, e {F} so
that E('h‘H’n "‘9nn+yn) Bk(nl +)’1, ey nn+yn) € {F('h +)/1, --‘,TI"‘{")/,,)} in
F D {yy, ..., ya}- We conclude from Section 10, Corollary 3 to Theorem 4
that E(n) B, = (EB,) € {F'}, whence B/ e{G}. Since B’ is partially re-
duced with respect to G this implies (by Section 6, Theorem 3(b)) that B,’
is divisible by G. Because deg B, = 1 this means that B,” = ¢G for some non-
zero ¢ € # {n). If r were greater than 1, then 8,” would be a nonzero element
of { B,"} reduced with respect to B,’. Thereforer = I sothat p = {B,}:/p, S, =

pf(Bl):IBl = pz(By).

Corollary Let p be a singular component of an irreducible differential poly-
nomial A€ F {y,,...,y.}. Then p=pz(B) for an irreducible differential
polynomial Be F{y,,...,vs}, A involves a proper derivative of the leader
ug relative to any ranking, and ord B < ord 4.

Proof The first assertion is the essential content of Theorem 5. We know
A is not divisible by B, for otherwise p would be pz(4). Therefore by Section
6, Theorem 3(b), A is not partially reduced with respect to B; that is, the
second assertion is correct. Since we can use an orderly ranking, this implies
the final assertion.

EXERCISES

1. Let AeZ {y,,...,y,} be-rreducible and of order 0. Show that {4} is
prime. (This result is false when p # 0; see Section 6, Exercise 3(d). For
a considerable generalization, see Section 17, Proposition 10.)

2. Show that Theorem S is false when & has nonzero characteristic. (See
Section 6, Exercise 3(c) and (d).)

3. (a) Let Be F{y,,...,y,} be of order b, B¢ #, and let B, be an ir-
reducible factor of B of order . Show that §, B has a unique irreducible
factor B, of order b+1 and that ps(By) > ps(B,). (Hint: Show that
p#(By) is a component of {B}, and by Section 10, Exercise 3(b), deduce
that pz(B,) properly contains a component p of {5, B}. Show that p
is a component of an irreducible factor B, of &, B, and by the corollary
to Theorem 5 deduce that p = p&(C), where either C =8, or ordC <
ord B,. Show that ord B, < b+ 1, and by Section 7, Proposition 4 and
Chapter I11, Section 5, Proposition 2 that ord C > b, and conclude that
C=B, and ord B; = b+1.) .
(b) (Hillman [19, Section 13]) Let A4, € F{y,,...,»,} be irreducible
and of order ¢, (1 <k<r), and set e =max{e,,...,e,). Show that
3, (TT, <x<r 85~ %4,) has a unique irreducible factor A of order e+1

and that ps{A4) = ), <k<r Pz (40

2w AL

15 THE LOW POWER THEOREM 187

4. Let F,G be nonzero elements of # {y,, ..., y,} without common divisor.
Show that every singular component of zG— F in FAy., .y Va,2} is of

the form pz(B), with Be #{y,,...,,,z} irreducible, differentially free
of z, and of lower order than FG.

15 The low power theorem

We are now in a position to solve the following problem (in the state-
ment of which & is an arbitrary differential subfield of %): Given a dif-
ferential polynomial Fe # {y,,...,y,}, to determine the components of {F}
inF{yis s Vn}

We may suppose that F¢ #. Fixing a ranking of (y,...,y,), we find,
according to the methods of Section 9, a finite set A of autoreduced sets,
each of which is a characteristic set of a prime differentiai ideal containing
{F}, such that each component of {F} has a characteristic set that is an
element of A. According to Section 14, Theorem 5, each component p of
{F} is the general component pz(4) of some irreducible 4 & F{yi, -yt
It follows that if A € 1 is a characteristic set of p, then A consists of a single
element, that element being a muitiple of A4 by a nonzero differential poly-
nomial of lower rank than u,. Thus, if we discard from % every autoreduced
set containing more than one element, and replace each remaining auto-
reduced set A by the irreducibie factor of its element that involves the leader
of that element, we obtain a finite set of irreducible differential polynomials
Ay, A;€ F{y(, ..., ¥, such that every component of {F} is p;(4,) for
some index /. It remains to find a criterion, given an arbitrary irreducible
differential polynomial 4 e # {y,,...,y,}, for pz(4) to be a component of
{F}. Such a criterion is provided by the low power theorem.

Theorem 6 Let A and F be differential polynomials in F i, Va), with
A irreducible and F # 0. Let

HFE= Y D,N,(4) (mod[4]**h)
i<asi

be a preparation congruence of F with respect to A. A necessary and suffi-
cient condition that pz(A) be a component of {F} is that ¢ #0, | =1, and
N, =z

REMARK 1 Thus (see Section 6, Exercise 2) [y] is a component of the
ordinary differential polynomial y'>—4y, but not of y'2 —4y?.

REMARK 2 For differential fields of nonzero characteristic the condition
is neither necessary nor sufficient. (See Section 6, Exercise 3.)



188 IV ALGEBRAIC DIFFERENTIAL EQUATIONS

Following Ritt, we obtain Theorem 6 as a special case of a theorem con-
cerning the components of {F} contained in a given prime differential ideal.
Because we use the domination lemma instead of Levi’s lemma in proving
the second half of the latter theorem, our version is considerably stronger
than Ritt’s. The weaker version is, of course, adequate for Theorem 6.

Theorem 7 Let p be a prime differential ideal of F{y\, ..., ya}, let Ay, ..., A,
be the elements of a characteristic set of p relative to some ranking of
(Vi -r V), and let Fep, F#0.

(a) Let HF = Sica DaNy(Ay, .o, A)(mod[4,, ..., 4,17 ) be a prep-
aration congruence of F with respect to A,,...,A,. Let 0z, denote the prime
factor of N, --- N, for which the rank of Ou,, is highest. Then {F} has a com-
ponent pg(B) < p such that B involves a derivative of Quy, .

(b) Let HF = T p<,¢, C, M, (4, ... 4,) be a preparation equation of F
with respect to A,,...,A,, and suppose, for each y # 0, that M, dominates
and is distinct from M,. Let 0,2, (1 € A) denote the distinct prime Sfactors
of M, let A, denote the set of all indices x & A such that no proper derivative
of B, Zi is equal to any 8, 2, (A& A), and let A denote the set of all indices
« € A such that no proper derivative of 0, u,, ., is equal to any 0, Uaps, (AEA).
Then every component of {F} contained in p is one of the ideals {0, Ak} St
with ik € A,, and every ideal {0, Ak} Sasie, With K€ Ng is a component of
{F} contained in p.

Remark | In part (b) obviously A = A;. The conclusion is strongest
when A, = A,. This certainly happens when either r =1 or m = 1.

REMARK 2 The necessity of the condition in the Low power theorem is
a special case of part (a), and the sufficiency a special case of part (b). Indeed,
if the condition is not satisfied, then the prime factor 6z of N,.-- N, for
which the rank of fu,, is highest has order greater than 0, so that by Theorem
7(a), there exists an irreducible B with ug > u, such that {F} = ps(B) =
pg(A). By Section 6, Theorem 3(b), 4 ¢ ps(B) so that the inclusion p#(B) <
ps(A) is strict and hence pz(4) is not a component of {F}. On the other
hand, if the condition is satisfied, then by Theorem 7(b), {A4}:S, is the
unique component of {F} contained in ps(A), that is pz(A4) is a component
of {F}.

Proofof Theorem7 (a) By Section 14, Theorem 3, the components of {F}
contained in p can be written as pz(B,), ..., p#(B,). There evidently exists a
B, ¢ p contained in all the other components of {F}, and [To<i<s Bie {F}.
Let 7 = (qy,...,n,) be a generic zero of p (if % is not semiuniversal over
F, we first replace & by a suitable smaller differential field). For each
Pe F{y,,...,ya} let P’ denote the sum of the nonzero terms of the lowest
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degree in P(n,+y,,...,n,+y,). Clearly, [osics B +y1, . onuty,) €
{Fi+y0 - aat v} in FL){yy, ..., ys), whence, by Section 10 "Co:ol-
!ary 3 of Theorem 4, [To<i<s B € {F'}. Since F(y) =0, the degre’e of F’
is r}0t 0 and therefore (by Section 13) F’ has as leader the highest 6u,, for
whxch.Ozk is a prime factor of N, ---N,. Letting G be an irreducible F;ctor
of F7in Fn) {y1, ... ¥a} With ug = up., we see that [To<; <, B € p (&
50 that B’ € P ,y(G) for some i. Since By’ = By(n) # 0. this 1 is not 0 sq
that pz(B;) is a component of {F} contained in p. By Section 6, Theorem
3(b}, B/ is not reduced with respect to G, so that B, involves a de,rivative of
Ug = up- = u,, , whence B;(n, +y,, ..., n,+,) does, also, and so too does B,
(b) Any 04, has only one irreducible factor with leader Hu, . If wle
denote this factor by 4 and write 04, = AE, then S, =S,, =A‘:S E, so
that {94,}:S,, = {4}:5, = p(4). This shows that {§4,}:S., is prime. It
obviously is contained in p. We claim that if {#'4,}:S, < {"GA,(}:S .for
some (0, k') # (6, k), then 0'u,,, is a derivative of Ou,, . Inéeed, by Sect;(‘;n 6
Theorem 3(b), 84, is not reduced with respect to A4, but A, is reduced witk;
respect to A (because it is reduced with respect to 04,). This implies that
" # 1, so that 04, = S, 6'u,,,+ T, where S, and T are lower than §'y
By Chapter I, Section 9, Proposition 2, we may write a
1/8/8,, =8, [IUS'T=T7T  (mod[4])
with §’, T’ reduced with respect to 4 and free of 6'u,,, and (because
S_A,‘, ¢ ps(A4) cp) with S’ #0, and evidently S'0uy,,, + Yk"' € pz(A4). This
dxﬂ'ereptial polynomial. is not reduced with respect to A, and therefore
O'uy,. is a derivative of u, = 6u,, as claimed. This being the case, consider
any component q of {F} with q = p. By the domination lemma there exists
anecNand a ZeQ{z,, ...,z ,ug,%,,...,u,} with Ze[z,,...,2] such that
Mo -(uo*+Z) € {To<,<q 4, M,}. Substituting (4,,...,4,,C,,...,C,) for
(zyy..0y 2, U, ..., 4;) we find a relation o
My(A,...,A) (Co°+P) e q,
whgre P=Z(4,,..,4,,Co...,C)e p. As Co° + P ¢ p, and hence Cof+Péq
we infer that Mo(4,, ..., 4,) € q. It follows that 0, Ay € q for some Ae/\,
agd therefore that 6, 4,,, € q for some ke A, so that {0cAy)}:Sa, < q?
Since HF = ¥ .C,M,(4,,...,A,) and each M, dominates M, and H ¢
{0c Aiey} * Sap,, (because H ¢ p), we have {F} < {0, Ayer} S, <9, SO
that g = {0, Ai)} : Sy, - Starting afresh, for any « e A, we find ask;l)aove ’that
{F} < {0 A} S 4y, © P, 50 that the prime differential ideal {6, Ay} 1S4
contains a component q of { £} that is contained in p. By what we have alreakc(:()1
proved, q = {0, Aw)}:S4,,., for some ' eA,. If the inclusion qc
{0, Ao} 1 Sapq., Were strict, then (by the claim established above) 6 cUy
would be a proper derivative of 8, Uqyey» CONtradicting the hypothe,;is fﬁZE
Kk € Ag. Therefore {6, A;(y}:S,,,., is a component of {F} contained in p.

k()
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Corollary Let the notation and hypothesis be as in Theorem 7(a), and suppose
that F is irreducible. If Qu,, = up, then pz(F) <= p.

Proof By Theorem 7(a), {F} has a component ps(B)cp »yith B in-
volving a derivative of uy and therefore with F partially reduced with respect
to B. By Section 14, the corollary to Theorem 5, then pz(B) = px(F).

EXERCISES

1. Let F,G be nonzero elements of # {y} of order less than or equal to 1
without common divisor, and suppose that F(0) = G(0) = 0. Let ¢ be an
element of % differentially transcendental over & and set w = F(£)/G(¢).
Prove the following result of Ritt [84]: If [y] is a component of zG—F
in & {y,z}, then either there exists a unique (e such that (0,0) is a
differential specialization of (t,u) over F and then { € &, or else (0,0)
is a differential specialization of (t,u™') over #. If, on the ot/{er. ha)?d,
[¥] is not a component of zG— F, then (0,0) is a differential spe?tahzanon
of (t,u) over F for every [ € U. (Hint: See Section 6, Exercise 8, and
Section 14, Exercise 4.) o

2. LetneN, n#0, and let A be an irreducible differential polynomial in
F {y} of order n that is free of every derivative )y such that. 0<ordf <n.
Show that if 0 is a zero of A, but not of pz(A), then [y] is a component
of A. (Hint: Using Section 14, the corollary to Theorem 35, prove that
there exists a nonzero B e &% {y} of order less than » contained in every
component of 4 having 0 as a zero; then show there exists. aCeF{y}
with C(0) # O contained in all the other components. Using the us.ual
grading, apply Section 10, Corollary 3 of Theorem 4, to the relation
BC € {4} to show that ord A, < n and hence that ord A, = 0, and then
use the low power theorem.)

16 The Ritt problem

If Fis a differential polynomial in # {y,,...,y,} not in &, and 5=
(115 ---,1,) is a zero of F, then n is a zero of at least one of the components of
{FYin F {y,,...,ys}. It is natural to try to determine all the components of
{F} that admit # as a zero. By the methods of Section 9 and. the lqw power
theorem we can determine a finite set 4, ..., 4, of irreducible dxf.ferentlal
polynomials in & {y,,...,y.} such that pz(4,), ...,py(g,) are distinct and
are the components of {F}. Thus, we are led to the following type of problem:
Given an irreducible A e # {y,,...,»,} and a point 5 = (1,, ...,;7,,?, to deter-
mine whether 7 is a zero of pz(4). By Section 6, Theorem 3(c), # is a zero of
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ps(4) if and only if n is a zero of pz,, (B) for some irreducible factor B of
A in FLn>{y,,...,y.}. Hence if we can find the irreducible factors of A
over F<n», the problem reduces (on replacing & by F (1)) to the special
case in which each coordinate 7; is in #. Since we may then translate by n,
we arrive at the following problem posed by Ritt: Given an irreducible dif-
JSerential polynomial Ae F{y,,...,y,} vanishing at (0, ...,0), to determine
whether (0, ...,0) is a zero of ps(A).

If (0,...,0) is not a zero of any singular component of 4, then of course
(0,...,0) is a zero of pz(4). Also, if we have a basis of p;(A4), the problem
is trivial. However, a solution of the general Ritt problem appears to be
remote at present. Even the case m = n = | (ordinary differential polynomial
in one differential indeterminate) is not settled. When ord 4 = 1 this case
presents no difficulty (see Exercise 1 below). When ord 4 = 2 this case was
treated by Ritt himself [85] who obtained a complete solution to the problem,
a solution that is too long and complicated to'state here. In what follows in
this section we give some results that are sometimes useful in connection
with the Ritt problem.

To say that (0,...,0) is a zero of pg(A) is to say that pz(A) is contained in
the prime differential ideal [y, ..., ,]. Thus, the Ritt problem is concerned
with the special case p = [y, ..., y,] of the situation considered in Section 15,
Theorem 7. To prove that (0,...,0) is a zero of px(4), we therefore have
the sufficient condition provided by the corollary to that theorem. However,
in this special case, that result can be considerably generalized, as in the
following proposition.

Proposition 6 Let Ae F{y,,...,y,} be irreducible with A(0,...,0) =0, and
let f2F{yi, oyt = Uy, ..., ¥.3 (0) be a strictly positive A-permissible
homomorphism (see Section 10). Fix a ranking of (y,,...,v.). If the leader
of f(A) is present in J ;4 or if Jy (s, & {Jpcay}s then (0, ..., 0) is a zero of py(A)

ReEMARK | It is clear that () {y(, .., ya} S X% {¥1,--, 7.} ((c)) and
that f(A) € Z(c){y1, - Va}, J(A) ¢ %((c)). Therefore f(A) is a differential
polynomial in (y,,...,y,) and has a leader.

REMARK 2 When f is associated with a strictly positive differential per-
missible grading (or, if the coefficients in 4 are constants, with a strictly
positive permissible grading) in the manner described in Section 10, right
after Corollary 2 to Theorem 4, the proposition states that if 4, has leader
uy orif (S,). ¢ {A,}, then (0, ...,0) is a zero of pz(4), a result due to Hillman
(whose proof we follow here). For the usual grading the result goes back to
Ritt (special case of the corollary to Theorem 7).

REMARK 3 Examples occur (even with m = n = 1) to which the proposi-
tion is applicable but for which it is necessary to use an f such that the
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corresponding P = (P))i< j<n€U ((¢))" (see Section 10) is suitably chosen
different from (0). (See Exercises 2 and 3 below.)

Proof Assume that (0,...,0) is not a zero of pz(A), i.e., that there exis%s
a Ye[y,..,y. with 1+Y€ ps(4). Then (1+Y)S,e {4} Because f is
A-permissible this implies that (1 +AYNA(S,) € {f(4)}. Theideal (f(S)./(4)
in %) {y,, ..., ya) (seec Remark 1, above) obviously contains a nonzero
clement G free of every derivative of uy(4y, and of course (1+f(Y))Ge
{f(A)} in %{y,,....ys (). Because £ is strictly positive Jii+ 6 = Ja
and Jy 4 oy ris.a = Jrsn By Section 19, Theorem .4, therefore J; €
{Jy) and Jys,) € {/ 4} The former relation here implies 'that JQ e py(B),
where B is any irreducible factor of Jy(4 in %{y,...,ya} Involving u; ..
By Section 6, Theorem 3(b), J; must therefore involve a derivative of u; .,
so that G must too; whence u;,  # U -

In order to prove that (0, ...,0) is not a zero of pg(A4), our main tool is the
domination lemma. We formulate the following resuit.

Proposition 7 Let p be a prime differential ideal of F{yi,--,¥a}
and suppose that p contains a differential po_lynomial of the form
So<ycg Cy My(Ays s 40, where C,& F{y,...yap O<y< g) and
Co(0,...,00#0, A,eF{y,, oy ya} and A4,(0,..,0)=0 (I<p< r), and
Mo, M,, ..., M, are differential monomials in (z,,...,2,) with M,# M,
(1 <vy<g) such that Mo(A 7, A4) ¢p and M, dominates M, (1 <y < 9).
Then (0, ...,0) is not a zero of p.

Proof By Section 12, Lemma 6, p contains a differential polynomial
Mo(Al,...,A,)(CO"+Z(A1,.4.,A,)), where eeN and Ze[z,....z] In

F{CpyCryeesCyoZsnsZe}s SO that p contains the differential polynomial
Co*+Z(Ay, ..., A,) which does not vanish at (0, ...,0).

As a special case of Proposition 7, we see that if an irreducible
AeF{yy,..., v} has at least two nonzero terms and one of them is dominated
by all the others, then (0, ...,0) is not a zero of p#(4).

In much the same way, but using Section 11, Lemma 3, instead of Lemma 6,
we can prove that if; for each y;, p contains a differential polynomial y¥ +Y
with ;e N and Yje[yl,...,y,,]‘““, and if p# [V1,--»Yn)s then (0,...,0) is
not a zero of p.

It is sometimes possible to establish the condition here with the help of the
notion of f-value (see Chapter 0, Section 19, and Chapter I, Section 7, corollary
to Lemma 4), f being taken as the differential ideal T = ([ ¥y, ---» yal +)/P Of
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the differential residue ring & = # {y,, ..., y,}/p. To simplify the notation,
for each Pe F {y,,...,y,; define

GP(P) = V[(P),

P denoting the canonical image of P in #. Thus, 0 < V,(P)e R or v, (P) =0,
7,(P+Q) = min(7,(P),7,(Q)), ¥,(PQ) = ¥,(P)+7,(Q), and v,(P") = rv,(P)
for every nonzero r € N. To say that v,(P) > a, whereae Rand « 2 0, is to
say that there exist g¢,r € N with r > g such that PP e[y, ...,y 1"+ p.

We therefore have the following result.

Proposition 8 Let p be a prime differential ideal of F {¥1, ..s Vu} different
from [y, ) Y ¥,(3) > 1 (1 <j<n), then (0, ...,0) is not a zero of p.

EXERCISES
In all the following exercises & denotes a differential subfield of #.

1. Let A€ % {y} be irreducible and of order 1, and let 4(0) = 0. A neces-
sary and sufficient condition that 0 fail to be a zero of 95(A4) is that
A = ay? (mod{y]**") for some g e N and some nonzero ae #.

2. (Elaboration of an example of Ritt) Let m = [ (that is, let % be an
ordinary differential field), and let

A=+ = —a [] (' =y +biy*,

where reNand r#0,ac # anda#0, b,,....,b, e & and by,..., b, are
distinct, ky,...,h,e N and h, ---h, #0, and either h,,...,h, are not all
even or else a is not a square in &. Show that A4 is irreducible in & {y}.
Prove that 0 is a zero of pz(A) except when either r =2, hy = h, = 1,
b, and b, are constants, or r = 1, h, =1, b, is a constant. (Hint: Set
B, =y —y+by* so that yB/—2y'Bi—b/y* = yy"+yy' —2y'?, and let
¢ be a nonzero element of U with ¢ =¢. If X h; 2 3, or if ¥ 4, <2 and
some b, # 0, let f denote the substitution of ec+yc? for y and apply
Proposition 6 (if 3 4; > 4, the simpler substitution of yc¢ for y suffices).
Ifr =1, h, =2, and b," = 0, show with the help of the low power theorem
that 4 has no singular component. If r =1, A, = 1, and b,’ = 0 observe
that A4 =aB, +(yB,'—2y'B,)* and apply Proposition 7. If r=2,
h, =h, =1, and b’ = b, =0, observe that A = CB,+y*B{’, where
C = aB,+4y'*B,—4yy’B,’; examining CA'—~C’4, show that
C*—4y*C'B,’ +2yy'CB,’ +2y*CB] € pz(4); writing o(P) for ¥,,(4(P),
show from this that o(C) = 2+0(8,), and therefore that o(B8,) >
2+0(B,); interchanging B, and B,, deduce that o(B,) = o(B,) =,
and therefore that o(y) = }0(»*) = }o(B, — B,) =0, and apply Propo-
sition 8.)
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3. (Hillman) Let m=1, and let 4 = '+ +y(y+y") +ay’, where
s,teN, st#0, and ae #. Show that 4 is irreducible in # {y}. Prove
thatifa=0and t>2, orifa#0andr>1land s=1, then O is not a
zero of pg(A), but that in all other cases 0 is a zero of pg(4).

4, Let m=2, and let 4 =(513)1)(5152y)(522y)2+a1(513522y)“+a2(513y)
X (8,28,29)2 (8,39 + a5 y(8,°») (3, 8,0 (8,%y)?, where keN, k#0,
a,,a,,a; € %, and a, # 0. Show that 4 is irreducible in & {y}. Prove
that 0 is a zero of pz(4) if and only if £ < 4.

5. (Ritt) (a) Let

A= H (i +ey) +ys H (¥10i4y 72 =280V 1),

1€iss 1Sk<r

where r,.seN, r=2, s22r+1, ¢, ..., ¢ are distinct constants in &,
and i(k) is one of the numbers 1,2,...,m (1 £ k<r). Show that 4 is
irreducible over % and that {pg(4)+[y:1} = [y, 2, ¥3]). (Hint:  Show
that (0,0,0) is a zero of pgz(4), so that pr(A)+[ysl e vy ysl
Show that if p is any component of {ps(4)+[y;1}, then p contains
y1+¢,,, for some [y, and use Levi's lemma or the domination lemma to
show that p,(4) contains a differential polynomial 1,4, (¥, +oy)t+Y
with d> 0 and Ye [y,], whence p © [¥1,¥2,¥31)

(b) Generalize the example of part (a) to produce, for any n >3, an
irreducible closed set in %" of differential dimension n— 1 that intersects
the hyperplane defined by the equation y,=0 in the single point
(0, ...,0) (anomaly of differential dimension of intersections).

17 Systems of bounded order

Consider a set T of differential polynomials in (y,, ..., y,) such that, for
each index j, no element of T involves a derivative of y; of order greater than
a given natural number e;. We shall show (Proposition 9) that if p is any
component of {Z} having differential type m— 1, then the typical differential
dimension of p must be less than or equal to e +--- +e,. In other words,
when we write the differential dimension polynomial as @, = ¥o<;<m @:(*),
the condition a,, = 0 implies the condition a,,_, < e, +- +e¢,. For ordinary
differential polynomials (i.e., for m = 1) this proposition reduces to a result
found by Ritt ([82, Part I1], or [95, Chapter VI, Sections 3-47). In the case
of a system of order 0 (¢, =---=¢, = 0), the proposition is not very inform-
ative; we shall prove for this case a much more precise result (Proposition 10).

Lemma 8 Let €A, and let Ay denote the set of elements of A other than
5. Let ey, ...,epe N, and let T be a subset of F{(8"V)1<jsnosksetno Le
p be a component of {Z} in F{yi,.., Yalar let = (n,,...,N.) be a generic

iy

b b
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zero of p, and set % = F (ny,. If the differential dimension of p is 0, then
the Ag-transcendence degree of 9§ over F is less than or equal to e+ +e,.

‘deOf We first show by a classical transformation that it suffices to con-
sider the case i i : ] i
e the case in which e; l'for each j. Let (zj), < <n 0<kse, b€ a family
ot A-indeterminates, and consider the substitution homomorphism

a:y{(zjk)ISan,OSkse,}A_’f{ylyuu)’n}A

mapping z; onto &'y, (1 <j<n, 0<k < e;). It is easy to see that ¢ maps
y{(zjk.)lﬁjﬂn,oﬁksej}m; bijectively onto F {(3y))| < <n 0<k<e,}a0, that o is
surjective, and that the kernel of ¢ is the A-ideal [K], ,wher\e IKodenotes the
set of dlﬁ'erentlal.polynomia[s Ziaw1— 023 (1 £ < n, 0 < k < ¢)). Therefore
ther.e exists a unique set To © F {(2j1) ) <j<n, 0<h<e; a0 SUCh that o(Ty) = Z.
Setting T = T, u K, we see that '

Tc 'g;{(zjk)lSan,OSkSep(aij)lstn,OSkSej}Ao

and that {T} = ¢~ ' ({Z}). It readily follows that the ideal ¢ = ¢~ ' (p) is a com-
ponent of {T}in # {(z;)1 <, <n, 0 <k e, a- AlsO, the point { = (8*n,); <j<m 0 <k <

is a generic zero of q, and # {{>, = 4. The number for T analo;);ls’ t<; t\heer
number e, +---+e, for I is, moreover, equal to e, +---+e,. Thus, we may
replace X by T, that is, we may suppose that each e; is either 0 or 1.

This being the case, we may, on permuting the indices 1, ..., n, even suppose
that.Z is contained in the Ag-algebra Ry = F (¥, ..., 94, 0V1, - OV )4
v being an integer with 0 < v < n. We then must prove that the Ao-tvrarq:
scendence degree of & over & is less than or equal to v.

ANow, A, is a Ag-polynomial algebra over & in the family of Agy-indeter-
ml.nates (Y152 Vnr0p1,...,89,). Setting py = p N &,, we see that p, is a
prime Ag-ideal of #,. Since L= py,<p, p is a component of {py} in
F{y ._..,y,,}A. It is evident that (y,,...,7,,dn,,...,8n,) is a generic zero of
Po. Letting u denote the A,-transcendence degree of F {1y, ..., 7,0,, Over &,
we may, on permuting the indices 1,...,v, suppose that (,,...,7,) is a A,-
transcendence basis of # (7, ...,n,04, Over F; of course O u<v. It is
then easy to see that for each index i with u < i < v the element dn; is A,-
algebraic over F(ny,..., 7,00, ..., 00,4, l

Let A denote the Ag-transcendence degree of F (i, ..., 0,, 0 y,...,0m, 4
over F {Ny,...,N, s SO that 0 < A < . Permuting the indices 1, “, /,L(,)
we may suppose that (dn,,...,d0n;) is a A,-transcendence basis of
F Ny o My My ooy M, OVEr F Ly, .00y, Similarly, we may also
suppose that (y,4,...,n,), with v < ® < n, is a A,-transcendence basis of
F My eeesMas 0Ny, -, 01,00, OVET F Ly, 1,00y, ..., 31, Ds,- Then

(r’h-'ﬂrl‘u 5”19"'95’1}.7 '7v+1,---,'7z)
is a Ag-transcendence basis of F<n,...,1,,5n,, s 01D, OVEr F
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We are going to introduce a ranking of the family of A-indeterminates
(15 .-, »)- To this end let @, denote the set of all Ay-derivative operators
(that is, of all elements of @ that are products of elements of A,). Let ®, be
ordered by fixing in any way whatever a ranking of a single Aj-indeterminate
z and then defining 8, < 6,’ to mean that 6,z is of lower rank than 8,'z.
Let g(j) = 1 or 2 according as | <j < vorv < j < n. We can now order the
set of derivatives 6, 5"yj (B0, keN, 1 <j<n) lexicographically with
respect to (¢(j), k. j,00). The set of these derivatives is of course the set of
derivatives 0y; (6€®, 1 <j<n), and it is an easy matter to see that this
order is a ranking of the family of A-indeterminates (¥1y -2 Vn)- We call it
the A-ranking.

The induced order on the set consisting of the derivatives 0, y; 6y € Oy,
1 <j<n) and the derivatives Boy; Boe®, I<Sigy) is a ranking of
the family of Ag-indeterminates (y, s Vns OV 1y 0p,). We call it the Ay-
ranking.

Let A, be a characteristic set of po relative to the Ay-ranking. Since
(T4s---s1n» M1, .., 0N,) i @ generic zero of p,, it follows from our earlier
considerations that the leader u, of an element A € A, must be of one of
the following three types: (I) 6, y; with 0, € O, and u <j<v; () 656y,
with 6, €@, and A <j<v; (HD) Boy; with 6, @, and n<j<n We
shall need the following key fact: If A4 € A, has leader u, = 86y, of type (1),
then there exists a B € A, such that either du, is a proper Ag-derivative of
ug or else du, = ug and the degree of B in ug is 1.

Indeed, suppose there is an-4 as above for which no such B exists. Now,
64 =S,0u+T where T=73,,, (0A4/0v) Sv+ 4%, so that 64 € #,. There
exists (by Chapter 1, Section 9, Proposition 2) 2 product P = [Tcea, I&5&
such that PS, = U, PT=V (mod[A,]) in &, where U and V are A,-
reduced with respect to A, and are lower than du,, and U ¢ po. By what we
have supposed, du, is not a proper Ao-derivative of any ug with B e Ay, and
if u, = up, then the degree of B in ug is greater than 1. Therefore Udu,+V
is a nonzero element of #, that is A,-reduced with respect to A,, hence is
not in p,. However, d4ep, so that S,ou,+Tepn R, = pg, Whence
Usu,+V € p,. This contradiction proves the key fact stated above.

This being the case, let B denote the set of all elements B e A, such that
uy = ou, for some A€ A, and the degree of B in ug is 1; set A= A,—B.
We are going to show that A is a A-autoreduced set in F{y,...ya (Le., is
autoreduced relative to the A-ranking). Indeed, let 4 and C be any two
distinct elements of A with, say A, of lower rank than C. We must show that
C is A-reduced with respect to 4. Since Ay is Ao-autoreduced, the degree of
C in u, is smaller than that of 4, and no proper A,-derivative of u, is present
in C. Also, since Ce %, no A-derivative 6, 8*u, with 0,6 ®, and k> 1
is present in C. Suppose that 8, du, is present in C. Then u, must be of type
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(I) and, by the key fact, there exists a B € A, either with du, a proper A,-
derivative of ug or else with du, = ug and B of degree | in ug. Since Ccanngt
contain a proper Ay-derivative of ug, the latter possibility must prevail and
6o =1, so that Be B, whence C # B, and C is not Ay-reduced with respect
to B. This contradiction shows that A is A-autoreduced.

Consider an arbitrary element Fe %,, and let A; denote the set of all
derivatives 04 (B @, A A) with rank 04 <rank F. We claim that there
ex1sts a congruence :

[1S¢Id-F=F (mod(Aj)) @)

AeA

with £y in 2, and A-reduced with respect to A, and that for any such con-
gruence, F e po if and only if £, =0.

It is clear from the key fact proved above that an element of Z, is A-reduced
with respect to A if and only if it is A,-reduced with respect to A,. From this,
the second part of the claim is immediate. Also, when F is Ag-reduced with
respect to Ay, then a congruence (7) exists (take Fy = F and s, =i, =0 for
every A € A). Therefore in proving the first part of the claim we may suppose
that F is not Ay-reduced with respect to Ag. Let v(F) denote the highest A,-
derivative of a leader of an element of A, that is present in F and that either
is proper or else appears in F to at least as high a degree as in the element of
Ag; say v(F)=0yug, where 0,€®,, Be A, and either f,# 1 or else
6y =1 and deg, F>deg, B. It is easy to see that v(F) is also the highest
A-derivative of a leader of an element of A that is present in F and that either
is proper or else appears in Fto at least as high a degree as in the element of A.
We_argue by induction on v(F). Setting e(F) = deg,r, F, we distinguish three
cases. First, suppose that Be A and 8, # 1, so that 8, B= Syv(F)+Te X,
with T lower than p(F). Dividing F by 0, B, we find a congruence S§PF =G
(mod 6, B), where G € &, and either G is A-reduced with respect to A or
v(G@) < v(F). Therefore there exists for G a congruence

IS G =G, (mod{Ay))

A€A

of the form (7). Evidently A; < A, so that
[1 Si¢rie - S§PF =Gy (mod(Ap),

AgA
which is a congruence for F of the form (7). Second, suppose that Be A and
6,=1, so that v(F)=uy and e(F)zb=deg, B. Dividing F by B,
we find a congruence /) 7**!'F = G (mod B), where G € &, and either G
is A-reduced with respect to A or v{G) < v(F). The second case is then handled
in the same way as the first. Third, suppose that B ¢ A (that is, that B e B).
Then uy = du, with A e Ay and deg, B=1. The leader of 4 must be of
type (1), and this implies that 4 € A, and that 4 € F {y,, ..., }4,, Whence
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5A € R,. Therefore dAdep N Ry = Po and 6,04 = S, v(F)+Te R, with
T lower than o(F). Dividing F by 6,04, we may write S§9F=G
(mod 6,8A4), where Ge 2, and either G is A-reduced with respect to A
or v(G) < v(F). The third case is then finished in the same way as the first
two. This proves the claim made in the preceding paragraph.

We are now going to show that A is a characteristic set (relative to the
A-ranking) of a prime A-ideal of # {y,,...,y,}. By Section 9, Lemma 2, it
suffices to show that A is coherent and that the ideal (A): H,® is prime and
contains no nonzero element A-reduced with respect to A.

To settle the first point, let 4 and C be distinct elements of A such that
u, and uc have a lowest common A-derivative 6u, = 6'uc. Because of the
type possibilities for a leader of an element of A, either 6 and ¢’ are both in
0,, or else one of the leaders, say u,, can be written uy = 8, y; with 65 € @,
and p < j < v, and the other leader u¢ can then be written uc = 6,'3y; with
8y’ € ©, in which case & @, and 8" € @,. In either case the difference
F=25:04-S5,0'Cis an element of p and of #,, that is, is an element of
po. Therefore there exists for F a congruence (7) as above with F,=0. By
the observation in Section 9 preceding Lemma 2, we conclude that A is
coherent. »

In proving the second point we may work in the algebra over & generated
by any set of derivatives 8y, that includes all the derivatives present in the
elements of A (see the Remark in Section 9 following Lemma 2). An element
of (A):H,”® in &, that is A-reduced with respect to A is an element of p,
that is A,-reduced with respect to Ay, and therefore is 0. To show that
(A): H,* is prime we work in the algebra 2, generated by just the derivatives
present in the elements of A; of course Zgo = #y. Let F,Ge R, F,G ¢
(A): H,® in R,,. Because of the nature of #y, neither F nor G can involve
a proper A-derivative of any u, with 4eA. Therefore there exist con-
gruences

Mis-F=F (mod(A)), [17*-G=G, (mod(A))
AcA AeA
in #,, with Fy and G, A-reduced with respect to A (and therefore Ag-reduced
with respect to A,). Since F, G ¢ (A): H,”, Fy and G, are not 0 and there-
fore are not in p,, whence Fo Go ¢ po; a fortiori Fo Gy ¢ (A):H,® in Rgo,
so that FG ¢ (A):H,*. This completes the proof of the fact that A is a
characteristic set of a prime A-ideal of # {y,,...,y,}. We denote this prime
A-ideal by q. By Section 9, Lemma 2, g = [A]: H,™.
It is now apparent that p, < q < p. Since p is a component of {p,} in
F{y,,...,ya}, it follows that p = q. That is, A is a characteristic set of p.
We now make use of the hypothesis that the differential dimension of p
is 0, to prove that 1 = 0 and = v. If A were not 0, a A-derivative of y; could
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not be a leader of an element of A, and therefore every element of # {y,},
would be reduced with respect to A. Then p could not contain a nonzero
element of # {y,},, and therefore p would not be of differential dimension
0. Therefore 1 = 0. Similarly, = = v.

This means that (,,...,n,) is a As-transcendence basis of

F N oM 0N gy e 00,04,

over . In particular, each n; with v < j < nis Ag-algebraicover F (i1, ..., M,V as»
so that &7, is Aq-algebraic over #(ny,...,n,,dn,,...,0M,7,, and hence over
F N1 Nw)se- Therefore the statement “F(81) 1 <j<mocksrras 15 Ao-
algebraic over F{n,,...,n,0s,~ 1is true for r = 1. An easy induction argu-
ment now shows that this statement is true for every r € N, and hence shows
that 4 is A,-algebraic over #(n,,...,n,04,- This proves that the A,-tran-
scendence degree of ¢ over & is equal to u < v, and completes the proof of
the lemma.

Proposition 9 Let e, ...,e,e N, let T be a subset of F [(0y))pcace;, 15j5nls
and let p be a component of {Z} in F {y\,...,y,}. If the differential type of p
is m—1, then the typical differential dimension of p is less than or equal to
e+ + ey

Proof This proposition is an almost immediate corollary of Lemma 8,
and Chapter II, Section 13, Theorem 7.

It is likely that Proposition 9 can be generalized to yield a bound for the
typical differential dimension d* of p without the assumption that the dif-
ferential type t is m— 1. There are reasons for conjecturing that

e—l+m—1
a* < Z ( ’ m-—t )
1€j<n

Under certain special circumstances the bound given in Proposition 9 can
be improved. Ritt considered the case in which m = 1 (ordinary differential
polynomials) and I consists of precisely n elements F, ..., F,. Denoting by
¢;; the smallest natural number such that F; does not involve a derivative of
y; of order greater than e,;, he set # = max,(€,, 1) + ="+ €, x»), & TURNING
over the whole symmetric group S,. (This situation was considered
by Jacobi®* who concluded heuristically, without precise definitions,
that the number of arbitrary constants in the solution of the system
of differential equations P =0 (PeX) is less than or equal to h.)

2 See C. G. J. Jacobi, De investigando ordine systematis aequationum differentialium
vulgarium cujuscunque, Borchart J. Reine Angew. Marh. 64, 297-32 (or “Gesammelte
Werke,” Vol. 5, pp. 191-216, Georg Reimer, Berlin, 1890).
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Ritt showed that if each element of T is linear, or if n = 2, then every com-
ponent p of {Z} that is of differential dimension O has order less than or
equal to h (where order means the transcendence degree of #(n) over #,
n denoting a generic zero of p); to be sure, in the linear case, {¥} = [Z] has at
most one component. Whether or not this Jacobi-Ritt bound extends to sets
T with n > 2 and with not necessarily linear elements,* and whether or not it
extends to partial differential polynomials, are open questions. For proofs of
these special results see Ritt [83; or 95, Chapter VII, Section 6]. The case
n = 2 may be thought of as a result on the intersection of two closed (or #-
closed) sets 3(F,), 3(F,).1t is natural to conjecture that the same result would
apply to the intersection of the #-closed sets 3(p#(F})), 3(ps (F2)) under the
assumption that Fy, F, are irreducible over 4. Ritt verified this conjecture in
the very special case in which e, , e,,, €5}, €, are all less than or equal to 1,
but showed by counter-example that in general the conjecture is false. See
Ritt [92; or 95, Chapter VII, Sections 7-15], and Exercise 1 below.

Consider the situation in Proposition 9 when e, =-.-= ¢, = 0. If r, denotes
the perfect ideal generated by X in & [y,,...,¥,] and poy, .-, Po, denote the
components of tyin Z [y, ..., y,], then a component p of {Z} in F {y, ..., .}
is a component of some {pg.} in F {y,...,»,}. Thus, in the present special
case, Proposition 9 asserts that if p, is a prime ideal of # [y, ..., y,], then
the differential type of every component of {po} in F{y,...,y,} is dif-
ferent from m—1. The state of affairs in this particular case is much more
precisely described by the following proposition.

Proposition 10 Let p, be a priMe ideal of Fy,,...,y.] of dimension d.
Then {p,} is a prime differential ideal of F{y,,...,y,} having differential
dimension polynomial w,,, = d(* ™.

ReMaRK The proposition becomes false if # is permitted to have non-
zero characteristic. See Section 6, Exercise 3(d).

Proof Let x =(xy,...,x,) be a generic zero of the polynomial ideal p,,
in the sense of Chapter 0, Section 11. We may suppose that (x,,...,x,) is a
transcendence basis of % (x) over &#. Then, for each je N with d<j<n,
x; is algebraic over F(x,,...,x;_) of degree say a;. Therefore there exists
an irreducible 4; € p, that is free of y;,,,...,y,, that has degree g; in y;,
and that has degree less than a;. in y; (d <’ < ). On the other hand p, does
not contain a nonzero polynomial having degree less than a; in y; for every
J with d < j < n. Now, there exists an orderly ranking of (y,,...,,) such

3 The case in which each element of T is of order less than or equal to 1 has recently
been treated by Lando [48].
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that y; < yy4y <Yyrz <<y, (1 i< d) (for example, the one obtained
by ordering the set of derivatives 67 --- §7y; lexicographically with respect
to (e, + - +epm,j,€y,...,ey)); fix any such ranking. Then the set A con-
sisting of Ay, ...,4, becomes autoreduced, and py=(A):H,” in
F[y1,.--»¥s]. Furthermore, the leaders of distinct elements of A cannot
have a common derivative, so that A is coherent. 1t follows by Section 9,
Lemma 2, that A is a characteristic set of a prime differential ideal p of
F{y1s-->Vn}, and p =[A]: H,*. By Chapter 11, Section 12, Theorem 6(d),
and Chapter 0, Section 17, Lemma 16(c) and (d), w, = d(*};™).

It is clear that {p,} = p. Let (a,,...,a,) be any zero of py. By Chapter 0,
Section 16, Corollary 3 to Proposition 11, there exist power series Q,,...,Q0, €
% [[c]] such that each element of p, vanishes at (Q,,...,Q,), H, does not,
and Q;(0) = «; (1 <j< n). Now, % is universal over some differential field
of definition %, = & of p that is also a field of definition of p,. Therefore
there exists a point (¢, ...,¢&,) that is a generic differential specialization of
Q,, ..., Q,) over &F,. It is clear that (¢, ...,&,) is a zero of A but not of H,,
hence is a zero of p = [A]: H,*®, and that («,, ..., a,) is a differential special-
ization of (¢, ..., &,) over %,. It follows that (x|, ...,a,) is a zero of p. There-
fore (by Section 2, Theorem 1) p = {py}, whence p = {po}-

EXERCISE

1. (Ritt) Let % be an ordinary differential field, let r e N, r = 4, and set
A= y/_Z(r—l)yZ’B —= A4_(y(r-1))8’ C= y(r-l)Ar_2y(r)A,F= B—yéCZ.
(a) Show that F is irreducible in % {y,z} and that p,(F) contains
a differential polynomial (z'* 3y +Y with d >0 and Ye[y]. (Hint:
For the irreducibility observe that F is a quadratic polynomial in y
with discriminant not a square. For the second point, note first that
AB’ —4BA’ = 4(y"~ V)’ C. Replacing B here by y®C?+F, conclude that
200V — 333y’ AC+yAC —2yA'C) € pg(F). Next, using the notion
of f-value (see Chapter 0, Section 19, and Chapter I, Section 7, corollary
to Lemma 4) with f equal to the differential ideal ([y]+ pa(F))/pa(F)
of the differential residue ring % {y,z}/py(F), and writing o(P) for
vi(P), where P denotes the canonical image in % {y,z}/pg(F) of an
element P of #{y,z}, show in succession that o(B) = 10, o(4) = 2,
o(y)22, o(C)=4, o(B)=14, o(4) =7/2, o(C)=11/2, o(B)= 17,
0(A) 2 4,0(C) 2 6,0(y" 1) = 16/7,0(y" =2y = 0(4' +22" Vyy) 2
3, 0((z"y*)73) 2 16/7, 0(z* " P»%) > 16/7. Finally, apply Levi’s lemma.)
(b) Show that if { is any zero of (¥ =¥, then F(y,{) is irreducible in
% {y} and that 0 is a zero of pg(F(y,()). (Hint: The irreducibility can
be proved as in (a). For the rest, use the substitution homomorphism
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Fru{y) = U{y}((c)) with f(3) =X, <;<e (" Y 7'/ +yc®, show that
Jrseontn € 1 rrp, o> and apply Section 16, Proposition 6.)

() Show that {[y]+pa(F)}=1[y,z* ] (Hint: The inclusion
“=” follows from (a). For the inclusion “< 7, show that if G & p,(F),
then G(3,0) € px(F(»,{) for every zero { of 2~ so that by (b),
G(0,0) = 0; then apply Section 2, Theorem 1.)

18 Substitution of powers

Consider elements n,,...,1, € % and nonzero natural numbers e, ...,e,.
It is obvious that if (0,...,0) is a differential specialization of (n,,...,7,)
over #, then (0,...,0) is also a differential specialization of (n{!,...,n:")
over #. The converse is not so obvious. We shall establish the converse as
a corollary to a result of Levi on differential polynomial ideals (Proposition
11, below). But first a lemma.

Lemma 9 Let M be a differential monomial in y and let e N, e # 0. There

exists a homogeneous and isobaric differential polynomial Hy . Q{y}, of

degree and weight equal to the weight of M, such that y**™M(y) =
deg(M)H ( e). ) R

y M,e ¥ ~

Proof 1t evidently suffices to prove that for each derivative operator
f € O there exists a homogeneous and isobaric H, ., € Q{y}, of degree and
weight equal to ord§, suchr that y*¢%0y = yH, ,(y°). If ord8 =0 (that
is, 8 = 1), we may take H, ,=1. If ord8 > 0, so that 6 = 60’ with e A
and 6’ € ® and ord#’ =ordf—1, and if H, , exists, then

yeordOQy = yeordaa(yl—eordD'Ho"e(ye))
= yeordsa(yl +e—eord BHO’,e(ye))
= (l+e—eordf) e 'y3(3) Hy (¥°) + »' T*0Hy . (¥°),
and we may take H, , = (l+e—eord8)e™"(6y) Hy .+ yoHy ..
Proposition 11 (Levi [49, p. 559]) Lete,, ..., e, be nonzero natural numbers,
and let f: F {31, = F {J1,--»Va} denote the substitution homomor-
phism with f(y) =y7 (1<j<n). Let p be a prime differential ideal of

F{P1s-sVn} Such that y, -y, ¢ p and p < [y,,...,y,]. Then {f(p)} has a
component p’ such that y, -y, ép and p' <[y, ..., y.)

Proof Assume the conclusion false. Let p; (i € I) denote the components
of {f(p)}, let I' denote the set of indices /e 7 such that y,---y,¢p;, and
set [” = [—['. By assumption, for each i€I’, p; contains an element not

s i e WA
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in [yy,...,y,], that is, an element 1+Y;, with Y;€[y,,...,y]. Set ¥ =
[Ler(1+Y) =1, so that Ye[y,,...,y,] and 1+Yep, (icl’). Then
Y1 y.(1+Y) e {f(p)} so that, for some seN, y,*-y (1 +Y) e [f(p)].
Set Z=(l+Y)—1, so that Ze[y,,..,y,] and v’ (+2) e
F ¥, Y f®). Thus, p°--p (1 +Z) can be written as a sum of terms
of the form M, (y,)--- M,(y,)f(P), where M,(y;) is a differential monomial
in y; and P e p. However, by Lemma 9,

Y MOM () =y MO L (55).

Therefore if 7 € N is sufficiently big, we find, on multiplying by y§1*=s... yen=s
that y{* - yi'(1+Z)e F [ y,, ..., yol/(p). Finally, since yi’ = f(y;), we find
an equation
Wyt (1+Z) = Y (P, ®)
0<ij<eq,...,0%i,<e,

where P; .; €p for every (i, ...,i,).

Every nonzero term in Z can be written in the form bN,(y,)--- N,(y,),
where b € & and N;(y,) is a differential monomial in y;. Writing deg Ni(yp =
g;e;+r; with ¢;,r;e N and r; < ¢;, we find by Lemma 9 that

y;itjvj(y,‘) = y;jt+qjej+"_,_EjW‘NjHNj,ej(yJE.j)
= y;jf(y;'+qj—w‘NjHNj_ ej(yj))7

where we have supposed, as permitted, that s has been chosen so big that
t+¢q;—wtN; = 0 (1< /< n) for every nonzero term bN,(y,)--- N,(y,) in Z.
We observe that if r; = 0, then either ¢; > 0, whence

deg i "1™ NiHy L (y) > 1,
or else g; = 0, whence deg N; = 0 and wtN; =0 so that'yj-J”’f"""fHNj,e]_(yj)
is a multiple of y;". In other words, if r; =0, then yj-*"f'w‘"fHNj,ej(yj) dom-
inates y;". Referring to (8), we find an equation
Sty + Yy f(Hyy )

0<i;<ey,...,05i,<e,

= )3 A ISP, )
0<ij<ey,...,0%i,<e,
where H; ., € F{y,...,y,; for every (ij,...,i,), and each term of H,. 4
dominates y,"---y,}.

We claim that the family (yi -+ ¥7)o<i, <er, ..., 05 in<e, 1§ linearly indepen-
dent over the ring f(F {y,....Va}) = F{¥{, ..., ¥}, Indeed, if F . e
Fi{y,-u¥t 0<i;<e,...,0<1i,<e,) and

Y I s, (915 ) = 0,

0<iy<ey,...,0<i,<ep,
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then the differential polynomial on the left has the property that all its terms
that, for each j, have degree in (6y,)g. o congruent (mode;) to a given r; < e;,
add up to 0, that is, yi' -y F,.., (¥7 - y27) = 0. Since this is so for every
choice of (ry,...,r,), the claim is established.

This being the case, we infer from (9) that

Sy + f(Hoo) = f(Po.0)-

Since the homomorphism f is injective (because yY', ..., ys" are differentially
algebraically independent over &), this implies that

P ve + Hog = Poo.

As Py ocp and y"--p, is dominated by every nonzero term in Hy..,
it follows from the domination lemma that p contains a differential poly-
nomial y, ---y,(1+X) where X € [y,,...,y,]. Hence either y,---y,ep or
p <& [y, ..., 7.)- This contradicts the hypothesis, and completes the proof.

Corollary Let n,...,n,€%, and let e, ...,e,eN and e e, #0. If
(0, ...,0) is a differential specialization of (ny',...,ns") over F, then (0, ...,0)
is a differential specialization of (1, ...,M,) over F.

Proof We evidently may suppose that 7; # 0 (1 < j < n). Let p denote
the defining differential ideal of (7%', ..., 75" in F {y,, ..., ¥,}. Then y, -y, ¢ p
and p < [yy,...,¥,]. For each & = (e, ..., &,) such that ¢; is an ¢;th root of.l
(1 €j < n), let q, denote the defining differential ideal of (e, 7y, ..., €,7,) 1N
F (¥, .. Ya}- Obviously y, - yu#a,. Let /2 F {yi,.pu} > F {1, 0}
denote the same homomorphism as in Proposition 11. For any Pe
F{y(,...,ya} it is clear that P vanishes at (17, ...,n;") if and only if f(P)
vanishes at (&1, ..., &, 1,), so that P e p if and only if f(P) € q,. It follows
that

Sp) =F L0 0. (10)

Consider any Ge (), q,. We can write G =3 bM (y,) - M,(y,), where
in each term be #, b#0, and M,(y) is a differential monomial in y;
(1<j<n), and where distinct terms have distinct (M, (py), . M, (¥0)
By Lemma 9,

M/(}’j) = y}?‘“m’)_ejw'(M’)HMJ_ei(y'j)-

Writing deg(M)) = g;e;+r;, with g;,r;eN and r; < ¢;, and choosing suf-
ficiently big ¢ e N, we find that

J’j'ﬂMj(J’j) = J’?(‘Jrql—w‘(Mj))HM,,e,(ylz'j)yfly

4
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with t4g;~wt(M) 20 (1 <j<n) for every term in G. Hence we may
write
Yt G = Fr 1 s YAV e i,
0<ry<ey,....08r,<e,
where F, .., € F{y,...,y,} for each (r,,...,r,). Since Ge[),q,, this
implies that
LI, PR MO T (R AR AR K
0<€ry<ey,...,08rp<en
for every &= (g, ...,¢,) with ¢ an ejth root of 1 (1 <j < n). However, if
P, denotes the group of eth roots of 1, the matrix (67, p, o<, <. is invertible
(it has a Vandermonde determinant). Applying this remark successively to
P..P. ..., P, we infer from the last equations that

Erprantsom) = 0

so that £, _, ep for every (ry,...,r,). This shows that for each Ge (), q,
there exists a t € N such that y§*--- yiG e { f(p)}. It follows, because of (10),
that

O0<ry<e,..,0<r, <e),

(Va. = P}y v

By Proposition 11, some component p’ of {f(p)} satisfies the two con-
ditions y, ---y, ¢ p’ and p’ = [y,,...,y,]. Because of the former condition,
p’ is a component of {f(p)}:y,---y,, and hence p’ = q, for some &. Thus,
for this ¢, ., < [y,,...,¥,]. This means that (0, ...,0) is a zero of q,, that is,
that (0,...,0) is a differential specialization of (e, 5y, ..., €,7,) over &, or
equivalently, that there exists a homomorphism % {¢,n,,...,&,7,} = % over
F with ¢n,—-0 (1<j<n). Let F =F,,...,y. Evidently #' =
Fley,...n8,), so that F'{e\n,,..,e,n,} is an integral overring of
F{e1N1,....&4N,}. Hence (by Chapter 0, Section 14, Proposition 9(a))
the above homomorphism can be extended to a homomorphism
F'{e N\, .--r 60} > %. This latter homomorphism must, for each j, map
¢; onto an element ¢ conjugate to ¢; over &, and hence is a differential
homomorphism. As it maps the element n; =&/~ '-¢;7; onto the element
a}‘f”-O =0, we conclude that (0,...,0) is a differential specialization of
My, ..., n,) Over F.
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CHAPTER V

Algebraic Groups

In this chapter U denotes a field, fixed once for.all and called the universal
field, that is algebraically closed and of infinite transcendence degree over its
prime field. The characteristic of U is denoted by p. All fields introduced, excep!
those for which the conirary is stated or is obvious, are tacitly assumed to be
subfields of U over which the transcendence degree of U is infinite. This applies,
in particular, to the field of quotients of a subring of U. For any field K, the
algebraic closure of K is denoted by K,, the separable closure of K is denoted
by K,, and the smallest perfect field containing K is denoted by K,. The group
f U over K is denoted by Aut(U/K). We permit ourselves

of automorphisms 0
(in this chapter only) to write “oxtension” instead of “field extension.”

1 Introduction

The purpose of the present chapter is to develop the theory of algebraic
groups in a form and to an extent suitable for its application, in the final

chapter, to the Galois theory of differential fields.

An algebraic group is an algebraic set (that is, a not nec
algebraic variety) on which there is given a group struct
group law (x, y) — xy and the group symmetry x— X~
pings. An algebraic group is sai

field of definition of the algebraic set and o
For example, the universal field U has a natural structure 0

essarily irreducible
ure for which the

f the two rational mappings.
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! are rational map-
d to be defined over a given field K if Kis a

f algebraic
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set (one-dimensional affine space) and a natural
' . . group structure iti
ag;d f :f_(i)é;resir;iieo ;hle mappings defined by the formulae (():,h ;)?—id::, ;
s (“gdditive a ),,we }'}av.e an algebraic group; it is sometimes denoteﬁ
» anad T (%;oup )'4 S.xmll.arly, the set U* = U—{0} is an algebrai
afmed by oo é)) { elmultxphcatwe group of the field U). Since the magp i: s
ectmaic s, inu ae (x,)f) > xy and x> x~! are rational, we hafe :’rj
b comphc:t; ci is sometimes denoted by G,, (“multiplicative group™)
Vertble aees teA)(amples are obtained by considering the set of allpin.
yenible sauare ms rices over U of a given degree n. This set has a naturai
e det(Xg; 1\?1:: sle<t Eafiing) s;:gehu"l minus the hypersurface with
Xidi<isn, 1<j5n = as a natural
igﬁfpliszi::x;gndmamx. m}lltiplic.:ation in the usual %?r)xlslel;. StSrilrll(;teur;a(tt:i
eehuaic ot .matrlx inversion are rational mappings, we have a
e ti’ 1l is oft[en denoted by GL(n) (‘“‘general lin’ear group” f}
deer . e algebraic groups G,, G,,, GL(n) are defined over th brim
| e prime
If G is any subgroup of GL(n) and if th i
» : ere exists a set X o i
P(‘:Exf)[)(ij())](;u:}‘lz )tha; an el.ement (x;;) of GL(n) is in G i§ Z?lgn(;)x:?}iali;
o Kﬁ(XA . consist" t efn G is an algebraic group. When the perfect ideal
% ”G < deﬁn:;g o alleolynomxals that vanish on G is separable over
(Ehven by che equatim(l)\:;rt(x. )Fi)rl ?ample, the special linear group SL(n)
b e ey ij = 0), the orthogonal group O(n) (given
152@' X, X, =0 (I<i<j<n) and
the triangular group T i watio
the triangula 1% Wi;t)h fn)< (/;gllen i)g thebequations X,;=0(1<j<ign)
: < k< n the subgroup T(n, k iven by
e Swton =0 (1 </<T< KU 1=0 (<m0
AR ar; 21111 tlhe dle}gonal group D(n) (given by the ’equ;tions
co‘{me STae T algebraic groups defined over the prime field. Of
course | ;,,; s :1 ﬁ(l), D(l.) a!l are .the same algebraic group. Also' the
anula algeb;—)alic i nes a blratlona.l 1Sf)morphism G, = T(2,1). ’
srou of Eoee g _If)hups are not blvratxonally isomorphic to an algebraic
e S f.or tﬁerrlzs;:e a;;esslblel. e.xamples are provided by elliptic
a5 U with g35—27g,3 % 0, Sixeen tines this expreston s the e
:nr;r::sxa:x;atof hthe polynomial 4 P—g,X—g;, s0 th:ptrkfzsf:néisti:)}rlle 1;1‘5'
el St is polynomial has no root in common with its deri ere
P, erivative

P=2X, XZZ “(4X13—92X02X,-g3 XOJ),

X,—-1=0 (I<j<m),

we see th i
at P is homogeneous and absolutely irreducible. The equation
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P =0 defines a curve in the projective plane P(2). This curve, which we
denote by W(g,,g,) or simply by W, has only one point on the line “at
infinity” given by the equation Xj =0, namely the point (0:0:1). There
is a unique rational mapping of W x W into W that takes a general point
((1:x,:y),(1:x5:,)) onto the point (1:x1y) with

2
—(xy+x) + Ku) :

X, =X

1 3 yi=y2 L{yi=y\
—E(yl+y2)+2(xl+xz)xl——x2 a\x, —x, .

i

X

y

This mapping is obviously holomorphic at every point ({(1:a,:5,),(1:a,:b;))
with a, # a,. By rather tedious computations it is not difficult to show that
the rational mapping is holomorphic at every point of WxW. For example,
if the point is ((1:a:5),(1:a:b)) we write
(L:x:y) = (71 +y2 (71 +y2)* X101 +32)° )
and use the computation
2 yiieyt AP —gax =gy — (40’ — g2 %= g5)

Ji—Y
+ = =
(y1+22) % — %, X —%; X, %,

= 4(x12+x1 x2+x22) ~ dar.

whereas if the point is ((1:a:b),(1:a:=b)) with b# 0, we merely write
(l:x:p) = ((xl—x2)3:(x1—x2fgc:(xl—x2)3y). Furthermore, this rational
mapping is, when considered as a law of composition on W, both com-
mutative and associative, the point (0:0:1) is a neutral element, and every
element (1:a:b) has inverse (l1:a:—b). Thus, the rational mapping is a
commutative group law, and W is an algebraic group. It is defined over
any field containing g, and gs.

Remark The group law here is, in the case U = C, intimately related to
the addition formula for the elliptic function g of Weierstrass. This function
satisfies the ordinary differential equation @'t =4p>—g,p—9gs, so that
for any point z € C that is not a pole of ,(1:p(2):9'(2)) is a point of W.
When z is a pole of g, we adopt the convention that (1: 9 (z2): @'(2)) denotes
the point (0:0:1). The addition formula for ¢ is then expressed through
the group law on W by the equation

(1:0(z,+22): 0'(z1+2) = (119 (2)): 0" )N 9 (22): 0'(22)).

Thus, the formula z+ (1:0(2): ©'(2)) defines a group homomorphism
C - W. The kernel is the lattice of periods of g. This homomorphism is
not a rational one, but when C and W are given their usual complex analytic
structures, it is everywhere holomorphic.

L o reeApy

kid

i e

2 PRE-K-SETS 215

If G is any algebraic group defined over a field K, for each point xe G
we have the extension K(x) of K obtained by adjoining to K the coordinates
of x, we have the notion of specialization over K (we write x - x’ to in-
dicate that x’ is a specialization of x over K), and when x' is a generic special-
ization of x over K (in symbols, x > x') we have an isomorphism K(x) =
K(x') over K that maps each coordinate of x onto the corresponding co-
ordinate of x’. These extensions, specializations, and isomorphisms, together
with the group law, have certain formal properties. In the following two
sections we shall set down these properties as axioms, and shall then develop
the theory ab initio on their basis; at the same time we shall develop the
corresponding notion of homogeneous space.

2 Pre-K-sets

Let K be a field. By a pre-K-set (relative to the universal field U) we shall
mean a set 4 for which there are given:

(i) for each element x € 4, a finitely generated extension K(x) of K,

(i) a pre-order on A (for which we shall use the notation x-?x',
and in connection with which we shall write x > x’ to denote the relation
“x = x" and x’ - x), and

(iti) for each pair (x,x)e A*> with x<—K—>x’, a field isomorphism

SK 1 K(x) = K(x') over K,

all subject to the following axioms.

AS1 (@) Ifx,x'eAand x—> x', but not x' % then trdeg K(x)/K >
trdeg K(x')/K.

(b) A has a finite subset ® such that for every x & ®, K(x) is separable
over K, and for each x’ € A, there exists an x € O with x - x'.

AS2 (@) If x,x',\x"ed, x<>X, and x' <> x", then SEK oSX =
Sk ..

(,b) If xe A and S: K(x) = K' is a field isomorphism over K, then there
exists a unique x' € A with x > x such that K(x)=K' and S§ .= S.

Consider an extension L of K, over which the transcendence degree of U
need not be infinite. An element x of the pre-K-set A will be called rational
over L if K(x) < L. Similarly, x will be called algebraic (respectively separable,
respectively regular) over L if LK(x) is an algebraic (respectively separable,
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respectively regular) extension of L. The transcendence degree of LK(x)
over L will be called the dimension of x over L, and will be denoted by
dim, x. The set of elements of A that are rational over L will be denoted
by A,. In particular, 4y = A4. It is easy to see that when L is algebraically
closed and of infinite transcendence degree over K, then A, with the exten-
sions K(x) (xe 4;) and the induced pre-order x—K>x’ (x,x € Ay) and

the isomorphisms SX . (x,x" € Ay, X <> x'), is a pre-K-set relative to the

universal field L.

We shall indicate the relation x —— x' (respectively x <~ x') by saying
that x' is a specialization (respectively generic specialization) of x over K.
When x is algebraic over K there are only finitely many specializations of
x over K. They all are generic and are called the conjugates of x over K.

When there is no danger of confusion, we shall usually write x — x’ instead
of x —> X', x = x' instead of x <> x', and S instead of S§ .

It follows from AS 2(a) that S, , = idk(, and that See=3S7k.

It follows from AS 2(b) that if ¢ : L = L is an isomorphism of extensions
of K (over which U need not have infinite transcendence d;grees), then for
each x e A, there is a unique x' € A such that x — x', K(x') = o(K(x)),
and o coincides with S, , on K(x); we denote this element x’ by ox. Thus,
the isomorphism ¢ : L = L over K induces a bijection of A, onto Ap.. If
x,,X; € Ay and x; = x,, then ox, = 0X3, and if x, & x,, then ox; < 0x;
and S,y 0n * = 0Sx,, 5, a"‘ocwfgr every n€ K(ox,). If t: L= LV is another
isomorphism of extensions of K, then (to)x = t(ox) for every x € Ap.

A subset V of the pre-K-set A is called K-irreducible (in A) if there exists
an x & A4 such that ¥ is the set of all specializations of x over K any such x
is called a K-generic element of V. Every element of 4 is a K-generic element
of a unique K-irreducible subset of A, called the locus of x over K.

If a subset A’ of A is the union of finitely many K-irreducible subsets of
A each of which has a K-generic element that is separable over K, then the
pre-K-set structure on A induces, by restriction to 4’, a pre-K-set structure
on A’. We then say that A’ is a pre-K-subset of A. A pre-K-subset of a pre-
K-subset of A is a pre-K-subset of 4. A K-irreducible subset V of A is a pre-
K-subset of A if and only if ¥ has a K-generic element that is separable over K.

A maximal K-irreducible subset of A4 is called a K-component of A. By
AS 1(b), the K-components of 4 are finite in number and their union is A,
each K-component of A is a pre-K-subset of A, and every K-irreducible
subset of A is a subset of a K-component of 4. The set of all the K-generic
elements of the K-components of 4 will be denoted by I «.

By AS 1(a) and (b), the set of natural numbers dimg x (x € 4) is bounded,
so that if A is not empty, then max,. L, dimy x exists. This natural number
is called the dimension of A and is denoted by dim 4. It equals the maximum

“
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of the dimensions of the K-components of 4. If ¥ and ¥’ are K-irreducible
pre-K-subsets of 4 with V>V’ and V # V', then dim¥ > dimV’, and
Ik is the set of all elements x & V such that dimy x = dim V.

When L is an algebraically closed extension of K of infinite transcendence
degree (U not mecessarily of infinite transcendence degree over L), and
Vi,....Vn are the K-components of 4, then ViLy - Ve are the K-com-
ponents of the pre-K-set 4,, and dim 4, = dim 4.

By a pre-K-mapping of a pre-K-set A into a pre-K-set B we shall mean a
mapping f of a subset 4, of A into B with the following four properties:

() Lyx=Ay;
(ii) if xe 4,, then K(x) 2 K(f(x));
(ili) if xed, xX €Ay, x—x', then xe 4, and f(x) = f(x");
(iv) if x,x' € A, and x <> X/, then S,. . is an extension of Sy rixy-

If A, is any subset of A, that contains I, x and contains an element x when-
ever it contains a specialization of x over K, then the restriction of fto 4,
also is a pre-K-mapping of 4 into B; in particular, 4, can be I,k In general,
if vy, ..., V,, are the K-components of A4 and x; is a K-generic element of V;
(1 < i< m), then f(x,) is separable over K and hence its locus over K is a
K-irreducible pre-K-subset W, of B; the set W, u--- U W, is the smallest
pre-K-subset of B containing f(4,). When A’ and B’ are pre-K-subsets of
A and B, respectively, with I x = 4, and f(T;x) = B, then the restriction
of fto A’ N A, is a pre-K-mapping of A’ into B’ (said to be induced by f).

The pre-K-mapping f of 4 into B is said to be everywhere defined (on A)
if 4, = A. When f is everywhere defined and bijective, and the inverse f
is an everywhere defined pre-K-mapping of B into A, then for any xe 4,
K(x) = K(f(x)), and for any x,x' € 4, x—x' if and only if f(x) —f(x").
Hence, when such is the case, for any pre-K-subset C of A the image §{(®)
is a pre-K-subset of B, K-irreducible if and only if C is K-irreducible.

The pre-K-mapping f is said to be separable if, for every x € Tk, K(x) is
a separable extension of K(f(x)). To prove f separable it suffices to verify
this condition for one K-generic element of each K-component of 4.

If L is an extension of K, then the restriction f; of fto A, n A, maps
Ay~ Ay into By In the special case in which L is algebraically closed and
of infinite transcendence degree over K, f, is a pre-K-mapping of 4, into B
(these being pre-K-sets relative to the universal field L). If ¢ is any isomor-
phism over K of L onto an extension of K, and if xe 4, " 4, then ox €
Ay n Ay and o(f(x)) = f(ox).

Let (x,);; be a family of elements of (the same or different) pre-K-sets.
The family is (or the elements x; are) said to be independent over K if, for
each index i € I, the fields K(x;) and K(Uizi, K (x;)) are linearly disjoint
over K. If for each i, these fields are merely algebraically disjoint over K,
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then we shall say that the family is (or the elements x; are) quasi-independent
over K. Finitely many elements xy, ..., x, are quasi-independent over K if

and only if ’
trdeg K(x,) - K(xn)/K = 3 dimgx;.

1€i€m
Given any Sequence X, Xz, ..., Xms -+ of elements of pre-K-sets, it is easy
to prove, by an induction argument based on AS 2(b), that there exists a
sequence X', Xz, .. X'y oo quasi-independent over K such that x, = x,’

and x,, < X, (m>1). For any family (x)c/, if all the elements x; are
regular over K (or even if all but one are), then quasi-independence implies
independence.

Given some homomorphisms A, : Ri— R/ (iel) of subrings of U, we
shall call them compatible if there exists a homomorphism of subrings of U
that is an extension of every h;. If every h; is an isomorphism, and if the
isomorphisms ; are compatible and their inverses are compatible, then we
shall call them bicompatible. If the family (xi)ic; is independent over K,
and if x; « x;/ (i € I), then the isomorphisms S, ,, (i € [} are compatible.

Lemmal Let K, Lo, L be fields with K< Lo < L, let A, ..., A, be pre-
K-sets, and let x;€ A; (1 < i< m). For each index i there exist finitely many
elements Xy, ..., Xy, € A; such that x; « x; (1<j< ny), such that idy, and

Sy, 5 are bicompatible (1 <j < n;), and such that the following conditions
are satisfied.

(@) Whenever x;€d;, x, < x/, and idy, and S, . are compatible
(1 < i< m), then there exist indices JQ), ..., j(m) such that idy, Se. <.\
are compatible. '

Xm'y Xmy(m)

(b) trdegL( U K(xij>/L= Y ndimg x;.
1€is<m 1€i€m
t<jism

(¢) If x; is separable over Lq, then x; is separable over L (1 <j< ny.
(d) If x; is regular over Ly, then n; =1 and x;; is regular over L.

Because of AS 2(b), this is an immediate consequence of Chapter 0,
Section 12, Corollary 3 to Proposition 7 (with K there replaced by Ly).

REMARK When x; is separable over L, we have the following converse
to part (d) of the lemma: If n; = 1 for every extension L of L, then x, is regular
over L. (See Chapter 0, the remark at the end of Section 12.)

3 K-Groups and homogeneous K-spaces. K-Sets

By a K-group (relative to the universal field U) we shall mean a set G on
which there is given a group structure (which we shall usually write multi-

* b
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plicatively) and a pre-K-set structure (relative to the universal fieid U), subject
to the following axioms.

AG1 (a) Ifx,yeG, then K(xy) < K(x) K(y).
(b) Ifx,y€G, then K(x~'y) = K(x) K().

AG2 (@) If x,y,x,y'eG, and x> x', y—y, 6 and S, ., S, , are com-
patible, then xy — x'y’. If moreover xy « x'y’ and h is a homomorphism of
subrings of U such that h,S,. ., S, , are compatible, then h.S,. are com-
patible.

() If x,y9,x,y€G, and x—x', y—y, then there exist elements
x*,y* e G with x «» x*, y « y* such that x*,y* are quasi-independent over K
and x*y* — x'y’, and such that when x*y* «— x'y', y* < y’, then S, v, S
are compatible.

(© If x,y,x,y€G,and x = x', y >y, and S, .,S, , are compatible.
then x 'y —x'"'y. If moreover x™ 'y — x'~'y" and h is a homomorphism
of subrings of U such that h,S,. ., S, , are compatible, then h,S..-., .-, are
compatible.

d) If x,y9,x,y€G, and x—x', y—y, then there exist elements
x* y* € G with x & x*, y & y* such that x*,y* are quasi-independent over K

r—1

and x* " 1y* > x' "y

¥, xy

.y

AG 3 The unity element 1 of G is contained in a K-component of G having a
K-generic element that is regular over K.

REMARK It is easy to verify that if L is an algebraically closed extension
of K of infinite transcendence degree (over which U need not have infinite
transcendence degree), then G, with its pre-K-set structure relative to the
universal field L and with its group structure as a subgroup of G, is a K-group
relative to the universal field L.

Before investigating the consequences of these axioms, we introduce a
related definition. Recall that a homogeneous space for an abstract group g
is defined as a set m together with an external law of composition mxg—m
(for which we usually use the multiplicative notation (v, x) > vx) such that

v(xy) = (kx)y (vem, xeg, yeg),
vl = (v e m),
vg=m (vem).

The homogeneous space is said to be principal if, for each pair (v,w) € m?2,
the element z € g with vz = w is unique. When this is the case, this unique
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element may be denoted by v~ 1y, and the following identities can be derived:
v 'w) = w, wilp = ("'w)"!,
@ )@ tw) = u"tw, v iy =1,
()" ' wy) = x~ 17 W)y

(uem, vem, wem, xeg, y€ g). To see an example of a homogeneous
space for g, consider any subgroup b of g and the set g/h of right cosets. of
B in g. If ¥ = bx, is such a coset and if y € g, then the set xy = bhx, y (consist-
ing of all products xy with xex) is also such a coset, and the formula
(z,y) — zp defines an external law of composition (g/h) x g — g/.f) that makes
a/h a homogeneous space for g. This gives the so-gal]eq canonical structure
on g/b of homogeneous space for g. Conversely, if m is any homogeneous
space for g and if we choose an element w e, the §et b of elgments Xeg
such that wx = w is a subgroup of g, there is a unique mapping g/b—-» m
such that hx s wx for all xeg, and this mapping is an isomorphism of
homogeneous spaces for g. . .

Let G be a K-group. By a homogeneous K-space for G (relative to the universal
field U) we shall mean a set M on which there is given a structure .of homo-
geneous space for the group G and a structure of pre-K-set (relative to the
universal field U), subject to the following axioms.‘

AH1 (@) IfveM, xeG, then K(vx) = K@) K(x).

AH2 (@) Ifv,veM, x,x*€G, and v, xe x',and S, ,,S. . are
compatible, then vx —v'x'. If moreover vx «> V'x’' and h is a homomorphism
of subrings of U such that h, S, 0, Se. 5 are compatible, then h,S,. .. are

compatible. .
’ !
(o) Ifvv'eM, x,x€G, and v>V, x> X, then there exist elements

v e M. x*e G with v« v*, x « x* such that v*,x* are quasi-independent
,

over K and v*x* - v'x’, and such that when v¥x* & U'x', x* o X, then

S,z prxrs Syr, xe are compatible.

We shall call the homogeneous K-space for G principal if it %s principgl as
a homogeneous space for the group G and satisfies the following additional

axioms.
AH1 (b) Ifv,we M, then K(v™'w) = K(v) K(w).

AH2 (©) Ifvo,wv,weM, andvev, we w, and Sy 4, S, are com-
patible, then v™'w—v'~'w'. If moreover v 'we v 'w and h is. a homo-
morphism of subrings of U such that h,S, ,,S.,. are compatible, then
Hy Sy -1, o1, are compatible.
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(& If vow,o',weM, and v—>v', w—ow, then there exist elements
v*, w* e M with v & v*, w w* such that v*, w* are quasi-independent over
K and v* 7 tw* 0"y,

REMARK It is easy to verify that if L is an algebraically closed extension
of K of infinite transcendence degree (over which U need not have infinite
transcendence degree), then M, with its pre-K-set structure relative to the
universal field L and with the external law of composition M, x G, — M,
induced by the external law of composition M x G — M, is a homogeneous
K-space for the K-group G,, and is a principal one when M is a principal
homogeneous K-space for G.

It is immediate from the axtoms that a K-group G has a natural structure
of principal homogeneous K-space for G, the external law of composition
being the group law. We call this the regular K-space for G. Because of this
fact, all results obtained for principal homogeneous K-spaces are valid for
K-groups. (Another structure on G of principal homogeneous K-space for
G is obtained by defining the external law of composition by the formula
w, )~ x"'v (veG, xeG).)

Proposition 1 Let G be a K-group and M be a homogeneous K-space for G.
Let v,w,v',w' e M, x,y,x' €G.

(@) K(x"H=K(x), K()=K, K@)K(x)=K(@wx)K(x). When M is
principal, K(v) K(x) = K(v) K(vx).

(b) If ¢ is an isomorphism over K of an overfield of K(v) K(x) onto an
extension of K, then o(vx) = (6v)(ox). When M is principal, if ¢ is an iso-
morphism over K of an overfield of K(v) K(w) onto an extension of K, then
o (v™'w) = (6v)" ' (ow).

(¢) If v,x are quasi-independent over K, then dimygvx > dimygv. When M
is principal then also dimg vx = dimy x, and if v,w are quasi-independent over
K, then dimgo™'w = max(dimgv, dimg w).

(d) If v,x are independent over K and v —v', x = x', then vx —v'x'. If
moreover vx «»v'x’, x> x’', then S, ,.,S. . are compatible. When M is
principal, if v,w are independent over K and v—1v', w—w', then v 'w—
v iw

Proof (a) By AG 1(b), K(}) = K(x"'x) = K(x). Since x can be ol
for any o € Aut(U/K), K(1) = o(K(1)) for every such ¢, so that K(1) is
algebraic over K. However, by AG 3, x can be regular over K, so that
K(1) = K. Hence, by AG 1(b), K(x~') = K(x'1) = K(x), whence K(x~!) =
K(x). Therefore, by AH 1(a),

K(vx) K(x) = K@) K(x) = K(vx-x" ) K(x) = K(vx) K(x™ 1) K(x)

= K(vx) K(x),
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and when M is principal, by AH 1(2) and (b),
K@) K(vx) « K@) K(x) = K@) K@~ ' vx) = K@) K(vx).

(6) Since S,, ., Ssx x> Sa(ur),ox € restrictions of o, the.y are bicom-
patible. By AH 2(a) therefore Sawr) vxs S(ev)(ax), vx BTE co.rnpat.1b1'e and hence
equal, so that by AS 2(b), o(vx) = (ov) (ox). When M is principal and we
take x = v~ ' w, this shows that o(v™'w) = (gv) ™' (ow). .

(c) If v, x are quasi-independent over K, then by part (BT) of .the. proposi-
tion, dimyvx = dimg,,vx = dimgv = dimgv. When M is principal, als'o
by part (a), dimgvx = dimg,,vx = dimyg,,,x = dimg x, and if v, W are_qluasr
independent over K, then, again by part (a), d.im,(v“w > dimg, 07w =
dimy,,v = dimy» and similarly dimy v~ wz dlm,(.w.

(dy Let v*,x* be as in AH 2(b). Since v, x are mdependent over K, .the
isomorphisms S,. , and S,. . can be extended to a surjective homor.n.orphnsm
6 K[K(@)uw K(x)]— K[K@*)v K(x*)]. Because v*, x* are quasi-indepen-
dent over K, the transcendence degrees over K, left and right, are the same,
so that o is an isomorphism. By part (b) of the proposition then vx «» o (vx) =
(ov)(ox) = v*x* > v'x’, and in the event that vx <+ u’).c’,. x e x', then
Syv oe> Serx are compatible. When M is principal, a similar argument,
using AH 2(d) instead of AH 2(b), shows that ™' w—v' "' w".

1 1

Remark 1 If x— x', then x ' = x’ "' If x> X/, then x7" = x'" and
S.-i -1 =S, .. Indeed, by part (2) of the proposition, x, | are independent
o:/er Ié and of course 1 — 1, so that the first assertion follows from the second
half of part (d) of the proposition. It follows that if x> x', then x ™! o x' 71,
and by part (b), S, (x™ )= Spxx) '=x"1= Se-1g-1(x71), so that
Sx*-lvx—l = Sx’.x'

REMARK 2 The axioms AG 2(a) and (c), and AH 2(a) and (if M is princi-
pal) (c) are capable of self-improvement. Let h: R— R’ be a homomorphism

of subrings of U, let v, «» 015 .0, U ¢ Uy in Mand x; = x,, .., X, <X,/
in G, and suppose that 4 and the isomorphisms S, s> -+ S,,m,_.,,m,fsxl,_xl,
S.. . arecompatible. Let Uy, ..., Un, X1, -, X, be noncommuting indetermi-

nates, and by induction define the sets of “monomials”:
X, = W, = {1}, X = (LX, X X X
X =%_% or . x5v U % U;'u, (k= 2)

nE€m
wsm

YN
N

1
1
according as M is not or is principal,

W, =X, v U U, %~y (k=1

1€usm

W= () W,

keN
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For each W e W denote by w, respectively w’, the element of M or G obtained
by substituting (v, ..., Um, X1, --., X,), respectively (v,',...,0,, x,’, ..., x,"), for
(Ui Upy Xy, .., X)) in W. By Remark 1, we w’ (We®)), and 4 and
the isomorphisms S, , (We23|) are compatible. It easily follows, by
AG 2(a) and (c) and AH 2(a) and (when appropriate) (c), that w— w'
(W e 1,). Furthermore, if we let W, denote the set of We I, for which
wesw' and set X, =1B," n X,, then 4 and the isomorphisms S, ,
(W e MW,") are compatible. This improvement process can be continued to
yield specializations w—w' (We W, X,"), etc. In particular, if the iso-
morphisms S, ., ..oy Sy Sk iz o> Sxvux, ar€  bicompatible, then
w e w (WeB), and # and all the isomorphisms S, , (W e IB) are com-
patible. In Section 10 a much stronger resuit (Proposition 13) is obtained.

Remark 3 If G is a K-group, then the pre-K-set structure on G and the
opposite group structure on G (for which the product xy is defined as the
product yx for the given group structure) determine on the set G a K-group
structure. (All the axioms are obvious with the possible exception of AG 2(b).
However, if x — x’, y > »', then we may apply AG 2(b) in G to the special-
izations x ™' = x' 71, y71 - 3’ 7! to establish AG 2(b) for the opposite group
structure.) The K-group thus obtained is called the K-group opposite to G.
If M is a homogeneous K-space for the K-group G, the formula (v, x) — vx ™!
defines an external law of composition M x G — M that makes M a homo-
geneous space for the opposite group. This homogeneous space structure
and the given pre-K-set structure on M determine on M a structure of
homogeneous K-space for the K-group opposite to G.

Theorem 1 Let G be a K-group and M be a homogeneous K-space for G.
The K-components of M are pairwise disjoint and all have the same dimension.
The K-component G° of G that contains | is a normal subgroup of G of finite
index. Each K-component V of M is the union of a finite number of orbits of
G° in M, this number being 1 if M is a principal homogeneous K-space for G
and V has a K-generic element that is regular over K.

Proof By AG 3, G has a K-component G° containing 1 and having a
K-generic element ¢ that is regular over K. Let ¥ be any K-component of M
and fix a K-generic element v of ¥ such that v and ¢ are quasi-independent
(and hence independent) over K. By Proposition 1(d), vz —» vl = v, whence
vt +> v, 50 that ot is a K-generic element of V. In the special case in which M
is the regular K-space for G and 1€V, the same argument shows that vt is
a K-generic element of G° so that ¥ = G°. Therefore G° is the unique K-
component of G containing 1. In the general case, let ¥ be any other K-com-
ponent of M, and let we Iy x. Fixing x€ G with vx = w, setting v' =v,
x' = x, and then fixing elements v* = M, x* € G as in AH 2(b), we find with
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the help of Proposition 1(c), that dim W = dimy w = dim v*x* > dim v* =
dimV; similarly dim ¥ = dim W. Therefore all the K-components of M have
the same dimension. .

Starting afresh, let v, € M and choose £ € [go/x 30 that vg, ¢ are independ-
dent over K. If ¥ is any K-component of M containing vy, let v e Ty, fix
xe G with vx = vy, and fix s € Igox 50 that K(s) and K(vo) K(v) K(x) are
linearly disjoint over K. Then

dim G 2 dimyg xs > dimgg,y xs = dimgg, k0 xs = dimggge s = dimg s
= dimG;

whence dimg xs = dimgg,, xs, that is, v and xs are quasi-independe-n.t over K,
so that dim vy s = dimgvxs > dimgv = dim M. Since (by Proposmon' 1(d)
vs > vl =v and vs - vys and vyt > vy, we infer that vyt e I}k Since V
is any K-component of M that contains v,, there can be ju;t one S{.l(?h.K-
component. This shows that the K-components of M are pairwise disjoint.

Continuing the above notation, we see that if £, is any ele.:ment of G°, then
(by Proposition 1(d)) vyt = vg o Since voteV this implies that voto e V.
Thus, VG° = ¥. In the special case in which M is the regular K-space for G
and V = G° this shows that G°G® = G°. By Remark 1 following Proposition I,
t'—1 whence ' eG°, and also t™!—1t5' whence 15'€G° so that
(G°)~' = G°. Therefore G° is a subgroup of G. .

Let X be a K-component of G and let x e Ty,. By Section 2, .L.emma 1
(with L, = K, L = K,) there exist elements Xy, ..., %, € Tk, quasi-indepen-
dent over X and with n = 1 if x is regular over K, having the property that
for every x' € I there is an index j such that S, ,, can be extended to an
isomorphism S’ : K, K(x)) = K, K(x) over K,. When XIT).CJ _are quasi-
independent over K, then K, K(x'), K, K(x;) are linearly disjoint over K,
so that S’ can be extended to a homomorphism K,[K(x') v K(x;)]—
K, K(x') over K,K(x'); in this case Sy ., Sy » are compatible, so that by
the axiom AG 2(c) x; ' x' > x' " 'x' =1, whence x; ' x' € G°. Thus, f(?r‘ any
element x' € Ik such that K(x"), K(x,)--- K(x,) are algebraically disjoint
over K, x' €| <j<n x;G°. However, for any element x5 X whatsoeyer,
there exists an element ¢ € [0k such that K(r), K(x) K(x,) -+ K(x,) are line-
arly disjoint over K, so that xo7€ (i <j<n X, G° wher}ce Xg € stjsu X G°.
Thus, X = |, ¢;<a X; G, that is, every K-component is t.he union .of ﬁmte.ly
many orbits (= left cosets) of G° in G. It follows from this that G° is of ﬁmt.e
index in G. Furthermore, if X,,..., X,, are the K-components of G and if
X = <jem Xi;G° (1 < i< m), then, for any element v, € M,

M=0,G= | veXi= |J vox;G.

1<igm 15ism

Since the K-component ¥ of M is disjoint from any other K-component of
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M, and since WG° = W for every K-component W of M, it follows that ¥ is
the union of those orbits v, x;; G° of G° for which v, x;€V.

Suppose that M is a principal homogeneous K-space for G and that some
(and therefore every) K-generic element of ¥ is regular over K. If v, is any
element of V and v is any K-generic element of ¥ such that v, v, are quasi-
independent (and hence independent) over K, then v—uv, and vy — Uos
whence (by Proposition 1{d)) ™ 'vy — vy 've = 1, so that v™'p, e G° and
vo G° = vG°. However, for any two elements v,, v, € V, there exists an element
vel, x such that K(v) and K(v,)K(v,) are algebraically disjoint over K,
and by what we have j@st proved v, G° = vG° = v, G°. Therefore in this
case V' is an orbit of G°.

To complete the proof of the theorem it remains to prove the normality
of the subgroup G° of G, that is, to show for any ¢, € G° and x, € G that
X0 Xg ' € G°. To this end fix 1 € o i such that K(), K(2,) K (x,) are linearly
disjoint over K. We shall show that xqtx5 ' — xo2o x5 1. This will suffice
because in the special case in which t, =1 it will prove that xytx;' € G°
and therefore in the general case it will prove that x, ¢, x5! € G°. Fixing
an element s € [0/ such that K(s) and K(xq) K(¢,) K(¢) are linearly disjoint
over K, we know that ts «» £y s and of course x, < x,, 5 <> 5. Since 15, x, 5
are evidently independent over X, Stos.tsr Sxg, xor Js,s aT€ compatible. There-
fore xo 15 = x5 195, Xo 5 «> x5, and because evidently dimy x,ts =dim G =
dimyg X, £ s the former specialization here is generic, so that S, .. S s, xos
are compatible. Therefore x,2s5(x,5) ™" = xq 16 5(xXo8) ™, that is, xq x5! —
Xoto x5 '. This completes the proof of the theorem.

RemMark 1 In the proof of the theorem it was shown that if ve M,
t € Tgox, and v,¢ are independent over K, then vt is a K-generic element of
the K-component of M that contains v. Actually, for any element x e I, ¢
such that v, x are quasi-independent over K, vx e I, x. Indeed, it is easy to
see that if we fix ¢ € [;o x so that K(¢), K(v) K(x) are linearly disjoint over X
(whence, by the above, vxt € I}, ), then xt < x and S, ,, S, ., are bicom-
patible, so that vxz «» vx and vx e I, .

REMARK 2 Let v,v" € M and fix ,¢’ € o4 such that v, ¢ are independent
over K and v',¢" are too. Then the following two conditions are equivalent.

(i) vte—v't' and S,, ,,S, , are compatible.
(i) v->v'.
This follows from Proposition 1(d), and Remark 1, above.
ReEMARK 3 Let A: R— R’ be a homomorphism of subrings of U, let

x,x' €G, and fix s5,¢,5,t' € Iex such that s, are independent over K and
K(s)K(t), K[K(x) v R] are linearly disjoint over K, and such that s',¢’ are
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independent over K and K(s) K(r'), K[K(x") w R'] are linearly disjoint
over K. Then the following three conditions are equivalent.

() sxes'x and 4, S, ., S s are compatible.
(i) xt+>x't"and h,S,, .S, , are compatible. _
(i) sxt e sx't" and A, Sy ¢ gxe» S 5> S ¢ are compatible.

This follows from Remark 2 following Proposition 1.

Remark 4 If L is any algebraically closed extension of K of infinite
transcendence degree, then (G°), = (G,)°. Therefore we may use the nota-
tion G,°.

Consider a subset H of the K-group G. If H is a subgroup of the group G
and is a pre-K-subset of the pre-K-set G, then evidently H satisfies all the
axioms for a K-group with the possible exception of AG 3. When AG 3 is
satisfied, too, we call H a K-subgroup of G. We shall see later (Section 8)
that this is always the case. For the present we observe that G° is a K-sub-
group of G, as is the trivial subgroup of G. If H is a K-subgroup of G and
I'is a K-subgroup of H, then [ is a K-subgroup of G.

A K-homomorphism of a K-group G into a K group G’ is defined as a
mapping f: G— G’ that is a group homomorphism and an everywhere
defined pre K-mapping (see Section 2). If H, H' are K-subgroups of G, G,
respectively, and if f: G — G’ is a K-homomorphism such that f{H) c B",
then f induces by restriction a K-homomorphism H — H’. In particular,
since id; is a K-homomorphism of G into G, the inclusion mapping
ing y: H<=G is a K-homomorphism of H into G. The composite of K-
homomorphisms f: G- G’ and f”: G’ = G” of K-groups is a K-homomor-
phism f’of: G— G”. If there exists a K-homomorphism g:G' —G suc.h
that gof =id; and fog = id;., then f is called a K-isomorphism, and g is
then unique, being the inverse mapping f~!. Composites and inverses of
K-isomorphisms are K-isomorphisms.

Now consider two homogeneous K-spaces M and M’ for the K-group G.
By a K-homomorphism of M into M’ we mean a mapping f: M — M’ that
is 2 homomorphism of homogeneous spaces for the group G (that is, that
satisfies the identity f(vx) = f(v)x) and is an everywhere defined pre-K-
mapping. A K-homomorphism of homogeneous K-spaces for G is necessarily
surjective. Composites of such K-homomorphisms are themselves K-homo-
morphisms, and a K-homomorphism f: M- M’ is a K-isomorphism if
there exists a K-homomorphism g: M’ — M such that gof=id, and
fog =idy.. Composites and inverses of K-isomorphisms are K-isomor-
phisms.

K-endomorphisms and K-automorphisms (of a K-group G or of a homo-
geneous K-space for G) are defined as expected.

At
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For any’element y € G the mapping 4y : G — G defined by the formula
A,x = yx is a bijective one, with inverse Ay-r. UIf y e Gy, then i, is a K-
automorphism of the regular K-space for G (but not, in general, of the
K-group). The mapping Py : G — G defined by the formula p,x = xy is also
bijective, with inverse py-1. If y € Gy, then p, is a K-automorphism of the
regular K-space for the K-group opposite to G (see Remark 3 following the
proof of Proposition 1). More generally, if M is a homogeneous K-space for
G and we M, the mapping 1, : G — M defined by the formula i,x = wx
is surjective (and when M is principal, is bijective with inverse given by the
formula v - w™'v). If w € My, then 4, is a K-homomorphism of the regular
K-space for G into M (and when M is principal, it is a K-isomorphism). The
mapping p,: M — M defined by the formula pyv =vy is bijective, with
inverse p,-.. If y € Gy, then py, is an everywhere defined pre-K-mapping, but
is not, in general, a K-automorphism of M. The symmetry mapping:: G — G
defined by the formula 1x = x~ ! is not a K-automorphism of the K-group G
(unless G is commutative), but is a K-isomorphism of G onto the K-group
opposite to G (and also of the opposite K-group onto G).

By a K-set we shall mean a pre-K subset of a homogeneous K space for
a K-group. A pre-K-subset of a K-set A is obviously a K-set, and will be
called a K-subser of A.

4 Extending the universal field

Let U be an algebraically closed extension of the universal field U. We
are going to describe a method for embedding any K-group G relative to
the universal field U in a K-group ® relative to the universal field 1 in such
a way that G = 6, and also for embedding any homogeneous K-space M
for G relative to the universal field U in a homogeneous K-space M for &
relative to the universal field U in such a way that M =M.

First consider any pre-K-set A relative to the universal field U. Let A7
denote the set of all triples (x, &, &) such that x e 4, & is an extension of X
in U, and S is an isomorphism K(x) =~ & over K. Call two such triples
(x1, 81, 8)),(x,, ];,3,) equivalent if

X| > X,, ], = 8,, S,08

X2, X1 = 61‘
(This obviously defines an equivalence relation on A') Let U denote the set
of equivalence classes in A"

If x € U, then all the representatives (x, 8, S) of x have the same second
coordinate &, which we shall denote by K(x). This is a finitely generated
extension of K in .

Let x,x" € A. If a pair of representatives (x,8,8) of x and (x',R', &) of
£’ have the property that x — x’, then all such pairs of representatives have
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this property. We define x — ¥’ to mean that this is the case. The relation
x — ' obviously is a pre-order on U.

If £ — ¥ (that is, x » ¥’ and ¥’ — x), and if we choose a pair of representa-
tives (x, &, S), (x', 8, S") as before, then x> x" and €'0S, o€ ' is an
isomorphism K(x) = K(z') over K. This isomorphism does not depend on
the choice of representatives; we shall denote it by S,. ,.

It is easy to verify that the set 2, together with the extensions K(x), the
pre-order ¥ — ¥, and the isomorphisms S, ,, satisfies AS | and AS 2 of
Section 2, so that U is a pre-K-set relative to the universal field U. For any
element x € A the triple (x, K(x), S,.,) is an element of A", and therefore its
equivalence class (x) is an element of . Furthermore, if y € A and (x) = (3),
then x —y, K(x)=K(y), and S, ,oS, . =S, ., whence S, ., =S, ., so
that x = y. Therefore the formula x — (x) defines an injection 4 — 2. By
means of this injection we identify 4 with a subset of 2, and therefore write
A < U 1t is a simple matter to verify that 4 = U,. The construction of A
and the identification of 4 with U, is canonical.

Consider any two pre-K-sets A, B relative to the universal field U, and a
pre-K-mapping f of 4 into B. Let A, B denote the K-sets relative to the
universal field U canonically associated with A4, B, respectively. For any
1e 9, if a representative (x,R,S) has the property that xe A,, where
A, denotes the set of elements of A at which f is defined, then every rep-
resentative of ¥ has this property. Let 2[; denote the set of elements x e 2
the representatives. of which have this property. For any x € %;, choose a
representative (x, &, S). Since K(f(x)) = K(x), S restricts to an iso-
morphism T : K(f(x)) = €, where € is a subfield of &, and evidently
(f(x), 2, %) € B'. The equivalence class of (f(x),£,T) in B' is easily seen to
be independent of the choice of representative (x, &, €), and therefore may
be denoted by f(x). Thus, we have a mapping f: ; — B, and it is easy to
verify that § is a pre-K-mapping of ¥ into B, and that f, = /. In fact, { is the
unique pre-K-mapping of U into B such that j, =1

Now consider any K-group and a homogeneous K-space M for G, both
relative to the universal field U. Let ® and 9 denote the pre-K-sets relative
to the universal field A that are canonically associated with the pre-K-sets
G and M, respectively. We show that if v € M, x € &, then there exist rep-
resentatives (v, K(0), S,) of v and (x, K(x), S,) of x such that S,,&, are
bicompatible. Indeed, let (v, K(v), S,-) and (x’, K(x), S,) be any representa-
tives of v and «, respectively, choose some isomorphism ¢ over K of K(v) K(z)
onto a subfield of U, let ¢, : K(v) = ¢(K(0)) and ¢, : K(x) = ¢(K(z)) denote
the two isomorphisms obtained by restricting ¢ as indicated, and set
S,=¢;! and S, =¢'. Then ¢,oS, is an isomorphism of K(v') onto
(K (v)) over K, and therefore by axiom AS 2(b) there is an element
veM with v «~v, K@) =¢(K®), and S, ,=¢,°S,, and, similarly,
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there is an element x € G with x’" < x, K(x) = ¢(K(®)), and S, . = ¢,S,..
It is now easy to see that (v, K(v),S,)ev and (x, K(z),S,)ex and that
S,, S, are bicompatible.

This being the case, for any v € I, € B, choose respective representatives
(v, K(0), S,),(x, K(x),S,) such that €, &, are bicompatible. There exists
a unique isomorphism K(v)K(x) = K(v)K(z) that extends S, and S,
and this isomorphism restricts to an isomorphism & of the subfield K(vx)
of K(v) K(x) onto a subfield & of K(v) K(x). The class of the triple (vx, &, )
does not depend on the choice of representatives (v, K(v), G,), (x, K(z),S,)
as above, and therefore can be denoted by ox.

In the special case in which M = G of course I = G, and the formula
(v, x) — vx defines an internal law of composition on &. A tedious but
straightforward argument shows that this is a group law (so that ® is a
group), that G is a subgroup of ®, and that ®, with its group structure and
its structure of pre-K-set relative to the universal field U, is a K-group. It is
canonically determined by G. In the general case, the formula (v, x) — ox
defines an external law of composition Mx® — NV on M. An equally
tedious and equally straightforward argument shows that this makes 9t a
homogeneous space for the group &, and that 9, with its structure of
homogeneous space for ® and its structure of K-set relative to the universal
field M, is a homogeneous K-space for ®. It is canonically determined by .
It is easy to see that ® is identical to G as a K-group relative to the universal
field U, ard that 9, is identical to M as a homogeneous K-space for
G, = G relative to the universal field U. When M is a principal homogeneous
K-space for G, then W is a principal homogeneous K-space for ®, and
conversely.

If fis a K-homomorphism of K-groups (or of homogeneous K-spaces for
a K-group) relative to the universal field U, and if f denotes the pre-K-mapping
between the canonically associated K-groups (or homogeneous K-spaces)
relative to the universal field U such that f, = £, then | is a K-homomorphism.
When fis a K-isomorphism, then so is §, and conversely.

EXERCISE

1. Let U be an algebraically closed extension of U. For any pre-K-set 2
relative to the universal field U, form the pre-K-set A, relative to the
universal field U, and then let 9’ denote the pre-K-set relative to the
universal field U canonically associated with ;. For every element
xe U let r denote the set of all triples (x, K(x),S) such that xe A,
xex, ©=3§5, . Show that the formula x> 1’ defines a bijective
mapping @y : A - W', and that gy and ¢@g' are everywhere defined
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pre-K-mappings. Show that when ® is a K-group and M is a homo-
geneous K-space for & (both relative to the universal field ), then
P B> is a K-isomorphism of K-groups and @g : 9 — WM’ has
the property that @eq(0x) = @g(0) Pe(x) (0eN, xe®).

5 Extending the basic field

Let L be an extension of K. Consider a K-group G and an L-group H,
By an (L, K)-homomorphism of H into G we shall mean a group homomor-
phism f: H — G that satisfies the following three conditions:

(i) if ye H, then L(y) > K(f(»);
(i) if y,y' e Hand y —>/, then f()) == /(')
(iiiy if y,y' € H and y <>, then St , extends S ro-

When L = K, the notion of (L, K)-homomorphism reduces to that of K-
homomorphism. If f: H— G is an (L, K)-homomorphism and g: I H is
an (L, L)-homomorphism (L being an extension of L and I being an L-
group), then fog is an (L, K)-homomorphism of I into G.

An L-group structure on G will be said to be induced (by the given K-group
structure on G) if the following two conditions are satisfied :

(i) id; is an (L, K)-homomorphism;
(iiy every (L, K)-homomorphism of an L-group into G is an L-homo-
morphism.

1t is easy to see that if the K-group G has an induced L-group structure, then
it is unique; in that case we speak of the induced L-group (of the K-group G).
Evidently the induced L-group of the induced L-group of the K-group G is
the induced L-group of the K-group G.

Suppose the induced L-group structure on the K-group G exists, and
consider a homogeneous K-space M for G and a homogeneous L-space N
for G. By an (L, K)-homomorphism of N into M we shall mean a homo-
morphism f: N - M of homogeneous spaces for the group G that satisfies
the following three conditions:

(i) if we N, then L(w) > K(f(w));
(i) if w,w' eNandw - w’, then f(w) —K—>f(w’);
(i) if w,w' € N and w<>w’, then Sk, extends Sf,, sw)-

When L = K this notion of (L, K)-homomorphism reduces to that of K-
homomorphism of homogeneous K-spaces for G. Again, if fis an (L, K)-
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homomorphism of N into M and g is an (L, L)-homomorphism of P into
N (P being a homogeneous L-space for G, it being assumed that the
L-group structure for G exists), then fog is an (L, K)-homomorphism of
P into M.

A structure on M of homogeneous L-space for G (that is, for the induced
L-group of G) will be said to be induced if the following two conditions are
satisfied :

(i) idy is an (L, K)-homomorphism;
(i) every (L, K)-homomorphism into M of a homogeneous L-space for
G is an L-homomorphism.

If the induced structure on M of homogeneous L-space for G exists, then
it is unique, and we speak of the induced homogeneous L-space (of the homo-
geneous K-space M). The induced homogeneous L-space of the induced
homogeneous L-space of the homogeneous K-space M is the induced homo-
geneous L-space of the homogeneous K-space M.

The following theorem shows that the induced structures always exist.

Theorem 2 Let G be a K-group, M be a homogeneous K-space for G, and
L be an extension of K.

(@) The induced L-group structure on G exists, as does the induced structure
on M of homogeneous L-space for G. When the homogeneous K-space M is
principal, then so is the induced homogeneous L-space. If ve M, then L(v) =
LK(@).Ifv,0'e M, then v - v ifand only if vt > v't’ and the isomorphisms
id,, SX, .., SX, are compatible (when 1,1’ € Lgoix, and L(v),K(t) are linearly
disjoint over K, and L(v'),K(t') are, too). If v,v' € M, then v > v if and
only if v <>’ and id;, S¥ , are bicompatible, and when this is the case, then

SL |, is the unique isomorphism L(v) = L(v') that is a common extension of
id, and S,f,u. If o is any isomorphism over L of an extension of L(v) onto an
extension of L, then the meaning of ov is independent of whether M is con-
sidered as a homogeneous K-space or a homogeneous L-space Jfor G.

(b) If ve M, then there exist finitely many elements vy, ...,0, € M with
v <> 0; and dim v; =dimgv (1 €j < n) such that for each element v' € M
with v —> v’ there is an index j with v; —> v'. When v is separable over K,

then each v; is separable over L. When v is regular over K, then n =1 and v,
is regular over L.

(c) Each K-subset V of M is an L-subset of M, and the dimension of V
as a K-set equals its dimension as an L-set. When V is K-irreducible, then all
its L-components have the same dimension and an L-generic element of any
one of them is a K-generic element of V. When, in addition, a K-generic element
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of V is regular over K, then V is L-irreducible and an L-generic element of V
is regular over L.

REMARK In the statement of the theorem, M can be G (that is, the regular
K-space for G). In particular, it follows from part (c) that G°, the K-com-
ponent of G that contains 1, is also the L-component of G that contains 1,
and hence there is no need for special notation to distinguish the two (and
G° may be referred to simply as the component of 1 of G). Similarly, the notion
of dimension of a K-subset of G or of M is invariant under passage to the
induced L-group or homogeneous L-space. Henceforth, when we speak of
a given K-group or homogeneous K-space as an L-group or homogeneous
L-space, it will always refer to the induced structure. It is easy to see that in
M the relation v - v’ is equivalent to the relation v - v’, and therefore

a subset of M is a K;-subset if and only if it is a union of finitely many K-
irreducible subsets of M.

Proof For each ve M, define L(v) =LK(v). Then L(v) is a finitely
generated extension of L.

For v,v'e M define v —> v’ to mean that when #,¢t'eTso« (whence
1> t'y and K(¢t), L(v) are linearly disjoint over K and K(t"), L(v') are, too,
then ot > v't’ and id,, SX. ., SX, are compatible. It is obvious that
v—>, and that if v—> v’ and v’—L—>v”, then v—> v”, that is, the
relation v - v on M is a pre-order. Furthermore, if v - v’ and
trdeg L (v)/L = trdeg L(v')/L, then, because L(t),L(v) are linearly disjoint
over L and L(¢’), L(v') are, too, the transcendence degree of LK(t)K(vt) =
LK(t)K(v) = L(t)L(v) over L equals that of LK(t)K('t’), so that the
homomorphism K[L v K(uvt) v K(1)]— K[L v K(v't') u K(t')] extending
id;, Sy, > Se.. 18 an isomorphism, and v v This verifies axiom
AS 1(a).

Let ve M and fix an element ¢ € I;o ¢ such that K(t),L(v) are linearly
disjoint over K. If v is separable, respectively regular, over K, then K(¢) K(v)
is separable, respectively regular, over K(r). By Section 2, Lemma [ (with
L, Lo, m now L(¢t),K(¢), 1), there exist elements of M, that we shall denote
by v, ¢, ...,v,t, such that ot >yt and S,’f,,S,fi,,u, are bicompatible

(1 €j < n), enjoying the following properties.

(a) For each v e M with v —K>v’ and v, ¢ independent over K (and
therefore with vt <> v't and idgy, Sy, . compatible) there exists an index

J such that idy,,, S, .. are compatible.
(b) trdeg L(1)L(o;0)/L(t) = tr deg K(1) K(w0)/K(t) (1 <j < n).

I i s i
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() If v is separable over K, then L(f)L(v;t) is separable over L(t)
(<j<n).
(d) If vis regular over K| then n = [ and L(¢) L(v, ) is regular over L(¢).

It is now easy to see that part (b) of the theorem is true for the special case
in which v, are independent over K. However, since for any v' € M there
evidently exists an element v” € M with v’ > v” and v”, ¢ independent over

K, part (b) of the theorem is true in general. Since the conclusion in part (b)
about the arbitrary element v € M can be applied to a K-generic element
of each K-component of M, axiom AS 1(b) is verified.

If v,vve M and v > v’, then evidently v <> v and id,, S,f,u are bi-

compatible. Define SZ, to be the unique isomorphism LK(v) = LK(v')

that extends id, and S ,. It is evident that if v <~ v’ and v’ > v”, then
Sk yoSf,=S5,, and that if S:L(v)~ L is an isomorphism over L,
then there exists a unique v" € M with v > v’ such that L(v) =L and
Sk ,=S. This verifies axiom AS 2, and shows that we have a pre-L-set
structure on M. Since M can be G, we have a pre-L-set structure on G, too.

We have already proved part (b) of the theorem, and part (b) evidently
implies part (c). This being the case, it follows that G°, the K-component of
G containing 1, is an L-component of G and has an L-generic element that
is regular over L. This verifies axiom AG 3. It remains to verify axioms
AH 1(a), AH 2(a) and (b), and, under the additional hypothesis that M be
a principal homogeneous K-space for the K-group G, AH 1(b), and AH 2(c)
and (d). Of these, AH 1(a) and (b) are obvious.

Suppose that 4: R— R’ is a homomorphism of subrings of U, that
v <>, x <> x, and that A, Sk ,,SL  are compatible. Fixing an element
t € [ok such that K(2), K[RuU R w L U K(w) u K(x) v K(v') v K(x')] are
linearly disjoint over K, we see that v <>V, X <> X, t<>t and that

h,id,,SY ,,SE ., S are compatible. Referring to Section 3, Remark 2 fol-

lowing Proposition 1, we find that vxt APie v'x’t and that A, id,, Sfx,,‘ oxts St

are compatible, and if also id,, Sk, ... SX are bicompatible, then

h,id;, SE,. .. are compatible, that is, vx —>v'x/, and if vx <> v'x’, then
h, S,ff,,,v, are compatible. This verifies axiom AH 2(a). A similar argument
takes care of AH 2(c) when M is a principal homogeneous K-space for G.

Now suppose that v—> v, x—L>x’, and fix elements s,t & [0k such

that s,¢ are independent over K and K(s)K(¢),L(v) L(x)L(»")L(x") are

linearly disjoint over K. We seek elements v*, x°, as in axiom AH 2(b).
Referring to Section 3, Remark 3 following Theorem 1, we see that
vs <> v's and i), S, are compatible and that s"‘xt?s"lx’t

and idpy 1y, S&1xn,s- 15 are compatible. By Section 2, Lemma 1 (with

K
v's, s
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Lg, L,m now L(s) L(¢), L(s) L(¢), 2), there exist elements of M that we shall
denote by v, 5,...,1,5 and elements of G that we shall denote by s™'x,¢,..,
s™'x,t such that

vs <= v;5 and idysyLiy» Sos,es  arebicompatible (I << n),
s txt > sT'xt and idpg 0y, SK s arebicompatible
(I<k<gr),
all having the following properties:

(a) Whenever 1e M, X G, and

K
Us, s

vs <> DS and  idp 10y, S are compatible,

- e . .
sT'xt <> sT'%t and idyy 0, S s -1 arecompatible,

then there exist indices j, & such that idy i, Sk o S& iz s-txe are
compatible.

(b) Forl<j<n Il<k<r,
trdeg L(s)L(r) K(v;$) K(s~ Y )/L)L(e) = trdeg L(s) L(t) K(vs)/L(s) L(¢)
+trdeg L(s) L()K(s~ ' xt)/L(s) L(¢).

Fix indices j, k that work in (a) when & = v, X = x'. It follows from (b) that
5, Lo, X, are quasi-independent over L and that K(s)K{(z), L(v;)L(x,) are
linearly disjoint over K also, v > and x < X Property (a) shows that
viXpt=0;5-5""x;t —>vsesT 'x't = v'x't and hence (because v’ x't € T'yyx)

K
"X, 87 Lyt

;. L . . K
even v; x,t <> v'x't,s0 that the isomorphisms id 1) » Sosr, o S
are compatible. Therefore v;x, - v'x’. If moreover v; x, > v'x and x,
’ . K K . .
<> X, then id ) 1y» Svx, ;x> S, 5. ar€ cOompatible, so that if v; x, > v'x’

and x, <> x', then Skt St

v om0 Ox, x, 7€ compatible. This verifies axiom AH
2(b). A similar argument takes care of AH 2(d) when M is a principal
homogeneous K-space for G.

Since M can be G, this completes the proof that we have an L-group struc-
ture on G, and hence also that we have on M a structure of homogeneous
L-space for the L-group G (which is principal when the homogeneous K-
space M is principal). To prove Theorem 2 it remains to show that these
structures of L-group and homogeneous L-space are induced by the given
structures of K-group and homogeneous K-space.

The proof that id; and id,, are (L, K)-homomorphisms is trivial. Therefore
what we must show is that if £: H — G (respectively g : N — M) is an (L, K)-
homomorphism of an L-group H into G (respectively a homogeneous L-
space N for G into M), then f (respectively g) is an L-homomorphism. Let

5 EXTENDING THE BASIC FIELD 235

ye€ H. Then L(3) = K(f(»)). so that L() > LK(f(»)) = L(f()). Suppose
that y—T>y’. Then yt <—I~>y’t and SE, .. S, are compatible (s being an L-
generic element of H°such that L(¢), L{y) L(y') are linearly disjoint over L), so
that f(»)f(¢) = f(y1) ‘?f()”t) =f(y)f(t) and id,, S}((y’)f(x),f(y)f(l)’ Sj"((t),f(r)
are compatible. Hence these and S¥, are compatible (where s I50x and
K(s), LK(y) K(y') K(t) are linearly disjoint over K), so that

SOSWs < fONfO)s

and id;, S§,) ros fin fyss Stws ss  are compatible, whence (because,
evidently, f(r)s e Tgo x and K(f(r)s), LK(f(»)) K(f()")) are linearly disjoint
over K) f(») —L>f(y’). Suppose that y > y'. By what we have just proved,
f(3) <> f(¥), and by the definition of specialization over L in G, St ron

extends S§,, ;). However, Sf | extends S, f(,,s0 that Sf and Sf,) f(,)
coincide on K(f(»)) and hence on LK(f(»)) = L(f())), that is, S} , extends
Sfiy. ron- Thus, fis an L-homomorphism. A similar argument shows that
g is an L-homomorphism, and completes the proof of Theorem 2.

ReMArk If a K-irreducible K-subset ¥V of M is L-irreducible for every
extension L of K, then a K-generic element of ¥ is regular over K. (See the
Remark at the end of Section 2.)

Corollary 1 Let M be a homogeneous K-space for the K-group G, let L be
an extension of K, let V be an L-irreducible L-subset of M, and let ve T, .
A necessary and sufficient condition-+hat V be a K-subset of M is that v be
separable over K, and L and K(v) be linearly disjoint over K.

Proof Suppose the condition satisfied. Then the locus V, of v over K
is a K-irreducible K-subset of M with V,> ¥ and dimV, =dimyv =
dim, v = dimV, so that ¥ is an L-component of ¥;,. An L-generic element
w of any L-component of V, is a K-generic element of ¥, and dim, w =
dim,v. By linear disjointness the isomorphisms id;, S"f‘,, are compatible,
so that v — W, whence v <> W This shows that V is the only L-component

of V,, so that V' = V.

Conversely, suppose V a K-subset of G. Clearly, ¥ is K-irreducible and
ve T, so that v is separable over K. Every isomorphism over K of K(v)
onto an extension of K is an isomorphism SJ , for some v' eV with
v <> v’. Since v - v', id, and S, are compatible. However, two exten-
sions of K, at least one of which is separable, that have the property that
the identity mapping of one is compatible with every isomorphism of the
other, are linearly disjoint over K (this is well known and easy to prove).
Hence L, K(v) are linearly disjoint over K.
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Corollary 2 Let M be a homogeneous K-space for the K-group G, let L be
an extension of K, and let A be an L-subset of M. Then L contains a finitely
generated extension L' of K such that A4 is an L'-subset of M.

Proof Replacing A by each of its finitely many L-components, we may
suppose that A is L-irreducible. Let vel,,;. Because K(v) is a finitely
generated extension of K and L(v) is separable over L, L contains a finitely
generated extension L' of K such that L, L(v) are linearly disjoint over L
and L(v) is separable over L. By Corollary 1, 4 is an I-subset of M.

6 Zariski topology; K-topology

Let M be a homogeneous K-space for a K-group G, let ¥ be a K-irreducible
K-subset of M, let ve [k, and fix 1 € Tgopx,, (that is, fix te ok such that
v,t are independent over K). Given an element x € K[K(vt) U K(¢)] and an
element v’ € V, we shall say that « vanishes at v’, or that v’ is a zero of «, if
« is mapped onto 0 by the homomorphism

K[K@wt) v K(@t)] - K[K@W't')yvw K(t)]

that extends S, ., S, , (¢' denoting an element of [o k). We shall say that
a vanishes on a subset 4 of ¥ if « vanishes at every element of 4, and that
v'1s a zero of a subset a of K[K(vt) u K(t)]if v’ is a zero of every element of a.

Proposition 2 Let M be a-homogeneous K-space for a K-group G, let V be
a K-irreducible K-subset of M, let ve T, ¢, and let t € Tgox -

(@) Let 4 be any Ki-subset of V and let a denote the set of elements of
K[K(vt) U K(t)] that vanish on A. Then a is a perfect ideal, and the set of
zeros of a is A. The set A is a K-subset of V if and only if the ideal a is separable
over K(t), and A is K-irreducible if and only if a is prime, and then the dimen-
sion of A equals the transcendence degree of K[ K(vt) u K(t)]/a over K(z).

(b) If ais any subset of K[K(vt) U K(t)], then the set A of zeros of a is a
Ki-subset of V.

ReEMARK In part (b), if a is a prime ideal, the set of zeros of a need not
be K-irreducible. See the proof.

Proof (a) If 4,,...,A,, are the K;-components of 4 and q; denotes the
set of elements of K[K{(vt)u K(¢)] that vanish on A;, then evidently
()a; = a, and if 4;" denotes the set of zeros of a;, then U4, is the set of
zeros of a. It follows from this that we may suppose A to be K-irreducible
(see Section 5, the final sentence of the remark following Theorem 2, and also
Chapter 0, Section 9, the remark following Theorem 1). Let ue T,k and
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fix selg . For every v' € 4 we have v - u — v’, and therefore we have
Go/K(u) y
the homomorphisms

K[K(@t) U K(8)] —> K[K(us) v K(s)] = K[K@'t") U K(1)]

with f extending S, .., S;, and g, extending S,, ,.,S, . (+' denoting an
element of I5.4,). Since
Ker(f) = () Ker(gyof)
v'eAd
the set of elements of K[ K(vt) U K(1)] vanishing on 4
= a < Ker(f),

we see that Ker(f)=a, whence K[K(vt)u K(1)]/a = K[K(us) v K(s)].
In particular, a is prime, and is separable over K(¢) if and only if the field
K(us) K(s) = K(u) K(s) is separable over K(s), that is, u is separable over
K, or equivalently, 4 is a K-subset of V. Furthermore, if v” is any element of
V that is a zero of a, and we fix ¢ € [o/x(,+), then the kernel of the homo-
morphism  K[K(vt) v K(2)] - K[K(v"t") v K(¢")] extending S, ., S, ,
contains Ker(f), so that there exists a homomorphism K[K(us) u K(s)] -
K[K(u"t"yw K(t")] extending S, ,,S~ whence u—v" and v e 4.
Therefore A4 is the set of zeros of a.

(b) The perfect ideal generated by a in the ring K[K(vt) u K(#)]
evidently has the same set of zeros as a. Also, this ring is a ring of quotients
of a finitely generated overring of K and hence is Noetherian, so that a
perfect ideal is an intersection of finitely many prime ideals. It follows that
we may suppose a to be a prime ideal. Then a is the kernel of a homomor-
phism of K[K(vt)w K(t)] into U over K, and therefore (by axiom
AS 2(b)) of a homomorphism K[K(vt) v K(t)] = K[K(5%) v K()] extend-
ing Sy, ., S;¢ (where 7 is an element of G with 7 «— 7 and 7 is an element of
M with vt « 5f). This implies that 7 € [;e/¢, and that » - 5, whence sV
(but does not imply that & is a zero of a, as there is no assurance that 5,7 are
independent over K). Fixing s [go/xykiy, §€ lgokmykm» and referring
to Section 3, Remark 2 following Proposition 1, we easily infer that there
exists a homomorphism

T: K[K(vs) v K(s) u K(¢)] = K[K(55) U K(5) u K(B)]
extending Sg s, S5, 57, Set T = Ker(T).

Consider any elements v' € M, st € G with vs < v'st, s> s' such that
Sytst.us» Sst s are compatible. Then s' € [0/, v — vf, whence v’ € ¥, and there
exists a homomorphism

K[K(vs) u K(s)] » K[K(v's") u K(s")]

extending S, e Syt 5. Denote the kernel of this homomorphism by p'.
We claim that v' € A if and only if K[K(vs) u K(s) v K(¢)1p' = t. Before

il
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establishing this, we fix an element ¢tte Tgokioty kisty and observe that because
K@) K(s), K(t) are linearly disjoint over K, S,, ,, the above homomorphism
with kernel p* can be extended to a homomorphism

T K[K(vs) u K(s) u K()] - K[K@'s" u K(s") u K(tD].

Because K(v') K(s"), K(¢') are linearly disjoint over K, it is easy to see that
Ker(T") = K[K(vs) u K(s) v K(t)]p".

Suppose that o' e 4. Then a, the kernel of the homomorphism
K[K(vr)u K(t)] - K[K(F) v K())] introduced earlier, is contained in
the kernel of the homomorphism K[K(vt)u K(£)] - K[K(v'17) u K(t1)]
extending  S,1,+ ., S+, and therefore there exists a homomorphism
K[K@D) v K(H] = K[K@'t") v K(t")] extending S,e1 5, Sir;.  Because
K(p) K(7), K(5) are linearly disjoint over K, this homomorphism and Sst.s
are compatible, and hence (refer again to Section 3, Remark 2 following
Proposition 1) there exists a homomorphism

K[K(@5) v K(5) v K(1)] = K[K®'sh) v K(sT) U K(¢7)]

extending S,rer 55, Sor 5, Spr ;- The composite of this homomorphism and T
is evidently T, and therefore

K[K(vs) v K(s) u K(1)]p" = Ker(T") > Ker(T) =t.

Conversely, suppose that K[K(vs) U K(s) u K(t)]p' o, that is, that
Ker(T") o Ker(T). Then T is the composite with T of a homomorphism

K[K(@#5) u K3 UKD - K[K(@'sh u KT u K(th]

that evidently extends S,is+ 55, Syr 5, Spr ;- It follows that S,e. ;, Sir ¢ are
compatible, that is, have a common extension K[K(#f)u K(})]—
K[K(@'t" u K(t"]. This homomorphism, composed with the homomor-
phism K[K(vr) u K(t)] - K[K(¢I) u K())] the kernel of which is a, yields
the homomorphism K[K(vt) u K(1)] - K[K(@'tT) U K(tT)] extending
Syter 51,9 ;. Hence the kernel of the last homomorphism contains a, that
is, v’ € A. This establishes our claim.

For each v" € 4 fix an element s’ € [0 4.+, and let p, denote the kernel
of the homomorphism K[K(vs) U K(s)] — K[K(¥'s’) u K(s')] that extends
Sys . us29¢,s- Then p,. is a prime ideal, and K[K(vs) v K(s) U K(¢)]p, D L.
Set b= ("), .4 P, Then b is a perfect ideal and (see Chapter 0, Section 10,
Lemma 9)

K[K(vs) u K(s) u K(1)]b = [} K[K(vs) u K(s) U K(t)]p, > .
Because the ring K[K(vs) v K(s)] is Noetherian, b=p, n---n p, for
suitable prime ideals p,,...,p, of this ring. By axiom AS 2(b), for each

6 ZARISKI TOPOLOGY; K-TOPOLOGY 239

p,; there exist elements v, e M, 5;e G with vs <> v;s;, s 5; such that
S5, us0Ss,.s are compatible and p; is the kernel of the homomorphism
K[K(vs) v K(s)] = K[K(v;s;) U K(s;)] extending Sy,s,0s0 35,5+ Clearly
K[K(vs) v K(s) v K(t)]p; o %, so that v;€ 4, and the locus of v; over K
is a K irreducible subset 4; of 4. For any v’ € 4 the kernel p, of the homo-
morphism  K[K(vs) U K(s)] = K[K('s') v K{s)] contains b and
hence contains p; for some j. For such a j there exists a homomorphism
K[K(v;s:) v K(s;)] = K[K(v's") u K(s')] extending Sost v 9,s,, and
therefore v; > v’ and ' € 4;. This shows that 4 =4, U--- U 4,, so that
A is a K-subset of ¥, and completes the proof of Proposition 2.

The intersection of two K-subsets of the homogeneous K-space M need
not be a K-subset of M. For example, when p # 0 and K contains an element
¢ ¢ K?, then the curve in U? defined by the equation Y—X?+¢=0 is a
K-subset of U?, as is the line defined by the equation Y = 0, but their inter-
section is not, since the point (c!/? 0) is not separable over K. It turns out
that if the field K is perfect, then such a phenomenon cannot arise. The proof
of this fact is the main part of the proof of the following theorem.

Theorem 3 Let M be a homogeneous K-space for a K-group G.

(a) The subsets A of M, such that A is an L-subset of M for some exten-
sion L of K, are the closed sets of a Noetherian topology on M.
(b) The K;-subsets of M are the closed sets of a Noetherian topology on M.

Proof If A is a subset of M of the type considered in part (a), then 4 is an
L-subset of M for some algebraically closed L. Letting n;(4) denote the
number of L-components of 4 of dimension i (0 < i < d = dim M), we see by
Section 5, Theorem 2, that the element n(4) = (ny(A), ...,n(4),ny(4)) of
the lexicographically well-ordered set N“*! is independent of the choice of
L as above. It is easy to see that if 4’ is another subset of M of the type con-
sidered in part (a), and if 4 o 4’, then n(4) > n{4’), the inequality being
strict if the inclusion is. It follows that every nonempty set of subsets of M
of the type considered in part (a) has a minimal element. The same holds, -
a fortiori, for the sets considered in part (b). In each part then, if we do have
a topology, it is Noetherian.

If 4, A’ are any two sets of the type considered in either (a) or (b), then
AU A’ is such a set, too. To prove that all these sets form a topology it
remains to show that the intersection of any family of such sets is itself such
a set. If we can do this for any two sets, an induction argument then will
give a proof for any finite family. For any family, among the intersections
of the finite subfamilies there will, by the above, be a minimal such inter-
section, which evidently must be the intersection of the whole family. Thus,
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to prove the theorem it suffices to show that if 4,4’ are K-subsets of M,
and K is perfect, then 4 N A4’ is a K-subset of M. We may evidently suppose
that 4 and A’ are K-irreducible. Each of them is then contained in a K-
component of M. If the two K-components are distinct, then 4 n 4’ = &,
so that we may suppose that 4 and A’ are in the same K-component V
of M. Fixing elements ve I, x, t € [0k, We know by Proposition 2(a),
that A4, respectively 4’, is the set of zeros of an ideal a, respectively a’, of
K[K(vt) u K(t)]. Evidently 4 n A’ is the set of zeros of a U a’, and therefore
by Proposition 2(b), 4 n A’ is a K-subset of M.

The topology defined in part (a) of Theorem 3 is called the Zariski topology
on M. The topology in part (b) is called the K-fopology on M. When we use
topological terms such as “open,” “closed,” etc., they will always refer to
the Zariski topology. When we want to refer to the K-topology we shall say
“K-open,” “K-closed,” etc.

Corollary Let M and N be homogeneous K-spaces for K-groups, let A and
B be K-subsets of M and N, respectively, and let f be a bijective mapping of A
onto B such that f and f ™' are everywhere defined pre-K-mappings of A into
B and B into A, respectively. Then f is a K-homeomorphism.

Proof 1f v,v" € 4, then v — v’ if and only if f(v) - f(v'). Therefore f maps
a K-irreducible subset of 4 onto a K-irreducible subset of B, and hence maps
a K-closed subset of 4 onto"a K-closed subset of B. Therefore ™' is K-
continuous. Similarly, fis K-continuous.

7 Closed sets

Consider a homogeneous K-space M for a K-group G. For any auto-
morphism o € Aut(U/K), and any elements ve M, xe G, we know (see
Section 3, Proposition 1(b)) that o(vx) =ov-ox. Also, if veM ard
v v’, then (see Section 2) ov - ov'. It follows easily from this that if

L is an extension of K and v—]> v’, then ov ne ov’. This implies that if
A is an L-subset of M, then o4 is a gL-subset of M.

Theorem 4 Let M be a homogeneous K-space for a K-group, and let A be a
closed subset of M. Among the extensions L of K such that A is an L-subset
of M, there is a smallest one, which we denote by K(A). 1t is finitely generated
over K. If o Aut(U/K), then a necessary and sufficient condition that
6d = A is that ¢ € Aut(U/K(A)).

L e
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Proof Fix any extension L of K such that A4 is an L-subset of M. Let
v; (1 <i<m, 1 <j<n) be L-generic elements of the L-components of A4,
indexed so that

U;; €—> D

ij K ijr
if and only if i = i’. For each index i let & ,,...,&;;,, be elements of K(v;,)
such that K(&;,,,...,¢1,) = K(v;,)) and for each j with 1 <j<n; set & =
S wiix (1<k<r). Evidently K(Syjy, ..., &) = K(vy). Let p,; be the
defining ideal of (&;,...,&;,) in LLX,,..., X, ], and set a; =p;; 0 - N Py
Each ideal p;; is separable over L, and therefore a; is too. By Chapter I,
Section 5, Lemma 3(a) (see also Chapter 111, Section 3), the ideal q; has a
smallest field of definition L,. Set Lo = KL, --- L,,. We shall show that L,
is the field K(4) that we are seeking.

The first step is to show that 4 is an L,-subset of M. Set q; =
a, " Lo[ Xy, ..., X, ] Since L, is a field of definition of a;, Lag =0a,. By a
remark in Chapter 111, Section 3, the ideal a, is separable over Ly. We now
refer to Chapter 0, Section 12, Proposition 7. If p is a component of a;,
then Lp is separable over L and the components of Lp are components of
La,, = a;, have dimension equal to that of p, and intersect Lo[X), ..., X, ]
in p. Furthermore, as p runs over the set of all components of a;, then the
components of the various Lp give us all the components of a;, that is,
give us P, ..., P, Thus, the generic zero (£, .- i) Of Py is a generic
zero of a component of a4, and has the same dimension over L as over L.
Hence dim, v;; = dim, v;; and v;; is separable over L. Therefore v;; is an
Lo-generic element of an Lgy-irreducible Lo-subset ¥;; of M, and every L-
component of ¥;; has dimension equal to dimV;; = dim, v; =dim_v;},
so that v;; is an L-generic element of an L-component of ¥;;. If v is any L-
generic element of any L-component of V;;, then v is an Lo-generic element
of ¥,,, and dim v =dim¥;; = dim_v;;. Setting &, = Sk G U<k,
we see that (&£,....&) is, like (&1, ..., 8050, 2 generic zero of p;
Lo[X,, ..., X,], hence a zero of a;y, hence a zero of a;, and hence a zero of
p; for some j'. Since dim,(ly,....¢,) = dim v = dim,v;; = dim v;; =
dimp;;, (&,,...,&,,) is a generic zero of p;;, and therefore there is an iso-
morphism L (&, .. &jr)d = L&), & yover Lwith & & (1 Sk <),
that is, an isomorphism extending id; and S,f,,u,. Therefore vy <> 0, SO
that v is an L-generic element of an L-component of A. This shows that
the L-components of each V;; are L-components of 4. However, for any
element v’ € A, there is an (i, ) with v;; - v’ so that v;; r v and v' e V.
Therefore 4 = | J; ; ¥;; and A4 is an Lo-subset of M.

The next step is to show that if L is an extension of K such that A4
is an [-subset of M and such that L < L, then L, = L. By Section 3,
Theorem 2, each L-component of A is an L-component of some L-com-

and  dimgv; = dimg vy}
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ponent of 4 of the same dimension, and an L-generic element of the L-
component is also an L-generic element of the L-component. Therefore
dimp v;; = dim_v;;, so that dim (&, ..., &) = dimg (&4, ..., &), whence
dim(p; n L[X\,...,X,,]) =dimp,;. Since (i, ..., &) I8, like vy, separ-
able over L, we infer that the ideal p{; = p;; » L'[X,,..., X, ] is prime and
separable over L, and p;; is a component of Lpj;. If (¢, ..., &,) is any generic
zero of any component of Lp;;, then (,....¢,) is a generic zero of pj;, so
that there exists an isomorphism §: L'(¢;;, .., &,;.) = L(¢y,...,¢,,) over L
with &, — & (1 <k<r). Hence there existls an element ve M with
vj < v such that L'(v) = L(¢,, ..., &,) and S5, =S. Evidently v; v
and dim,p; = dim,», and v is an L-generic element of an L-component
of 4 so that v <> Ve for some (i’,j’). It follows that i’ =i, so that

(&,...,&,) is a zero of p;;.. This shows that the components of Lp]; are
some of the ideals p;, ..., Piy, including p;;. Therefore

o= (py = (Lol = L (Vo = L (@0 LTX, o XD,

so that L is a field of definition of q;, whence L, = L. Since this is the case
for every i, Lo < L.

The final step is to show that if L' is any extension of K (not necessarily
contained in L) such that 4 is an L-subset of M, then L, < L'. We have
proved above that in the extension L of K with the property that 4 is an
L-subset of M there is a smallest extension L, of K with this property. Apply-
ing this result to LL instead-of L, we see that in LL there is a smallest exten-
sion L, of K having this property. Since L <« LL and L < LL, we have
Ly = Land L, <= L. The former of these two inclusions shows that L, = Ly’
and then the latter shows that L, = L.

Thus, L, is our field K(4). It follows from Section 5, Corollary 2 to
Theorem 2, that L, is a finitely generated extension of K. In the remainder
of the proof we may suppose that the extension L of K fixed at the beginning
coincides with the field Ly = K(A4). Let 6 € Aut(U/K). As remarked in the
first paragraph of this section, ¢4 is a gL-subset of M, and for each L-com-
ponent V;; of 4, gV;; is a sL-component of ¢4. If c4 = 4, this implies that
L = K(A) = oL, and since the same conclusion holds for ¢! instead of o,
therefore oL = L. Thus, o¥}; is an L-component of 4, and dimoV;; =
dimV;; so that oV;; =¥, for some j'. This shows that ¢ permutes the L-
components ¥;,, ..., ¥, , and from this fact it easily follows that ¢ permutes
the prime ideals p;,, ..., p;,, 50 that ;% = a,. By Chapter I, Section 5, Lemma
3(a), this implies that ¢ e Aut(U/L;). Since this occurs for every i, and
K(d)=KL,---L,, then o€ Aut(U/K(A4)). The converse, that if ce
Aut(U/K(A)), then oA = A4, is trivial. Therefore the proof of Theorem 4
is complete.

R T

[TV

o bt

et

i
i
¥

|

7 CLOSED SETS 243

We shall consistently use the notation of Theorem 4; that is, when A4 is
a closed subset of a homogeneous K-space M, we shall denote by K(4) the
smallest extension L of K such that 4 is an L-subset of M. (Caution: This
is not in keeping with the notation commonly used in algebraic geometry.
There, if 4 is an algebraic variety defined over K, then K(A) denotes the
field of rational functions on A4 that are defined over K.) When 4 is the set
consisting of a single element v e M, then 4 is closed and K(4) coincides
with the extension K(v) of K associated to v by the K-set structure of M.

Corollary 1 Let 4 be a closed subset of a homogeneous K-space M, and
let ¢ € Aut(U/K). Then cA is a closed subset of M, and K(cA) = o (K(A)).
If 1€ Aut(U/K), then 14 = ¢ A if and only if © coincides with o on K(A).

Corollary 2 Let A be a closed subset of a homogeneous K-space, let T be a
subset of Aut(U/K), and let K’ denote the field of invariants of £. A necessary
and sufficient condition that A be a K'-set is that A = A (¢ € X). In particular,
A is K-closed if and only if 04 = A (o e Aut(U/K)).

REMARK Let L be an extension of K and 4 be an L-subset of a homo-
geneous K-space M. If y is any isomorphism over K of L onto an extension
of K such that U has the same transcendence degree over yL as over L, then
7 can be extended to an automorphism ¢ of U, and o4 is a yL-subset of M.
Even though ¢ is not uniquely determined by y, Corollary 1 shows that o A4
is. Hence 04 can be denoted by yA. In particular, y can be an automorphism
of L over K, and it is easy to see the formula (y, 4) — yA defines an opera-
tion of Aut(L/K) on the set of L-subsets of M. Corollary 2 shows that when
L is a Galois extension of K, and we denote its Galois group by g(L/K),
then K(4) = K if and only if y4 = 4 (y € g(L/K)).

A closed subset V' of the homogeneous K-space M for the K-group G
may be K(V)-irreducible and not be L-irreducible for some Lo K(¥).
When V is L-irreducible for every L= K(V) we say that V is irreducible. By
Section 5, Theorem 2(b), and the remark just preceding Corollary 1 to that
theorem, the closed set V' is irreducible if and only if it is K(V)-irreducible
and has a K(V)-generic element that is regular over K(¥). Thus, G° is ir-
reducible. For any closed subset 4 of M, the K(4),-components of A4 are
irreducible; we call them the components of A. An irreducible closed (re-
spectively K-irreducible, K-closed) subset of M is connected (respectively
K-connected), but not in general conversely. Since the components (re-
spectively K-components) of M are pairwise disjoint, they are the connected
(respectively K-connected) components of M in the topological sense. In
particular, the following five conditions on G are equivalent: G is connected;
G is K-connected; G is irreducible; G is K-irreducible; G = G°.
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Proposition 3 Let M be a homogeneous K-space for the K-group G, let V
be a K-irreducible K-subset of M, let A be a K-closed subset of V with V # A,
let vel,x, and let R be a subring of U with R> K. There exists a
nonzero element x € R with the following property: For every homomorphism
h: R— U over K with h(z) # 0, there exists an element v € V— A, algebraic
over K(h(R)) (and separable over K(h(R)) if v is separable over K(R)) such
that if t€ Tgokrykwy and t’ € Tgo/kenR) K(w)> then h,S,. .Sy, are com-
patible.

Proof Fix t€ Tgokrykin- BY Section 6, Proposition 2, there exists a
nonzero element o, € K[K(vt) w K(1)] that vanishes at every element of 4.
Put the other way around, if «, fails to vanish at a particular v’ € ¥, then
v ¢ A

Fix s € Igo/krykin k0 and choose elements ,...,4; such that
Ky, ..., i) = K(5), elements vq, ..., v such that K(v,, ..., v) = K(¢), elements
£,,...,C, such that K(&,, ..., En) = K(v), elements Nis-oofle) = K(vs), and
elements (,,...,{, such that K(,,...,(,) = K(vt). Now, K@) K(s) =
K(s)K(s) = K(v) K(vs), dimg s = dim G, and (see Section 3, Remark 2
following Theorem 1) dimy,,vs = dim M. Therefore K(&y, ..oy Ems s s ) =
Ky oo fas s oes D) and we may suppose that this field is an algebraic
extension Of K(Ey, .o EmsMis-wosMns B1s oo Hads whére d=dimG — dim M.
It follows that there exist nonzero elements o, € KNy, oo s Bis -oor Bids
a, e K[E, .., &msbins 1], and a3 e K[&,, coryEmyMaseeesins M1s ---» Ma] sUCh
that T

K[_alély’“aalém] < KD‘I1,~~-,’I;.,H1,~-~,M],
K[.dlnl"'-’azrln] < K[él;"'véma“b'“,.ul]:
Oy fyy-ees B3 Hy are integral over K[g'l,...,é,,,,nl,...,qn,yl,...,yd].

A similar argument shows that there exist nonzero elements a4 €
K[Cl? ""Cpn Vigeros vl]’ as € K[.él) "'75m’ Vi oeos V,], and

%g € K&y, s Ems Cinor Cna Vis -5 Val
such that
K[a &1y %0 bml < K[y s CasVis - Vi
Kltslpyoonr®5Cnd © K[Eps oo &ms Vis - Vids
Qg Vysens g Vi are integral over K[fl,...,é,,,,Cl,...,C,,,v,,...,v,,].

*
Set a* = aga; - %g.
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By Chapter 0, Section 14, Proposition 9(c), there exists a nonzero element
a € R[E, o Cma bl s s Vs o5 VL] such that every homomorphism

h, : R[él: "'aim’“la"';“hvl’ "'7vl] - U

with A'(a’) # 0 can be extended to a homomorphism

B RIE o Cms i oo Mas G s Cos Hts -0 s Vi cav] o U

with A*(@*) % 0. We may write « =/ f,"+---+ a,/p,’ with elements
ay, .., € R{¢,, ..., &, different from 0 and elements f,,..,f, €
KTy, s MisVys oo, ] that are linearly independent over K. By linear dis-
joitness then 8,’,..., B, are linearly independent over R[&,,...,¢,]

Again by Chapter 0, Section 14, Proposition 9(c), there exists a nonzero
element x & R such that every homomorphism 4:R— U over K with
h{(z) # 0 can be extended to a homomorphism & : R[&,...,¢,] = U with
F(ax,) #0 and R(R[E,,...,E.]) algebraic over A(R) (and separable over
h(R) if R[&,,...,E,] is separable over R).

Fix

. .
1 € Tgo/kheRic,, ool and 5" € TGo/k(RREE, .\ EmDI K-

Since K(R) K(v), K(s)K(¢) are linearly disjoint over K, h can be extended
to a homomorphism

B RIE oy EmoMys s sV V] > U

that on K[y, ..., ] coincides with S, s and on K[vy,...,v/] coincides with
Sy Then A’ maps K[pt1, -o» tis V15 - vi] isomorphically over K, so that
H(B."),....H(B,) are linearly independent over K and therefore, by linear
disjointness, are linearly independent over H(RIE,, ..., En])- Since A'(a,) =
R(x,’) # 0, this implies that A'(x") = h'(2,") KB+ + (Y (B, #0.
By what we proved in the preceding paragraph, it follows that this A’ can
be extended to a homomorphism A* as above, with A*(a*) # 0.

In what follows we set u,’ = A*(ue), v’ = A*(vi), &' = h*(ED, nj = h*(n)),
= h (), K' =Q(h*(R)). Because a* =y, -ag and A*(a*) #0, we
see from the above that

K(élla "':ém/’ul,’ "'Hul,) = K('h,, ""nnlr.ul” ""“ll)’

1 ’

Uy, ...,y are algebraic over K a 1t s o os s a5 oes B
K(élla"-’ém'yv1,7"'7vl/) = K(Cl’a"',Cn”vl,a "')vll)’

’ ’

v,,...,v/ are algebraic over KE 0l 0 GVl e V)
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Therefore, since K'(£,, ..., &) is algebraic over K’,
trdeg K(n,', ..., n, )/ K
=2 trdeg K'(ny', ..., 0. )/ K’
trdeg K'(8y/, ... &w's iy s 1)K’
trdeg K'(&,/, ... ¢ iy's o, K’
—tedeg K'(S, - Sty K L Gl )
trdeg K'(py', ..., )/ K"~ d
trdegK(u,’, ..., 4 )/ K — (dim G —dim M)
dimg s’ — dim G + dim M
= dim M = dimgos = dimg(y,, ..., 1,),

W

so that A* maps K[n,...,n,] isomorphically onto K[y,’,...,n,]. Hence
(see axiom AS 2(b)), M contains an element, which we shail denote
by v's’, such that vs <> v’s’ and such that S, ., #* coincide on K[, ..., n,].
In the same way it follows that M contains an element v”t’ such that
vt —v"t" and such that S,.. ,,#* coincide on K[{,,...,{,]. It is clear that
the five homomorphisms £, S,y s, Sy, s Sy.s» Sy, are compatible, so that
v—v" and v ¥, and (see Section 3, Remark 2 following Proposition 1)
st 7, vt > vt and the five homomorphisms and Sy, are com-
patible. Hence S, ,, = S,¢ . V"t =0't’, and v” = v’. Furthermore,

K(v') € K@'s)K() = K(1's oo M s oeos 17)
= K(él’""aéy’)“l’: "'1“1,) = K(él’yn' ém,)K(Sl)

and similarly K(v') = K(&;" ...,&,/) K(¢'). Since &,¢" are independent over
K(,',.., &), then K(v') = K(&',...,&,). This shows that v" is algebraic
over the field K’ = K(h(R)), and is separable over K’ when v is separable
over K(R). It also shows that v',¢’ are independent over K. Since #* extends
Sy ues Sp,e and since A¥(ag) A¥(2y) - A*(as) = A¥a) # 0, we see that o,
does not vanish at v’ so that v’ ¢ 4. This completes the proof of Proposition 3.

Corollary If B is any K-set, then By_is dense in B.

Proof We must show that if C is a closed subset of B with B # C, then
B—C contains an element that is separable and algebraic over K. First
suppose that C is K-closed. Then for some K-component V of B the set
A=V n Cis K-closed and distinct from V. An element v €T}, /k 15 separable
over K and not in 4, so the desired conclusion follows from the proposition.

Now no longer suppose that C is K-closed. The intersection C’' = (), ¢C,
where ¢ runs over Aut(U/K), is a K-closed subset of C (see Corollary 2 to

i ﬂ il i 5 1 ) on ik b b
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Theorem 4). By the above, By, contains an element v’ ¢ C’. Then v’ ¢aC
for some o, so that ¢7'v' € By, and ™' v’ ¢ C.

We conclude this section with a criterion for a subset of a K-closed set
to be K-open in it.

Proposition 4 Let A be a K-closed subset of a homogeneous K-space for a
K-group, let E be a subset of A, and suppose that the JSollowing two conditions
are satisfied:

(@) ifved,veE v-v, thenveE;
(b) ifVis a K-irreducible subset of A with V n E+# (5, then V A E has
a nonempty subset that is K-open in V.

Then E is K-open in A.

Proof 1f V,,...,V, are the K-components of the K,-set 4, then F =
A4~ (V,—(¥V, n E)). Hence it suffices to prove for each u that V,nE
is K-open in ¥,. Therefore we may suppose that 4 is K-irreducible. We may
suppose, too, that E # (. Taking V' = 4 in condition (b), we see that some
nonempty set 0 < E is K-open in 4. Let W,,...,W, denote the Ki-com-
ponents of the Ki-set 4—0. Clearly, dimW, < dim 4 for every v. Arguing
by induction on dim 4, we may suppose that W, n E is K-open in W,, so
that the set W,/ =W,~(W, n E) is K-closed in W, and hence also in A.
Let F denote the smallest K-closed subset of 4 containing 4 — E. Since

A-E=(@uUw)-(0uv W, nE)
=(Uw) - (Uw,-w)) = Uw,,

we see that Fc {JW,. For any xe E~0, if xeW,, then xeW,nE=
W,—W,, whence x¢W,, and if x¢W,, then again x¢W,. Hence
x¢(UW,, so that xe 4—F. It follows that £=0 U (4—F), so that E
is K-open in A.

8 K-Subgroups

Recall (Section 3) that a subset H of a K-group G that is both a subgroup
of G and a K-subset of G is a K-subgroup of G provided some K-component
of H that contains 1 has a K-generic element that is regular over K. That
this is always the case is half the content of the following proposition.

Proposition 5 Let H be a nonempty K-subset of the K-group G such that
HH < H. Then H is a K-subgroup of G.
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Proof Let ye H. Then p, is an everywhere defined pre-K(y)-mapping
of G into G with inverse p,-., so that the set Hy = p,(H) is a K(y)-subset
of G, and it obviously has the same number of K(y)-components of a given
dimension as H has. By hypothesis Hy < H, so that Hy = H. Therefore
ye Hy, so that 1 € H. Hence 1€ Hy, so that y~! € H. This shows that H
is a subgroup of G.

Every element of G is regular over K, . Therefore H is a K,-subgroup of G.
Let y € [ox,. By Section 5, Theorem 2, y is a K-generic element of a K-
component of H that contains 1. Therefore it suffices to show that y is
regular over K. Because Y 1 and ol =1 for every o€ Aut(U/K), we

infer (see the first paragraph of Section 7) that oy g 1. Because dimy_oy =
dimy_y = dim H°, gy € [yo, SO that y <> ay. ThlS means that S,, ,, idg,

are compatible, so that ¢ leaves mvar1ant every element of K(y)n K,.
Thus, K(y) n K, is a purely inseparable algebraic extension of K. How-
ever, y is a K-generic element of a K-component of the K-set H, so
that K(y) is separable over K. Therefore K(y) n K, = K, and y is regular
over K.

Proposition 6 Let Y) be a subgroup of the K-group G, and let H be the smallest
closed subset of G that contains ¥y. Then H is a closed subgroup of G. If b =
for every o € Aut(U/K), then H is K-closed.

Proof For any yeb and any extension L of K(»), p,: GG is a bi-
jective everywhere defined pre-L-mapping with inverse p,-.. It follows that
the set p,(H)= Hy is the smallest closed set containing p,(B) =bhy =1,
so that Hy = H. Thus H% = H. Similarly, for every y € H, the set 4,(H) =
yH is the smallest closed set containing 4,(h) =yh < Hh=H, so that
yH < H; hence HH < H. By Proposition 5 then H is a closed subgroup
of G. For every o< Aut(U/K), evidently oH is the smallest closed subset
of G that contains ¢§, so that if o = b for every o, then o H = H and, by
Section 7, Corollary 2 to Theorem 4, H is K-closed.

Proposition 7 Let G be a K-group, let V,...,V, be K-irreducible K-subsets
of G each of which contains 1 and has a K-generic element that is regular over
K, and let H denote the subgroup of G generated by V, U --- U V,. Then H
is a connected K-subgroup of G. There exists a number ne N such that a K-
generic element of H can be written in the form

Xyt Xmi X12 °°" Xm2 77" Xin " Xun>

where the family (x;;)<i<m 1<j<n IS independent over K and x;;e Ty, x for
every (i, ).
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ReMark ~ Every element y € H can be written as a product of two K-
generic elements of H (take re Iy, and write y =yt~ '-¢). Therefore
H=( V)"

Proof Fix X € Lok (I<ism, 1<j<oo) so that the family
(i) i<ism 1<j<w 18 mdependent over K. Define the elements y, (I < n < )
inductively by the formulae y, = X{| " Xpi, Vo= Va1 X1a"" Xpm (1> 1),
Evidently Y,—1,X(m---»Xmn are independent over K. Hence, for any x, &
Vi ooy Xm €Vy, We have y, >y, x; X, Taking x, =--=x, =1, we
find that y, > y,_- As y, is obviously regular over K, the locus W, of y,
over K is an irreducible K-subset of G, and

Vl‘..Vmachzc...anc...

Since dim W, < dim G for every n, there exists an index n such that W, = W,
for every r > n. Setting y,’ =y, ' ¥2,, We see that y,,y,’ are independent
over K and that y,’ € [y . It follows that W, W, = W, and therefore (by
Proposition 5) W, is a connected K-subgroup of G that contains V,---V,
and hence contains H. Any K-generic element of W, is, like y,, an element
of H. As each element of W, is a.product of two K-generic elements, we
conclude that H = W,.

9 K-Homomorphisms

It is easy to verify that a K-homomorphism of K-groups (or of homo-
geneous K-spaces for a K-group) is also an L-homomorphism for every
extension L of K. (Indeed, since this refers to the induced structures of L-
group (or of homogeneous L-space), it is enough to check that it is an
(L, K)-homomorphism.) Therefore the following result is applicable to such
K-homomorphisms.

Proposition 8 Let A and B be K-sets, L be an extension of K, and f be a pre-
K-mapping of A into B that is also a pre-L-mapping. Then f is separable as
a pre-K-mapping if and only if it is separable as a pre-L-mapping.

Proof Let v be an L-generic element of an L-component of 4. Then v
is a K-generic element of a K-component of 4, and L, K(v) are algebraically
disjoint over K.

If f is separable as a pre-K-mapping, then K(v) has a separating tran-
scendence basis over K(f(v)). As this is evidently a separating transcendence
basis also of L(v) over L(f(v)), fis separable as a pre-L-mapping.

Conversely, suppose f separable as a pre-L-mapping. Then, for some
finitely generated extension L of K, f is separable as a pre-L-mapping.
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Replacing L by I/, we may suppose that L is finitely generated over K.
Arguing by induction on the number of generators, we may even suppose
that L = K{(a) where the element « of L either is transcendental over K, or
is separably algebraic over K, or has the property that «’ € K, « # K, p # 0.
Let X be a finite set of generators of K(v) over K(f(v)). Then X is a finite set
of generators of L(v) over L(f(v)), so that some subset X’ of X is a separating
transcendence basis of L(v) over L(f(v)), and every element of K(v) is
separably algebraic over L(f(0))(¥") = K(f())(¥')(e). If « is separably
algebraic over K, then K(f(v))(¥')(2) is separably algebraic over
K{(f(1))(¥). In the other two cases it is easy to see that K(v), K(f(¢))(X")(«)
are linearly disjoint over K(f(v))(X’) (because K(v), K(x) are linearly dis-
joint over K). Hence in all three cases every element of K(v) is separably
algebraic over K(f(v))(X), and therefore K(v) is separable over K(f(v)).
As every K-component of A has a K-generic element that is an L-generic
element of an L-component of 4, this shows that f is separable as a pre-
K-mapping and completes the proof of the proposition.

A K-homomorphism is actually determined by weaker conditions than
those given in its definition. Recall (Section 3, Remark I following Theorem 1)
that if M is a homogeneous K-space for a K-group Gand ifve M, x € [,x,),
then vx e I}, . By a pre-K-homomorphism of G into a K-group H we mean
a pre-K-mapping f, of G into H such that f,(x'x) = f3(x') fo (x) whenever
x € G, and x € Ig g, (G, denoting the subset of G on which f; is defined).
Similarly, if M and N are homogeneous K-spaces for G, by a pre-K-homo-
morphism of M into N we mean a pre-K-mapping f; of M into N such that
fo(vx) = f3(v) x whenever ve M, and x € Ik,

If fis a K-homomorphism of G into H, and G, is any subset of G that
contains Iy« and contains an element x € G whenever it contains an element
x’ with x - x’, then the restriction of f'to G, is a pre-K-homomorphism of G
into H. In particular, we may take G, = I, . A similar circumstance obtains
for a K-homomorphism of M into N. Conversely, we have the following
result.

Proposition 9 A pre-K-homomorphism (either of K-groups, or of homo-
geneous K-spaces for a K-group) can be extended to a unigue homomorphism
(of the groups, or of the homogeneous spaces), and this homomorphism is a
K-homomorphism.

Proof We give the proof for K groups; the proof for homogeneous
K spaces is the same. For any x e G, we can fix 5 € Ik, and then write
x=xs"'.s; hence G = [gx-T;. It follows that if the pre K homomor-
phism f;, can be extended to a homomorphism f, then f'is unique.
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We claim that if x,x,,x/,x,’€G, and x x,=xx,’, then
Jo(x ) folxy) = fo(x, ) fo(xy). Indeed, fix SErG°/G(x|)K(xz)K(x1’)K(x{)' Then
also x; 5 € [k, 5O that

Jolxyx38) = folx ) folx25) = fo(x)fo(x2)fo(s),

and similarly
Jolx('xy's) = fo(x) fo(x2) /o (s),
whence fo(x) /o (x2) = fo (x,) fo (2.

This being the case, given x € G, we can define f(x) = f,(x,)f; (x,), where
X, X, are any elements of G, with x| x, = x. For any x,x’ € G we can fix

'
5 € Lgokee k(x) and 8" € Tgorkiay kix) K(s)

and then perform the computation
Jexy = fles™hsx') = foles™ ) fo(sx')
= folxs™ D folsx's 1y
= foles™ N fo(sx's" ™) fo (s
= foles™ N fo () fo(x's" ™) fo(s)
= f(0)f(x).

This shows that fis a homomorphism. When x € G, then

Jx) = fles™h8) = foles™ DN fo(8) = fo(0) o™ fo(9) = fo()f(1) = /o ().

Therefore fis an extension of f,.

It remains to show that fis a pre-K-mapping. Keeping the same notation,
we find that K(f(x)) = K(fo{xs™ Dfo(s)) = K(xs™ 1) K(s) = K(x) K(s),
and similarly that K(f(x)) = K(x)K(s"). Since K(x)K(s) and K(x)K(s")
are evidently linearly disjoint over K(x), we conclude that K(f(x)) <=
K(x). If x—-x', then xse x's’, s s and the isomorphisms
Ses.xsa 95, s are compatible; then fy(xs) < f5(x's"), fo(s) < fo(s), and
S fotx'sy. foxs)s S fo(s), folsy  AT€  compatible, so  that  fo(xs)fo(s)" !>
Jo(X's) fo(s) ™1, that is, f(x) - f(x'). If x < x, then Sy, x»Sg,s are bicom-
patible, that is, extend to an isomorphism S : K(x) K(s) ~ K(x") K(s); this
S extends Sy . too, and therefore extends S .oy rorxs)» Srots fois)» and
hence also extends

S fotxs) fols) =1, folxs) fol) "t = Sfix), (x)-
This shows that fis a pre-K-mapping, and completes the proof.

Corollary 1 Let G and H be K-groups, and let M and N be homogeneous
K-spaces for G. Let f be a homomorphism of groups G — H (or of homo-
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geneous spaces M — N). If the restriction of [ to Ty x (or to Ty i) is a pre-
K-mapping, then f is a K-homomorphism.

Covollary 2 Let f be a K,-homomorphism of K-groups G — H (or of homo-
geneous K-spaces M —N). If o (f(v)) = f(ov) for every veTgx (or Thyx)
and every o € Aut{U/K), then [ is a K-homomorphism.

Proof For any v e Ik (or Ly i), 0 (f(0) = flov) = f(v) (o € Aut(U/K®))),
so that every element of K(f(v)) is purely inseparably algebraic over K(v);
however, K,(f()) = K,(v), so that every element of K(f(v)) is separably
algebraic over K(v); hence K{f(v)) = K(v). Starting afresh, if v,0" € Tg
(or Th¢) and v < v/, then v" = ov for some o € Aut(U/K), so that ¢ (f(v)) =
F(v); therefore f(v) < f(v') and S, , is an extension of S, swy- Thus,
the restriction of fto Tk {or [y x) is @ pre-K-mapping, and f'is 2 K-homo-
morphism by Corollary 1.

The following result will make it possible to consider a K-homomorphism
of K-groups as a K-homomorphism of homogeneous K-spaces. See the
remark following the proof.

Proposition 10 Let f: G— H be a K-homomorphism of K-groups.

(a) The image f(G) is a K-subgroup of H.

(b) Iffis surjective, and if N is a homogeneous K-space for H, then f induces
on the K-set N a structure of-homogeneous K-space for G, the external law of
composition N x G — N being given by the formuia (w, x) — wf(x).

Proof (a) Let Xi,..,X, be the K-components of G, let x;eTyx,
let ¥; be the locus of f(x;) over K, and set G’ =Y, u---uY,. Then G’ is
the smallest K-set in H that contains f{G). Replacing K by K;, we see that
G’ is the smallest K-closed set in H that contains f{G). It follows from Section
8, Proposition 6, that G’ is a K-subgroup of H. Every element of Ig. ¢ is of
the form f(x), where x € I, and hence is in f(G). Since every element of
G’ can be expressed as a product of two elements of Ty x, G < fIOAG) =
F(G). Therefore f(G) = G, so that f(G) is a K-subgroup of H.

(b) Itis easy to see that the indicated external law of composition makes
N a homogeneous space for the group G, and to verify the axioms AH 1(a),
AH 2(a). The only sticky point is AH 2(b). Consider elements x,x' € G
with x— x’ and clements w,w’ € N with w-» w’. The locus X of x over K
is certainly a K,-subset of G and contains x’; choose a K,-generic element
x* of a K,-component of X containing x’. The locus W of w over K'is a K,-
subset of N containing w'; choose a K,-generic element w* of a K,-com-
ponent of W containing w’ such that w* x* are quasi-independent (and
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therefore independent) over K,. We then see that
W <«—> w¥ X <—> Xx*,
and also that

w* —— W',

x* —> X’
Ka Ka ’

f6%) —— f(x)

an.d- that w* and f{x*) are independent over K,. Hence, by Section 3, Prop-
osition 1(d), w*f(x*) - w'f(x’), so that, a fortiori, w*f(x*) — w'f(x).

Now suppose that

W (x*) «——> wf(x),

and hence, by axiom AS 1(a), also

x* «—> X’

w*f(x*) < wf(x"), x* < x'.

To verify axiom AH 2(b) it remains to show that the isomorphisms

Sw‘f(x'),w‘f(x‘)’ Sx’,x‘

are compatible. To this end, fix an element

1 € Thosk(wey k(w) K(x*) Kix') Ka*

By Section 3, Remark 2 following the proof of Theorem 1, w*t <> w'r and
the two isomorphisms K

K K
Sw’?. whs Sr, ¢

are c.ompatible. Because the fields K(w*t) K(£) K, and K(x*) K, are linearly
disjoint over K,, SX=.. and the preceding two isomorphisms are compatible
and hence the four isomorphisms ’

Sw’r,w‘!s Sr,t’ Sx',x‘y

are compatible. Referring to Section 3, Remark 2 following Proposition 1,
we see that ¢~ I.f(x*) —— t7'f(x") and that S,- ;) ;-1 ;s and the preceding
four isomorphisms are compatible, and hence that S, ;o) ysf(xeyy Se. e are
compatible. This completes the proof. o o

SI(X'),I(X‘)

ReMARK A K-homomorphism f: G — H can be considered as a surjective
K-homomorphism of G into f(G) (which is, by part (a) of the proposition
a K-group). By part (b) then f induces on the regular K-space for f(G) z;
structure of homogeneous K-space for G. It is clear that fis a K-homomor-
phism, into this homogeneous K-space for G, of the regular K-space for G.
Because of this, results about X-homomorphisms of homogeneous K-spaces
yield, as special cases, results about K-homomorphisms of K-groups.
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Theorem 5 Let f: M — N be a K-homomorphism of homogeneous K-spaces
for a K-group G.

(a) If A is a K-subset of M and C denotes the smallest closed subset of N
containing f(A), then C is a K-subset of N and f(4) has a subset that is K-open
and dense in C.

(b) f(M) =N and f(Tyy,x) = Tyx-

(c) If Bis a K-subset of N, then f~ Y(B) is a K-closed subset of M and

dimf~'(B) — dim B = dimM — dim N.

When f is separable, then every Ki-component of f ~Y(B) of dimension equal
to dim B+dim M—-dim N is a K-set.

Proof (a) Let V,,...,V, be the K-components of 4, let v; & 0 x, set
w; = f(v;), and let W; denote the locus of w; over K. Then W, is a K-irreducible
K-subset of N, and W, U --- U W,, is the smallest K-closed subset of N con-
taining f(d4). For any ¢ € Aut(U/K), oC is the smallest closed set containing
o(f(4)) = f(6A4) = f(4), so that ¢C=C. By Section 7, Corollary 2 to
Theorem 4, then C is K-closed. Therefore C=W, U--- U W,

Fix s [go/kuys Obviously se Tgo/kwy- FOr any weW, w,—w, and
hence there is a homomorphism

b+ K[K(w,s) © K(s)] » KIK(ws) U K()]

that extends S,y ., Sy s (Where 5" € Tgo k). By Section 7, Proposition 3
(with ¥ =V¥,, R = K[K(w;s)w K(s)]), there exists a nonzero element a €
K[K(w;s) u K(s)] with the following property: If h(x) # 0, then there is
an element v e ¥, such that, when ¢ € Tgo;x(ws) k(s) k(o 204 1" € Tgok(w) kis') k(o)
the homomorphisms 4, Sy > Sir,, are compatible. Since the isomorphism
Sroyrwi = Spory, sy 1S @ restriction of S, . this shows that the iso-
morphisms Sy wis> Ss.s1 S p(oyer, wies Srr,e AT€ compatible, and hence so are
these and S, -1, ;-1,, and therefore S, wies Syyer, wa 218 compatible. Hence
wt’ = f(v)t’, w = f(v). By Section 6, Proposition 2, the set W, of elements
w € W, with h(x) = 0 is a K-closed proper subset of W, and what we have
just proved is that if we W,—W/, then we f(V). Thus, f(4) contains the
K-open dense subset C—W," u-- U W, of C.

(b) Consider the above in the special case in which 4 = M. For any
ve M, f(vG) =f)G = N, so that f(M) = N and in this case C = N. Thus,
every K-component of N is one of the sets W;. However, for any W, evidently
v;s <> v, whence w;s=f(v;s) o f(v) =w; so that dimW, = dimgw;s =
dim », and hence W, is a K-component of N. Since evidently f(I,0) =
Tk, this shows that f(Ty,«) = Ty

(c) Continue the same notation (still taking 4 = M). By Section 6,
Proposition 2, the K-closed set B n W, is the set of zeros in W, of a subset
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b; of K[K(w;1) U K(1)]. Of course, b; is a subset also of K[K(v,) U K(#)]
and the set A4; of zeros of b; in ¥; is a K-closed subset of V;. C(l)nsider an};
.element veV;, and fix an element ¢’ € [;o/k,,. Then vef !(B) if and onl

if f(v) € B~ W, that is, if and only if the homomorphism ’

K[K(wit) v K] ~ K[K(f(v)1') v K(¢')]

Fhat exter.ld§ Sty we and S, , annihilates b;. However, this homomorphism
1s a restriction of the homomorphism

K[K(v,t) U K(1)] » K[K@wt") U K(t)]

that eétf:nds Ser.va and S, ; s0 that v e f7'(B) if and only if v € 4,. There-
fore f7'(B)=A, v--uU 4,, and f~!(B) is K-closed.

Consider any K-component W of B. Then f~ (W) is K-closed. Let V be
a Ki-component of f ™' (W), and fix v e T,k and ¢ € Ty 4,y Then

dimgv = dimg v = dimy.,vt’
= dimg, (V)" + dimK(,,)K(f(v),,)vt’
< dimyy f(v) + dimy )y 02’
= dimg f(v) + dimgvt’ — dimg f(v) ¢’
= dimg f(v) + dim M — dim V.
It follows that
dimV < dim#W + dim M — dim N,

and that if f(v) ¢ T}y, then this inequality is a strict one. Of course, for at
least one K;-component ¥, f(v) € [;,x. Supposing that this is the case, we
see by Section 2, Lemma 1 (with L = K(f()) K(¢'), Lo = K(f(v) 1), m - 1)
that there exist elements w,,...,u, € M such that vt — u,t’ (1,<j<n)’
idg ;) ey and S, . . are bicompatible (1 <j<n) and the tj"ollowing threé
conditions are satisfied:

(a) Whenever v’ e M, vt' — v’, and idgijyry and S, . are compatible,
then for some index j, idy( o k(ey and Sy uy are compaytible.

(®)  dimy(pqy) keey ¥t = dimy ey v’ (L << n).

(¢) If K(vt') is separable over K(f(v)t’), then K(f(v))K(t)K(u,t") is
separable over K(f(v))K(t") (1 <j< n). ’

Because idys,, and Sup,o are compatible, so are S, s, and
Sf—(‘f")"’”")"; bence St =fo)r' so that flu)=f(w)e FW,K' and u; e
STIW) (1 €£j< n). Because vt’ > vt’, and idg(syry and S, . are corjn-
patible, condition (a) implies that, for some index j, id,((,(,,)),((,:) and S, ..
are compatible, so that S, . and Su,u,r are compatible, whence ujv—;“g.
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Since u;ef ' (W) and ve Ik = vy this means that u; < v so that
u; € [, . Therefore
dimV = dimgu; = dimg f(u)) + dimg g, 54,
= dimW + dimg () ¥;
= dim W + dimg roy) k) %

. . ,
= dimW + dimg oy ey 45!

= dimW + dimg ey 07’ (by condition (b))

= dimW + dimgvt’ — dimg f(v) ¢/

= dimW + dim M — dim N.
Together with the previous inequality this shows that dim ¥ = dim W.-i-.dim M
—dim N. Furthermore, when f is separable, then, because of condition (c),
the field K(f(v)) K(:')K(u;t') = K(t') K(u;) is separable over K(f(v)) because
1" € Tgo/x( oy @0 G° Is @ K(f(v))-set, and K(f(v)) is separable over K because

f(v) e Ty,x and Wis a K-set. Therefore K(¢') K(u;) is separable over K. Thus,
the element u; € T}, x is separable over K, so that Vis a K-set.

Corollary 1 A K-homomorphism of homogeneous K-spaces is K-continuous
(and therefore L-continuous for every extension L of K, and therefore con-
tinuous).

Proof Apply part (c) of the theorem to f considered as a K;-homomor-
phism. '

Corollary 2 If f G — H is a K-homomorphism of K-groups, then the image
of fis a K-subgroup of H, the kernel of f is a normal K-closed subgroup of G,
and

dim Ker(f) + dimIm(f) = dimG.
When f is separable, then the kernel is a K-subgroup of G.
Corollary 3 Let f: M—> N and g: N— P be K-homomorphisms of homo-
geneous K-spaces. If f and g are separable, then gof is separable.

Proof By part (b) of the theorem, if v € Ty «, then f(v) € Ty, and there-
fore K(v) is separable over K(f(v)) and K(f(v)) is separable over K(g(f®),
50 that v is separable over K(g(f(v))).

Corollary 4 A K-homomorphism f: M — N of homogeneous K-spaces that
is injective and separable is a K-isomorphism.
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Proof By part (b) of the theorem, f is bijective and maps Tk onto Ty .
If v e Ty« then K(v) is separable over K(f(v)). Forevery o e Aut(U/K(f(v))),
flov) = a(f(v)) = f(v) whence ov=wv, so that K(v) = K(f(v)). Thus, if
we Iy, then K(w)=K(f Yw). If v,v' e Tyx and f(v) & f(v'), then,
for some ¢ e Aut(U/K), o(f(v))=f(v'), whence f(ov)=f(v') so that
ov=yv’; hence v v and Sy, o =S,,. Thus, if w,w el and
wesw', then f7'(w) ' (w) and S, , = S¢-i(wy. s~1(w- This shows
that the restriction of f™' to Iy is a pre-K-mapping of N into M. It is
obvious that £7! is a homomorphism of homogeneous spaces. Hence, by
Corollary 1 to Proposition 9, ™! is a K-homomorphism so that fis a K-
isomorphism.

Corollary 5 A K-homomorphism f: G— H of K-groups that is bijective and
separable is a K-isomorphism.

Proof By the remark following Proposition 10, f can be regarded as a
K-homomorphism of homogeneous K-spaces for G. Therefore Corollary 4
applies.

When a group g operates on a set m (say on the right), and v € mn, the set
of elements x € g such that vx = v is a subgroup of g: it is called the stability
(or sometimes the isotropy) group of v in g, and is denoted by g,.

Corollary 6 Let M be a homogeneous K-space for a K-group G, and let
ve M. The stability group G, is a K(v)-closed subgroup of G and dim G, =
dim G—dim M.

Proof The mapping A4,: G— M defined by the formula A,(x) = vx is a
K(v)-homomorphism of the regular K(v)-space for G into M, and G, =
4, ' (v). Since the set {v} is a K(v)-subset of M of dimension 0, part (c) of
the theorem applies.

EXERCISE

1. Let M be a homogeneous K-space for a K-group G, let 4 and B be subsets
of M and suppose that B is K-closed. The transporter of A into B is the
set T, g of all elements x € G such that 4x < B. Prove that T, g is closed,
and that if 4 is K-closed, then T, 5 is K-closed.

10 Direct products

Let Gy, ..., G, be K-groups. By a direct product of the K-groups G,, ...,G,,

we mean a K-group G, together with K-homomorphisms p;:G— G,
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(1 <j < n) of K-groups, enjoying the following property: Whenever H is a
K-group with K-homomorphisms g,: H— G; (1 << n), then there exists
a unique K-homomorphism f: H — G such that p;of =gq; (1 <j<n). The
K-homomorphisms p; are then called the projections of the direct product.
If we take for H the K-group G,,, and define g;, as the identity automorphism
of G;,, and for j # j,, define g; as the trivial homomorphism G;, — G;, we
find that the projection p;, is surjective.

If G’ is also a direct product of G,,...,G,, with projections p,’,...,p,,
it is easy to see that there is a unique K-isomorphism f: G’ = G such that
piof =p; (1 <j<n). This fact is sometimes expressed by saying that a
direct product is unique up to a unique K-isomorphism. For any permutation
n of the set of indices 1,...,n, G is a direct product of G, iy, ..., Gr(n With
projections p. (,, ..., Pxm- Because of this fact we say that direct “multi-
plication” of K-groups is commutative. If (G,)| <;<n 1 <k, 15 @ family of
K-groups, and if, for each index j, G; is a direct product of G;, ..., G, with
projections p;,, ..., pu, and if G is a direct product of G,, ..., G, with projec-
tions p,,...,p,, then G is a direct product of the G;, with projections p;op;
{1 <j<n, 1 <k<r). Because of this, we say that direct multiplication
18 associative. ‘

Let G be a direct product of the K-groups G, ..., G, with projections p;°
(I €£j< n). For each index j let M; be a homogeneous K-space for G;. In
accord with Section 9, Proposition 10(b), ij induces on M, a structure of
homogeneous K-space for G. By a direct product of the homogeneous K-spaces
M,, .., M, we mean a homogeneous K-space M for G together with K-
homomorphisms pj'w M- M, (1 <j< n)of homogeneous K-spaces for G,
enjoying the following property: Whenever N is a homogeneous K-space
for G with K-homomorphisms g;: N — M, (1 <j< n), then there exists a
unique K-homomorphism f: N —» M such that pMof=¢;, (1 <j<n). As
with a direct product of K-groups, the K-homomorphisms p;* are called
the projections of the direct product M.

A direct product of homogeneous K-spaces is unique up to a unique K-
isomorphism, and direct multiplication of homogeneous K-spaces is com-
mutative and associative, in the same sense that direct multiplication of
K-groups is. It is easy to see that the regular K-space for G, with the projec-
tions py,...,p,, is a direct product of the regular K-spaces for G,,...,G,.
In this sense, a direct product of K-groups is a direct product of homo-
geneous K-spaces.

Because of the associativity, to prove the existence of direct products for
an arbitrary finite family G,,...,G, (or M,,..., M,) it suffices to consider
the case n = 2 (the cases n =0 and n = 1 being trivial). The proof in this
case is facilitated by the following lemma.

WWW Bt b hadiT B Lot 2 bt B > 1
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Lermnma 2 Let G\,G, be K-groups, and let x;,x; € G; (i = 1,2). Fix s,,1,¢
Toorkixo iz A 5t € Tgogee,ykieyy (6= 1,2) such that st s,,t, are
independent over K(x)K(x,) and s\',t/',s,',t,’ are independent over
K(x,;)K(x,'). Then the following three conditions are equivalent:

(@) sy x; e 5,'x)", 5, %, e 5,'x,’, and the isomorphisms

SSn‘Xx'.sun ’ SSz'Xz’,Szxz’ SS:’,Sx » Ssz’,sz
are compatible.

(B) xyt, e x.'t), x3t, & x;5'ty’, and the isomorphisms

Sx;'n'.xm H sz’tz'.Xzfz’ Sn',m Stz'.fz
are compatible.

(©) syxit, o s5./x't), s;x,8, & 5,°x,'ty’, and the isomorphisms

Ssx'xl'fx',snxllx’ SSz'xz'tz',SzXzfz’ le',sx’ St(',tx ’ Ssz',sz’ Stz',tz
are compatible.

Proof This is immediate in the light of Section 3, Remark 2 following
Proposition 1.

The lemma is analogous to Remark 2 following Theorem 1 in Section
3 and serves an analogous purpose. It should be noted that when
G,G,yx,x,", x3,x,” are given, then there always exist eight elements
Stsy 8, 8,,8) 15,8, with the required properties, and that the con-
ditions (a)-(c) are independent of the choice of these eight elements. If the
conditions are satisfied, then x;— x;/ (i =1,2). In the opposite direction,
if x;ex’ (=1,2) and S, ,,S,, ., are compatible, or if x,-»x,
(i=1,2) and x,, x, are independent, then the conditions are satisfied. It is
clear that the conditions remain equivalent to each other when the word
“compatible” is replaced by the word “bicompatible,” and that the three
conditions strengthened in this way are equivalent to the following con-
dition: x, e x,', x, ¢ x,, and the isomorphisms S, ..,S, ., are bi-
compatible.

Similarly, if M; is a homogeneous K-space for G, (i=1,2), and if
v,v/ €M, (i=1,2), we can choose elements f; € Igoiykwn ((=1,2)
such that ¢,,¢, are independent over K(v,)K(v,) and elements ¢/ e
[G.0/k(00) k(wery (8 = 1,2) such that 7,’,¢," are independent over K(v,") K(v,’).
Then we can consider the following condition generalizing condition (b) in
Lemma 2.

(b)) vty vty vyt o vy'ty’, and the isomorphisms

S"l'tl',vm 4 sz'fz',vzfz’ Sn’,n 2 S'z’,lz

are compatible.
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Here, too, the condition is independent of the choice of t, 15,01y, and
when the condition is strengthened by replacing the word “compatible” by
the word “bicompatible,” then it becomes equivalent to the following con-
dition: v, «v,’, v, v, and the isomorphisms S, 4> Soy, s, are bicom-
patible. .

The next theorem shows that direct products of K-groups and of homo-
-geneous K-spaces always exist.

Theorem 6 Let G,,G, be K-groups and let M,,M, be homogeneous K-
spaces for G, G, respectively. For each element (x.,x3) (respectively
(vy,0;)) of the Cartesian product G, x G, (respectively M, x M,) define
K((x,,x3)) = K(x) K(x2) (respectively  K((vy,v,)) = K(v)K(vy)). For
(xy, %), (x;', X2y € Gy x Gy (respectively (v(,0,),(v,",v,') € M, x M) define
(xy, x2) = (x1,%27) (respectively (v,,v;) = (v,,v,7)) to mean that condition
(b) in Lemma 2 (respectively condition (b’) above) is satisfied. For
(1, x2), (x,/, x2") € Gy x G2 with (x1,x2) > (x)/,%5') define Sizpr, <y, (x1,32) 10
be the wunique isomorphism K((xy, x2)) = K((x\',x,)) that extends
St xis Suyixy- For (01,02), (v,,02)) € My X My with (v,,07) < (v,',v,) define
Storvpy.(or.0n 10 be the unique isomorphism K((vy,v,)) = K((v\',v,)) that
extends S, 5, s Sy, 02

(a) These data define on each of G, xGy,, M l\x M, a structure of pre-K-
set. The pre-K-set structure on G, x G, together with the product group struc-
ture on G, x G, define a K-group structure on G, X G,. The pre-K-set structure
on M, x M, together with the product structure on M, x M, of homogeneous
space for G, x G, define on M, x M, a structure of homogeneous K-space
for G, x G, (which is principal when M, and M, are principal homogeneous
K-spaces for G, and G, respectively).

(b) If V, is a K-irreducible K-subset of G, (respectively M) (i =1,2),
then V, xV, is a K-subset of G, x G, (respectively M| x M,). Every K-com-
ponent of V,xV, has dimension equal to dimV,+dimV,. If one of V1,V;
has a K-generic element that is regular over K, then V, xV; is K-irreducible.
If both do, then a K-generic element of V, xV, is regular over K.

() The canonical projections pr;: G, x G, = G, (respectively M, x M, -
M) (i = 1,2) are separable surjective K-homomorphisms of K-groups (resepc-
tively of homogeneous K-spaces for G| X G,). The K-group G, X G, (respectively
homogeneous K-space M, x M) with its canonical projections is a direct
product of the K-groups G,G, (respectively of the homogeneous K-spaces
M, M,).

The proof of Theorem 6 makes use of Lemma 2 much as the proof of
Theorem 2 in Section 5 makes use of Remark 2 following Theorem 1 in
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Section 3. Since the proof of Theorem 6 is long and tedious, and is easy to
improvise by following the proof of Theorem 2, we shall omit it.

We call the structure of K-group on G, x G, (respectively of homogeneous
K-space on M| x M) defined in Theorem 6 the product K-group (respectively
homogeneous K-space) structure. We usually write K(x,x,) (respectively
K(v,,v,)) instead of K((x,,x,)) (respectively K((vy, v3)))-

If G; is a K-subgroup of G; (i = 1,2), then G’ x G, is {by Theorem 6(b))
a K-subgroup of G, x G,. It is easy to see that the K-group structure that
G,’ x G, has as a K-subgroup of G, x G is the same as the product K-group
structure on G x G,'.

It follows from Theorem 6(b) that (G, x G,)° = G,°x G;°.

Starting with homogeneous K-spaces M, M, and an extension L of K|
we can first form the direct product of the homogeneous K-spaces and then
the induced homogeneous L-space. Alternatively, we can first form the
induced homogeneous L-spaces and then the direct product of these homo-
geneous L-spaces. A routine verification shows that the end result is the
same.

If G,,...,G, are K-groups and, for each index j, M, is a homogeneous
K-space for G;, we can identify the product sets Xi<;<n G and Xicj<a M;
with the Cartesian products (X;<j<n—1 G;)*X G, and (Xi<j<n—1 M)xM,,
respectively. Therefore an induction argument enables us to use Theorem 6
to introduce on X, ¢;<,G; 2@ K-group structure such that the K-group
Xi<j<n G; With its canonical projections is a direct product of G,,...,G,,
and to introduce on X,¢;<, M, @ structure of homogeneous K-space for
X1 <j<n G, such that the homogeneous K-space X, ¢j<n M, With its canonical
projections is a direct product of M,...,M,. In both cases, the canonical
projections pr; are separable surjective K-homomorphisms. If (vy,...,7,)
and (v, ...,0,) are elements of X M;, and if (ry,....1,) and (¢, ...,t,) are
K-generic elements of (XG;)°=XG,;* such that (vy,....va)s (1, .., 1) are
independent over K and (..., 0, (1), ..., 1) are, too, then a necessary
and sufficient condition that (vy,...,v,) = (v,/,...,v,) is that vt e vt
(1 €j < n) and the 2n isomorphisms S, v, a<j<gn), S, ., (1<j<n
be compatible.

Proposition 11 Let f;: M;—> N, be a K-homomorphism of homogeneous
K-spaces for a K-group G, (1 <j < n), and let f: X M; — X N; be the mapping
defined by the formula f(v,,...,v,) = (fi@), ... f5(vn). Then fis a K-homo-
morphism of homogeneous K-spaces for XG;.

Proof For each index j' the mapping f;-opr; : XM;— N; is a K-homo-
morphism of homogeneous K-spaces for XG;; therefore there is a unique
K-homomorphism 7 : X M; X N; such that pryef’ = fropr; (1 <j<,n
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that is, such that f'(v,,...,v) = (f1(®),....f.(vp) for every (v,....,v,) €
X M,. Therefore f=f" and fis a K-homomorphism.

Proposition 12 Let M; be a homogeneous K-space for a K-group G; and
let v;,v; be elements of M; with v; v/ (1 <j<n). A necessary and suf-
ficient condition that (vy,...,v,) = (v(s...,0,) is that S, o5 ... S, ., be

compatible.

Proof By linear disjointness the condition is evidently equivalent to the
condition that S,y ees Sy v Strry1is -2 Sewr,r, DE COmpatible (15,2, being
elements of I o with the usual properties). Because of axiom AH 2(a),
this is equivalent to the condition that v;¢; <> v/t/ (1 <j<n) and
St vt s s Sowtatvatns g s O be compatible, that is, to the con-
dition that (v,,...,v,) = (v, .-, V')

th'stn

In the light of Proposition 12, we see that the following result goes beyond
what we observed in Section 3, Remark 2 following Proposition 1.

Proposition 13 Let M be a homogeneous K-space for a K-group G, and let
vi,07 e M (1<i<m)and x;,x/ € G (1 << n). Let Uy, ..., U X150 X,
be noncommuting indeterminates, and let I denote the same set of “‘mono-
mials” in these indeterminates as I3 denotes in Section 3, Remark 2 following
Proposition 1. For each W eI, ler w respectively w' denote the element
of M or G obtained by substituting (vy,...Vp,X,,...,X,) respectively
@0, %) X)) fOr-(U o Uy Xy, X)) in W Let Wi, W, e B

If (Whs oo Oy X1s ooy Xa) = (015 ooy Uy Xy o %), then (Wi, .,w) =
w,....,w,)).

Proof Let g =max(r,m+n+1), and choose elements ¢,,....7, € Igop
that are independent over the field

. .
L= K@,y Upy Xpseenr Xy Uy e Uy Xy s X0 )

Let he N, and let 3¢, have the same meaning as in Section 2, Remark 2
following Proposition [. We claim that wr, o w't, (1< k<g, WelB))
and that the isomorphisms S, .. (Il Sk <g, WeD,) are compatible.
For a sufficiently big value of 4, I8, contains 1, W,,...,W,, and therefore
the claim, once established, will show that w,t & w/t, (1 <k<r) and
that the 2r isomorphisms S, ¢ we (1 Sk<r) and S, . (1 <k<r) are
compatible, that is, will show that (w,,...,w,) - (w,’, ..., w,").
To begin with, observe that because

U1y oeor Uy X1y s X)) = (050, X5, %)

the 2(m+n) isomorphisms S, vu, (L KI<M), Spity) xtme, (1<j<n)
St (1 <k < m+n) make sense and are compatible. Therefore these and
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the g—m—n isomorphisms S, , (m+n<k<g) are compatible. Using
axiom AH 2(a) as in Section 3, Remark 2 following Proposition 1, we
find that the (m+2n+ 1) g isomorphisms

Soitt, vi (1<igsm, 1<k<yg),
St xstx (1<j<n, 1<k<y),
Sey-tnx-w (1<i<n, 1<k<g),
St ti (1<k<yg)

make sense and are compatible. This is the claim for # = 1. Now suppose
that the claim is established for a given A > 1, that is, that the isomorphisms
St wn (1 S k < g, We2,) make sense and are compatible. By the same
method as before, we find that these and the following isomorphisms make
sense and are compatible:

, k#1D);
, k#D);

Stk‘lxj’t,,lk“xjtl (1
Stk‘lxj‘-‘t,,tk'lx,--lz, (1

if the homogeneous K-space M is principal

Stk‘ Ty ~ 1wty e~ Yoy~ lopty

(Igism, 1<i'sm, 1<k<yg, 1<I<g, k#l);
Sw‘x,-'t,,wxjn (l SJS n, Wemhr 1 SIS g)’
Sw'xj"‘t,,wxj“n (1 SJS n, WEQB;,, 1< /< g)’

if M is principal

(1gism, 1<i'sm, Wed,_,, 1<i<yg).

Sw‘v;’ =y oty wopT bopy
Since I, , is the union of the sets | J;<;<, By X; and {J;<;<. W, X;” ! and
(if M is principal) |, cicm 1 <i<m Ba~ Ui~ Uy, this establishes the claim
for h+1 and hence in general.

Corollary 1 Let GM,U,,..., U, X\,...X,,W,..,W, have the same
meaning as in Proposition 13. Let the elements e,,,,...,e,€ My and
ayorr.ray € Gy be fixed, and set Z =(X; <<, M) % (Xi<j<y Gy). For each
element z = (v, ...,v,,%,,...,X,) € Z and each index k (1 <k<r)let

ﬁc(z) = Wk(vl, "':U;neui»l’ ~'~1emax1’~~-,xv7av+ 1> ""an):

and set f(z) =(f1(2), ....£.(2)), so that f(z) is an element of the direct product
P of r homogeneous K-spaces each of which is M or G. Then f'is a K-continuous
everywhere defined pre-K-mapping of Z into P.
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Proof Set Z* = (X <i<m Mi) x (X1 <j<n G;), and consider the sequence of

mappings
z sz« L zexp2sp,

where his defined by the formula

h(U17 ~~~auu7 xlr ...,X\,) = (Uh "'7U;n eu+1, ~-'aem7 xl,""xvy av+11 '--yan)y
f* is defined by the formula

FHe*) = (5 (W (@), ..., W, ("),

and pr denotes the canonical projection on the second factor. If an element
(o Vs X1 s X ) (Wi, w,)) Of Z*x P is a specialization over K
of an element (z* (W, (z*),....W,(z*))), Where z* = (v,,..., 0, Xy, ..., X,),
then (Uy, ..., Um, X150 Xn) = (0, ., 0’ X', ..., x,) and (as is easy to see
by Proposition 13) w,’ =W, (v,’,...,v.,x,-.,x,) (1 <k <r). In other
words, if z* € Z*, then every specialization of f*(z*) over K is in Im(f*).
Furthermore (also by Proposition 13), for any elements z*,z* e Z*,
z* - z* if and only if f*(z*) — f*(z*'). It follows that Im(f*) is a K-set,
that /* maps Z* bijectively onto Im(/*), and that /* and the inverse mapping
Im(f*) > Z* are everywhere defined pre-K-mappings. Hence (by Section 6,
the corollary to Theorem 3) /* is K-continuous. Because # and pr are evidently
K-continuous everywhere defined pre-K-mappings, and because prof*oh = f,
the corollary is proved.

.

Corollary 2 Let G be a K-group and A be a subset of G.

(a) When A is K-closed then the normalizer N, of A in G is a K-closed
subgroup of G.

(b) The centralizer C, of A is a closed subgroup of G. When A is K-closed,
then C, is K-closed.

(c) The center of G is a K-closed subgroup of G.

Proof (a) For each ye G define mappings f,, g, of G into G by the
formulas f,(x) = xyx~ !, g,,(x):x"‘yx. They are continuous by Corol-
lary 1, and Ny ={V,eafy "(A) 0 (V),ea g, '(A). Since A is K-closed, N,
is closed and, for every o € Aut(U/K), o(N,) = N,, = N,. Therefore N, is
K-closed.

(b) Foreach ye 4, {y} is closed, so that by part (a), C,,, is closed. Since
Ci={Vyea Cy» C4is closed. When A is K-closed, then ¢(C,) = C,, = C,
for every o € Aut(U/K), so that C, is K-closed.

(c) Set A =G in part (b).

In order to derive another consequence of Proposition 13 we need the
following lemma on abstract groups due to Baer [1]. Recall that if a,b are

N
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elements of a group g, then the commutator of a and b is the element aba~ '™
If h and j are subsets of g, the subgroup of g generated by the set of all com-
mutators. aba™'6™! with ae b and bej is called the commutator group of
b and j and is denoted by [b,i]. The group [g,g], called the commutator
group of g, is the smallest normal subgroup n of g such that g/n is com-
mutative.

Lemma 3 Let b,bo,1,1o be normal subgroups of a group g such that § > b,
and > jo, b/bo and ifio are finite, and [b,io] = [bo,i]l = 1. Then [b,i] is
finite.

Proof In the special case in which § = | = g and }, = |, = 3 = the center
of g, the lemma states that if 3 is of finite index in g, then [g, g] is finite. We
first prove this special case. In the proof, the letter ¢ with various indices
always denotes a suitable commutator of two elements of g, and / denotes
the index (g:3).

The formula

(aba™'h™ 'Y = (ab)(a ‘b Yre, - cpy

is obviously valid when k = 1. If K > 1 and the formula is valid for lower
values of k, then

(aba™ 6™ Y =aba" b (aby M (@ b T e, o gpes
= (ab)*(ab) " ** (@™ b~ (@by (@ b HaT T e oy
= (ab)eco(a™ 1™ Ve, -y,
= (aby(a b Y, - ooy

hence the formula is valid for all k. This being so, let a, ..., a, be representa-
tives of the cosets of 3 in g. Every commutator in g equals one of the /? com-
mutators g¢; aja‘-"aj’“ Hence in a product P of (/—1)/*+1 commutators
there must exist / equal factors. These / factors can be brought to the left
provided the other factors are replaced by conjugates of themselves (which
also are commutators). Thus we may write P=(aiajai“aj")’P’, where

P’ is a product of /> —/*—/+1 commutators. However, by our formula,
(aiajai-laj—l)l = (aiaj)‘(ai_laj_l)’cl Y PP

and by hypothesis (q;a;)' € 3, whence (¢,a)) = a,(a;a)' a] ' = (a;a;)'; hence
P equals a product of />—~/? commutators. This shows that every product
of commutators in g equals a product of /> —/? commutators. Therefore
the order of [g,q] is less than or equal to /2~

We now turn to the general lemma. Let m = (§:by), n = (j:i,), and let
Xy,..., X, (vespectively y,,...,y,) be a system of representatives of the
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cosets of f, in [ (respectively of o in {). It is easy to verify that every com-
mutator of an element of [j and an element of | equals one of the elements
x;y;x7'y;", so that these mn commutators generate the group d = [b,{].
Since b and | are normal subgroups of g, » = b n . This implies first that
B/(d M o) = dho/ho < B/, and second that 8 ~ ), is contained in the center
of ». Hence the center of D is of finite index in d. By the special case of the
lemma, [d,0] is finite. To prove d finite it suffices to show that d/[d,Dd] is
finite. As this group is commutative, it is enough to show that the elements
of a finite set of generators all are of finite order. Hence it suffices to show
that when xe b and y €, then (xyx™ 'y~ 'Y e [d,0].
For any ued, u™e ), whence yu™y~ ' = u™. Therefore

u™ = (yuy™ " = (uy”tuTtw)™ = (yuy T uT ™™ (mod[d,d]),

so that (yuy™'u" )" e [d,d]. Also, for any k > I,
xytxlyk

= T Ty TR T ex Ty T T T T T g T T
whence by induction, for any k& > 0,

Ty = Cya Ty I1 kyi(xyX“yfl)y“‘(xyx"y"‘)

<i<

-1

(mod [, d]).

When k = n, then the left member of this congruence equals 1 (because
[h,io] = 1), and each factor y'(xyx~'y~ ")y “(xyx~'y~") ™' on the right
is of the form y'u’y’ " 'u'~! with y’ € and u’ € d. Therefore when we set
k = n and then raise to the mth power, we find that

L= (px”ty Hm™ (mod d,27).

This completes the proof of the lemma.

Proposition 14 Let H and J be normal K-subgroups of the K-group G. Then
[H,J] is K-closed. When H and J are connected, [H,J] is a connected K-
subgroup of G.

Proof First suppose that either K is algebraically closed or H and J are
connected. Then by Section 3, Theorem 1, the cosets of H° in H (respectively
J° in J) are the K-components of # (respectively J). Let x,,..., x,, (respec-
tively vy, ...,,) be a set of representatives of the cosets of H° in H (respec-
tively /° in J). By Section 7, the Corollary to Proposition 3, we may suppose
all the elements x; and y, are rational over K. (Of course, if H and J are con-
nected, then m = n = 1 and we may take x, = y; = 1.) Let (x, ) € Tyox josk>
and let V; (respectively W) be the locus over K of (x;x)y(x;x)™'y™" (re-

.

11 QUOTIENTS 267

spectively x(yjy)x“‘(yjy)'l). By Proposition 13, every commutator of an
element of x; H° and au element of J° (respectively of an element of H° and
an element of y;J°) is in V; (respectively W)). In particular, 1eV,, l e W,.
It follows, by Section 8, Proposition 7 and the remark thereafter, that the
normal subgroup £ =[H,J°][H",J] of G is the subgroup of G generated
by Viwu--uV, W, u---UW, and is a K-group. When H and J are
connected, evidently £=[H,J].

Consider the four groups H/E, H°[H,J°]/E, J/E, J°[H°, J]/E. These are
normal subgroups of G/E, and evidently H/E > H°[H,J°/E, J/E>
JO[H®,JYE, (HIEY(H°[H,J°)/E)~ H/H°[H,J°], which is finite, and
similarly  (J/E)/(J°[H®,JI/E) is finite. Also [H/E,J°[H°,J]/E]=
[H,J°LH°,J]]/E =1, and similarly [J/E, H°[H,J°]/E] = 1. It therefore
follows from Lemma 3 that the group [H/E,J/E]=[H,J]/E is finite.
Letting zy, ..., z, be representatives of the cosets of £ in [H,J], we see that
[H,J] is the union of the closed sets £z,, and hence is closed.

Now relinquish the supposition that K be algebraically closed or H# and J
be connected. Since we may use K, instead of K, we still find that [H,J]
is closed. For every o e Aut(U/K), o[H,J] =[cH,oJ]=[H,J]. There-
fore [H,J] is K-closed.

11 Quotients

Let G be a K-group and H be a normal K-subgroup of G. A K-group
guotient of G by H is defined as a K-group ¢ with a K-homomorphism
7n:G— Q that is trivial on A and has the following property: Whenever
G’ is a K-group with a K-homomorphism f: G — G’ that is trivial on H,
then there exists a unique K-homomorphism g: @ — G’ such that gor = f.
The K-homomorphism = is called the quotient mapping of the K-group
quotient. _

If Q and Q' are two K-group quotients of G by H, with the respective
quotient mappings = and n’, then there is a unique X-homomorphism
g:Q— Q' suchthat gorr = 7', and it is easy to see that g is a K-isomorphism.
We express this by saying that a K-group quotient is unique up to a unique
K-isomorphism.

Starting afresh, let H be any K-subgroup of G (not necessarily a normal
one), and consider G as a homogeneous K-space for G, that is, consider
the regular K-space for G. By a homogeneous K-space quotient of G by H
we mean a homogeneous K-space Q for G with a K-homomorphismz : G — Q
that is constant on each right coset of H in G and has the following property:
Whenever M is a homogeneous K-space for G with a K-homomorphism
f: G —> M that is constant on each right coset of A in G, then there exists a



268 YV ALGEBRAIC GROUPS

unique K-homomorphism g: Q — M such that gor =f Here, too, n is
called the quotient mapping. Also, a homogeneous K-space quotient of G
by H is unique up to a unique K-isomorphism.

We shall prove that quotients (both K-group and homogeneous K-space)
always exist. The proof will be facilitated by the following lemma.

Lemma 4 Let H be a K-subgroup of a K-group G and let x,x' be right cosets
of HinG.

(a) The following three conditions are equivalent: (i) there exist elements
xex, x ex such that x—x'; (i) for every x' ¥, there exists an x €%
such that x — x'; (it) for every x' € Lok, there exists an x € Tk such
that x — x'.

(b) The following three conditions are equivalent: () there exist elements
x,€x, x,/ €% such that x, —x," and elements x, €%, X € ¥ such that
Xy = x,; (i) there exist elements X € X, x' €1 such that x « x'; (i) for
every x' € I x> there exists an X € [ ke SUch that x — x'.

(c) If the conditions in part (b) are satisfied and- elements x € %, xex
are chosen with x «> x', then S, . induces, by restriction, an isomorphism
K(x) = K(x') over K; this isomorphisnt is independent of the choice of x,x’.

(d) If x € Tyke, then dimgx = tr deg K(x)/K+dim H.

REMARK If xex, then x= Hx, so that x is a K(x)-subset of G.
K(x) denotes the smallest ei)giension [ of K such that z is an L-subset of G
(see Section 7, Theorem 4); therefore K(x) < K(x).

Proof (2) It is obvious that (iii) implies (i). Suppose that x, €%,
x, €%, and xy = xo/, and let x er. Then x' = yx,/, where ye H. Let X
(respectively Y) be the locus of x, (respectively y) over K. Then (y, x,) €
Yx X. Let (»*, x*) be a K-generic element of a K-component of Yx X con-
taining (y, x,"). Then (y*, x*) — (y,xo'), sO that y*x* — yx,’ = x’. Evidently
x* € Ty, whence x* & X, s0 that there exists some o € Aut(U/K) such
that ox* = x,. Setting x = oy*-xo, We conclude that xe€ Hxq=1x and
x = g(y*x*) o y*x* > x'. Thus, (1) implies (ii). Finally, suppose that (ii)
holds, and let x' € I - By (ii) there exists an x, € ¥ with xo— x'. Let
x be a K(x)-generic element of a K(x)-component of x containing x,. Then
x & Lk and x — x, whence x — x'. Thus, (ii) implies (iii).

(b) Tt is obvious that (iii) implies (ii) and (ii) implies (i). Suppose that
x,x, €% and x;’,x,’€¥ and x, —x,', Xy = X,, and consider any x'€
T, k). BY part (a) there exists an x € [;¢, such that x — x’, and again
by part (a) there exists an x" € I, ke such that x" = x. Then x" - x’ and
dim, x” > dim x > dimg x. By part (d) (the proof of which does not require
the present part) dim, x” = dimy x’, s0 that x «> x’. Therefore (i) implies (iii).
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(c) Choose xex, x'€x with x < x’. Then S, , can be extended to
some o€ Aut(U/K), and o(x) = ¢(Hx) = Hox = Hx' =%'. It follows, by
Section 7, Corollary 1 to Theorem 4, that S,. , maps K(x) onto K(z') and
that the induced isomorphism K(x) ~ K(x’) does not depend on the choice
of x,x'.

(d) For any xex, x=Hx=p(H) It follows that every component
of ¢ has dimension equal to dim H, and hence every K(x)-component does
too. Therefore, if x e [}k, then

dimg x = trdeg K(x)/K + trdeg K(x)/K(z) = tr deg K(x)/K + dim H.
We now prove the existence of quotients by actual construction.

Theorem 7 Let H be a K-subgroup of a K-group G, and let G/H denote the
set of right cosets of H in G. For x & G/ H define K(x) to be the smallest exten-
sion L of K such that x is an L-subset of G. For x,¥' € G/H define x > ¥’ to
mean that the equivalent conditions in Lemma 4(a) are satisfied. For ¥,¥" €
G/H with x «>x' define S,., to be the isomorphism K(x) = K(¥') induced
as in Lemma 4(c) by the isomorphisms S, . with xex, X' €x¥, x o x'.

(a) These data define a pre-K-set structure on G/H. The canonical mapping
ngu:G—G/Hisa separable pre-K-mapping. If f: G — A is any everywhere
defined pre-K-mapping of G into a K-set A such that f is constant on each right
coset of H in G, then the mapping g:G/H— A such that gongy =fis a
pre-K-mapping; f is separable if and only if g is.

(b) The pre-K-set structure on G/H and the canonical structure on G/H
of homogeneous space for the group G define on G[H a structure of homo-
geneous K-space for G; mgm Is a K-homomorphism of homogeneous
K-spaces, and G/H with ngy is a homogeneous K-space quotient of G by H.

(c) When H is a normal subgroup of G, the pre-K-set structure on G/H
and the canonical group structure on G/H define on G/H a structure of K-
group; Ty IS a K-homomorphism of K-groups, and G[H with gy is
a K-group quotient of G by H.

Proof (a) Itis apparent that if £ € G/H, then K(x) is a finitely generated
extension of K, that the relation x — " is a pre-order on G/H, and that if
ro ¥, then S, K(x) = K(x) is an isomorphism over K. We must verify
the axioms in Section 2. If x> ¥’, but not ¥’ — x, and we choose x € Lk
and x’ € Ik, With x - x’, then we do not have x’ — x. Hence dimg x >
dim x', so that by Lemma 4(d), trdeg K(z)/K > tr deg K(z')/K. This verifies
axiom AS 1(a). Let x,,...,x, be K-generic elements of the K-components
of G, and set x = Hx; (1 <i<m). Forany xe G/H and any x € x, we have
x;— x for some i and therefore x; —x. Since K(x;) > K(x) > K and K(x;)
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is separable over K, K(x) is separable over K, too. This verifies axiom
AS 1(b). Let x,%,x" € G/H and e ¥, ¥ o1’ Fixing an x" €T, 4.,
we can find an x’ € I, ¢ With x" e X" and then find an x eI, 4, with
x o x'. Since Sy oSy =S . and S, ,, S, o, S, are restrictions of
Se x> S » Sir,x» We conclude that Sy 508, .= S. .. This verifies axiom
AS 2(a). If e G/H, and if S: K(x)= K’ is an isomorphism over K, we
can fix an x € ¥ and then extend S to an isomorphism T : K(x) = L. There
exists a unique x’ € G with x < x’ such that K(x')=L and S, =T, and
it we set ¥ =Hx, then x—¥, S5.,=S5, and K(&)=S5, ,(K(®)=
S(K(x)) = K'. To prove the uniqueness of x’, suppose that also x" € G/H,
1o, K@)=K', and S, ,=S5. Then ¥ ey, K(z') = K(x"), and
Sy ¢ = idy(yy, 5O that there exist elements z’ € ¥’ and z" e¥” with 2’
and with S.. . an extension of idk(; S.-. can be extended to some
o € Aut(U/K(x')), and on the one hand (by Section 7, Theorem 4) ox’ = ¢/,
and on the other hand ¢x’ = o(Hz') = ocH -0z’ = Hz" = ¥", whence ¥ = x".
This verifies axiom AS 2(b), and therefore shows that we have a pre-K-
set structure on G/H.

It follows immediately from the definitions that if x € G, then K(x) >
K(ng,y (%)), that if x - x, then 76,4 (x) > g (x’), and that if x «» x', then
S, . i an extension of S, . x), x/n(=)- Therefore ng,y is a pre-K-mapping.
We saw above that each K-component of G/H has as a K-generic element
one of the cosets ¥, = Hx,;, where x,,...,x,, are K-generic elements of the
K-components of G. For each i, we may evidently replace x; by a K(x)-
generic element of a K(x;)-component of ¥; containing x;; that is, we may
suppose that x;& I, x,,. Then x; is separable over K(x)) = K(mge(x))
and (by Lemma 4(d)) dimyx; = dim G —dim H for every index i. The first
conclusion here shows that the pre-K-mapping ng,y is separable; the second
conclusion shows that each x, is a K-generic element of a K-component of
G/H.

Let /: G — A be any everywhere defined pre-K-mapping such that f(x) =
f(x") whenever ngu(x) = g, u(x’). Then there exists a unique mapping
g:G/H— A4 such that gomg,y =f. For any xe G/H, if we fix xe Tk,
then we find that K(x) is separable over K(z), and that g(x) = f(x), whence
K(g(x)) = K(x). Since oxeox =x for every e Aut(U/K(x)), and there-
fore o(g(x)) = o(f(x)) = flox) = g(x), we conclude that K(g(x) < K(x).
If - ¥, then x — x’ for some x € x, x’ € ¥, and g(x) = f(x) - f(x") = g(x').
If x o ¥/, then x & x’ for some x € x, x' €. Since S, , extends S, , and
also extends the isomorphism Sy sy = Sete) e, W€ conclude that
Sy, extends S, 4y This shows that g is a pre-K-mapping. Finally, for
each index i,

Z//

K(x) > K(x) > K(g(x) = K(f(x)

o
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and K(x,) is separable over K(x;). Therefore K(x;) is separable over K( f(x)
if and only if K(x,) is separable over K(g(x;)). We have seen above that each
K-component of G/H has some x; as a K-generic element and that each x;
is a K-generic element of a K-component of G/H, so that f is separable if
and only if g is.

(b) We must verify the axioms AH 1(a) and AH 2(a) and (b). Let
ve G/H, xe G. Then p, (right multiplication by x) and its inverse p-. are
bijective pre-L-mappings of G into G for every field L> K(x), and v is an
L-subset of G for every field Lo K(v). Taking L = K(o) K(x), we infer that
p.(0) is a K(o) K(x)-subset of G, that is, K(vx) < K(v) K(x). This verifies
AH 1(a). Now let 0,0’ € G/H, x,x'€ G, 0 >0, x = X, and suppose that
Sy 0> Sy« are compatible, that is, that there exists a homomorphism

Syt K[K(v) u K(x)] » K[K(v") U K(x)]

extending S, , and S, ,. By Section 7, corollary to Proposition 3, o con-
tains an element v that is algebraic over K(v), and evidently the ring
K[K(@) u K(x)] is integral over K[K(v) v K(x)] so that (by Chapter O,
Section 14, Proposition 9) S, can be extended to a homomorphism S of
K[K() v K(x)] onto a subring of U. By axiom AS 2(b), there is an
element o' € G with v «» v’ such that S coincides on K(v) with S, ,, and
by what precedes it follows that S, ..».o= S » and v ev’. Hence
Sy.vsSe, . are compatible, so that vx — v'x’, whence, by definition,
ox— v'x’. Moreover, if h: R— R is a homomorphism of subrings of
U such that 4,5, ,, S, . are compatible, then the above construction can
be carried out so that 4,5, ,,S. , are compatible, and therefore so that
1Sy ys Ser, xSy, . are compatible, where

t € Tho/k(r) K(R') K(0) K(v) K(2) K(x')>
and hence so that 4,S,, ,,S. . are compatible and tvx— tv'x’. How-
ever, twx € I, xeon, Whence dimytvx =dimgox+ dim A and, similarly,
dimy tv'x’ = dimgo'x’ +dim H. Therefore in case bvx«< v'x’, then
dimg rox = dimgv’x’ and tox & w'x’, and h, Syyx.ox are compatible.
Since Syx e 1S an extension of Sy o, WE conclude that in this case
h, S, o are compatible. This verifies axiom AH 2(a). Now let v,0'¢
G/H, v—v" and x,x € G, x—x'. Fixing elements ve ke V' € Loy
with v — v, and letting V, respectively X, denote the locus of v, respectively x,
over K, we see that (v',x’) € V' x X, and therefore we can fix a K generic
element (v*,x*) of a K component of ¥'xX containing (v',x"). Letting
t € Dyork(om k(e Koy k(xy»  WE  S€€  that (v*, x*,t)—> (v',x',t) and hence
(tv*x*, x*) - (w'x’, x’'), so that ro*x* - 1v'x" and x* - x’, and if both these
specializations are generic, then Sy, yeee; Sy x+ 2T€ compatible. It follows
that mg y(1v*x*) —> mgp(tv'x’), that is, that p*x* —» 0o'x’ (where we have
set o* = 75/ (v*)), and also that if p*x* «» 0’'x’ (so that dimgo*x* =
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dimgv’x’, whence dimyt*x* = dimg'x’ by Lemma 4(d), and there-
fore to*x* < tr'x’) and x* o x’, then S, e, Sp .+ are compatible. This
verifies axiom AH 2(b), and shows that we have a structure on G/H of
homogeneous K space for G.

The canonical mapping ngy G — G/H is, of course, a homomorphism
of homogeneous spaces for the group G. By part (a), it is a pre K-mapping,
and hence it is a K-homomorphism of homogeneous K-spaces.

If f:G—> M is any K-homomorphism of homogeneous K-spaces for G
such that f(x) = f(x") whenever ng,y(x) = 76/ (x") and if g is the mapping
G/H — M such that gomg, =f, then g is a homomorphism of homo-
geneous spaces. By part (a), g is a pre-K-mapping, and hence is a K-homo-
morphism of homogeneous K-spaces. This shows that G/H with ng,y is
a homogeneous K-space quotient of G by H.

(c) Now suppose that / is normal in G. We must verify the axioms
AG 1(a) and (b), AG 2(a)-(d), and AG 3. Consider any x,n€ G/H. For
any yey, K(xp) = K(xy) = K(x) K(y) by part (b) of the theorem. Since y
can (by Section 7, the corollary to Proposition 3) be taken separable and
algebraic over K(y), we infer that every element of K(zp) is separably
algebraic over K(x)K(y). However, for any o € Aut(U/K(x) K(y)), o(zy) =
(5%) (oy) = 1, and therefore (by Section 7, Corollary 2 to Theorem 4) every
element of K(xp) is purely inseparably algebraic over K(z) K(9). Therefore
K(zy) = K(x) K(v). Furthermore, the symmetry mapping of G is an every-
where defined pre-K-mapping of G into G that is its own inverse, and there-
fore K(x~') = K(1(x)) = K(x). Hence, by what we have just shown above,
K(x"'n) < KE"')K(y) = K@) K(y). Thus, we have verified axioms
AG 1(a) and (b). The verification of AG 2(a)~(d) is very similar to that of
AH 2(a) and (b) in the proof of part (b) of the theorem, and will be omitted.
Finally, we saw in the proof of part (a) that if x e Iy, then 7gu(x) €
F¢/myk - Taking x € [0, we easily find that g 4(x) is 2 K-generic element
of a K-component of G/H containing the element 7g,54(1) = 1 of the group
G/H. Since K(x) > K(nG/H(x)) > K, mg,u(x) is regular over K. This verifies
AG 3, and shows that we have a K-group structure on G/H. The canonical
mapping wgy : G — G/H is, of course, a group homomorphism, and we
saw in part (a) that it is a pre-K-mapping. Therefore it is K-homomorphism
of K-groups. If f: G— G’ is a K-homomorphism of K-groups with kernel
containing H, then there is a unique mapping g:G/H — G’ such that
gemgy =f, and g is, of course, a group homomorphism. By part (a), g is
a pre-K-mapping, and therefore is a K-homomorphism of K-groups. This
shows that G/H with ng, is a K-group quotient of G by H.

Corollary 1 Let H and J be K-subgroups of the K-group G with J normal
in G and H > J. Then H|J is a K-subgroup of the K-group G|J, and the canonical
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mapping g : G/H — (GJJ)/(H[J) is a K-isomorphism of homogeneous K-spaces
for G. When H is normal in G (and therefore H|J is normal in G|J), then g
is a K-isomorphism of K-groups.

Proof By Theorem 7, ng,; is a surjective separable K-homomorphism
of K-groups. Its restriction to #/ is a K-homomorphism of K-groups and by
Section 9, Proposition 10(a), the image nq,,{(H) = H/J is a K-subgroup of
G/J (normal in G/J when H is normal in G). It is obviously equal to the K-
group quotient of # by J. Again by Theorem 7, mg/ sy u/s) 1S @ separable
K-homomorphism of homogeneous K-spaces for G/J, and hence also of
homogeneous K-spaces for G (and is a surjective separable K-homomor-
phism of K-groups, when H is normal in G). Therefore w506 18
a surjective separable K-homomorphism G — (G/J)/(H/J) of homogeneous
K-spaces for G (of K-groups, when A is normal). Since it evidently is con-
stant on each right coset of H in G, there is a unique mapping g: G/H —
(G/)/(H/J) such that gemgy = TG nymn°Tgs (this is the canonical
mapping), and by Theorem 7, g is a surjective separable K-homomorphism
of homogeneous K-spaces for G (of K-groups, when H is normal). As g is
evidently injective, it follows from Section 9, Corollaries 4 and 5 to Theorem
5, that g is a K-isomorphism.

Corollary 2 Let H and J be K-subgroups of the K-group G with J normal
in G. Then HJ is a K-subgroup of G, H n J is a normal K-closed subgroup of
H, and the canonical group isomorphism h:H{(Hn J)— HJ|J is a K;-
homomorphism. When H n J happens to be a K-subgroup of H, h is a K-
homomorphism.

Proof By Theorem 7, 75,; is 2 K-homomorphism of K-groups. So is the
inclusion mapping j: H— G, and hence g0/ is too. By Section 9, Proposi-
tion 10(a), the image (rg, /) (H) = ng,,{(H) is a K-subgroup of G/J, and
therefore by Section 9, Theorem 5, the inverse image mg),(mg,, (H)) = HJ
is a K-subgroup of G. This being the case, the inclusion mapping j' : H —
HJ followed by the mapping my,,, : H/— HJ/J is a surjective K-homo-
morphism of K-groups, and its kernel is H n J which is K-closed, that is,
is a normal K;-subgroup of H. It follows by Theorem 7 that the mapping
h:H{(H~JY— HIIJ with hofty,yny = Tyyyo) is 2 Ki-homomorphism
(and is a K-homomorphism when H n J is a K-group).

12 Galois cohomology

For any Galois extension L of the field K, denote the Galois group of L
over K by g(L/K). We recall (see for example Bourbaki [5, Appendix 1IT)
that g(L/K) is a topological group (compact and totally disconnected).
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In the topology (usually called the Krull topology), a fundamental system
of neighborhoods of the unity element | = id, is the set of all groups g(L/E)
with £ a subfield of L that is a Galois extension of K of finite degree. (When
L is of finite degree over K, the Krull topology is discrete.) Given another
Galois extension L' of K, with L' = L, we can consider the mapping
P 8(LIK) —g(L/K) that sends each yeg(L/K) onto its restriction
to L: p, . is a continuous surjective homomorphism with kernel
g(L/L). 1t follows that if € = E(L/K) denotes the set of all Galois extensions
E of K of finite degree with E < L, then the formula y i (pg ()ece
defines a continuous injective homomorphism g(L/K) = X¢.e 9(£/K)
(when the topology on the direct product is the product topology) and a
homeomorphism between g{L/K) and its image. The image is the set of
all families (0¢) € Xgcs §(E/K) such that of, 0, coincide on £, N £, for
all £, E,e@, that is, is the projective limit of the projective system
((8(E/K))gee»(Pe e e ercp) Hence, g(L/K) can be identified with
this projective limit:
g(L/K) = limg(£/K).
o

Consider any pre-K-set A. We recall from Section 2 that each element
y e g(L/K) induces a bijection x> yx of A, onto itself, and we have an
operation of g(L/K) on A, :

g(L/K) x Ay~ A, (1,%) = yx.

We regard A as a topological space with discrete topology and A4, as a sub-
space; then the operation is continuous. An element x € 4, is an invariant of
g(L/K) if and only if x € A,. This set A, of invariants is sometimes called
the Oth cohomology set of (L/K) in A, and is then denoted by H°(L/K, A).
Of course, for all Galois extensions L of K, H°(L/K, A) is one and the same
set A,. It is sometimes called the Otk Galois cohomology set of Kin A and is
then denoted by H°(K, A).

Now let A4 be a K-group G. The set H°(K,G) = G is now a subgroup
of G (called the Oth Galois cohomology group of K in G), as is G, and the
elements of g(L/K) operate on G, as group automorphisms:

y(xy) = (3x) (yy)-

A one-dimensional cocycle of g(L/K) into G is defined as a continuous map-
ping f: g(L/K) - G such that f(g(L/K)) = G, and

o)y =£@) -y (f0)) (v €a(L/K)).

The set of all such cocycles is denoted by Z'(L/K,G). Forany fe ZY(LIK,G),
F(1) =1 and f(3)-y(f(y~ ")) = L. It follows that the kernel of f (the set of all
elements y e g(L/K) with f(y) =1) is an open and closed subgroup of
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g{L/K). Given two cocycles fand g, g is cohomologous to f if there exists an
element x € G, such that g(y) = x™ 1f(p)yx for all y € g(L/K). The relation
g is cohomologous to /7 is an equivalence on Z'(L/K,G). The set of
equivalence classes (called cofomology classes) is called the lst cohomology
set of g(L{K) in G and is denoted by H'(L/K,G). For any element xe G,
the formula y — x~ ' yx defines a one-dimensional cocycle of g(L/K) into G.
The cocycles of this form are called coboundaries, and the set of all of them
is denoted by B'(L/K,G). It consists of the elements of Z'(L/K,G) that
are cohomologous to the cocycle given by the formula y+ 1, and there-
fore is an element of H'(L/K, G). As such, it is denoted by 1 (or by 0 when
the group G is commutative and written additively). Thus, H'(L/K,G)
has a structure of pointed set.

REMARK A pointed set is a set with a distinguished element. A pointed
set is trivial if it has no other element. A homomorphism of a pointed set X
into a pointed set Y is a mapping X — Y that sends the distinguished element
of X onto that of Y. The kerne! of such a homomorphism is the set of elements
of X that are mapped onto the distinguished element of Y. The homomor-
phism is trivial of its kernel is X. A sequence of homomorphisms of pointed
sets is exact if each homomorphism but the last has image equal to the kernel
of the next homomorphism in the sequence.

For any Galois extension L' of K with I’ < L, the formula /" f'ep,. ,

(f'e Z'(L/K,G)) defines a mapping Z'(L/K,G)— Z'(L/K,G). Suppose
f,9'e ZULIK.G). If xeGy and g'(y)=x"'f'()y'x (v eg(L/K))
1hen
gor ) = x" (o LN PrL () x
xHSfop ) Wyx (e g(L/K)).
Conversely, if xe G, and (g'epy )(y) = x7'(fopr )M yx (v € g(L/K)),
then 1 =x"'yx (yeg(L/L)), so that xe G, and ¢g'(y)=x"'/"(y)yx
(" € g(L'/K)). This shows that g’ is cohomologous to f” if and only if
g'op.. . is cohomologous to fep,. ;, so that the mapping Z'(L/K,G)—
Z'(L/K,G) induces an injective homomorphism

pk L H'(LJK,G) - H' (LK, G)

(g'opr )W

It

of pointed sets.
It is now an easy matter to see that

((Hl (E/K, G))EEG , (PZ', E)E, E'c@ E CE)

is an inductive system (€ = €(L/K) denoting, as before, the set of Galois

extensions of K of finite degree that are contained in L). Hence we

may form the inductive limit lim #'(E/K,G). The canonical homo-
—
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morphisms p% : H'(E'/K,G) - lim H'(E/K,G), defined for each E'e G,
—

have the property that pz,op}‘"'g.:p; when E” < E’; because also
pE Lopk. g =ph . when E£” < E’, there exists a unique homomorphism
g lim H'(E/K,G)— H'(L/K,G) such that gop;* =pf , (Ee€€). Now,

—>
for any fe Z'(L/K, G), the kernel of f is an open subgroup of g(L/K) and
therefore contains g(L/E) for some E e €. Evidently f is constant on each
coset of g(L/E) in g(L/K), and from this it follows that if y € g(L/K), then,
for every 7 € g(L/E),

VI = YR =Gy = fGyT Y =Ty = o),

whence f(y) € Gg. It also follows, since g(L/K)/g(L/E)~ g(E/K), that
there is a unique mapping fz: g(E/K) — G such that fropg , =/, and we
easily infer that fr € Z'(E/K,G). This shows that the cohomology class of
f is contained in pf (' (E/K, G)), and therefore (see Bourbaki [4, § I,
Proposition 10]) that g is surjective. On the other hand, if for some Ec €
and two cocycles fg,gr€ Z'(E/K,G) the cocycles fropg  ,geope €
ZY(L/K,G) are cohomologous, then there exists some x& G, such that
9e(pe, . (0) = x Ye(pe, L (7)) yx (v € g(L/K)). Evidently x& Gy for some
E’ €€ with E< F’, and

!]E(PE, E (PE',L(Y))) =x" le(PE, E'(PE*,L(?))) pe.LN)x (y € g(L/K)),

so that (ggepg p)(¥) = x"1feope ) (V) y'x (v € g(E'/K)), that is, the
cocycles fzopg p»gope € Z' (E'/K,G) are cohomologous. This shows
(see Bourbaki, loc. cit.) that g is injective. Thus, the homomorphism g is
an isomorphism, and may be used to identify H'(L/K,G) with lim H'
(E/K, G). —

When the K-group G is commutative, then Z'(L/K, G) is a commutative
group (the product of two one-dimensional cocycles f and g being defined
by the formula (fg)(y) =/(y)g(y)), B'(L/K,G) is a subgroup, and
H'(L/K,G) is the quotient group Z'(L/K,G)/B'(L/K,G). Furthermore
the mappings pf ,, pg*, g above then are homomorphisms of groups, not
merely of pointed sets.

The largest Galois extension of K is its separable closure K. The co-
homology set H(K,/K,G) is called the lst Galois cohomology set of K
in G, and for brevity is usually denoted by H'(K,G). Correspondingly,
ZY(K,/K,G) is denoted by Z'(K,G) and B'(K,/K,G) is denoted by
B'(K,G). As explained above, H' (K, G) contains (a canonically isomorphic
image of) H!(L/K,G) for every Galois extension L of K, and may be re-
garded as the inductive limit of the pointed sets H'(£/K, G) with £ running
over the set of all Galois extensions of K of finite degree.
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Consider 'a K-homomorphism ¢ : G — G’ of K-groups. If fe Z'(K,G),
then, as is easy to verify, pofe Z'(K,G"). If, also, g € Z' (K, G) and x € G_,
then ¢(x) € G, and the condition

ay) = x"fMyx  (yeg(K/K)

implies the condition

(@og)(1) = @) N N(Mye(x)  (yeg(KJ/K)).

Therefore the formula f— @of defines a mapping Z'(K,G)— Z!(K,G")
which induces a mapping

o't HY(K,G) » H'(K,G).

It is obvious that ¢' is a homomorphism of pointed sets (and of groups
when G and G’ are commutative). Also, since ¢(x) € Gy whenever x € Gy,
¢ induces a group homomorphism

0°: H°(K,G) » HY(K,G').

This induced mapping ¢° is defined even when G and G’ are merely pre-
K-sets and ¢ is merely an everywhere defined pre-K-mapping. Further-
more, when each of G and G’ is a pointed pre-K-set (a pre-K-set with a dis-
tinguished element that is rational over K) and ¢ is a K-homomorphism
of pointed pre-K-sets (an everywhere defined pre-K-mapping that maps
the distinguished element of G onto that of G’), then ¢° is a homomorphism
of pointed sets. If we have a second K-homomorphism of K-groups
¥ : G’ = G”, then evidently (fop) = Y'og (i =0,1). Also, (idg)' = idyik,c)-
1t follows that if ¢ is a K-isomorphism, then ¢ is an isomorphism (i = 0, 1).

Starting afresh, let G’ be a K-subgroup of the K-group G and consider
the homogeneous K-space G/G’ of right cosets of G’ in G. Let in denote the
inclusion homomorphism G’ - G and = denote the canonical mapping
g6 - G — G/G'. By Section 7, Corollary to Proposition 3, for any element
1 e (G/G')y there exists an element x &€ Gy, such that n(x) =1, and x is
cvidently unique up to a left factor in G, that is, x can be replaced by any
clement of G, x but by no other element; it is easy to see that the formula
y xyx~! (yeg(K,/K)) defines an element of Z'(K,G’), and that the
cohomology class of this element is independent of the choice of x, that is,
is determined by x. We denote this cohomology class by dx. When x is the
distinguished element of the pointed set G/G’, that is, is the coset G’, we
can take x = 1, so that then 6z = 1. Thus, we have a homomorphism

§: H%K,G/G)— H' (K,G)

of pointed sets.
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Theorem 8 Let G’ be a K-subgroup of the K-group G. Then the sequence
| —— HY(K, G') —"> H(K, G) ——>
H°(K,GIG) —— H'(K,G') "> H'(K, G)

of homomorphisms of pointed sets is exact. When G' is normal in G, then also
the sequence

HY(K,G") —— H'(K, G) —— H'(K, G/G")
of homomorphisms of pointed sets is exact.

Proof It is obvious that the former sequence is exact at H°(K,G’) and
at H%K,G). Let xe H°(K,G/G') = (G/G’)x, and choose an element
x € Gy, with n(x) = x, that is, with x € . Then

dx = 1 <> there exists an x’ € G, such that x' " 'yx" = xyx ™' (y € g(K,/K))
<> there exists an x’ € Gi, such that x'x € G
<> there exists a y € G such that n°y = x.

Therefore the sequence is exact at H°(K,G/G’). Now let /' e H' (K, G")
and fix an £’ € f’ (so that ' € Z' (K, G")). Then

in'(fy =1 <« inof' e BYK,G)
<> there exists an x € Gy, such that f'(y) = xyx™! (y € g(K,/K))
(so that ¢(G'x) = G'x (¢ € Aut(U/K)), whence G'x € (G/G")y)
<> there exists an x € (G/G'), such that §x = /.

Therefore the sequence is exact at H'(K, G’), and hence is exact. Finally,
suppose that G’ is a normal K-subgroup of G, let fe H'(K,G), and fix
fef (so that fe Z' (K, G)). Then

' (f) = 1 = nofe BY(K, G/G)

<> there exists an x € (G/G"), such that (mof)(y) = x " 'yx
(v € 9(K,/K))

<> there exists an x € G_ such that f(y) e G'x™ ' yx,
that is, such that, x/(y)yx ™' € G’ (y € g(K/K))
<> there exists a g  f such that g(g(k,/K)) = Gk,
<> there exists 2 g’ € Z' (K, G’) such that ineg’ € f
<> thereexistsa §’ € H' (K, G’) such that in' (7') = f.

This shows that the second sequence is exact, and completes the proof.
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Corollary Let G’ be a normal K-subgroup of the K-group G, and suppose
that H'(K,G') =1 and H'(K,G|G") = 1. Then H"(K,G) = 1.

Proof By the theorem, the sequence H'(K,G') - H'(K,G) N
H'(K,G/G') is exact. Since H'(K,G/G') = 1, the kernel of n' is H'(K,G).
By exactness, the image of in' is H'(K,G). Since H'(K,G’) = 1, the image
of in' is 1. Hence H'(K,G) = L.

Theorem 9 Let G be a K-group.

(a) Each of the following six conditions is sufficient for HY(K,G) to be
trivial: (1) G=G, (i) G=G,s (i) G=GL®;, (iv) G=SL(n),
(v) K=K, (viy K is finite and G is connected.

(b) If G is commutative, then every element of the commutative group
H'(K, G) has finite order.

Proof Since H' (K, G) is the inductive limit of the pointed sets H' (L/K, G)
with L a Galois extension of K of finite degree, it suffices to prove the cor-
responding statements for the sets H'(L/K, G).

(a) The facts that H'(L/K,G,) =0 and HY(L/K,G,) =1 are the ad-
ditive and multiplicative parts of the well-known generalization of Hilbert’s
“Theorem 90” (for example, see Lang [22, Chapter VIII, § 10, Theorem
7).

In showing that #'(L/K, GL(n)) = 1, we may suppose that X is infinite,
for the finite case comes under (vi). For any fe Z'(L/K, GL(n)), the poly-
nomial det(T, o0 X, /() in LIX,)yequi] is DOt 0, because it does
not vanish when one X, is replaced by 1 and the others are replaced by 0.
Therefore (see, for example, Lang [22, Chapter VIII, § 11, Theorem 19],
or Bourbaki [5, Chapter V, § 10, Theorem 4]) there exists an element
«e L such that this polynomial does not vanish at (ya),equr/k), that is,
such that the matrix x = ¥, yar-f(y) is in GL(n). The computation

yx = Yy v = Ly SG) TG =) x
Y k4

shows that f(y) = xy'x™' (v’ € g(L/K)), whence /' B'(L/K, GL(n)). Hence

H'(L/K,GL{n)) = 1.

The K-homomorphism det: GL{n) - G,, is surjective and separable,
and has kernel SL(#). Hence there is a K-isomorphism ¢ : G, ~ GL(n)/SL(n)
such that godet = @ (=TgL(mysLiny)- Since det evidently maps GL(n) onto
K* = (G,)¢, this implies that = maps GLg(n) onto (GL (n)/SL(m)k. In
other words if, in the first exact sequence of Theorem 8, we take G = GL(n)
and G’ = SL(n), then ° is surjective. By exactness then & is trivial and in'
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is injective. However, H'(K,GL(n) =1, so that in' is trivial. Hence
H'(K,SL{(n)) = 1.

If K =K, then g(K,/K) =1, so that H'(K,G) =1 for any G.

That H'(K,G) =1 whenever K-is finite and G is connected was proved
by Lang. As we shall not need this result, we refer to Exercise 3(c), below.

(b) Suppose that G is commutative, and consider any fe Z'(L/K, G).
Set x = [T,equk, /)" Then xe G, and

vx =1y~ =TT YG) = 56,

where d=[L:K], so that f%e B'(L/K,G). Hence, every element of
H'(L/K, G) has order dividing d.

EXERCISES

1. (a) Show thatif G, and G, are K-groups, then there exists a canonical
isomorphism H'(K,G,xG,) =~ H'(K,G,)x H'(K,G,).

(b) Show that if a K-group G has a normal sequence of K-groups
G=Gy> - 2G, =1 such that H(K,G,_,/G) =1 (1 <k <r), then
HY(K,G)=1. -

(c) Show that whenever G is one of the K-groups D{(n), T(n), T(n, k)
described in Section | then H!(K,G) = I.

2. (Kolchin and Lang [19; Proposition 2]) Let 4 be an algebra over U
with finite basis (e,,...,e,), let K be a field such that ¢;e;€ 3 ¢, <, Ke,
(I<i<n, 1<j<n),and let A* denote the group of invertible elements
of A.

(a) Show that there exists a polynomial D e K[X,...,X,] such that
an element 3 o;¢;€ 4 is in A* if and only if D(x,,...,a,) # 0, and then
define on A* a structure of K-group.

(b) Prove that H'(K,A*)=1 (generalization of Theorem 9(a),
case (iii)).

3. (Lang [20]) Let X be the finite field with g = p® elements, and let ¢
denote the automorphism of U defined by the formula ¢(x) = «?. Let
G be a connected K-group.

(@) Prove that if ye G and x € Ik, then o(x)yx™"' € Ty (. (Hint:
Observe that K(y)K(@(x)yx™")K(x)? = K(y) K(p(x)yx~") K(p(x)) =
K(y) K(x), and use the following well-known fact: If £ is an extension
of a field F of characteristic p, then a necessary and sufficient condition
that E be separably algebraic over F is that FE? = E.)

(b) Prove that if y & G, then there exists a z e G such that 271 (z) = y.
(Hint:  Fix x € I x,,, show by part (a) that ¢ (x)x~* o ex)y 1x1,
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and infer the existence of a v e Aut{U/K(y)) such that t(p(x)x"') =
@(x)y~'x7'. Then set z=1x""'.x and observe that gpot = 10¢.)

{c) Prove that if K, denotes the extension of K of degree d (where
deN, d> 1), then H'(K,/K,G) = 1. (Hint: Let fe ZY(K,/K,G) and
let y denote the restriction of ¢ to K,. Observe that g(K,/K) is cyclic
of order 4 and is generated by y. By part (b) fix z€ G with z7'p(z) =
f(y), and show that f(y") =z '¢"(z) (neN). Set n=4d, infer that
z € Gy,, and conclude that fe B'(K,/K,G).)

(d) Let M be a homogeneous K-space for G. Show that M, # .
(Hint: Fix ve M, ye G with vy = ¢(v), ze G with z7'p(z) = y, and
show that vz e My.)

13 Principal homogeneous K-spaces

The purpose of the present section is to explain the well-known classifi-
cation of principal homogeneous K-spaces for a given K-group G in terms
of the Galois cohomology set /' (K, G). This classification was first obtained
in certain special cases by Chételet [7].

Consider a principal homogeneous K-space M for G. By Section 7, corol-
lary to Proposition 3, My, # ¢J. For any element ve My, the formula
@y ,(y) =v7'yv defines a mapping @, ,: g(K,/K) = G. Letting E, denote
the Galois extension of K generated by K(v), we see for any y e g(K,/K)
that @, , is constant on the neighborhood yg(K,/E,) of y in g(K,/K); hence
®y,,, is continuous. For any 7,7’ € g(Ky/K), @y ,(yy) = v~ y0-3(v™ ' y'v) =
Py, , (1) Py, ,(¥"). Therefore @, e Z' (K, G).

Theorem 10 Let G be a K-group.

(@) For every pair (M,v) such that M is a principal homogeneous K-space
for Gandve My, @, ,c Z'(K,G).

(b) For two such pairs (M,v) and (M',v"), M is K-isomorphic to M’ if
and only if @y, is cohomologous to @y, ..

(c) Each element of Z' (K, G) is @y , for some such pair (M, v).

ReMARK Given a K group G, a one-dimensional cocycle fe Z' (X, G),
and a principal homogeneous K-space M for G, if there exists an element
ve My, such that f=®,, ,, then we say that f splits in M. By the theorem,
every one-dimensional cocycle splits in some principal homogeneous K-
space M for G, and M is unique up to K-isomorphism.

Proof Part (a) is already proved. To prove part (b), first observe that if
F: M=~ M’ is a K-isomorphism, then for every ye g(K,/K), y(F(v)) =
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F(yu):[’(wv”yv)=F(v)v“1yu. Hence if we set x= F(v)~!'v, then
x e Gy, and

Oy (y) = 0"y = Q) - F) T F@) - y(Fo) ™)
=x" LTy = x 71Dy (1) 9,

so that @, , is cohomologous to ®,,. ... Conversely, if @, , is cohomolo-
gous to @, ., that is, if there exists an xe& Gy, such that @, .(y) =
X7 Dy (7)) yx for every y € (K /K), then we define the mapping F: M —
M’ by the formula F(w) = v’ -(vx)” ' w, and evidently F is a K -isomorphism
(indeed, F= 4,94."). For any ¢ € Aut(U/K) the restriction of ¢ to K| is
an element y of g(K,/K), and

a(F(w)) =y’ - y(ox)" 'ow = 'Oy (y) - y(vx)” oW
= vx " Oy, (N yx-y(ex) ow = v'(vx)"Low = F(ow),

so that by Section 9, Corollary 2 to Proposition 9, F is a K-isomorphism.
This proves part (b).

Now let fe Z' (K, G). We shall construct a pair (M, v) such that /= ®,, ,
by a process known as twisting G by the cocycle f.

Because f is a continuous mapping of g(K/K) (Krull topology) into G
(discrete topology), the kernel of f is an open and closed subgroup of
g(K,/K). Since it is closed, the kernel is g(K,/L) for some extension L of K
in K. Since it is open, the kernel contains g(K,/£’) for some Galois exten-
sion E’ of K of finite degree. Hence L < £, so that [L:K] is finite. Letting
E denote the Galois extension of K generate by L, we see that [£:K] is
finite and g(K,/E) is contained in the kernel of f.

Consider any y e g(K,/K). For any y" e g(K,/L), f(3v) =/(y(f(¥)) =
f(y), so that f is constant on the coset yg(K /L), and hence also on the
coset yg(K,/E) = g(K,/E)y. Therefore, for every y € g(K,/E), y(f/(y) =
S YD) =fG'y) = f(3), so that f(y) € G¢. Thus, the image of fis con-
tained in Gg.

For any 0 € Aut(U/K), the restriction of o to K| is an element y € g(K,/K).
We permit ourselves to denote f(y) simply by f(¢). Then f{o)e G; (o€
Aut(U/K)), f(a1) =f(o)o(f(r)) (o,7€ Aut(U/K)), and f(o) =1 if and
only if ¢ € Aut(U/L).

Fix a set M having the same cardinal number as G, fix a bijection
A:G—- M, and set v = A(1). We are going to define on M a structure of
principal homogeneous K-space for G such that v e My, and v™"'yv = f(y)
(y € g(K,/K)). This will prove part (c) and complete the proof of theorem.

For any (w,x)e M x G define wx = A(A""(w)x). It is easy to verify
that wl=w (we M), (wx)y =w(xy) (veM, xe€G, yeG), and wG=M
(we M). For any (w,,w,) e M? define w; 'w, = A" (w;)""A7 ! (w,). Then

A e ke b
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wlwx) = AT W TIATH AN W) = AT W) TIAT  (Wx=x (we M,
x € (). Thus, M is a principal homogeneous space for G.

For any x € G, let g(x) denote the set of all o € Aut(U/K) such that
flo)ax = x. Because of the identity f(g1) =f(0)o(f(7)), it is easy to see
that g(x) is a subgroup of Aut(U/K). If ¢ € g(x), then o(E(x)) = E(ox) =
E(f(g)™'x) = E(x). Therefore the restriction og,, of o to £(x) is an auto-
morphism of E(x) over K. If two elements o,7 € g(x) coincide on E, then
f(o) = f(1) whence ox = tx, and therefore ¢, 7 coincide on E(x). This shows
that the formula ¢ — o, defines a homomorphism of g(x) onto a finite
subgroup g(x)g,, of Aut(E(x)/K).

Given any we M, if we set x = A™'(w), then, since v = A(1), evidently
x =" 'w. We define K(w) to be the field of invariants of the finite group
g(X)g- Then K< K(w) < E(x), K(w) is a finitely generated extension of
K, and K(w) is separable over K whenever E(x) is separable over £. Further-
more, E£(x) is a Galois extension of K(w) of finite degree, and g(x) =
Aut(U/K(w)).

Given any w,weM, we set x=A"'(w), x =A"'(w), and define
w—> w’ to mean that f(a)o‘x—;—» x' for some ¢ € Aut(U/K). Obviously,
W W Iff(a)ax——? x" and f(o')o'x’ — x”, then (because f(0") € Gg)
fla'o)a'ox = f(a') o' (f(o)) a’ox = f(6')o'(f(0) 0X) — fle)o'x —- x".
This shows that if w - w' and w' —- w”, then w—=> w”. Therefore the

relation w—> w on M is a pre-order. We observe that if w - w’, then

trdeg K(w)/K = trdeg E(x)/E = trdeg E(f(0) ox)/E
> trdeg E(x')/E = trdeg K(w')/K,

and that if trdeg K(w)/K = trdeg K(w')/K, then f(a)ax<£—>x’, whence
f(a'l)a—’x'—5>x and w’—E—> w. This shows that if w—> w’ but not
w’——;(—) w, then trdegK(w)/K > trdegK(w')/K. It also shows that if
W< w', then f(a)axT»x’ for some o€ Aut(U/K), so that for some
o' e Aut(U/E), x =a'(f(o)ox)=f(c")d'(f(o)ox)=f(c'0)c’cx. Thus, a
necessary and sufficient condition that W< w’ is that f(o)ox = x' for

some ¢ € Aut(U/K).

Continuing the above notation, let w <> w and fix ¢ € Aut(U/K) with
fle)ox = x'. A straightforward computation shows that og(x)s~! = g(x').
Since a(E(x)) = E(ox) = E(f(6)”'x’) = E(x), this implies that ¢ maps
the field of invariants of g(x) in E(x) onto the field of invariants of g(x)
in E(x’), that is, ¢ restricts to an isomorphism K(w) = K{(w’). Since two
different automorphisms ¢ with f(¢) ox = x’ determine the same left coset
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og(x) and hence coincide on K(w), we can define S;. ,: K(w) = K(w') to
be the isomorphism obtained by restricting o.

If wow,w'eM and w<—>w <> w”, and we set x=A""'(w), x' =
ATY(w), x"=A"'(w"), then there exist o,¢" € Aut(U/K) such that
flo)ox = x" and f(¢")a’x’ = x", and for these,

flo'eyo'ox = f(o') o' (flo)ox) = flo")o'x" = x.
This shows that S¥. ,.oSX , = S% ,. Again, if we M and S: K(w) = K’
is an isomorphism over K, where K’ is an extension of K, then S can be
extended to an element ¢ € Aut(U/K) and we can set x =A"'(w), x' =
flo)ox, and w’' = A(x). Evidently w <> w’, K(w) =K', and SKw=S
To prove that w' is unique, let also w"e M, w <> w", Sk =S5, and

x’ = A"'(w"). There exists a te Aut(U/K) such that f(r)rx=x" and ¢
extends S, and evidently 6™ !t € Aut(U/K(w)) = g(x), so that
x" = f(t)tx = fleo " 1) a(c " tx) = flo)a(fle™ ' v)o™ ' 1x) = flo)ox = X'
and w" = w’. We note for use below that we have shown, for any we M
and any ¢ € Aut(U/K), that ow = A(f(0) a(A™ (w))).

We have now verified that M, with the above definitions of the extensions
K(w), the pre-order w —> w’, and the isomorphisms Sf»,w, satisfies all

the axioms in Section 2 with the possible exception of AS 1(b). However,
G has a finite subset ¥ consisting of an E-generic element of each E-com-
ponent of G, and we may set ® = A(¥). For every xe ¥, E(x) is separable
over E. As remarked above; it follows for every w € ® that K(w) is separable
over K. Given any w’ € M, we can set x’ = A™!(w’) and then find an element
xeV¥ such that x — x'. Setting w= A(x), we find that we ® and

w—> w'. This verifies axiom AS 1(b) and established M as a pre-K-set.

To show that M is a principal homogeneous K-space for the K-group G,
we must verify the appropriate axioms in Section 3.

Consider any (w,y)e MxG, and set x=A""(w). Then E(x) is a
Galois extension of K(w), so that E(x)K{y) is a Galois extension of
K(w) K(y). Because Aut{U/K(w)) = g(x), for every o€ Aut(U/K(w)K(y))
we have f(o)o(xy)=f(6)ox oy =xy, that is, oeg(xy). However,
Alxy) = A(A"'(w)y) =wy, so that g(xy)= Aut(U/K(wy)). Hence
Aut(U/K(w) K(»)) = Aut(U/K(wy)). Since K(wy) = E(xy) = E(x) K(y), this
implies that K(wy)< K(w)K(y). Starting afresh, consider any (w,w')e
M2, and set x=A"!(w), ¥ = A" (w). Then w™'w =x"'x, whence
Kw™'w) < E(x) E(x"), and E(x) E(x’) is a Galois extension of K(w) K(w").
For any o< Aut(U/K(w)K(w')) = Aut(U/K(w)) n Aut(U/K(w)) = g(x) N
g(x’),

cw iw) = a(x"'x) = (f(0) ' x)TH(flo) X)) = xT X = wT WL

ok St 4,
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This implies that K(w™'w’) < K(w) K(w"). Thus, we have verified axioms
AH 1(a) and (b).

Consider any (w,w’,y,y') € M?x G*, and any homomorphism /: R— R’
of subrings of U, and suppose that w <— w and y <—K—>y’, and that the
homomorphisms 4, SX ,, S , are compatible, that is, that there is a homo-
morphism

S:K[RuU KW u K(»)] = K[R v KW u K(y)]

extending 4, SK | SK°. Set x=AT'(w), X' = A™'(w'). Because w <>/,
there exists an element o € Aut{U/K) with f(s)ox = x’, and g is an extension
of SX ,. Since the ring K[RU E(x) u K(»)] is obviously integral over
K[Ru K(w) U K(p)], Scan be extended to a homomorphism of the former,
and the image is evidently K[R' U E(x') u K(y')]; that is, S can be ex-

tended to a homomorphism
T:K[RuUE(X)u K(»)] —» K[R Vv EX)v K(y')]

that maps £(x) onto E(x’). Then T coincides on E(x) with some 7 € Aut(U/K).
Evidently ¢ and t coincide on K{(w). Hence o~ L1 e Aut(U/K(w)) = g(x),
so that

f@tx = flos" ' t)a(o” " tx) = f(e)o(fl6™ ')~ 1x) = flo)ox = X.
The formula o+ 7t~ '« defines a homomorphism.
K[t(R) U E(x') U K(zy)] » K[R v E(x') v K(y)]

that on t(R) coincides with hotgz' (t denoting the restriction R =~ t(R)
of 1), on E(x') coincides with idg . = SE ., and on K(ty) coincides with
Sy ., In particular, SE . and S, are compatible, so that (fDx,y) =
(x',ty) - (x',y), whence f(t)t(xy) rd x'y’, and therefore wy ——> wy'.
Furthermore, if wy > w'y', then f(r)t(xy) > x'y’, and hetz' and
SE, siexy are compatible, so that 4 and SE, fierewen)® TEy) 7€ COM=
patible (tg., denoting the restriction E(xy)~ E{t(xp)) = E(f(x)1(x)))
of 7). However, SE,. /(uxy Can be extended to some p e Aut(U/£), and
F(p7) pr(xy) = f(p) pf (1) pr (xy) = L-p(f(©)T(x)) = xy". It follows that pt
(and hence also SE, /() uxy°TEuy) €Xtends SE . wy and therefore 4 and
SX, ., are compatible. This verifies axiom AH 2(a). '
Now consider any (w,,wz w,’,w,’)e M* and any homomorphism
h: R— R’ of subrings of U, and suppose that w, <> w,’ and wy <> wy',
and that 4, SX. . ,SX. ,, are compatible; that is, that there exists a homo-

morphism
S:K[RuU K(w,) u K(wy)] = K[R v K(w,) v K(w,")]
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that extends 4, SX. , ,SK. . Set x,=A"'(w)and x; = A" (w)) (i=1,2).
Because w; <> w/, there exists a ¢; € Aut(U/K) such that f{o))o;x; = x/,
and o; is an extension of SX. , . Since K[Ru E(x,) U E(x,)] is integral

over K[R U K(w,) u K(w;)], S can be extended to a homomorphism
T:K[RUE(x) v E(x;)] = K[R U E(x;") v E(x,)]

that maps E(x;) onto E(x;). Then T coincides on E(x;) with some ;¢
Aut(U/K), and o; and 7, coincide on K(w;), so that ¢, ' t; € Aut(U/K(w)) =
g(x;) and

x; = flo)o,x, =f(f7.’)f7.-(f(0'i—lfi)°'i"Tixi) =ft)ux; = Ti(f(fi—l)—lx,-)-

It follows that (f(z7 )™ 'x,,f(z; 9 7 'x,) —> (x/,x,/). Since 7! and 73
evidently coincide on E, f(z; ') = f(r; ). Hence we conclude that

wilw, = x7'x; = (f(Tx_l)—lxl)—l(f(fz—l)—lxz)_,(’x,1~1x2/ = wilwy,
and that if wi'w, <> w\"'w,’ then h and .-, u, -1, are compatible.
This verifies axiom AH 2(c).

Next, let (w,w’,y,y)e M*x G* and suppose that w —~K—> W, y—>y.
Set x = A™'(w), ¥ = A~'(w'). By definition, there exists a aeAut(KU/K)
with f{(o) ox —> x'. Set x* = f(o)ox and w* = A(x*), so that w > w*.
Let X* denote the locus of x* over £ and Y denote the locus of y over K.
Evidently X*xY is an E-subset of G* containing (x’,’). Let (x,,y,) be

an E-generic element of an E-component of X*x Y that contains (x',y).
Then (xl,yl)—8>(x’,y’), and also x* X YV SO that there
exists a p e Aut(U/E) such that x, = px* = p(f(0) ox) = f(p) p(f(o) ox) =
f(po) pox. Set y* = p~'y,; of course, y <y It is clear that (x,y,) are

quasi-independent over K, so that x*, y* are too, and therefore w*, y* are
quasi-independent over K. Since (px*, py*) = (x,y,) — (x',y"), we know

that

(ox*, py*, p(x*y*)) —> (¥, ¥, x'y). (*)
Hence p(x*y*) —> Xy, s0 that (because f(p) = 1, and x*y* = A~ (w*y*)
and X'y =A"1(wy)) wry* —> W' Furthermore, if w*y* <> w'y/
y* <—K—>y', then p(x*y*) <> x'y, py* >, and therefore by (%)
SE . sxeyys Sy oy are compatible. Also, then there exists a t e Aut(U/E)

suFf:h that x'y" = p(x*y*), and tp is an extension of S wey, SO that
Sy, xop 18, 100, As we may evidently write
E — E E
Sx’y',x'y‘ = Sx'y‘,p(x‘y') O D p(xry%), xtys and S}f,y‘ = Sf, oy © Doyt yr

YT TR

<
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we infer that the two isomorphisms Sf,y,_x.y.,SyF:,y, are compatible. As they
are extensions respectively of Sf»y»_w.y.,Sy'f,y., these are compatible too.
This verifies axiom AH 2(b).

Finally, let (w,,w,,w;,w;,)e M* and suppose that w, —>w/’,
wy —> wy'. For each i (i=1,2), set x;=A""(w), x/ =A"'(w/). Then
there exists a a; € Aut(U/K) such that f(s;) 0, x; - x;/. Let X, denote the
locus of f(o))o;x; over E. Let (x,* x,*) be an E-generic element of an E-
component of X, x X, that contains (x,’,x;). Set w*=A(x*). Then
flo) o x; <—E—>xi*, so that w; <> w*. Also, x *, x,* are quasi-independent
over K, so that w,* w,* are quasi-independent over K. Now (x;*, x,*) —

(x,',x;'), 50 that xt ™ x,* —> x\"'x,’. However,

*—1 * -1 *\—1laA—1 *y . *x—1 *
wiTlwy* = AT (w ) TIAT (W) = x0T,
and similarly x"'x,’ = wj " 'w,’. Therefore wi™'wy* —> w, " 'w,’. This

verifies AH 2(d), and shows that M is a principal homogeneous K-space
for the K-group G.

We now show that ve My, and that v™'yv =f(y) (v €. (KJ/K)). We
have already remarked that this will complete the proof of the theorem.
Recall that by definition v = A(1), whence K(v) = E(1}=E, so that
ve Mg,. As noted above, for any we M and any o€ Aut(U/K), ow =
A(f(e)a(A™" (w))). Therefore, for every o € Aut(U/K),

v lov = vTIA(f(0) g (A7) = v A(fo) = A @)~ o) = f(o),
whence vy = f(y) (y € g{K/K)).

Corollary Let P(G) denote the set of K-isomorphism classes of principal
homogeneous K-spaces for the K-group G. There exists a bijection 2 «(G)~
H'(K,G) that, for each principal homogeneous K-space M for G and any
ve My,, sends the K-isomorphism class of M to the cohomology class of
Dy, -

14 Holomorphicity at a specialization

Let M and N be homogeneous K-spaces for K-groups G and H, respectively.

If v > v is a specialization over K of elements of M, and we choose
(5,1) € Tgox tojk(ry and (5',2) € Tgox grojkvr» then (v,5,8) = (v',s',t"), whence
(vs,5,,t) = (U's’,5',t'). Since evidently vs < v's’, s> 8, t +> t', there exists a
unique homomorphism

S: K[K(vs) v K(s) v K()] — K[K(v's") v K(s") v K(t)]
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extending S, 4, Sy 5, S ;. FOr any surjective ring homomorphism F: R—
R’ with prime kernel, say p, we denote the local ring R, by o, and denote
the induced homomorphism of oy into the field of quotients of R’ by F;
this F is always surjective. In particular, we have the homomorphism

S: og - K@',s,t).

The properties of S, og, and S do not depend on the choice of (s,z) and
(s',¢’) in the sense that if S, is the analogous homomorphism obtained by
choosing (s,,¢,) and (s,’,¢,’) instead of (s,#) and (s’,¢'), then the unique
isomorphism

X: K[K(vs) u K(s) v K(1)] = K[K(vs,) v K(s;) v K(2))]
extending S, uss Ss,.s» S, and the unique isomorphism
X' K[K@'s') u K(s') v K(t")] = K[K(v's,") v K(s,") v K(1,")]

extending S,y >S5, .5 Sey, ¢ N2VE the property that S;oX = X'oS, and
X,X’ induce isomorphisms Y:og=xog, Y :K@, s, )= K@, s/ 1),
respectively, such that S, oY = Y’oS. For this reason we permit ourselves
to call S (respectively S) the homomorphism (respectively local homo-
morphism) of v — v’ relative to H.

Continuing, consider any element w &€ Ny,,. If'w has the property that
K(wt) = og, then § maps K(wt) isomorphically onto a subfield of K(v',5",1),
and, by axiom AS 2(b) and the fact that N is a homogeneous space for
H, there is a unique element-w’ € N such that wt — w’t’ and S, ,, coincides
with S on K(wt). When w has this property, then we say that w is holomorphic
at v—v', and call w' the value of w at v - v'.

The isomorphism Y :og ~ og, introduced above extends to an isomor-
phism. ¥: K(v,5,1) = K(v,5,,¢,) that extends idg.,,S;, s, S, and hence
extends idg,,, too. Evidently wt «> wt, and Y extends Sot,, we- 1t follows that
the condition that w be holomorphic at v — v’ is independent of the choice
of (s,¢) and (s',¢"), and that when this condition is satisfied, then w’, the
value of w at v — ¢/, is independent of this choice.

It does seem, however, that the condition and, when it is satisfied, the
value of w at v — v’ are relative notions, depending on the containing homo-
geneous K-spaces M and N. The following lemma shows that in a certain
precise sense they are not. We first observe that if G, is 2 K-subgroup of G
and M, is a K-subset of M such that some element v, € M, has the property
rhat v, Gy = M, then every element of M, has this property and M, has
a natural structure of homogeneous K-space for G,.

Lemma 5 Let G, be a K-subgroup of G, M, be a K-subset of M, and suppose
that My is a homogeneous K-space for G, as described above. Similarly, let
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H, be a K-subgroup of H, N, be a K-subset of N, and suppose that Ny is a
homogeneous K-space for Hy. Let v,v' € Mo and v > ', and let we (Ny)go)-
A necessary and sufficient condition that w be holomorphic at v —v’ relative
to M and N is that w be holomorphic at v — v’ relative to My and N,.

Proof Fix (s,50,1) € LgouGoox Hork(ny and (5,5, 1) € Tgoxgoox Hosk(vys
Then there exists a homomorphism

S*: K[K(vsg,5) w K(sq,5) v K(1)] - K[K(v'sy',5") K(sy',s") u K(t")]

extending S(,,,So,’s,),(,,ws),S(SO.YS.),(SO,S),S,»’,. This S* provides, by restric-
tion, two homomorphisms

S 1 K[K(vse) w K(so) U K(1)] = K[K(v'se") v K(so) v K(1))],
S, K[K(vses)u K(sg8) v K(1)] — K[KW'sy's)y v K(so'sy v K(1)].

Obviously og, < 05. and o5, < 05.. We claim that every element o € K(wt) that
is in vg. is also in og, and og,. Indeed, it is easy to see that the condition « € 0.
implies that o = B/y, where B,y € K[K(so) v K(vsos) U K(sgs) v K(1)] and
S*(y) # 0. Fixing a basis (e;) of K(so) over K, we can write 8 =72 B:e;,
y=TY7ye, where B,y € K[K(vsos)w K(sos) v K(1)] for all i and
S*(y) # 0 for some i, so that ¥ (ay;—f)e = 0. Since (e;) evidently is
linearly independent over K(v,ssq,t), it follows when o e K(wt) < K(v,8)
that ay;— f; = 0 for all i, whence « € o5, A similar argument, expressing «
as a quotient of two elements of K[K(s)u K(vsy) U K(so) w K(1)] and
using a basis of K(s) over K, shows that « € og,. This establishes the claim.
It follows that the three conditions
K(wt) € ogs, K(wt) < og,, K(wt) c og,

are equivalent. Since (so5,1) € Tgox ojx(sy and (5’5", t") € Tgax Hojk(oy» this
shows that w is holomorphic at v — v’ relative to M and N if and only if w
is holomorphic at v — v’ relative to M, and N.

An entirely similar argument takes care of the case M and N,. Finally,
the two cases together yield the general case M, and No.

Lemma 6 Let M and N be homogeneous K-spaces for the K-groups G and
H, respectively. Let ve M and let V denote the locus of v over K. Let w € Ni)-

(@) Ifv'eV and w is holomorphic at v— V', and if w' denotes the value
of wat v—v', then w' € N and w' is the unique element of N such that
(0, w) = (0", W).

(b) If v' €Ty, then w is holomorphic at v — v

() Ifv,v"eVandv =0, and if wis holomorphic at v—v", };tﬂm
holomorphic at v—v', the value w' of w at v— v is holomorphiqi fﬂv”\
and the value of w at v —v" equals the value of w' at v" —>v". /'j pord &




290 V  ALGEBRAIC GROUPS

(d) If 0 is a K-open subset of N, and € denotes the set of elements v' eV
such that w is holomorphic at ¢ — v' and the value of w at v—v" is in L', then
0 is K-open in'V.

Proof (a) Using our previous notation, we have the homomorphisms
S and S. Because K(w'r') = S(K(wt)) < S(og) = K(¢',5',1"), we inrfer that
K(w') < K(v',s',1"). Because (s, ") can be replaced by any element (s,", ;") €
Tooxmorkiery, We conclude that K(w) < K(r"), whence w' € Ng,,. There-
fore (5',1') € Tgox ok, wry 30 that (U's", w't’) = (v, w)(s', ") € Dy x n,x, Whence
(vs, wt) e ('s’, w't’). Since also (s,1) < (s',1'), and Since Si.¢ iy tus, we)
and Sy, ) (s, are compatible (they have the common extension S), we'infer

that
(vs, wt)(s,0) ™} = ('s', W),
that is, that (s, w) — (v',w"). If wy' is any element of N such that (v, w)—

(v', wy"), we can choose (s',1) above to be in Tgox jojk(er,w.wey- 1hen there
exists a homomorphism

T: K[K(vs) v K(wt) U K(5) v K(1)]
- K[K('s") U K(wo't') U K(s") W K(1)]

that extends the four isomorphisms Sy.c s, Sworr.wes Sss0 Sr,¢» and this T
evidently extends S. Since K(wt)< og, T and S coincide on K(wt) so that
wo't' = w't’ and wy' = w’. Therefore w’ is unique.

(b) If v v, then S is an isomorphism and o5 = K(v,s,t), so that
K(wt) = K(w,t) < og.

(c) Extending our familiar notation in a self-explanatory way, we have
the consecutive surjective homomorphisms

K[K(vs) u K(s) u K(#)] 2 K[K@'s) v K(s") v K(t)]
=2 K[K@'s") v K(s") © K(t)].
These can be embedded in a commutative diagram

KIK(s) U K(s) U K(6)] — K[K('s) © K() v K(t)] s KIK('s") v K(s") v K(¢)]

3

Og-.s —_— g —  K(@",s".1")
l 3 ’ LY
og —_ K@, s, t).

Here all the vertical arrows are inclusions and all the horizontal arrows are
surjective. If w is holomorphic at v—v”, then K(wf)< 05,5 < 05, SO that

ol s s st et ¢ b e
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w is holomorphic at v — ¢, and if we denote its value there by w’, then
K(w't’) = S(K(wt)) < o5, so that w’ is holomorphic at »'—¢". Denoting
its value there by w” we see that (v, w)— (v, w) = (", w"), s0 that w” is the
value of w at v > v".

(d) If veV, vel, v >v", then part (c) shows that v" e @. Consider
any K-irreducible subset ¥’ of ¥ with V' n O # . We shall show that
V' 0 has a nonempty subset that is K-open in }'. By Section 7, Proposi-
tion 4, this will imply that @ is K-open in ¥ and will complete the proof of
the lemma.

Fix an element v’ € I, . By what we have just seen, v'€ 0; that is, w is
holomorphic at v-»v" and its value w’ there is in @’, so that K(wt) < og
(where S is the homomorphism of v—v’ relative to H). Fix elements
ZiyoorCm€ K(wt) such that Ky, ..., = K(wt) and elements t,...,7, €
K(t) such that K(t,...,1,) = K(¢). Since S maps K{wt) and K(r) isomor-
phically onto K(w't’) and K@), K&/, ..., n) = K(w't') and K(t/, LT =
K(t'), where, in general, we write {' = §(¢) for any element ¢ € og. We may
suppose that (r,’,...,7,/) is a transcendence basis of K(v's',s’,t’) over
K({'s',s',w't"). Here

d = diMyg ¢ weyt’ = Mgy oyt = dimg ¢y W't = dim H — dimN.

Then, for each index j with d<j<n, t} is algebraic over K(v's',s")

&yl T 1), say of degree e;, so that there exist polynomials

som

P, € KIK(Ws) U K6 [Z1 - Zy Tioon Tl (0<e<0)
With Pjg (0, oo L's T1's -, T4) # O such that

Z Pje(Cl”""Cm,v Tl/:'--”rd')‘rj8 = 0
0<ec<ej
Since K(wt) = pg there exist elements £y, &, ....¢m € K[K(vs) u K(s) v K(1)]
with &, # 0 such that {;=¢/ (I1<i<m). Setting h; = degz,, .z, Pje-
and ;=P (Lo s lms oo Ta) (@<JS n), and then setting m =

i

EoTayy - - Ty, WE se€ that e K[K(vs) u K(s) u K(¢)] and =’ # 0.

Consider any element v” € ¥’ and let S’ denote the homomorphism of
v’ — v" relative to H. Then S and $’ can be embedded in the commutative
diagram displayed in the proof of part (c). Evidently S’oS is the homo-
morphism of v—v” relative to H. For any element &€ o5, we set &7 =
(5'08)(&) = S(&). If v” has the property that n” # 0, then {; = &;/Eg € 055
(1gigm), and 1} is algebraic over K(v"s”,s")({{,...»Cm» Ty s Th)
(d < j < n) so that K(v"s",s",1") is an algebraic extension of

K0S, SV L oo Gl T eves Ta)-
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It follows that then
trdeg K(({, ..., (/K = tedeg K(v"s", ") ({7, .., L)/ K (05", s")
= trdeg K(v"s",s",t"}K(v"s",s")
—trdeg K(v's", s", tYK@"s", sV (L, -, L
>dimH—-d=dmN
= trdeg K(wt)/K = trdeg K({y, ..., L)/ K,

so that S5 maps K[{,,...,{.] isomorphically and K(wt) = K({,,...,{n) <
os.s and w is holomorphic at v — v”. Letting w” denote the value of w at
v—v" (and hence also the value of w' at v’ —v”), we see that the middle
line of the commutative diagram mentioned above restricts to a sequence
of homomorphisms

K[K(wr) U K(t)] » K[KW't) U K(t')] » K[K(w't") U K(t")].

By Section 6, Proposition 2(a), there exists a nonempty set b<
K[K(wt) 0 K(t)] such that w” ¢ 0’ if and only if f” =0 for every feb.
Since w’ € @, we must have B’ # 0 for some feb. This shows that there
exists an element f§ € og.,s with §’ % O such that if v” has the property that
B” # 0 (in addition to the property that n” # 0),.then v" € 0.

Write 8 = n,/no with 70,77, € K[K(vs) v K(s) v K{#)] and ny" # 0. Then
n, #0, and we see that if the element v” € ¥” has the property that
n'nant #0, then v" e @._Now, we can write e, = 2%y, with o€
K[K(vs) U K(s)] and y, € K(¢) for every k and the elements y, linearly in-
dependent over K. Since K(v”s”,s”) and K(¢") are linearly disjoint over K,
we infer that n”pgn’ = 0 if and only if a = O for every k, that is (in the lan-
guage of Section 6), each «, vanishes at v”. Referring to Section 6, Proposi-
tion 2(b), we see that this happens if and only if v” is an element of a certain
K-closed subset F of V. The set V' n (V—F) is K-open in V’ and is non-
empty because it contains v’. As remarked above, this completes the proof
of the lemma.

The following lemma shows how holomorphicity at a specialization
depends on the ground field.

Lemma 7 Let M and N be homogeneous K-spaces for the K-groups G and H,
respectively, and let L be an extension of K. Let ve M, v' e M, we Ng(,,
and suppose that v - v.

(@) If w is holomorphic at v —> v', then w is holomorphic at v—>0,

and w has the same value at v - v’ as atv - v.

kb ar
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(b) If wis holomorphic at v - v, and K(v) and L are linearly disjoint
over K, then w is holomorphic at v — v,

ReMARK The linear disjointness condition in part (b) can not be weakened
to algebraic disjointness. See Exercise 1 below.

Proof Fix (s,t) € Igoxnony and (s',¢) € lgox gosr(y- The homomor-
phism
SL:L[L{vs) u L(s) v L(1)] = L[L(v's") v L(s") v L(t"]

of v—> v’ relative to A is an extension of the homomorphism

SK: K[K@s)u K(s) u K()] = K[K('s") v K(s) U K(t)]
of v — v’ relative to H.

If w is holomorphic at v - v’, then K(wt) < ogx < o5, whence
L[K(wt)] < os.. Therefore S* restricts to a homomorphism L[K(wr)] <
L[K(w't'}] over L, and since

trdeg L(K(wt))/L = dim,wt = dimN = dim w't’ = trdeg L(K(w't")/L
(because wt,w't’ e I,,), this homomorphism is an isomorphism, so that
L(wt) < og. and w is holomorphic at v—> v’. Furthermore, when w’
denotes the value of w at v - v’, then (v, w) - ', w'), so that (v, w) -
(v, w"), and hence (by Lemma 6(a)) w' is the value of w at v - v.

Conversely, if w is holomorphic at v—/> v', then K(wt) < L(wt) < oge,

so that every element { & K(wt) can be expressed in the form { = {/n with
E,neL[L(vs)u L(s) v L(#)] and St(n) #0. Because L(vs), respectively
L(s), respectively L(t), is the field of quotients of L[K(vs)], respectively
L[K(s)], respectively L[K(¢)], we may even suppose that

&,n € L[K(vs) v K(s) v K()].
Then we can write & = Y. L&, and n =3 A, n,, where

& M € K[K(vs) v K(s) v K(1)]
and A e L for every k, the elements A, are linearly independent over K,
and S¥(n,) # 0 for some k. Hence ¥ 4,(7,{—&) =n{—&=0. When K(v)
and L are linearly disjoint over K, then so too are K(vs,s,¢) and L, and there-

fore m, L —& =0 for every k, whence { € ogx. Thus, K(wf) < os« and w is
holomorphic at » —- v.

We conclude this section with the easy observation that, under the hypoth-
esis of Lemma 7, if w is holomorphic at v —-> v’ and its value there is denoted
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by w’, and if ¢ is any automorphism of U over K, then ow is holomorphic
at gv - ov’ and its value there is ow'.
g

EXERCISE

1. Let K=Q and L =Q(2"3,e2"%), where i®=~1. Let ¥ be the K-
irreducible K-subset of the affine plane G,? defined by the equation
X?=2X,"=0. Let (v;,05)el, k=T, and set w=v?v,€G,.
(Regard G,2 and G, as the regular K-spaces for the K-groups G,* and
G,, respectively.) Show that w is holomorphic at (v,,v,) - (0,0) but

not at (v,,v,) - (0,0).

15 K-Mappings

Let 4 and B be K-sets. Consider pre-K-mappings of 4 into B (see Section 2).
Call two such pre-K-mappings K-equivalent if they coincide on I,,. This
defines an equivalence relation on the set of all pre-K-mappings of A4 into B.

Call a pre-K-mapping of 4 into B K-minimal if its domain of definition
is T};,x. Since the restriction to I, of any pre-K-mapping of A4 into B is
itself a pre-K-mapping of A4 into B, each K-equivalence class has a unique
K-minimal representative.

Let L be an extension of K. It is easy to verify that a K-minimal pre-K-
mapping f, of A into B is-also a pre-L-mapping of 4 into B. Associating to
each K-equivalence class of pre-K-mappings of A into B the L-equivalence
class of its K-minimal representative, we obtain a canonical injection of
the set of K-equivalence classes into the set of L-equivalence classes.

The K,-components of A are irreducible, that is, the components of A
are its K -components. For each component ¥V of 4 choose an element
vy € [ x,. Given a pre-K-mapping f, of A into B, it is easy to see that the
following two conditions on an element vy € 4 are equivalent.

(i) For every velx with v > Vo, fo(v) is holomorphic at v—> Vo
and its value there is independent of v.

(ity For every component V of A4 that contains vy, fy(v,) is holomorphic
at vy —> v and its value there is independent of V.

The set of all elements v’ € 4 such that every element v, € A with v, - v’

satisfles these equivalent conditions will be called the habitar of f,. It is
obvious that K-equivalent pre-K-mappings have the same habitat, so that
we may speak of the habitat of a K-equivalence class. It is easy to see, with
the help of Section 14, Lemma 7, that the habitat of a K-equivalence class

-
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of pre-K-mappings is also the habitat of the associated L-equivalence class
of pre-L-mappings. When A is irreducible and v e I, the habitat of f,
is the set of all elements v’ € A such that f;(v) is holomorphic at v - v'.

If Ag is the habitat of a pre-K-mapping f, of 4 into B, then I, = A,.
For any automorphism o € Aut(U/K), 64 = A, as V runs over the set of
components of 4 so does oV, o(L,,¢) = I, and evidently £, (ov) = o(f,(v))
for every ve I, . It follows from the definition, and the observation at
the end of Section 14, that ¢4, = A,.

Definition Let A and B be K-sets. A K-mapping of A into B is a pre-K-
mapping f of 4 into B with the following two properties:

(a) The domain of definition of fis its habitat.
(b) 1If v’ is in the domain of definition of f, and v e I;x and v,

then f(v') is the value of f(v) at v — v.

Remark This notion is not quite analogous to the notion of rational
mapping defined over K of one algebraic set defined over K into another,
as used in algebraic geometry. In general, such a rational mapping is a pre-
K-mapping and its domain of holomorphicity is a subset of its habitat.
However, a point in the habitat can fail to be in the domain of holomor-
phicity only if the point is in at least two components of the algebraic set 4
(see Section 16, Exercise 1). A method of introducing an analog of the latter
notion into the present theory is treated in Section 16, Exercise 2.

It is clear that K-mappings of A into B that are K-equivalent are identical.
On the other hand, if f, is any pre-K-mapping of 4 into B and A, denotes
its habitat, we can define a mapping f: A, — B by the formula

f(v") = the value of f(v) at v — v’ whenvely,, candv — v.

We shall show that fis a K-mapping of 4 into B that is K-equivalent to f;.
It evidently suffices to show that f is a pre-K-mapping that coincides with

Soon [y .
Since I, x = 4, and, for any ve T, the value of f;(v) at v——>vis

obviously f; (), f coincides with f, on T, k.
If v’ € A,, then by Section 14, Lemma 6(a), K(f(v")) = K,(v"). However,
for any ¢ € Aut(U/K) and for ve I, x with v —— v, we have ov’ € 44 and

ove T, and ov - ov', so that f(gv’) is the value of fy(ov) at ov —>ov'.

Since

(00.f5(0v)) = (o0, 0 (/,(0)) = (0. o)) —> o (v'.f @) = (ov', 0 (f ®)),
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we infer from Section 14, Lemma 6(a), that f(ov') = o(f(v")). In particular,
if oeAut(U/K()), then o(f(v))=/('). Since K@) c K(v,f0)) <
K,(v') and hence K(v'.f(v')) is separable over K(v"), it follows that
K(f) = K@)

Ifvy€ A, V' € Ay, ¥ - v/, then the locus of v, over K contains v'. Some
K,-component of this locus contains v, and therefore a K -generic
element v, of this K -component has the property that v, — v and

v, = ov, for some oe& Aut(U/K), whence vy —— ov’. Evidently v, € Ay,
so that vy € 04, = A,. Fixing an element v € Ix with v —> Vo, We there-

fore see from Section 14, Lemma 6(c) and (a), that
(00,/(00) ——> (00, f(0") = (00", 3 (f(),
whence
(V. f(vg) —— (v'.f@))  and  flvo) —> f(v).

If vy,v" € Ag and vy s v, then, by what we have just seen, (v0,/(vo)) >

(v, f(v") so that S, ,, and Sy) s ar€ compatible. Since K(vg) = K(f(vo))
by the above, S, ,, is an extension of Sy, r(woy- his completes the proof
that f is a K-mapping of 4 into B K-equivalent to fo-

It follows from what we have shown that every K-equivalence class of
pre-K-mappings of A into B has a unique representative that is a K-mapping
of A into B. T

Since the habitat of a K equivalence class of pre K-mappings is the habitat
of the associated L-equivalence class of pre-L-mappings, we see with the
help of Section 14, Lemma 7(a), that every K-mapping of A into B is an L-
mapping of A into B.

If a K-mapping f of 4 into B is defined at every element of a subset Z of
A, we say that [ is defined on . We denote the set of all K-mappings of A4
into B by M (4, B), and denote the set of all K-mappings of 4 into B that
are defined at v (respectively defined on I) by Mg (4, B) (respectively
9'RK, Z(A’ B))

Proposition 15 Let A and B be K-sets, let fe M (A, B), let Ay denote the
domain of definition of f, and let C denote the smallest closed subset of B that
contains f(A,)

(@) A, is K-open and dense in A.

(b) fis continuous and K-continuous.

() Cis a K-subset of B.

(d) f(A) contains a K-open dense subset of C.

o
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Proof (a) For each component ¥ of 4, fix an element vy €Ty g, Let
F, denote the set of elements v € V such that f(vy) is not holomorphic at
vy o> U By Section 14, Lemma 6(d), F, is K-closed for each V, and there-

fore the set F =), Fy is too. Evidently F n A, = .

For each pair (V,V”’) of distinct components of 4 and each component
X of VAV’ with X & F, fix an element vy € [y,x,. Then vy ¢ F, so that
f(vy,) is holomorphic at vy = Ux and f(v,.) is holomorphic at v,. = Ux
Let E, ,. denote the union of all those components X of Vn V' with
X & F such that the value of f{(v,) at vy > Ux does not equal the value

of f(vy) at vy ——>vx- Set E=J .y Ev,v-- Then E is K -closed and
En Ao = @. ThuS, Ao < A—(FU E)

Consider any ve A—(Fu E) and any voe A with v, -V Obviously
vo € A—(F U E). If v € V for a particular component V/ of A, then, because
v, ¢ F, f(v,) is holomorphic at v, — v, and we may denote its value there
by wo . If also v, e V', where V' is another component of A4, then v, e X
for some component X of ¥ n V', and

vy ——> Uy ——> Vg, vy, ——> Ux ———> Uq.
Ko Ko K« K.

Because vy ¢ F, we have X ¢ F and because vy ¢ £, the value of f(vy) at
vy — > Ux equals the value of f(v,) at vy - Ux 1t follows by Section 14,

Lemma 6(c), that wy , = wp,y-, that is, that wo v is independent of ¥, whence
vE Ao-

This shows that A4, = A—(F U E), so that A, is K,-open and dense in A4.
Since A, = A, (0 € Aut(U/K)), A, is K-open in A.

(b) Let ¢’ be any K-open subset of B. For any component V/ of A, let
0, denote the set of all elements v eV such that f(vy) is holomorphic at
by >V and its value there is in @. Then ¥V N f (@) = Oy N A,, so that

by Section 14, Lemma 6(d), ¥ nf~'(®) is K-open in V' n A,. However,
evidently /71 (0") = Ag— Uy (¥ 0 Ao =V ~ f71(0)), and therefore /= ")
is K,-open in Ay (and hence also in A). Since g4, = Ao and o0’ = @ and
o (f()) = f(av) (v € Ao) for every o € Aut(U/K), we infer that o(f~'(0")) =
f7H(®) for every such o, so that f~ (@) is K-open in A,. This shows that
f is K-continuous. Since f& M, (4, B) for every extension L of K, fis L-
continuous for every L. Hence f is continuous.

(c) If o eAut(U/K), then oA, = A, so that o(f(4)) = f(A), whence
oC = C. Therefore C is K-closed. Letting V,...,V,, be the K-components
of A, and then fixing v; € I, and setting /¥; equal to the locus of f(v;) over
K (1 <i<m), weseethat W, u-—-UW,isa K-subset of B. Since C is K-
closed and contains each f(v;), C contains each W;. On the other hand, if
vedy NV, then v;— v and f(v;)) - f(v), whence f(v) e W,. Hence f(4,) =
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W,u--uW,,sothat CcW,u-uW,. Thus, C=W, u-u W, and
C is a K-subset of B.

(d) Continuing the same notation, and fixing ¢ € Fyo;k s, 5 € Toorkienn
(where G, respectively £, is the K-group for which there is a homogeneous
K-space containing A, respectively B), we know by Section 7, Proposition 3,
that there exists a nonzero element ae K[K(f(v)r)w K(1)] such
that, for every homomorphism /r: K[K(f(v)t) v K®]-U over K
with h(x) #0, there exists an element v'e ¥, n A, such that when s'€
Lok oo oy ik ke » then A, Sy oo, Se s are compatible. For any w' € W,
and '€ Iy k(w, We have the homomorphism /. K[K(fv)r)u K]~
K[K(w't) U K(t')] extending S,i. > S, By what we have just said,
if A, (x)#0, then there is an element v’ € V; n A, such that w' =f(v) €
f(V: 0 Ag). By Section 6, Proposition 2(b), the set of elements w’ € W; with
h,,(«) # 0 is K-open in W;, and as it obviously contains w; it is dense in W;.
Thus, for each i, f(A4,) N W, contains a K-open dense subset of W, so that
f(A,) contains a K-open dense subset of C. This completes the proof of the
proposition.

We call the set C in Proposition 15 the closed image of f.

Again, let V|, ...V, be the K-components of A, and fix elements v; €
Lk (Iism). If feMg(4, B), then £ is defined at v; (1 <i<m), and
(f(©), .- f(0)) € Bxoyy X+ X Biuy- Conversely, if (w,...,w,) is any
element of By, X - X By, then there exists a unique minimal pre-K-
maoping f, of A into B such that fo(r,) = w; (1 < i< m), and hence there
exists a unique K-mapping f of 4 into B such that f(v}=w; (I <i<m).
It foliows that the formula f— (f(v,), ..., f(v,)) defines a bijection My (4, B) —
Byiv,y X = % By, s it is determined by the choice of (v,....,v,). These
remarks applied to ¥; instead of A show that u; determines a bijection

i

N (V;, B) = By, Therefore there is unique bijection

M (A, B) = M (Vy, B) x - % MV, B)
with the property that if £+ (f,,....f,), then f(v;) =f;(v;) (and hence also
() = f,(v) for every veT,, ) for each index i. This bijection is canonical,
not depending on the choice of (v, ..., 0,).

Of course, M (4, B) may be empty, since By,,,, may be empty for some i.
However, when B is a K-group H, this difficulty does not arise because
Hy,.,, always contains the unity element 1. Moreover, each Ay, has
a natural group structure (H, is a subgroup of A), and therefore
Hy(o,, X -+ % Hyy,,, does, too. By means of the bijection M (A, H)—
Hyq,,y % -+ x Hygy,,, this group structure can be transported to M (A4, H).
The group structure obtained on My (A, H) in this way is canonical, being
independent of the choice of (v, ..., v,,). The canonical bijection My (4, H) -
MV, H) x - x My (V,,, H) is a group isomorphism.

e oo = Ao RN R 51
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Proposition' 16 Let A,B,C be K-sets, let fe M (A4, B), g € M (B, C), and
suppose that g is defined on f(T,,). Then there exists a unique heM(4,0)
such that h(v) = g(f(v)) for every ve Ty If v’ is any element of A such that
fis defined at v’ and g is defined at f(v'), then h is defined at v’ and h(v') =
g(f()-

REMARK We call the K-mapping / the generic composite of fand g, and
denote it by gof. It is in general not the composite. For example, there can
very well exist an element of A4 at which / is defined and f'is not. We some-
times express the condition that g be defined on f(Ij;x) by saying that
gef exists. For example, for every fe (A, B), fo id, and idgcof exist
and equal f. The proposition implies that if 4,,4;, A3, 44 are K-sets and
freMig(4, 4;) (1€i<3) and frofi, f33fs fie(f2ef), (fysfa)ofy all
exist, then f3e(fy3f1) = (f32/2)°/1-

Proof The formula v— g(f(v)) (ve L) evidently defines a minimal
pre-K-mapping of 4 into C. It is K-equivalent to a unique K-mapping,
which we denote by . To complete the proof it suffices to show that if
v € A, fis defined at v/, and g is defined at f{v"), then A is defined at v" and
h(v') = g(f(v')). Now, A4, B, C are K-subsets of homogeneous K-spaces for
certain K-groups. Denote these K-groups by G, H, 1, respectively.

Consider any v e I ;x with v g v, and fix

(5,8, u) € Tgox Hox 1o/k(vy> (s',1',u") € Tgox tox 1o/k()-

There exists a homomorphism
Sl : Ks[Ks(vS) W Ks(s) v Ks(t) v Ks(”)]
— KK, (0's") v K (s") v K (1) v K ()]
that extends SX: .., S5, 5%, 5, On restriction S, yields two homo-
morphisms
S K LK, (0s) U Ky(9) U K(0] = K [K,(@'s) U K(s) v K],

So 1 K [K () U Ky (5) U K, ()] = KK, ('s) © K () © K @)].
Because [ is defined at v/, K,(f(v)t) < o5 < os, and the local ring homo-
morphism S, : o5, — K, (v', 5", ¢, ) coincides with SKye s on K (f(0)1).
Because g is defined at f(v"), if we choose some we T/« with w—K—>f(v),

then by Section 14, Lemma 6(c), the element /1(v) = g(f(v)) of C is }1_010-
morphic at f(v) —K——>f(u’) and its value there is g{f(v')). Hence, when §, is

restricted to a homomorphism

S, KIK(f0) 1) U K (1) U K, )] = KIK(f0) 1) v K@) © K00,
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then K, (h(v)u) = os, < 05, and S, coincides with Soes D' h(w)u ON K, (h(v)u).
Thus, every element « € K (h(v)u) can be expressed in the form « = f/y
with 8,7 e K, [K,(vs) U K (s) U K (1) U K, (w)] and S,(y) #0. Fixing a
basis (r;) of K,(t) over K,, we can write f =3 f;t;, y= 271, where
B vie K [K,(vs) U K (s) © K, (u)] for every i and So(y) =S, (y) # 0 for
-some i. Then ¥ (ay;—B;) = = 0 and, because K (v,s,u) and K,(r) are linearly
disjoint over K,, ay;—B; =0 for every i, whence a¢€og. Therefore
K, (h(v)u) < os, and S, coincides with S5y newu ON Ko(A(v)u), that is,
the element h(v) € Cy, is holomorphic at v v" and its value there is
g(f')). Since everything proved here for v’ is valid for any element v, € 4
with v, —> v, we conclude that 4 is defined at v and A(v') = g(f(v')).

Lemma 8 Let fc My (A, B) and let L be an extension of K.

(a) A necessary and sufficient condition that f(T,,x) = (respectively =)
Tyx is that f(T,,) < (respectively 2) Iy, .

(b) If there exists a g e M, (B, A) such that gef and fog exist and equal
id, and idg, respectively, then g is unique and g € My (B, A).

Proof (a) Let f(T ) = g If vell,, then v € I, and K(v), L are
algebraically disjoint over K, so that f(v) e Iz« and K(f(»)),L are al-
gebraically disjoint over K, whence f(v) eI},. Therefore f(FA,L)cFB,L
Now let f(I,x) o Iyk. If we Ty, then w=f(v') for some v' eI} . For
some o € Aut(U/K(w)), K(w,ov') and L(w) are algebraically disjoint over
K(w), and for such a ¢ evidently'ov’ € I, and flov') = o (f(v')) =ow = w.
Therefore f(I,,) = Ty

Conversely, let f(I“A,L)c Ly If vel,, then aveFA,L for some o €
Aut(U/K), and f() =" (flov) e 0™ ' (T,) = 0~ ' (Tzx) = Tk There-
fore f(I, ) = Ik Now let f(l,,0) > I, If weFB/K, then rweFB/L for
some reAut(U/K), so that tw = f(v) for some v'eI},,,. Then t™'v' ¢
T Tyt Ty) =Ty and f7'0) =1 Y(f(v))=w, so that we
JS(T4x). Hence f(T;,) = Ty

(b) If g,,g, are two elements of M (B, A) with the properties ascribed
to g, then g, = g,oidy=g,9(fog,) =(g,°f)og, =id,o9, = g,, that is,
if g exists, it is unique. Let it exist. We must show that ge My (B, 4).

For any vel,,, there is a wely, such that w—L>f(v). Since ve Iy,
and g(w) - g(f)) =v, we have g(w) “> 0 whence w = f(g(w)) >
Sf(), so that f{(v)eTy,. This shows that f(T},,) < I, and therefore that
L= g(f(T,,0)) < g(Ty,). Because the roles of f and g in this argument

can be interchanged, it follows that f(I,,;) = I, and hence, by part (a),
that f(I ) = Tyx. For any v;,v; € I there exists a o € Aut(U/K) such
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that o (K(vy, v,)) and L are algebraically disjoint over K, and therefore such
that ov,, ov, € T, If f(v)) = f(v,), then

v, = g(flov) = g(a(f(w))) = g(e(f(v2)) = 9(f(ov2)) = ov,

whence v, = v,. Thus, f maps I,k bijectively onto Ty.

For any vel,,, L(v)=L(g(f(v))) c L(fv)) = L(v), so that L(v) =
L(f(#)). In particular, L(v) is a separable extension of L(f(v)). Hence (see
Section 9, Proposition 8), for any ve I, K(v) is separable over K(f(v)).
Since f(ov) = o(f(v)) =f(v) for every ge Aut(U/K(f(v))), and therefore
also gv = v for every such o, it follows that K(v) = K(f(v)) (ve [x). The
mapping go: Iz — 4 such that g,(f(v)) =v for every veTl,,, has the
property that go(Ig«) = Ix and K(go(w)) = K(w) for every welgj.
Also, for any ¢eAut(U/K), go(a(f (1)) = go(f(ov)) = ov = 0(go(f(v)))
(ve L), that is, go(ow) = a(go(w)) (w & Igx). It follows that g, is a pre-
K-mapping of B into 4. The K-mapping of B into 4 K-equivalent to g, is
obviously L-equivalent to g and hence is g. Therefore g € My (B, A).

A K-mapping f of A into B is said to be generically surjective if f(I;;¢)
I/ Itis obvious that fis generically surjective if and only if the closed image
of fis B. We say that f is generically invertible if there exists a K-mapping
g of Binto A such that gafand fog exist and equal id, and idg, respectively.
This g, which by Lemma 8 is unique, then is called the generic inverse of f.
We shall denote the generic inverse by /™.

The following omnibus proposition identifies a number of K-mappings.
In combination with Proposition 16, it provides a tool for proving that
various mappings are K-mappings.

Proposition 17 (2) If M is a homogeneous K-space for a K-group G, the
homogeneous space law py : M x G — M (given by the formula puy (v, x) =
vx) is a K-mapping of M x G into M. When the homogeneous K-space is prin-
cipal, the corresponding mapping Yy : MxXM — G (given by the formula
Vv, w) = v~ w) is a K-mapping of M x M into G.

(b) Every K-homomorphism, either of K-groups or of homogeneous K-
spaces for a K-group, is a K-mapping.

(¢) Multiplication in the additive group G, is a K-mapping of G,xG,
into G,. The mapping G,—{0} — G, given by the formula x— l/x is a K-
mapping of G, into G,.

(d) IfA,,...,Anare K-sets, then, for each index i, the canonical projection
prii A, XX Ap— A; is a K-mapping of Ay % ---x A, into A;.

(€) If A and B are K-sets and we B, the constant mapping k,,: A— B
with value w is a K(w)-mapping of A into B.
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(f) If Bis a K-set and B' is a K-subset of B. then the inclusion mapping
ingg:B —Bisa K-mapping of B’ into B. If also A is a K-set and " €
My (A4, B), then ing, gof’ exists, has the same domain of definition as [, and
has closed image contained in B'. For any f€ Nig (A, B) with closed image
contained in B’ there exisis a unique f' € My (4,8 with ing gof =1

(g) If A, By, ..., B, are K-sets and f; € Mx(A, B;) (1 j € n), then there
exists a unique K-mapping fixxf, of A into B, % % B, such that
prie(fy % xfy=f; 1<j<n). The domain of definition of fi - % fr
is the intersection of the domains of definition of the Ji

Proof The proof reduces to a number of routine verifications. We give
the details in just one case, the homogeneous space law iy in part (a). In
the other cases the technique is similar.

It evidently suffices to show that if (v,x),(v’,x’)eMxG and (v,x)—
(v, x') then vx is holomorphic at (v, x) - (¢v/,x"y and its value there is v'x".
Fixing (5(,52,7) € Tgoxgoxcorkie. o and (5,52 t) € lgoxgoxgorkirr, x> WE
consider the homomorphism

S K[K(vsy,xs3) K(s,,s,) v K()]
- K[K('sy', x's;") v K(s,',5,) v K()]
that extends  S(us;, xs, (vsi, xs2)0 Stsrr, 52 51,5207 S... Since S maps
K[K(sy,52) Y K(1)] isomorphically, we know that K(s,,sz,t):: oy and
S extends Sisisy.e)snsnne  FLENCE K(s7',s3 1) <o and] S 1 exteflds
Sty sy =105y sam 0 Evidently S maps K[Ig(xsz) u K(s7', s3] iso-
morphically, so that K(xs,,57 ' s3' 1) cogand S extends

S(X'sz'.s;"‘.Sz"‘t’),(xh,s,-l,sz"t)-

Hence K(sj'xt)cos and S extends S -txr,sixe Finally, S maps
K[K(vs)) v K(sy'xt)] isomorphically, so that K(vsl,s(‘xt)i: og and
S extends Siysi 5= ixe s s =0 Hence K(vxt)<os and S extends
Sy e, oxe- THIS completes the proof.

REMARK 1| By part (a), the group law pig: GxG—G is a K-mapping of
G x G into G. Also, by parts (a), (b), (e), and (g), and Proposition 16, the
group symmetry /g G — G (given by the formula IG(x)=x"‘) is a K-
mapping of G into G (because 15 = Woolidg x ki), where k, € M (G, 0))-

RemARK 2 Foreach x € G the mapping p,: M — M (given by the formula
p(v)=1vx)is a K(x)-mapping of M into M, for each re M the mapping
G- M (given by the formula A,(x) = vx) is a K(v)-mapping of G into
M and, when the homogeneous K-space M is principal, the mapping M = G
given by the formula w— v~ 'wisa K(v)-mapping of M into G. In the case
of p,, for example, this can be seen by the formula p, = fye(idy x ko),

where k. € Wiy (M, G).
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Remark 3 If fe My (4,B) and C is the closed image of £, the unique
element g € My (A, C) with ing cag = f (see part (f) of the proposition) is
generically surjective.

Remark 4 If ¥,,...,V, are the K-components of A, the canonical bi-
jection 9J2K(A,B)—>‘JJIK(V1,B)X~-><‘J)2K(Vm,B) is given by the formula
[ (feing v, ol v,)-

REMARK S When H is a K-group, the group law of the group Wix(4, H)
is given by the formula (f,g) > pya(fxg) and the group symmetry of
M (A, H) is given by the formula fi— 1yof. 1t follows that, for any ve A,
My (A4, H) is a subgroup of M (A, H) and the formula [ f(v) defines a
group homomorphism Wy (A, H) = Hy -

Let fe My(A4,B) and v € 4. If fis generically invertible and f is defined
at v and the generic inverse f/~ is defined at f(v), we say that fis bidefined
at v. 1t is clear from Proposition 16 and the remark following it that
then £~ '(f(v)) =vandf ™ is bidefined at /(). If fis bidefined atevery element
of a subset T of 4, we say that fis bidefined on L. We call the set of all
elements of A at which f is bidefined the domain of bidefinition of f.

Proposition 18 Let A and B be K-subsets of homogeneous K-spaces, let
Je My (A, B), and suppose that f is generically invertible. The domain of
bidefinition of f is K-open and dense in A.

Proof Let A, and Bp denote the domains of definition of f and /7,
respectively. The domain of bidefinition of f is the set of elements v e Ag
such that f(v) € By. Therefore the result follows from Proposition 15(a)
and (b).

For any extension L of K, Mg (4, B) = M, (4, B). As always, it is assumed
here that the transcendence degree of U over L is infinite. If L is an extension
of K in U over which the transcendence degree of U is finite, we define
M (A, B) =1L M.(4, B), where L ranges over the set of alt extensions
of K in I’ over which the transcendence degree of U is infinite, and we call
the elements of the set M. (4, B) L-mappings of A into B. The most inclusive
set of this kind is M (4, B), which we generally denote simply by WM (4, B).
Any U-mapping we call also a rational mapping. When V', ...V,  are the
components of A, then the formula Frr (foing vy faing v,) defines a
canonical Dbijection M (4, B) » MV, B) x -+ X M(V,’,B). When H is
K-group then M(4, H) is a group, of which M, (4,K) is a subgroup
for every extension L of K| and the canonical bijection M(4, H)—
MY, H) x - x MV, H) is a group isomorphism. For any element
ve A (respectively set T < A) we let m,. (4, B) (respectively My £(4, B))
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denote the set of elements of MM, (A4, B) that are defined at v (respectively
on X). Instead of My (4, B) (respectively M s(4, B)) we usually write
9N, (A4, B) (respectively M:(4, B)). Of course, M, (4, H) is a subgroup of
M(A4,H), and the formula f+— f(v) defines a group homomorphism
M, (4,H)— H.

If feM(A, B), then id,xfe M(4, A x B) and the domains of definition
of f and id, x [ are the same (see Proposition 17(g)). We call the closed
image of id, x f the closed graph of f.

Proposition 19 Let A and B be K-sets, let fe (A, B), let Z denote the
closed graph of f, and /‘et L be an extension of K. If fe MM (A4, B), then Z is
an L-subset of Ax B, and conversely.

Proof 1f fis an L-mapping, then so is id, x f, and (by Proposition 15(c))
Z is an L-set. Conversely, let Z be an L-set. Then prising . p ;€ M (Z, 4).
By Proposition 17(f), there exists a unique geI(4,Z) such that
inyxpz2g =id,xf This g has the same domain of definition as id,xf
and hence as f, and for any element v of this domain,

{g=(pryaing«p 7)) (0.4 (®) = g() = (ingxp,z°9) (V)
= (id, x [} (v) = id,(v,f(v)).
Since the image of id, x f is dense in Z, this means that ga(prisin,, g ;) =
id;. On the other hand,

(pryvingup z)og = prio(ing.g z0g) = prialid xf) = id,.
Therefore pricin,«p ; is generically invertible and g is its generic inverse,

so that ge M, (A4, Z). Since f=pryo(id % f) = pria(ing«p z°g), it follows
that fe WM, (4, B).

Corollary Let A, B,f,Z be as in Proposition 19. Then K(Z) is the smallest
extension L of K such that fe 9, (A, B).

Proof See Section 7, Theorem 4.

If L is any extension of K and C is an L-subset of a homogeneous K-space
M for a K-group G, then, for any ¢ ¢ Aut(U/K), ¢C is a gL-subset of M
and ¢ maps each L-open subset of C onto a gL-open subset of ¢C. If D is
an L-subset of a homogeneous K-space N for a K-group H, and if fe
M, (C, D) and C, denotes the domain of definition of f, we can define a
mapping ¢Coy— oD by the formula ov o(f(v)). Because (v,s,t)e
Tewgoxney if and only if (6v,05,01) € [exgoxnosgr, it 1S €asy to see that
this mapping is a ¢L-mapping of ¢C into ¢D. We denote it by o(/f). Thus,
o(f) is defined at gv if and only if f'is defined at v, and when this is the case
then o(f{v)) = (6(/))(ov). If D' and Z are the closed image and closed
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graph of £, then ¢D’ and oZ are the closed image and closed graph of o (f).
It is obvious that o(z(/)) = (61)(f) for all o,7e Aut(U/K) and that
idy(f) =f. An easy computation shows that if £ is an L-set, and if ge
M, (D, E) and ge=f exists, then o(g)=a(f) exists and is o(gsf). For fixed g,
the formula fi— ¢(f) defines a bijection M (C,D)y—>M,, (cC,aD) that
for each ve C, maps M, ,(C, D) onto M, ,(6C,0D). When D is an L-
group the bijection is a group homomorphism.

Proposition 20 Let A and B be K-sets, let T be a subset of Aut(U/K), let
K’ denote the field of invariants of £, and let fe (4, B). A necessary and
sufficient condition that & Wig.(4, B) is that o (f) = f for every g € X.

Proof If fe Wi (4,B) and 71 Aut(U/K'), then f(w) =(fv)) =
(/) (tv) for every v at which fis defined, whence (/) =f. Thus, a(f=f
for every o e X. Conversely, if a(f)=f for every s €Z, and if we let Z
denote the closed graph of f, then for each o, ¢Z is the closed graph of
a(f) =f so that ¢Z = Z; by Section 7, Corollary 2 to Theorem 4, Z is a
K'-set, and by Proposition 19 then fe Wik (4, B).

Let us return to the arbitrary extension L of K, the L-sets C and D, and
the L-mapping e M, (C, D), and let us recall Section 7, the remark following
Corollary 2 to Theorem 4. Any isomorphism y: L ~ L over K of L onto
an extension L’ of K with trdeg U/L = trdeg U/L can be extended to some
o€ Aut(U/K), and for this ¢ we have o(f)e M, (yC,yD). Although ¢ is
not uniquely determined by y, a(f) is. Indeed, if 7€ Aut(U/K) is another
extension of y, then ¢~ 't e Aut(U/L) and therefore 7(f) = cle™ 't () =
a(f) by Proposition 20. It follows that we can denote o(f) by y(f). It is
easy to see that if y': L' ~ I’ is an isomorphism over K with trdegU/L =
trdeg U/L’, then y'(y(f)) =G (f). Also, id (f)=f. In particular, the
group Aut(L/K) operates on M, (4, B).

Corollary Let A and B be K-sets, let L be an extension of K, let S be a subset
of Aut(L/K) such that the field of invariants of € is K, and let fe M (4, B).
A necessary and sufficient condition that fe M (4, B) is that y(f)=f for
every y € C.

EXERCISES
1. Let (x,p) be a K-generic point of the affine plane G2 =G,xG,, and
define fe Mx(G2 G, g€ M (GG, heM(G,G,) by the
conditions
fx,y) = (0,0,  glx,p) =0x, hlxy) = x/y.
Show that gaf, hag, (heg)sf exist but that hc(gef) does not.
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2. Let M(n) denote the algebra over U of all n x n matrices with coordinates
in U. Then M(n) has a natural structure of K-group (in which the group
law is the algebra addition) and may be identified with G". Show that
if G is any K-subgroup of GL(n), then the inclusion mapping G — M (n)
is a K-mapping.

16 K-Functions

K-mappings into the K-group G, have a special terminology and
notation. Let 4 be a K-set. A K-mapping of 4 into G, is called a K-function
on A. We shall denote the set of all K-functions on A4 by Tk (4), that is, we
set Fx(A) = My (4, G,). Similarly, we set F(A4) =M(4,G,), for any ve 4
we set §§,(4) =M,(4,G,) and Fi ,(4) = My (4,G,), and for any subset
Z of A4 we set F(4)=M;(4,G,) and Fr.x = My :(4,G,). We call any
element of F(A4) a rational function on A.

As we saw in Section 15, §(A4) has a group structure (which is commutative
and which we write additively): If ¢,y e F(A) and if « denotes addition
{the group law) in G,, then ¢+ = ao (g x ). Similarly, if i denotes multi-
plication in G,, we can define a multiplication in &(A) by the formula ¢y =
io{@x ). This makes §F(4) a commutative ring. The mapping U — §(A4)
that carries each element he U onto the constant mapping k,: 4 -G,
with value b is a ring homomorphism (injective when A4 % ). By virtue
of this homomorphism §(4) is an algebra over U and &.(A4) is a subalgebra
for every ve A4, and when 4 # ¢, then we may identify U with its image
in §(A). Of course, Fy(A) is a subring of F(A) and is an algebra over K
ol which &y ,(4) is a subalgebra. If V,, ..., V,, are the K-components of A4,
the canonical bijection F(4) = Fx(V,) x -+ x ®x(V,) is an isomorphism
of algebras over K, as is the bijection Gr(A) - K(v)) x--- x K(v,) deter-
mined by an element (v,,...,z,) of Lok %% Ty . Therefore §(4)
is a direct product of finitely many finitely generated separable extensions
of K, and §,(A) is a field if and only if A is K-irreducible (and is a regular
extension of K if and only if A is irreducible). Similarly, if V,’,...,V," are
the components of A, the canonical bijection F(AY > FV )y x-x FW,)
is an isomorphism of algebras over U, and each (V') is a finitely generated
extension of U,

ReMARK In the case of an irreducible K-subset V' of G," it is easy to
describe the K-functions on V that are defined at a given element v e V:
If ¢ € §x(V), then a necessary and sufficient condition that PEFk V) is
that there exist polynomials P,Q e K[X,,...,X,] with Q') # 0 such that
@) = P(v)/Q(v) when v e I, . The sufficiency being obvious, let us suppose
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that ¢ is defined at v". Fixing (8.1 € TG mugur and (s',1") e Te

. a" X Ga/K(v')
we have our usual homomorphism

S KK (045) U K(5) U K] = K LK (0 +5') U K (5) U Ko (1],

and we know that ¢(v)+1 € ng, whence (v) e os. However, S restricts to
a homomorphism

S K o+s,5,6] - K J[v'+5,5,1]
and evidently og = og.. Therefore there exist polynomials
P.Q e KXy s X, Yy, Y, Z]

with Q(v',s',1°) # O such that ¢(r) = P(v,s,1)/Q(v,s,1). Fixing a basis (2;)
of K, over K, we can write

P = Zpij,---j,,kai vit.. Yinzk, Q= ZQij,mj,,kai Yi.. Yinz*

with Py s Qijyjk € KLX,, .., X,] for every (1> sJnr k). Then
Qijrgk () # 0 for some (i, j,,....j,, k), and

Z((P(U) ijyojuc(0) — LTI () |- 25 LR Y AV L 0,

so that ¢(v) Qs (©) = Pij i () =0 for every (i Jis--rjus k) (because
K(v) is regular over K and hence K(v) and K, are linearly disjoint over K).
This proves the necessity of the condition.

Consider a subset X of 4. We shall say that I is K-affine in A, or that T
is a K-affine subset of A, if there exist a natural number n, a K-subset B of
the direct product G,"=G,x--xG,, and a generically invertible K-
mapping of 4 into B that is bidefined on I.

If £ is K-affine in 4, then so is every subset of Z. By Section 15, Proposi-
tion 18, if X is K-affine in A4, then T is contained in a K-affine K-open dense
subset of A.

Lemma 9 Let A, and A, bhe K-subsets of some K-set such that no K-
component of either of them contains a K-component of the other, and
let X, and I, he subsets of A, and A,, respectively, such that L, n A, =
A\NZ, = If T is K-affine in A, (i=1,2), then Z, X, is K-affine in
Ay U A,

Proof  For each i (=1,2) there exist an n,, a K-subset B; of G, and a
generically invertible f; e Wi (A,, B) such that fi is bidefined on E,. Set
n=n;+n,+1. Identifying Gj' with its canonical image G'x0x1 in
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G x G xG, =G, and G2 with 0" xGg*x 0, we may suppose that
B?c G/ (i=12) and B, n B,=. The K-components of A, and A4,
arle distinct from each other and are the K-components of 4, w Az, .and
likewise for the K-components of B, and B,. It follows that there is a unique
feMe(4, U A4y, B, u B,) such that foitiy,oapa =i = 1,2), and thatf
is generically invertible. Because L, n A, =4, N ¥, = ¢, we see that if
v'ey, and vyed; U Ay VE Dayoankr V57 Do o', then wvo€ 4,
ve k- Because f; is defined at v/, the element f(v) -—-f,(v) is holomorphic
at v —>"Uo and its value there is independent of the choice of v. Therefore

fis defined on £, U Z,. A similar argument shows that f~ is defined on
the set f(£, U X)) =/f1(Z) U f,(Z,). Therefore /is bidefined on T, Uy,
and I, U I, is K-affine AU A

Corollary 1 Let A be a K-set. There exists a K-affine K-open dense subset
of A.

Proof By the observation preceding Lemma 9, it suffices to §how that
o is K-affine in A, and by Lemma 9 it is enough to show that & is K-affine
in each K-component of 4. Let ¥ be any K-component of 4. Then Fx(V)
is a finitely generated extension of K, say &x(V) = K&y, Ea) Thfe close.d
image W of the K-mapping &, X% &, is a K-subset of G," and obv1ousl)f is
K-irreducible. By Section 15, Remark 3 following Proposition 17, there exists
a generically surjective fe€ M, (V,W) such that ing e wof =& X X g,
For vel,x evidently f) = (&), E, ) € Dk an(} K(U) = K(f(v))
It follows from this that fis generically invertible. Since £ is bidefined on &,
& is K-affine V.

Corollary 2 Let A be a K-set, A" be a K-subset of A, and Z be a subset of A"
If £ is K-affine in A, then L is K-affine in A'.

Proof Let feMy(4, B) be generically invertible and bidefined on X,
where B is a K-subset of G,". Let V4, ..., V., be the K-components of A’ that
contain an element of X, let 4, = ViV, and let 4, be the union
of the other K-components of 4. Fixing v; € [}k, We see that f is bidefined
at v, so that K(v)) = K(f(v). The locus of f(z;) over K is a K-subset W, of B.
Set B, =W, u--uU W, Evidently W,,...,W,, are the K-components of By,
and each of them contains an element of f(2). There exists anf; € Mg(4,, B)
such that f, (@) =fe) 1 i< m), and evidently f; is generically invertible.
Also, foing 4, = ing 5, ofy and fToing 5, = ing 40fi - It follows from
these equations and Section 15, Proposition 17(f}, that f, is defined on Z
and f,” is defined on f; (Z), that is, that fy is bidefined on I. Therefore T is
K-affine on 4,. As & is K-affine in A, (by Corollary 1), Lemma 9 shows that
¥ is K-affine in 4",
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It is obvious that if T is K-affine in A, then, for any extension L of K,
T is L-affine in A. In order to prove a result in the opposite direction, we first
establish two lemmas (taken from Serre [26, pp. 58, 110]).

Lemma 10 Let R be a Noetherian ring, J be a finitely generated algebra
over R, and I be a subalgebra of J. If J is integral over I, then I is finitely
generated over R.

Proof We have J = Rix,,...,x,] and, for each j, there exists a unitary
polynomial P;e J{X] such that P(x;)) = 0. Let by, ..., b, be the coefficients
in Py,..., P,,and set I' = R[by, ...,h.]). Each x; is integral over /' and there-
fore J is a finitely generated /'-module. Since R is Noetherian and hence
I’ is, too, this implies that every submodule of the I'-module J is finitely
generated. In particular, we may write /=3, <i<m I'vi, so that /=R
[Biserbrs Yisoeos Yml-

Lemma 11 Let A be a K-set, let pe §x (A), and let ¢y, ..., 0n be the con-
jugates of ¢ over K. There exist elements iy, ..., W, € §x(A4) such that
Ks[(Pla LY} (/)m] = Ks[ll/la EEEY) ll/n]

Proof By Section 15, Proposition 19, and Section 7, Theorem 4, there
exists a Galois extension L of K of finite degree, say m’, such that ¢ (and
hence each ;) is in &, (A). The algebra J = L{¢,s..., 0] over K is finitely
generated. The Galois group g = q(L/K) operates on J, and the set I of
invariants of g in J is a subalgebra of J. For any { € J, the coefficients in the
polynomial [],.,(X—y(()) are elements of I. Hence J is integral over /.
Thus, Lemma 10 applies and we can write ] = K[y, ---, ). By Section 15,
the Corollary to Proposition 20, ¥, € Fx(4) (1 </ < n.

Let E denote the free L-module 3, ., Ly on g considered as a vector
space over K. For any element Y, eq oy of £ the formula A 3,5 0,7(2)
defines an endomorphism of the nr’-dimensional vector space L over K,
and (because distinct automorphisms of a field are linearly independent
over that field) distinct elements of E yield distinct endomorphisms of L.
Thus, we have an injection £— Endg(L) that evidently is linear, that is,
we can identify E with a subspace of the vector space End, (L) over K.
Because dimg E = [L:K]dim, £ = m'> =dimgEnd(L), we have E=
Endg(L). Therefore the identification gives E a structure of K-algebra.
More precisely, £ is a simple K-algebra and every E-module is a direct
sum of simple £-modules isomorphic to the simple E-module L. Because
J is evidently an E-module (the element X . o,y of E operating
on the element x = F(¢,, ..., ¢.,) of J to produce the element 3, ., o, 7(x) =
Sea % F(7 (@), 7 (@) Of J), there exists a direct sum decomposition
J =3, L, in which each L, is an E-module isomorphic to L. The E-module
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L, when considered as a module over the subring L-id, of £, has a basis
consisting of a single element (namely, 1) that is invariant under the subset
g of £. The same must be true for each L, so that L, = L-g, where the
element g e L, < J is invariant under g, that is, g &€ /. This shows that
Ll -...oml = LW, ..., 1,] and completes the proof.

We can now prove the following result about “descent’” from K, to K.

Proposition 21 Let A be a K-set and let G be a K-open subset of A. If 0 is
K.-affine in A, then O is K-affine in A.

Proof By Section 15, Proposition 19, and Section 7, Theorem 4, there
exists a Galois extension L of K of finite degree, say m, such that @ is L-
affine in A. For some n and some L-subset B of G,”, there exists a generically
invertible fe 9, (4, B) that is bidefined on @. Let y,, ..., 7. be the elements
of the Galois group g(L/K), with y, = id,. For each i, y; B is an L-subset
of G," and y,(f) is a generically invertible L-mapping of 4 into y; B that is
bidefined on @. This implies that y, (f) x -+ x 7, (f) € M (4,7, B X --- X 7, B),
that the closed image B’ of y,(f) x --- X y,(f) is an L-subset of G;", and
that the unique L-mapping f’ €M, (4,B’) with in, pe . x,.p8°/ =
y1(f) X+ % y,(f) is defined on @. Letting p, denote the canonical pro-
jection y, Bx---x7y,B—y B=2B8, we see that ST elpioing gy xynp 8)
exists and is an element of M, (B, 4) and that its two generic composites
with /" exist and equal id, and idp.. It follows that /" is generically in-
vertible and that /” is bidefined on 0. Thus, nm, B’,f’ have the same pro-
perties as n, B,f and have the further property that the nm L-functions
prioing . gof (1 <k < nm) are permuted by the elements of the Galois
group g(L/K). Replacing n, B,f by nm, B’,f’, we may suppose, accordingly,
that the n L-functions

5j=1”j“inc.,",3:‘f (I<j<n
are permuted by the elements of g(L/K).

It follows from Lemma 11 that there exist elements n,,...,7, € ¥k, 0(4)
such that K. [&,,...,&,] = K,{n.,...,n]. The closed image C of ny x---x 7,
is a K-subset of G,", and there is a generically surjective ge M ((4,C)
such that ing,cag=n, X xn,. There exist polynomials Py,...,P. €
K. [X, ..,X,]and Q,,...,0,€K,[Y,,...,Y,] such that

P &) =m (I1<k<r) and  Q;(ny,...,m) = ¢ (I<sjs<n).

The formulae (x,,....x,) — (P(x;, s X))i<ker and (¥ ...y) —
(Q;(¥1,-- 7)1 <j<n give everywhere defined K,-mappings of G,’ into
G, and G," into G,", respectively. By what we have just shown, these induce
everywhere defined K,-mappings Ae MM (B,C) and h'e My, (C, B), re-
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spectively, that are generically invertible and generically inverse to each
other, and Ao f = g. This shows that g is generically invertible and bidefined
on 0, and completes the proof of the proposition.

We are now in a position to prove the following important resuit.

Theorem Il Let A be a K-set. Every finite subset of A is K-affine in A.

Proof Let A be a K-subset of a homogeneous K-space M for a K-group G.
By Corollary 2 to Lemma 9, it suffices to show that an arbitrary finite set
& < M is K-affine in M, that is, is contained in a K-affine K-open subset
of M. Now, every element v € @ has a specialization ¢’ over K that is algebraic
over K. A K-open subset of M that contains »” must contain v, too. It follows
that we may suppose that ® < M, . Since @ then has only finitely many
conjugates over K, we may replace ® by the union of all of them, that is,
we may suppose that o(®) = ® for every o € Aut(U/K).

By Corollary 1 to Lemma 9, there exists a set ¢ < M that is K-affine
K-open and dense in M. For any ve My,, we know that i, e M, (G, M)
(see Section 15, Remark 2 following Proposition 17), and hence that 4, is
K,-continuous (see Section 15, Proposition 15(b)), so that i, '(0) is K,-
open in G. Since A, '(0) = Ty« (Section 3, Remark 1 following Theorem 1),
A71(0) is dense in G. It follows that the set £= ("), o 4, '(0) is K,-open
and dense in G, and because 6E = {V,co (A "(0) = Nyeo Low (60) =
MNoew 4y (@) = E for every o € Aut(U/K), E is K-open in G. Now, £ con-
tains an element x that is separably algebraic over K, and hence contains
the conjugates X, = X,x,,...,x, of x over K. For each k, x,€4,'(0)
(ve ®), that is, ®x, < 0. Therefore, if we set O = (), <, Pr (0), then
® < ¢’. We see, as we saw for £, that @ is a K-open dense subset of M.
Because 0 is K-affine in M (and hence also K,-affine) and p, is a generically
invertible everywhere bidefined K -mapping of M into M (with generic
inverse p; ), p.-1(0) is K;-affine in M, and therefore so is its subset 0",
It follows, finally, by Proposition 21, that ¢’ is K-affine in M.

Corollary Let A be a K-set, and let © be a finite subset of A. Then A has a
finite covering by K-affine K-open dense subsets that contain @.

Proof By the theorem, for each ve A, there exists a K-affine K-open
dense subset @, of A4 that contains v and every element of ®. The family
(0,),.4 obviously covers 4. Because the K-topology on A is Noetherian,
some finite subfamily covers 4.

ReMARK The axioms in Sections 2 and 3 were taken so that if G’ is an
algebraic group, in the context of Weil's “abstract algebraic varieties” [27]
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andtheir natural generalization to “abstractalgebraicsets” (according to which
an abstract algebraic variety is an irreducible abstract algebraic set), and if
G’ is defined over K, then G’ is (more precisely, has a natural structure of)
a K-group. Also, an algebraic homogeneous space for G’ that is defined over
K is a homogeneous K-space for G’. The corollary implies that, conversely,
any K-group G is K-isomorphic to an algebraic group G’ defined over K,
and that a homogeneous K-space for G is (when considered as a homogeneous
K-space for G’ via a K-isomorphism G’ = G) K-isomorphic to an algebraic
homogeneous space for G’ defined over K.

Now let 4 and B be K-sets, let f'€ M, (4, B), and suppose that f has the
property that f(I, ) < I« (see Section 15, Lemma 8(a)). Then Yaf exists
for every iy € F(B), and we can define a mapping

[* 8B~ §4)

by the formula f*(y) =yof. It is clear that f* is a homomorphism of
algebras over U, that f* restricts to a homomorphism Fx(B) = Ty (A4) of
algebras over K, and that if fis defined at an element v € 4, then f* restricts
to a homomorphism &, (B)— §,(4) of algebras over U. Also, f* is in-
jective if and only if f is generically surjective. If Cis a K-set, and if g€
M (B,C) and g(Iyx) < Igjk, then gof exists and maps Ik into Ig,
and (gaf)* = f*og* Furthermore, (id,)* = idg.. It follows that if fis
generically invertible, then f* is an isomorphism and (f*)~ V= ()

The following proposition describes the relation between U and F(4)

in §%(4).
Proposition 22 Let A be a K-set, and let L be an extension of K.

(@) If%isa K-affine subset of A, then % (A4) is the complete ring of quotients
of LIFx ()],

(b) L and %y(A) are linearly disjoint over K.

(c) Let 0 be a K-open dense subset of A that satisfies the following con-
dition: Whenever the intersection of two components of A contains an element
of 0, some component of the intersection contains that element and is a K-

subset of A. Then F o(A) = L[Fx o(4)].

REMARK | Because of Theorem 11, (a) shows, for any ve 4, that
Fo(4) = O(L[Fr..(A]). In particular, Fg(4)=Q(Fy.(4)- Also, if
A< Gl then §,(4) = Q(L[F«, (D]

REMARK 2 The condition in (c) is satisfied when p =0 (because then
every K, -closed set is a K,-set), and when the components of A are pairwise
disjoint (for example, when A is a homogeneous K-space).
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ReMARK 3 When the condition in (c¢) is satisfied, (b) and (c) show that
the canonical homomorphism L ®x §x ¢(4) ~ &, ¢(A4) is an isomorphism.

Proof (a) If there exist a K-set B< G." and a generically invertible
fe M (A4, B) that is bidefined on Z, then f* maps &, (B) isomorphically
onto &, (4) and maps Fg s, (B) isomorphically onto Fg s(4). It is easy
to see that F,(B) = Q(L[Fy ss(B)]). Therefore §,(4) = Q(L[y =(4))).

(b) We show that if K-functions ¢,,...,¢, on 4 are linearly dependent
over U, then they are linearly dependent over K. Arguing by induction
on n, we may suppose that n> 1 and ¢, ..., ¢,_, are linearly independent
over U. Then there exist elements «,,...,o, € U with a, # 0 such that
2 1<j<n % @; =0. Dividing by «,, we may suppose that a, = 1. For any
o€ Aut(U/K), we have ¥, ¢;<,(0%)0; =0(X <;<,0;0;)=0, so that
Yigjea-1(02;—2)p; =0, whence ox; =a; (1 <j<n). Therefore ;¢ K;
(1 <j < n). For each v e I, fix a basis (8,);.4, of K(v) over K. As K(v)
is separable over K, (B,)ica(n is linearly independent over K;. Writing
@;(v) = Zyc, Bu, wherec,; € K, we find that 3, (3 ¢,;02) B = 2 % 0,(0) =
0, so that 3 ;¢,;; «; = 0. Thus, the system of homogeneous linear equations

1<§j:<nC"ﬂXj=O (vel,k, [€A()
with coefficients in K has a nontrivial solution. Hence the system has a non-
trivial solution (a,,...,a,) € K". Evidently ¥, ¢;<,a;0;(t) =0 (vel,y ),
so that 3, <;<s @ 0; = O

(c) Let (4);.4 be a basis of L over K, and let ¢ € &, ,(4). By part (b),
if there exist K-functions ¢, (/€ A) such that ¢ =3 4,¢,, then they are
unique. We shall show that they do exist and that they are defined on 0.
For the second point, it suffices to show that they are defined on every set
belonging to some covering of 0. Hence, by the corollary to Theorem 11,
we may suppose that ¢ is K-affine in 4. Then there exist a K-subset B of some
G," and a generically invertible /e M, (A4, B) that is bidefined on ¢. Clearly,
f(0) is K-open and dense in B, and if the intersection of two components
of B contains an element of f{@), then some component of the intersection
contains that element and is a K -subset of B. Also, (f 7)*(¢) € &L, s (B)-
If we can show that (f7)*(p) =X 4y, with , € Fi ) (B) for each /,
then we shall have @ =f*(f")*(0)) =2 4, f*() with f*(¥) € Fx o(4)
for each /. This shows that we may replace 4,0,¢ by B,f(0),(f )*(e),
that is, that we may suppose that 4 is a K-subset of G,".

First consider the case in which K=K and 4 is irreducible. The set
C=A-0 is K-closed and C # 4. Therefore if we let p, respectively ¢,
denote the defining ideal in K[X,..., X,] of 4, respectively C, then ¢ > p
and ¢ # p. Fix an element v e [, . By the remark made near the beginning
of Section 16, for each v’ € 0 there exist polynomials P,.,Q, € L{X,, ..., X,]
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with Q. (v) # 0 such that @(v)Q, (¢v) = P.(v). Every zero of the ideal
Lp+3, .o L[X,, ..., X]0, of L[X,, ..., X,] is a zero of ¢. Hence there
is a power ¢® of ¢ with the property that if we fix a finite basis R,..., R, of
the ideal ¢® of K[X,..., X,], then

R, = Z Dy Q,, (mod Lp) (I<k<r)
I<i<m
for suitable elements v,,...,v,, €@ and polynomials D, e L[X,,...,X,].
Then

p(v) R (v) = Z Dy (v) @ (v) 0, (v) = Z Dy (v) P, (v) = Si(v),

where S, =3, D, P, eL[X,,..,X,]. For each k we can write S, =
S A4Sy, where S, e K[X,,...,X,] (/eA). Then there is a unique ¢, e
Tk (A) such that @, (v) = S, (v)/R(v), and evidently ¢, is defined at every
element v’ e 4 with R (v)#0, and o =2, 4 ¢ (I <k<r). By part
(b), for each /€ A, then ¢, ..., @, are one and the same K-function, which
we denote by ¢,. Thus ¢ =3, 4,¢,, and each ¢, is defined at any element
o' € Bsuch that R, (v') # 0 for at least one k, so that each ¢, is defined on @.

Next, consider the more inclusive case in which K = K but 4 need not
be irreducible. Let V,....V, be the components of A. It is clear that for
each i the L-function gain, , on ¥V, is defined on ¢~ V,, which is K-open
and dense in V. By the case already treated, we can write goin, , =
2 Aoy with @y € i cny, (V) for every /€ A. For each / let ¢, denote the
K-function on 4 such that g.cin, ,, =@, (1 <i<m). Evidently ¢ =
2 A;¢,. To show that each ¢, is defined on @, consider any v’ € @, and fix
viely,, (1<igm) If v eV, then for each /e A, @, is defined at v'.
Suppose also that v’ € ;. with i # i’ so that also ¢;, is defined at v" and
some component W of V; n V. containing v’ is a K-set (and hence has an
L-generic element w that is separable over K). Because w — ', we have
weld, ¢, and @, are defined at w, and ¥, A4 ou(w) = (poin, , ) {(w) =
o(w) = (pcing , Y(w) =2, 4,0;,(w). Since K(w) is separable (and hence
regular) over K = K, and L and K(w) are evidently algebraically disjoint
over K, L and K(w) must be linearly disjoint over K, and the preceding
equation shows that ¢, (w) = @, (w) for each /. Since ¢, and ¢, are defined
at v’ and since w—v’, we infer that o, (') = ¢ (v'). Thus the value of
©;(v') is independent of the choice of the index i with v’ € V,. This implies,
for each /, that ¢, is defined at v’

Finally, consider the general situation in which we make no special hypoth-
esis about K. By the case we have just treated, ¢ can be expressed as a linear
combination over LK of elements of &, ((A4), and by Lemma 11, they in
turn can be expressed as linear combinations over K; of elements of §x_¢(A4).
[t follows that if we fix elements ; € K, (j € J) such that they and 1 form a
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basis of LK, over L {and hence such that the elements Ale A) and 24
(jeJ, leA) form a basis of LK, over K), then there exist K-functions
@€ Fk,e(A) (I€N) and @, € Fi (A) (jed, e A) such that ¢ = iAo
+2.1% 4. Then

(rmme)tegfgam)u=o

Since, by part (b), the elements | and «; (je J) are linearly independent
over ¥, (A), we conclude that ¢ =3 1,¢,. This completes the proof.

For an example of an algebra homomorphism f*: §(B)— F(4) in-
duced by a K-mapping fe M, (A4, B), consider two K-subsets A, and 4,
of homogeneous K-spaces M, and M,, respectively. Then A/ xA, is a
K-subset of the homogeneous K-space M, x M,, and the two projections
pry: Ay x A; —~ A, are K-mappings (being restrictions of the analogous
projections M, x M, —» M,, which are K-homomorphisms). Obviously
PraT4 xayx) = T4k, and therefore each of the induced homomorphisms
¥t §(A4,) > §(A4, x 4;) exists and is injective and maps F.(4,) into
8k (4, x A;). The following result is analogous to Proposition 22.

Proposition 23 Let A, and A, be K-sets.

(@) If X, is a K-affine subset of A, (h=1,2), then F(A, x A,) =
Q(K[Pﬂ*(r\;x.zl (4))v pra®(Fx x,(42))])-

(b)  pr*(§x(4,)) and pry*(F«(A4,)) are linearly disjoint over K.

(¢) Foreach Ay, let O, be a K-open dense subset of A, that satisfies, relative
10 Ay, the condition in Proposition 22(c), that O satisfies relative to A. Then

8x.eixe, (A1 x Az) = K[ pr *(Fx e, (4))) L Pra¥(F.0,(42))]-

Proof (b) Lety, ..., i, € F¢(4,) and suppose that pr,*(y ), ..., pry* ()
are linearly dependent over pr, *(Fx(4,)); that is, that there exist @, ..., 0, €
%k (A4;) not all 0 such that ¥ pri*(@;) pry*(¥;) = 0. Fixing v € T, 4 such that
¢;(v) # 0 for some j, we see for any we I, 4, that each pri*¥(e) pra*(y)
is defined at (v, w) and its value there is @;(V);(w), so that 3" ¢;(v);(w) =0,
whence 3 @;(v) §; = 0. Thus, ¥, ..., y, are linearly dependent over K(v). By
Proposition 22(b), they are linearly dependent over K, so that pr,*(y,), ...,
pry*(y,) are too.

(c) Fix a basis (¢;);c; of Fx(A4,) over K such that, for some subset I’
of £, (¢;)ics is a basis of Fx o (4,) over K, and fix a basis (W))jes Of Fg(Ay)
over K such that, for some subset J’ of J, (), is a basis of Fg ¢,(4).
Consider any { € Fg g,xe,(4, x 4,). It follows from part (b) and the fact
that pr,* maps Fx(A,) injectively into Fy(A4, x 4,) (h=1,2) that if there
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exist a;€ K (iel, jelJ) such that { = Sicr.jes i Pri* (@) pr%*(wj),dt};len
(@;)ier, jes 1s unique. It suffices to show that the elements a;; exist and that
a‘-j=0wheneveri¢[’ orj¢J". .
Let V,,...,V, be the components of 4,. For each V,, fix v,eI"VK’,.K’. an
let k, denote the constant mapping A, fAl with yalge Uf.' Then k, x ldAli
Moy, 4 (A2s Ay X A2 {alk,xid,,) exists and Is In (.y,.“vl),@z(Az), an
for each we 0,, (a(k,xid,,))(w)={(s,w). By Proposition 22(c), there
exist ;e K(v) (jeJ') such that Co(k,xid, ) =2 ;e Bi¥;- For e;ch
jeJ’, there exists an n; € Fx(d,) such that n;(v) 2,'8” (.1 <!<r). For
each je J—J', set n; = 0. There exist unique a;;€ K (i€, jeJ) such that
n; = Yiel a;; P; (jed). Thus {(v;,w) = Zjej’ ﬁu 'l/j(W) = Zje.] '7,'(”1) l.l’j(W) =
Sietjes @ 0:(v) p(w) (1< [<r, we Ty, so that
{= Z aijprl*((/’i) pra* ().
iel, jeJ
Therefore the elements g;; exist. Because n; =0 whenever j&J', we see
that a;; = 0 whenever j¢J’. Interchanging 4, and 4,, we see that a;; =0

whenever i ¢ I'. .
(a) Fix a K-affine K-open dense subset 0, of A, with Z, = 0,. By Propo-

sition 22(a), Fx (4, x42) = Q(Fx, 0, x0, (A1 X A4,)), and evidently
Q(K[Prl*(g’x,z,(Ax)) “ P’z*(gx,zz(Az))])
= Q(K[Prl*(g’l(,@.(AJ) o P’z*(gx,oz(Az))])-

Hence we can apply part (¢).—

Corollary Let M be a homogeneous K-space for a K-group G, and let @ be
a finite subset of i, u(M). Then there exist finitely many elements @, ..., ¢, €
¥k m(M) with the following properties: (a) <X Ko;. (b) @y, ...,0,are
line"ar[y independent over U. (c) There exist elements ;. € §k, c(G)

(1<j<n 1< <n) such that p*e;) = Lici<n l//jj'(x)_(Pj (1<) <n,
x € G) and the formula x — (;;(x)) defines a K-homomorphism G — GL(n).

Proof The homogeneous space law gy, : M xG — M is in
My yxc(MxG,M),

so that Zopy € Fy mx(Mx G) for every €. Hence, by part (c) of the
proposition, there exist elements ¢, ..., ¢, € Fg. (M) and, for each £ €@,
elements ¥, ..., Yz € Fx,c(C) such that

Eapy =3 pri*e) pra*lly)  (Ee®).

Taking n minimal, we see that ¢,,...,p, are linearly independent over K
(and hence over U), and that (W1zewr - Wngdzeo are, too. Obviously
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&) =2 oY;(x) (€D, xe ). Of course, we have a similar result for
the finite set of K-functions ¢,..., ¢, instead of ®. Therefore there exist
elements ¢,’,....,0," € Fx u (M), with o, .., 0,, 0, ...,0, linearly in-
dependent over U, and elements ¥, € §x ¢(G) (1 <j<n, 1 <) <n,
I <k<r) such that Px*((Pj') = Zj @®; l/’jj'(x)+2k (Pk’l.l’;(j'(x) (I<j<n,
x € G). The computation

Z (pj '«llj{(Xy) = pxy*(é) = px*(py*(é))
= p* <Z ©; l.z/j';()’)>
= ; ®; ; l.l’jj'(x) ‘ﬁj'g(J’) + ; o Z wl:u(x) Wj'{(}’)

shows that 3, i, (X)), :(¥) =0 (x€G, ye G, Ee®, 1 <k <r), whence
2oy (We=0 (xeG, {e®, 1<k<r). Since (¥,)eco, S /7% P
are linearly independent over U, we infer that ;. (x) =0 (xe G, | <k <,
1 <j" <n). Therefore p.*(p;) =3, 0,¢;;(x) (1 <j <n, xeG) and the
above computation shows that the formula x— (y;;(x)) defines a K-
homomorphism G — GL(n).

EXERCISES

- 1. Let x e U be transcendental over X, let V| be the locus over K of (x, x?)

in G,%, let V, be the locus over K of (x,0), and set 4 =V, U ¥,. Let @
denote the K-function on A such that ¢(x,x?) = x and ¢(x,0)=0.
Prove that ¢ is defined at (0,0), but that there do not exist polynomials
P,Qe K[X,Y] with Q(0,0) # 0 such that P(x,x?)/Q(x,x*) =x and
P(x,0)/0(x,0) =0.

2. Let A4 be a K-subset of a homogeneous K-space M, let ve A4, and let
@€ Fx(A). Call a K-subset 4" of M A-special if A< A" and the
components of 4" are pairwise disjoint. (Thus, M is A4-special.)

(a) Show that if ¢ is defined at v and some A-special K-subset A’ of
M has the property that there exists a ¢’ € Fy ,(4’) such that ¢'cin,
exists and equals ¢, then every A-special K-subset of M has this property.
(Hinr: Show that if 4’ is A-special, then 4’ has the property if and
only if M has.)

(b) Show that if v is contained in only one component of 4 and ¢ is
defined at v, then M has the property described in part (a).

Call the K-function ¢ on A holomorphic at v if ¢ is defined at v and
some (hence every) A-special K-subset of M has the property described
in part (a).
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(c) Show that if ¢e Fi(G,), then there exist unique polynomials
P, Qe K[X] with Q#0. Q unitary, P and Q relatively prime, and
E(x) = P(x)/Q(x) (x € g, x), and then show that for an element x, € G,
the following three conditions are equivalent: (i) ¢ is defined at x,;
(i) ¢ is holomorphic at x,; (it Q(x,) # 0.

(d) Show that ¢ is holomorphic at r if and only if ¢ is defined at v and,
for every ¢ € §«(G,) that is holomorphic at @(v), ¢ag is holomorphic
at v.

If Bis a K-set, call a K-mapping fe My (A, B) holomorphic at v when f
is defined at v and, for every ¥ € F¢(B) such that s is holomorphic at
f(v) and y o f exists, y o f is holomorphic at v; call the set of all elements
of 4 at which f is holomorphic the domain of holomorphicity of f.

(¢) Show that the domain of holomorphicity of any feM(A,B) is
K-open and dense in 4.

3. Let G be a connected K-group and let L be an extension of K (over
which the transcendence degree of U need not be infinite). Prove that
any derivation & of L over K can be extended to a unique derivation
5* of F,(G) over F(G), and show that if K’ = Ker(3), then §x (G) =
Ker(6*). Show that the formula &+ 6* defines an injective homo-
morphism Der(L/K) — Der(F,(G)/F«(G)) of Lie rings and of vector
spaces over L. Show that if z € G and ¢ € §, .(G), then 6*p € ¥L.-(G)
and (§*p)(z) = d(p(2)).

17 K-Cohomology

Let 4 be a K-set and let G be a K-group. A one-dimensional K-cocycle (or
simply a one-K-cocycle, or even, when there is no danger of confusion, a
K-cocycle) of A into G is defined as a K-mapping f€ M, (A2, G) such that

S, w) = fu,0)f(v,w)
for all (u,v,w) = I 3,c. Of course, if f is such a K-coc cle, then the above
equation holds for all («, v, w) € 4° such that fis defined at (u,v), (v, w), and
(u, w). It is clear, moreover, that if the K-cocycle f'is defined at any two of
these elements of A2, then f is defined at all three. The set of all one-K-
cocycles of A into G is denoted by Zg(4, G).

An example is given by the constant mapping A% - G with value 1. This
is the trivial K-cocycle and is denoted by 1. (When G is commutative and
written additively, the trivial cocycle is the constant mapping with value 0,
and is denoted by 0, of course.) More generally, for any K-mapping he
My (4, G), the K-mapping 3k € M (4%, G) such that

Sh(v,w) = h(v)”'h(w)
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for all (v,w) e T2k, is obviously an element of ZL(4,G). The K-cocycles
of this type are called one-dimensional K-coboundaries of A into G, and the
set of all of them is denoted by BL(4, G).

If f1,f2 € Zk(4, G) and if there exists an 4 € W, (4, G) such that

f2 (0, w) = h(v)"f (0, w) A (W)

for all (v, w) € Iiz/«, then f; is said to be K-cohomologous to f;. The relation
“f, is K-cohomologous to f,” is an equivalence on Z%(4,G). The set
of equivalence classes (called K-cohomology classes) is called the one-
dimensional K-cohomology set of A into G and is denoted by HE(A4,G).
It is clear that B(A4,G) is the set of K-cocycles that are K-cohomologous
to 1, so that Bi(A4,G) is an element of H}(A4,G). As such, it is denoted
by | (or by O when G is commutative and written additively). Thus,
ZY(A,G), BL(A,G), HE(A4,G) each has a natural structure of pointed
set, and the canonical mapping ZL(4,G) > H}(A,G), that sends each
element of Zx(A4,G) to its K-cohomology class, is a homomorphism of
pointed sets with kernel Bg(4, G) (see Section 12 for the relevant definitions).

When the K-group G is commutative, then ZL(4,G) is a commutative
group (subgroup of the group Wi (4%, G)), BL(A,G) is a subgroup of
Z(A4,G), and H{(A,G) is the quotient group Z(4, G)/BL(4, G).

Proposition 24 Let A be a K-set, let G be a K-group, and let fe ZL(A,G).

(a) There exists a K-open dense subset P, of A such that sz is the
domain of definition of f.

(b) Ifuve Py, then f(u,u) =1 and f(v,u) = f(u,v)" .

Proof (a) Let D denote the domain of definition of £, so that D < A2 =
AxA. If vepr,(D), then there exists an element we A with (4,0) € D.
Setting w = v, we see that f'is defined at (¥, v) and (i, w), and hence is defined
at (v,w), so that vepr (D) and (v,v) € D. A similar argument shows that
if vepr (D), ther vepry(D). Let Py =pr (D)=pr,(D). Then P =D.
Therefore (by Section 15, Proposition 15(a)) P,* is K-open in 4% The
diagonal A, of Ax A4 is evidently a K-subset of 4%, and the formula
(v,v) — v gives an everywhere bidefined generically invertible K-mapping
of A, into 4 (with everywhere bidefined generic inverse given by the
formula v — (v, »)). Since this mapping carries the K-open subset P2 ~ A,
of A, onto the subset of P, of 4, P, must be K-open in 4. Finally, for
any vel,, there exists an element we A such that (v,w)eT,:« and
hence such that (v, w) € D, so that v e P;. Therefore P, is dense in A.

(b) Since f(u, v)f(v,w) = f(u, w) whenever f is defined at (&, v), (v, w), and
(u, w), when u e P, we can write f{u, u)f(u,u) = f(u,u) so that flu,u) =1,
and when u,v € P; we can write f(u,v) f(v,u) = f(u,u) = 1 so that f(v,u) =

Slu,v)~ 1
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The following theorem gives Serre’s method of injecting Hi(4,G) into
the Galois cohomology set H'(K,G) defined in Section 12 (see Corollary
1 below).

Theorem 12 Let A be a K-set and let G be a K-group.

(a) For every pair (f,u) such that fe Zx(4,G) and ue P, 0 Ay, there
exists an f, € Z' (K, G) such that £,(y) = f(u,yu) (v € g(Ks/K)).

(b) For two such pairs (f,u) and (f',u’), f is K-cohomologous to fif
and only if f, is cohomologous to f”,. .

Proof (a) Let f, denote the mapping of g(K,/K) into G defined by the
formula £,(y) = f{u,yu). For any y,y" € g(K,/K),
Ll = flyy'u) = flu,yu) [, 77'4)
= flu,yu)y(fw,y'w)) = L)y (L(0))-
If E is the Galois extension of K generated by K(u), then yg(K,/E) is a
neighborhood of y, and for any y’ € g(K,/£),
L7 = L0y (LG) = L)1 yw) = LG (W) = f()

by Proposition 24(b). Therefore f, is continuous, so that £, € Z' (K, G).

(b) If fis K-cohomologous to f”, there exists an h € My (A4, G) such that
(v, w) = h(v)” f(v,w)h(w) whenever v,weT,. Fix an element u"e
P, P Ay, at which / is defined. Then, for any 7 € g(K(/K),

Fle @) = £/ y)
= Sy )
= f @, u Y h )T ) R Q) ' v
= 1wy () u) [, yu) flu yu) R Gu”) G, yd')
= x"Yuyx)yu = x~ fu()yx,
where x = f(u, u”") h(w")f'(u",u’) € G, . Therefore f, is cohomologous to Sl
Conversely, let f, be cohomologous to f’,, and fix x€ Gy, such that
fo @ =x"%)yx (y€g(KJ/K)). Then, for any v,wel, and any ye€
g(K,/K),
f,w) = fu)f W, yu)f (', w)
= [0, u)f e (S G’ w)
= [0, 0)x7 @) vxf (', w)
= (0, 0') X7 fu, yu) yxf (', w)
= f'(v,u’) x™ S (w,0) [0, W) f(w, y0) " (', )
= (f(o, ) xf'(',0)) " 'S0, w) (f(w, yu) yxf (', W))-
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When w = v this shows that f(¢, yu) yxf'(yu', v) = f(v, u) xf"(u’,v), and hence
that the element f{v,u) xf"(u’,v) of Gg ., is invariant under every auto-
morphism of K (v) over K(v), so that f(v,u)xf"(u’,v) € Gg(,,. Since then
o(flv,w) xf"(u',v)) = flov, ou) oxf'(ou’,ov) = f(ov,u) xf (', ov) for every o€
Aut(U/K), it follows that there exists an he 9Ig(4,G) such that
h(v) = flv,u) xf'(u',v) whenever vel},, and that for this A, h(v)=
f(v,yu) yxf'(yu', v) for any y € g(K,/K). Therefore /' (v, w) = h(v) ™' f(v, w) h(w)
whenever v,we I, &, and f is K-cohomologous to f".

Corollary 1 There exists an injection Hg¢(4,G)— H'(K,G) that, for each
feZi(A,G) and any ue P~ Ay, sends the K-cohomology class of f to
the cohomology class of f,. This injection is a homomorphism of pointed sets,
and when G is commutative is a group homomorphism.

Proof This is now clear.

For any principal homogeneous K-space M for G and any K-mapping
heMi (4, M), there exists a unique K-mapping 64 € M (4%, G) such that
(0H) (v, w) = h(v) " "h(w) for all (v,w) e Iz, and obviously ok € Zg(4, G).
Given 4, G, M and fe ZL(A,G), if there exists an he M (4%, M) such
that /= Sh, then we say that f K-splits in M. In particular, f K-splits in G
precisely when fis a K-coboundary.

Corollary 2 Let (f,u) be a pair as in Theorem 12(a), and let M be a principal
homogeneous K-space for G. Then f K-splits in M if and only if f, splits in M.

Proof 1f f K-splits in M, then f(w,,w,) = h(w,) " 'h{wy) (wy, w; € Typ),
where h e Wi (4, M), and we can fix an element u’ € P, n Ay, at which 4
is defined. For any y € g(K,/K),

L) = fl,yw) = [, u)) fQ, yu’) fiyd, yu)
= flwu) - h() ™ hyw') - flu',yu) = vy,

where v = h(u)f(u',u)e My, and therefore (see Section 13, the remark
right after Theorem 10) f, splits in M. Conversely, suppose that f, splits
in M and fix ve My, such that f£,(y) =v "yv (y €g(K,/K)). For any
wy, wy € I and any y € g(K,/K),

Swi, wa) = fwi, ) flu, yu) flyu, w) = flw, w) L. fyu, w2)
= flwy, u) 07 'yo) flyu, wa) = (0f @, w)) ™ (yo- £y, wa)).

When w, = w,, this shows that yv-f(yu, w) = vf(u, w) for every we I, and
hence that the element uf{(u, w) € My, is invariant under the Galois group
g(K,(w)/K(w)), so that vf(u,w) € My,,,. Since o(uf(u, w)) = ov-flou,ow) =
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vof(u,ow) for every oe Aut{U/K), it follows that there exists an he
M, (4, M) such that h(w)=uf(u,n) for every wel, x, and that for
this A, h(w)=yu-flyu,w) for every y € g(K,/K) and every we . Then
Flwy, wy) = h(w,) ™ i(w,), so that f K-splits in M.

Corollary 3 Let FeMy(B,A) be a generically invertible K-mapping of
K-sets and let F, denote the induced element of M (B2, A%, that is, F, =
(Fopr ) x(Fapr,).

(a) The formula f~ foF, defines a bijection ZL(A,G) > Zy(B,G)
that induces an isomorphism F': H}(4,G)—~ Hi(B,G) of pointed sels
(and of K-groups when G is commutative).

(b) The diagram

HL(A,G) ——> HL(B,G)

N/

HY(K,G)

(in which the arrows other than F' denote the injections that exist in accord-
ance with Corollary 1) is commutative.

Proof Straightforward.

18 Invariant derivations and differentials. The Lie algebra

Let ¥ be an irreducible K-set. As we saw in Section 16, (¥ ) is a field of
which U and F«(V) are subfields, and F,(V) is a finitely generated regular
extension of K. By Proposition 22, &« (V) and U are linearly disjoint over
K and their compositum is §F(V).

A derivation of F(V) over U (that is, a derivation of the field (V)
that is trivial on U) is called a derivation on V. We denote the set of all
derivations on ¥ by D(V). If D,, D, are derivations on V, then so are
D,+D;, 0D, (peF()), and the commutator [D,,D;} =D, D;— D3 D;.
Also, [D,,aD,] =a[D,,D,] (2 U). Thus, D(V) has natural structures
of vector space over F(V) and Lie algebra over U. When p#0, if De
D(V), then DP € D(V).

By a K-derivation on V we mean a derivation D e D(V) such that
D(§x(V)) = Fx(V). The set Dg(V) of all K-derivations on V' is a vector
space over (V) and a Lie algebra over K. If D e Dy (V), the restriction
of D to F(V) is a derivation of this field over K. The mapping, that to each
such D associates its restriction to Fx(V), is an isomorphism (of vector
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spaces over (V) as well as of Lie algebras over K) of D4 (V) onto the
vector space and Lie algebra of derivations of § (V) over K. This isomor-
phism provides a canonical identification of D (V) with this vector space and
Lie algebra. If (¢,, ..., ,) is a separating transcendence basis of F (V) over K
(and therefore also of §(V) over U), then n =dim}V and (¢/3¢,, ..., 8/éE,)
is a basis of the vector space Dg(V) (and also of the vector space D(V)).
It follows that §(V) and Dy (V) are linearly disjoint over Fe(V) and
FL)- D (V) =D, (V) for every extension L of K.

The elements of the vector space D*(V) dual to D (V) are called differentials
on V. Thus, a differential on ¥ is a linear form on D (V). We often denote
the value of a differential w on V' at the derivation D on V' by (D, w). By
a K-differential on V' we mean a differential w e D*(V’) such that (D, w) e
& (V) for every D e Dy (V). The set of K-differentials on ¥ is a vector space
over Fx (V) that we denote by D¥(V). The mapping that to each w € DE(V)
associates its restriction to Dy (V) is an isomorphism of DE(V) onto the
vector space dual to Dg(V), and provides a canonical identification of
DE(V) with this dual.

For any U-function ¢ € §(V), the formula D Do (D e D(V)) defines
a differential on V; it is called the differential of @ and is denoted by dp.
Thus, dp is characterized by the equation

{D,dp) = Do.

When ¢ € §(V), then dp e DE(V). It is easy to see that if (£,,...,&,) is
a separating transcendence basis of Fc(V) over K, then (d¢,,...,d¢) is
the basis of DE(V) (and of D(V)) dual to the basis (8/¢&y, ..., c[08,) of
D (V) (and of D(V)). Hence F(V) and DE(V) are linearly disjoint over
FV) and F.(V)-DE(V) = DFV) for every extension L of K. The
formula ¢+ dp defines a homomorphism §(V) = D*(V) of vector spaces
over U such that d(p, ¢,) = @, do,+@,dp, (¢, 0, € F)). The kernel
of the homomorphism is easily seen to be U-(F(V)).

For any D e D(}) and any o € Aut(U/K), the formula ¢ — o(D(c™ " (¢)))
defines a derivation on J’ that we denote by o (D). For any De D(V), it is
obvious that if o,7€ Aut(U/K), then o(t(D))=(¢1)(D), and that
idy(D) = D. Evidently

oD\ +Dy) = a(D)) + (D), a(eD) =a(p)a(D),
o([D, D,]) = [6(D,),6(D,)] (Dl) D,,DeDWV), 9eFH)).

In particular, for fixed o e Aut(U/K) the formula D— o(D) defines an
automorphism of D (V) as a vector space over F(¥) and as a Lie algebra
over K, and it is easy to see that (D, (V)) =D, (V) for every extension
L of K.
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For any we D*¥) and any o€ Aut(U/K), the formula D
o({o™ (D), w)) defines a linear form on D(V), that is, a differential on
V: we denote it by o(w). Obviously a(t(w) = (o) (w) and idy(w) = w, and

o(w +wy) = o) + o(@2), a(pw) = a(p)o(®),
o({D,w)) = {a(D),a(w)).

In particular, the formula @ — o(w) defines an automorphism of D*(V)
as a vector space over Fx(V), and o (D)) = Dy (V) for every extension

L of K.
Referring to Section 15, Proposition 20, we find that if T is a subset of

Aut{U/K) and K’ denotes the field of invariants of T in U, then, for a deriva-
tion D on V,

D e D(V) < o(D)=D (o€l

When L is any extension of K and D € D, (V), then evidently a{D) =d'(D)
for any 0,0’ € Aut(U/K) that agree on L. Hence, for any tsomorphism
y: L~ L over K, where L is an extension of K for which trdeg U/L =
trdeg U/L, we can define y(D) to be (D) foranyo € Aut(U/K) that extends
y. Referring to Section 15, the Corollary to Proposition 20 and the discus-
sion just before it, we see that this defines an operation of Aut(L/K) on
D.(V), and that if © is a subset of Aut(L/K) such that the field of invariants
of Sis K, and De D (V), then

DeDy(H- <= y(D)=D (y€©)

Similar remarks are valid for D*(V).

Now let W also be an irreducible K-set, and let f€ M, (V, W) be generically
invertible. Then (see Section 16) /* : (W) - (V) is an isomorphism over
U that maps Fx (W) onto §x(V), and (f*)"' =(f)* Forany De D),
it is evident that (f*)”'oDof* is a derivation on W. Therefore we can
define a mapping

[ - W)

by the formula f**(D) = (f*)~'oDef™. This f** is an isomorphism of
Lie algebras over U such that f**(pD) = (f )~ Yoy f**(D) forall p e F)
and De D), and f**(Di(V)) = Dc(W). 1t is obvious that (idy)** =
idpy,, and that when g is a generically invertible K-mapping of W into an
irreducible K-set X, then (gof)** = g**of**. Hence (= ()

For any o' € D*(W), ffow'of** is a differential on V. Therefore we can
define a mapping

FrE D) - DHV)
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by the formula f***(w’) = f*ow of** This f*** is an isomorphism of
vector spaces over U such that f***(¢'w’) = f*(¢")f***(w’) for all ¢’ €
F(W) and w' e W), and FHEE(DEW)) = DE(V). We have (id,)*** =
idpagy,, and when geM (W, X) as above, then (gaf)*** = f***ogt**
Hence (f***)” ! = (f 7)***. By definition,
(D, [*** (")) = fH*D),w"))
when DeD(¥) and w' € DHW). When o' =dp’ for some ¢’ e FHW),
this reduces to the equation {D,f***(dg’)> = (D,d(f*(¢")). Therefore
[***(de") = d(f*(e").

We suppose for the rest of this section that V' is a homogeneous K-space
for a connected K-group G. Then V is irreducible (because for a fixed ve
Via» 4 G—V is a K,-homomorphism of homogeneous K,-spaces for G).
For any xe G, the mapping p,: V>V is a generically invertible K{(x)-
mapping of V into V (with generic inverse p,-.). Therefore the preceding
discussion applies when we replace (K,V,W,f) by (K(x),V.,V,p,). In par-
ticular, we have the automorphisms

P FV) =), D) 2 DE), p DY) = DY)

It is easy to verify, for any o € Aut(U/K), that

Pox = 0(py),
Pax’ (@) = (p X7 (9))) (p e F)) (™)
o * (D) = a(p, (0™ (D)) (DeD(W)), (1**)
Pax (@) = a(p* o7 (@)  (we D)), (1***)

and that entirely analogous equations hold for 1,: G — V' instead of p,.

A derivation D (respectively differential @) on the homogeneous K-space
V for G is said to be invariant if p **(D) = D (respectively p,***(w) = w)
for every x€ G.

When D e D (V) (respectively w € DE(V)) it suffices to verify this con-
dition for one element x € I; . Indeed. Eq. (1**) (respectively Eq. (1**%))
then establishes the condition for every element of I§, and the fact that
every element x € G is a product x = x, x, with x|, x, € T« and the identity
p. ¥ = p *op, ** (respectively p*** = p, ***op, ***) thereupon estab-
lish the condition in general.

The set of invariant derivations on ¥ is a Lie algebra over U, called the
Lie algebra of V; we denote it by £(V). When p # 0 then D e (V) for
every D e £(V). We set £,(F) = (V) n D(¥); this is a Lie algebra over
K. The set of invariant differentials on ¥ is a vector space over U; we denote
it by 2*(¥), and set Lg(V) = *(V) n DEW).
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It follows from Eq. (1**) (respectively Eq. (1***)) that a(R(V)) = 2(V)
(respectively o(£*(V)) = Q*(V)) for every o € Aut(U/K).

We already know that U and (V) are linearly disjoint over K, and
that F(V) and Dk (V) are linearly disjoint over Fg (V). If L is any exten-
sion of K, and if D,,..., D, €2, (V) are linearly dependent over 3 (V)
but D,,...,D,_; are not (so that D, ...,D,., are linearly independent
over F(V)), then there exist @,...,¢, € F.(¥) with ¢, =1 such that
S i<i<m @ D;=0; for any x € G, then

Z px*(o) D, = pX"**< Z (/’iD‘) =0,
1<ism 1<7<m

s0 that 3 cicm 1 (@) — @) D; =0, whence p *(¢;) = ¢; and therefore
o, eUnF.(¥)=L (1<i<m). This shows that F(V) and 2,(V) are
linearly disjoint over K, and that F(¥) and (V) are linearly disjoint over
U. It follows that U and 2, (V) are linearly disjoint over K.

Similar statements are valid for differentials on V.

If De (V) and we LE(V), then (D,w) € K. This follows from the
computation p, *({(D,w)) = p,*({p,* (D), w)) = (D, p.***(w)) = (D, w).

The following theorem shows that when the homogeneous K-space V
is principal then the vector spaces £(¥) over U and £, (V) over K have the
same dimension n = dimV = dim G as the vector spaces (V) over F(V)
and D (V) over Fy(V), and that 2*(V) and LE(V) can be regarded as the
dual spaces to 2()) and 2,(V), respectively.

Theorem 13 Let V be a principal homogeneous K-space for the connected
K-group G. Every basis of 2x(V) (respectively of 2¥(V)) is a basis Dg (V)
and of (V) and of D(V) (respectively of D (V) and of £*(V') and of D*
(M). If (D4, ..., D,) is a basis of D(V) and (wy, ..., w,) is the dual basis of
D*(V), then a necessary and sufficient condition that every D; be invariant is
that every w; be invariant.

Proof The second assertion follows from the equations {D;, p,™**(w;)> =
pHLp (D), w;>). To prove the first assertion it suffices, because of the
linear disjointness established above, to show that some basis of D (V)
consists of invariant derivations. To this end let (D, ...,D,) be any basis
of Dg(V). For each xe G, (p,**(D,), ..., . ™ (D,)) is a basis of Dy, (V),
as is (D,,...,D,). Therefore there exist elements ;€ Fgwx (V) with
det(@yij)1 <i<n 1< <n # O such that

px**(Dj) = Z <PxijD1 (I1<j<n).
1<i<n
Fixing (v,x,y) € [, xgyx, We see that each ¢ is defined at v and that
((pxij(u))l <isn, 1<j<€n € GLK(u,x)(n) = GLK(v, ux")(”); also, (l), vx” 1) € 1—‘VZ/K'
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Therefore there exists a unique K-mapping fe MM, (V% GL{n)) such that
flo,vx™ I) = (@xij(”))l <ism1<j<n-
For any o € Aut(U/K),

Z q)axij Di = pux**(Dj) = G(ID—‘**(G-I(DJ)))

a(px**(Dj)) = ‘7<Z Dxij Di> = Z U(‘Pxij) Dy,

i

0 that @, = “((qu'), whence (Paxij(ff'b') = (U((Pxij)) (ov) = U((Pxij(l’))- There-
fore ((Paxij(av))l <ign, 1<jgn = “(f(v, vx” 1)) = flov, o‘u-ax—l). It follows from
this that

(‘Psij(W))l <ism t$j€n = Slw,ws™ 1)

for every (w,s) € I, q,x- However,
izq)xyij Di = pxy**(Dj) = (pycpx)**(Dj) = py**(px**(Dj))
= 'D)’** (Z (vajDv> = Z z (pyivpy"*((vaj) D,‘,

so that (pxyij = Zv (pyivpy'l*((vaj) (1 < i < n, 1 <_] < n)' Hence

S, Uy—lx_‘) =f(U,U(X,V)—I) = (@xyij(v))mis,. 1<j<n

= (Z (pyiv(u) (vaj(vyﬁl)>lsisn {<j<n

= flo, oy ) floy™ oy~ x7h).

Since evidently (v,vy ™', vy ' x~!) € T3, this means that fe Z}(V, GL(n)).

It follows by Section 17, Corollary 1 to Theorem 12, and Section 12,
Theorem 9, that f'= 6k for some h € Wy (V, GL(n)), that is, that f(v,vx ") =
h(U)_lh(Ux—l)- Writing h(v) =(sz(U))1sisn.1sjsm where ﬂije?S’K(V) and
det(B;;) # 0, and setting (y;;) = (B;;)7", so that y,;€ F((V) and det(y;;) # 0,
we find that

(Qoxij (V)) = flv,vx~ 1) = (Vij (U)) (ﬁij (vx~ l)),
whence
(‘Pxij) (Px—t*(}’ij)) = (Vij)-

Now set D/ =3 <;<p¥:;; D (1 <j<n). By what we have just shown,
(D,,...,D,) is a basis of Dg(V) and, for each index j,

px**(DjI) = Z px‘l*(yvj)px**(Dv)
= z Z (pxivpx'l*(VVJ) Di
= ZVUD.' = Dj"

This shows that each D,” is invariant, and completes the proof of the theorem.
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We conclude this section with some examples.

Exampre |’ Let & denote the canonical coordinate function on the
additive group G, = U (that is, let &=idg). Then F(G,) = U, didé
is a basis of D(G,), and d¢ is the dual basis of D*(G,). For any xe G,
p**MdE) = d(p,*(8)) = d(é+x) = d¢. Hence dé is a basis of £%G,) and
djd¢ is a basis of £(G,).

ExaMPLE2 Let & denote the canonical coordinate function on the multi-
plicative group G, = U* (that is, let & be the inclusion mapping U* - U).
Then §(G,) = U(&), &d/dZ is a basis of D(G,), and ¢~ 'd¢ is the dual
basis of D*(G,,). For any x€ G,,,

pxXET dE) = p X&) d(pFD) = (€x)"'d(&x)
= x Y¢ \xdE = T hdE
Hence £ d¥ is a basis of £%(G,,) and EdjdE is a basis of 2(G,.)-

ExampLE3 Let p#2, and let &n denote the canonical coordinate
functions on the elliptic curve W = W(g,,g5) (see Section 1). They are
defined at every element of W other than (0:0:1), and if z = (1:x:y) is any
such element, then &(z2) = x, n(z) = y. Then (W)= U(&,n), & is a separat-
ing transcendence basis of §F(W) over U, nd/dé is a basis of D(), and
n~'dé is the dual basis of D*(W). Also, n? =4&—g,&—g,, so that
dnjdé = (657 —4g,)n~". Frem the equations of the group law we find that

pXE) = =& = x+ HE=X) T (=¥
P = =3+ +3E+X) E=x)" 01— - -0 0=-0>

Therefore
d
n T (p*(©)

= n(— 1-$(E-02 (-0 + %(§+X)_Z(VI—Y) (662—%yz)rl“>-

A straightforward computation shows that the right side here equals
o F(). Hence

sk d r _ * d *(F = = i
(p, (n ‘—15))@‘ = Pr- <nd—é(px (c))> =N =1z £,

so that p**(nd/d&) = nd|d¢. Therefore nd/dZ is a basis of 2(W) and n~ " d¢
is a basis of 2%(W).
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ExaMPLE4 The Group G, of Example 2 is the case n = | of the group
GL(n), which we now consider for arbitrary n. Let &= ()i <i<n 1<)2n
denote the matrix of canonical coordinate functions on GL(n); for arbitrary
x=(xij)eGL(n), we have &;;(x)=x;. Then the matrix £ =(&;) is an
algebraically independent family of generators of the extension F(GL(n))
of U. Set £~! = (1;,). The matrix (T, &, 9/6¢;,), which we permit ourselves
to write as the matrix product &38/8('%), is a basis of D(GL(n)). The matrix
(3, n,; d¢;,), which we write as the matrix product 12 d('E), is a basis of
D*(GL(n)). It is easy to verify that these two bases are dual to each other.

Evidently p,*(&) = ¢x, and we can write
PEAHETIA(E)) = p (TN d(p*(E) = (Ex)” " d((Ex)
=g T e d(E) = €T d(8).

Therefore '€~ 1d('¢) is a basis of 2*GL(n)) and £4/3(') is a basis of
2(GL(n)).

EXERCISES

1. (Chevalley [9, Chapter II, §8]) Let G be a K-subgroup of GL(n),
and let a be the set of polynomials in U[X] = [(Xi)i<i<n, 15j<n] that
vanish at every element of G. (Thus, a is a perfect ideal of U[X] and the
unity matrix 1, is a zero of a.) For each matrix u = () in the algebra
M(n) of all nx n matrices over U, let D(u) denote the derivation of the
field U(X) over U such that D)X, =3 <v<athnXy; (1 <i<n,
1 <j<n) (or, briefly, such that D(u) X =uX.) Let T be an indeter-
minate.

(a) Show, for ueM(n), that the following three conditions are
equivalent: (i) P(1,+7uw)=0 (modT?) for every Pea; (i1)
Y. ; 0P/aX;;(1,)u; =0 for every Pea; (iii) D(w)aca.

(b) Let [(G) denote the set of all matrices u e M(n) that satisfy the
equivalent conditions in part (a), and set [x(G) = [(G) n Mg(n). Show
that [(G) = U-{x(G) and that 1(G) respectively [x(G) is a Lie algebra
over U respectively K (that is, is a subspace of the vector space M(n)
respectively My (u) over U respectively X, and is stable with respect
to the Lie multiplication (,v)— [u,v] =vu—uv, where uv and vu
denote the usual matrix products). Show that when p # 0, then w” € 1(G)
for every u € [(G).

(¢) Show that [(G) = [(G").

(d) Let G be connected, and let & = (£,))1<i<a 1<j<n D€ the matrix of
canonical coordinate functions on G (for every x = (X;}}1<i<n, 1 <j<n€G,
&;(x) = x;)). Show that Fx(G) = K(&). Show that for each uel(G)
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there exists a unique invariant derivation A(u)e £(G) such that
A(u)& = ué. Show that for each D € £(G) there exists a unique matrix
V(D) = (Vi;(D)) <i<n 1 <j<n € (G) such that D¢ =V(D)E. Prove that
the mappings

A HG) » Y(G), V:2(G) - HG)

are Lie algebra isomorphisms, inverse to each other, such that
A(I(G)) = 24(G) and V(L24(G)) = 1,(G), and (if p#0) such that
A?) = Ay’ (uel(G)) and V(D?) = V(D) (De 2(G)).

2. The Lie algebras 1{GL(n)),[{SL(n)),1(O(n)) are usually denoted by
gl(n), sl(n), 0(n), respectively. Show that gi(n) is the Lie algebra of all
n x n matrices over U, that sl(n) consists of all matrices v € gl(n) such
that Tru =0, and that when p # 2, then o(n) consists of all matrices
u e gl{n) such that ‘u+u = 0. Show that when p = 2, then o(n) consists
of all u = (u;;) € gl(n) such that ‘u+u =0and 3, <,<p iy = 0t < i< n).
(Hint:  For v(n), use Exercise 1(d), to show that dimo(n) = dim O(n),
and infer that if g is a Lie algebra with g © v(n) ard dim g = dim O (n),
then g = o{n).)

3. (Chevalley [9, Chapter 11, §10, V] Let p# 0, and let G respectively
H denote the set of all matrices .

a 0 0 a 0 0
0 a® b respectively 01 b
0 0 1 0 0 1

with ae U* and be U.
(a) Show that G and H are connected K-subgroups of GL(3), that the

center of G is trivial, and that A is commutative. .
(b) Show that I[(G) and [{H) are identical, consisting of all the matrices

u 0 O
0 0 v
0 0 0

with u,ve U.

4. Let G be a connected K-group, and let L be an extension of K (over
which the transcendence degree of U need not be infinite). For any
derivation 6 of L over K let * denote the derivation of §.(G) over
&, (G) that extends & (see Section 16, Exercise 3). For each D e D, (G)
define §**(D) = [6*,D,], where D, denotes the restriction of D to

&.(0).

T

bwor
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(a) Show that 5** is a derivation of the Lie ring ©,(G) such that
5**(pD) = (6*¢) D+ pd**(D) (p € F,(G), DeD,(G)). Show that if
D e Dy(G), then 9**(D) = 0.

(b) Show thatif (D,,...,D,) is a basis of £4(G) and ¢, ..., ¢, € FL(G),
then 0**(¥ ¢; D;) = 3. (0%p;) D;. Infer that 5** induces by restriction a
derivation 6% of the Lie ring £, (G) such that §*(aD) = (0a) D+as* (D)
(ae L, Def.(G)). Show that if K’ = Ker(d), then €,.(G) = Ker(5*)
and Dy (G) = Ker(5**).

(c) Show that the formula J+» 6% defines a homomorphism
Der(L/K)— Der(2,(G)) of Lie rings and of vector spaces over L.

19 Local rings

Let V' be an irreducible K-set and let ve V. Then §,(V) is a subalgebra
of the extension F(V) of U, and §, ,(V) is a subalgebra of the extension
Fx (V) of K. The set m, (V) of all w € F,(V) that vanish at v is an ideal of
F.(V). Every element of §,(V)—m,(}) is evidently a unit of the ring
F,(V). Therefore §,(V) is a local ring and m, (V) is its maximal ideal.
Similarly, ¥, , is a local ring and the intersection myg (V) =m, (V) o (V)
is its maximal ideal. §,(V) is called the local ring on V at v.

Consider a K-mapping fe M ,(V, W), where W is an irreducible K-set.
For every ¥ € &, (W), ¥=f exists and is an element of §,(V). Therefore
the formula Y — ysf defines a mapping

fu* : %f(u)(W) - %v(V)’

and evidently f* is a homomorphism of algebras over U such that
1H &k j0W)) < Bk, (V). When [ is generically surjective (and hence,
because V' is irreducible, has the property that f(I},x) = Ty «), then f* is
a restriction of the injective homomorphism f*: (W) - F(V) described
in Section 16 (just before Proposition 22), and hence is injective.

If X, too, is an irreducible K-set, and g € WMy, (W, X), then gof exists
and is in My ,(V,X), and (gof); = flogf,). Also, (idy)F =idy . It
follows that when fis generically invertible and bidefined at v, then f* is
an isomorphism and (f;*)™! = (f7)¥,,.

If W is an irreducible K-subset of some G," and fe My ,(V,W) and [ is
generically surjective, and if we set & = proing . waf (1<j<n), then
Cir e $n € Fx,o(V) and inga ywof =& x - x&,. Conversely, if &,,....¢, €
8k.,(V) and we set W equal to the closed image of &, x ---x&,, then W is
an irreducible K-subset of G,", there exists a unique K-mapping f of V into
W with ing . wof =& x---x&,, and f has the property that /e M, (V, W),
f is generically surjective, and §;=prioing . wof (1 <j<n). When f is
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generically invertible-and bidefined at v, then (&,,-..,¢,) is said to be a system
of K-affine coordinates on V at v.

Proposition 25 Let V be an irreducible K-set and let veV. There exists a
system of K-affine coordinates on V at v. If (¢,,...,&,) Is any such system,
_then K(v) = K(&,(v), ..., ¢,(v)) and, for any extension L of K, T (V) is the
localization of L[&,,...,¢,] at its prime ideal L[, ..., ¢,1 0 m, (V).

Proof The existence follows from Section 16, Theorem 11. Defining
W and f as above, we know that K(v) = K(f(v)) = K(E ),....£,(v)), and
that the mapping f,* : §.,,(W)— &, (V) is an isomorphism that maps
FL. W) onto F, (V). By the remark near the begining of Section 16, if
@ € F, ,(V), then there exist P,Q € L[ Xy, ..., X,] with Q(&,(v), ....£, ()} # 0
such that @ = P(&,,...,E)/0(&y, ..., £,), and conversely.

Corollary 1 The local rings &,(V) and § (V) are Noetherian, and §,(V)
is the localization of U{§, (V)] at its prime ideal ULFk . (V)] (V).

This is evident from the proposition.

Corollary 2 Let (¢, ..., &,) be a system of K-affine coordinates on'V at v. Let
q denote the ideal of polynomials Q € K[X,, ..., X,] such that QE,,...¢)=0.
Then q is prime and regular over K, the rank of the matrix

T = ((€Q/3X) (£, (1), ..., E(0)))gea, 1 <i<n

is less than or equal to n—dimV, and the smallest number of elements of
m (V) that can generate mg (V) equals the dimension of the vector space
m,(_u(V)/mK,,,(V)2 over i ,(V)[my (V). This dimension is greater than or
equal to dimV —dimgv. If the rank equals n—dimV, then the dimension
equals dimV —dimgv and the local ring §x (V) is integrally closed.

Proof Itis clear that g is prime and regular over K. Let p denote the ideal
of polynomials Pe K[X,,...,X,] such that P(,,...,¢)em, (V). Then p
is prime and p > q. Set 0 = K[X|,...,X,],, m =op, n=oq. Then o is a
local integral domain, m is its maximal ideal, and n is a prime ideal of o.
Also, there is an isomorphism o/n = §« ,(¥) such that P+n— P, .. 8D
for every Pe K[X,, ..., X,], which maps m/n onto my ,(V). Therefore the
corollary follows by Chapter 0, Section 16, Corollary 5 to Proposition 11
(see also Chapter 0, Remark 3 near the end of Section 14).

We recall (Section 15, Proposition 15(f)) that if B’ is any K-subset of
a K-set B, then the inclusion mapping ing 5 : B’ — B is a K-mapping.
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Corollary 3 Let V' be an irreducible K-subset of V with veV'. The U-
algebra-homomorphism (iny )5 : §,(V) > F, (V') is surjective.

Proof Let (&,,...,&,) be a system of K-affine coordinates on V at v. It
is easy to see that (,=in, ., ..., &,0iny, ) is a system of K-affine coordinates
on ¥’ at v. Given any ¢’ € §,(V'), we know by the proposition that there
exist polynomials P,Q e U[X,,...,X,] with Q(&,(v),...,&(v)) #0 such
that ¢’ = P(S 0iny e, ..., Epoiny )[Q(E siny e, ..., Eysiny i), Setting @ =
P&y EDIQEL -, &) we find that ¢ € §,(V) and (iny )i (@) = @'

When v eV and we set £;(v) = a; (1 <j< n), then L[&,,...,{] nm, (V)
is the ideal (¢, —a, ... {,—a,) of L[&,,...,¢,] and m (V) is the ideal
(&, —ay,...,¢a—a,) of & (V). It follows then that w,(V) is the ideal
(& —ay,...,¢a—ay) of F,(V), so that m, (V) = F, (V) mg (V). Hence, for
any ke N with k+#0, the vector spaces w,(V)/m,(V)* over U and
mK.U(V)/mK',,(V)" over K are finite dimensional. Moreover, since (V)
and U are linearly disjoint over K, the canonical K-linear mapping
my (V) (V) - m,(V)/m,(V), induced by the inclusion mapping
my (V)= m,(V), is injective and its image generates m, (V)/m, (V). Thus,
when v e ¥, we have a canonical identification of g ,(V)/my (V)" with
a K-subspace of the vector space m,(¥)/m,(V)¥, and after the identification
a basis of my ,(V)/mg (V) is a basis of m,(V)/m, (V) too.

If feMg , (V,W), where W is again any irreducible K-set, then
Sy, ) e m () and  ff(my p(W)) < my (V), whence also
FHmp, W) e m (V)¢ and  f5(mg po,(W)) < my (¥)*. Therefore ff
induces a homomorphism

v(k) : mf(u)(W)/mf(u)(W)k i mu(V)/mu(V)k

of vector spaces over U, and f* maps iy ;W) o) into
1nK,:)(V)/]nK,v(V)k'

To see an example, consider a K-group G. For each xe G, the inner
automorphism 1, of G is a K(x)-automorphism of G that restricts to a
K (x)-automorphism of G° that we denote by t2. The automorphism (t2)f
of the local ring §,(G°) at 1 € G° induces an automorphism (:3){" of the
vector space m;(G%)/m(G°)*. If we fix @y,..., 9.4 € Tk, (G°) such that
the corresponding cosets @, ..., @, relative to m, (G°)* form a basis of
m, (G°)/m, (G°), the matrix a®(x) = (a{(x)) of (3-){ with respect to
this basis will be in GLy(,,(r(k)), and we shall have a group homomorphism

a® . G - GL{r(k)).
Now, for any ¢ € Aut(U/K) and any z€ G°, o(12-,)(2) = 6(15-1(¢7'2)) =
a(x" (67 '2)x) = (6x) ' zox = 13.-1(2), whence

O'(Tux—l) = T;x-l.
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Therefore, for any @ € § (G°),
G((2-)Hp) = a(pete-) = a(@)=0(%-1) = @201 = (T-)7(9):
In particular,
o((e3-0H)) = (F-0i(p) = L a o0 e (modnt, (G°)").

Since also

a((z2-)1(9)) (mod m, (G*)"),

oL epeon) = Lot

i

we infer that o(a™(x)) = a®(ox). 1t follows from this that a® is a K-
homomorphism. The kernel N'® of a'*' is a normal K-closed subgroup of G
that contains the centralizer of G° in G. Evidently N = N7 for every &,
and therefore there exists an 4 e Q such that N® = N for every k > /.

If x is not in the centralizer of G° in G, then 7 -:(s) # s when s € To ko),
and therefore, for some @ € Fx. ((G%), @(1,-1(s) # @(s), whence
(- ) () # . Since (N, on M, (G = 0 by Krull's theorem (see Chapter 0,
Section 14, Remark 2), it follows that (13-)T(@)# ¢ (mod 1, (G%)*) for
some k, so that (t%-1){ # id and x ¢ N™. This shows that N is the cen-
tralizer of G° in G.

EXERCISE

1. Let G be a K-group and (¢, ...,¢,) be a system of K-affine coordinates
on G at 1, ard consider the three everywhere defined surjective K-
mappings u, pr,,pr, of G into G. Show that

(prl*(él)’ '~'9prl*(§n)7 pr?.*(él)v "'7pr2*(§n))

is a system of K-affine coordinates on G? at (1,1), and infer that there
exist rational expressions R,,..,R,€ K(X,, v Xy, YY) with
denominators not vanishing at (&, (1),..., &, (1), ¢ (1), . Ea(1)) such
that

/'t*(éj) = Rj(prl*(él)y . 7pr1*(én)vpr2*(él)’ ""prl*(é"))
for every j.
20 Tangent spaces
Let V be an irreducible K-set, and let ve V. If R is a subring of F.(V), a

local derivation of R at v is defined as an (R n U)-linear mapping d: R-> U
such that

d(py) = do - Y (V) + o) - Y

' . .
[ ST SR

|

LK
i
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for all ¢,y € R. It is easy to see that when y is a unit in R, then also

(/) = (Y () dp—@ @)oY (v)*.

When X is a multiplicatively stable subset of R no element of which vanishes
at v, the proof that shows that a derivation of R can be extended to a unique
derivation of the ring of quotients £~ 'R can be copied to show that a local
derivation of R at » can be extended to a unique local derivation of Z7'R
at v. In particular, 7' R can be the local ring Rg. vy, the localization
of R at its prime ideal R n m, (V).

A local derivation of §,(V) at v is called a rangent vector to V at v. The set
of all tangent vectors to ¥ at v is a vector space over U, called the tangent
space to V at v, which we denote by T (V).

The restriction to §g (V) of any tangent vector to ¥ at v is a local deriva-
tion of &y (V) at v. Conversely, any local derivation Ty of Fx (V) atv
can be extended to a unique tangent vector to V at v. Indeed, because U and
Bk (V) are linearly disjoint over K {(by Section 16, Proposition 22(b}),
T, can be extended to a unique U-linear mapping T, of U[§« ,{V)] into U,
and it is easy to verify that T is a local derivation at v; also, we saw in
Section 19 (Corollary 1 to Proposition 25) that &, (V) is the localization of
U[%x. (V)] at its prime ideal ULk, (G)] nm,(V), and therefore T, can
be extended to a unique tangent vector to V at v.

Let L be an extension of K(v). The set of tangent vectors T T (V) such
that T(§, (V) = L is a vector space over L; we denote it by T, (V).
If u,,...,u, are elements of U that are linearly independent over L and
T,,..., T, are elements of T, (V) such that 3u; 7; =0, then 2 u; T;p =0
(peFL,V), whence Tj9o=0 (peF,,(V), 1<j<n), so that T;=0
(1 <j<n) by what we proved in the preceding paragraph. Thus, U and
I, (V) are linearly disjoint over L, and

dim, T, (V) < dimy T, (V).

An element of the vector space T)(V) dual to T (V) is called a cotangent
vector to V at v, and TH(V) itself is called the corangent space to V at v. The
subset of T¥(V') consisting of all cotangent vectors x such that {7, x> e L
for every Te T, (V) is a vector space over L; we denote it by Ir .00

Let W be another irreducible K-set and let fe My (V,W). For any
TeX,(V) the composite mapping

~ I T

& ri(W) F.M) U
is evidently a tangent vector to W at f(v) and maps &, ;) (W) into L if T
maps §.,,(¥) into L. Therefore the formula T Tof) defines a mapping

T - T
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** is a homomorphism of vector spaces over U that maps T, (V)
into T, ,,,(W). The transpose of f,**, which we denote by SF**is a vector
space homomorphism

S T W) > TH)

that maps I} ;W) into I (V). Evidently (id)¥* = idy yy, and
(idyy*** = idy*y,, and if ge My (W, X), where X is an irreducible
K-set, then

(o) = gty o f2% (go ¥ =L 0 g7lT
It follows that if fis generically invertible and bidefined at v, then SX* and
[X** are isomorphisms.

Now suppose that we are in the situation considered in Section 19, in
which W is an irreducible K-subset of G." and f is generically invertible and
bidefined at v. As before, let (&,,...,¢,) denote the system of K-affine co-
ordinates on ¥ at v given by the equations &; = prjoing wof, and set
(ay,...,a,) = f(v), q equal to the defining ideal of W in K{X,,...,X,], and
0, equal to the domain of bidefinition of f. For any extension L of K(v)
(even for L = U), Lq is the defining ideal of Win L[X,, ..., X1, &V =
LIXy, . Xodic-ay, ... 6n—an» and my (V) is the ideal of &, ,(V) generated
by ¢, —ay,...,¢—a,. If Tis any element of T, ,, then

TP nb) = D e (JO)TE, (P UL X,

so that (T¢,, ..., T&,) is a solution in L of the system of homogeneous linear
equations

0
53%(f(v)) Y;=0 (Qecq)

with coefficients in K(v). Conversely, if (b, ...,b,) is any solution of this
system, then the kernel of the U-linear mapping UlX,,....X,] = U de-
fined by the formula P~ Y (3P/3X)) (f(v))b; contains the kernel Ug of
the substitution homomorphism U[X,,...,X,]— U[&,,...,¢,], and there-
fore there is a unique U-linear mapping U[&,,...,&]— U such that
P(&,,..,E) > X(aP[oX) (f(v))b; for every Pe UlX,,..,X,]. 1t is easy
to see that this mapping is a local derivation of U[£, ...,&,] at v and hence
can be extended to a unique tangent vector T to V at v, and that Te T, (V)
when (b,,...,b,) € I*. Thus, the formula T (7¢,,...,T¢,) defines an
isomorphism
I M=

of the tangent space to ¥ at v onto the vector space ¥ over U consisting of
the solutions of the above system of linear equations, and for every exten-
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sion L of K(v) this isomorphism maps I, ,(V) onto the vector space
S nL over L. It follows that dim,Z, (V) =dim, T, (V) =n-r(v),
where r(v) is the rank of the matrix

1= (32 g)

When the element v is K-generic on V, then &, (V) = F¢(V), and the
canonical isomorphism K(v) = §(V) followed by any Te Ty, (V) (or
rather by the restriction of T to Fx(V)) is readily seen to be a derivation
of K(v) over K. Also, the canonical isomorphism Fg (V) = K(v) followed
by any derivation of K(v) over K and then by the inclusion mapping
K(v)— U is a local derivation of §«(V) at v and hence can be extended
to a unique element of Ty, ,(V). Thus, when vel,,, we have a
mapping from Ty, (V') into the space of derivations of K(v) over K,
and also a mapping in the opposite direction, and these mappings are
evidently K(v)-linear and inverse to each other. Since K(v) is separable
over K and of transcendence degree equal to dim V¥, this shows that r(v) =
n—diMg, Txe), (V) = n—dim V. Because each minor of the matrix

cQ
(53;.‘1 (61’ A..,€H)>qu.lSj$n

is a K-function on V that is defined on @, we infer that dim, T,(V) > dimV
for every v eV and that the set of all vV such that dimy T (V) = dimV
is dense and K-open in V.

Referring to Section 19, Corollary 2 to Proposition 25, we see that we
have proved the following result.

Qeq,1<5j<n"

Proposition 26 Let V be an irreducible K-set. For any element veV and
any extension L of K(v),
dimy T, (V) = dim, T, (V) = dimV.

The set O,, consisting of the elements veV with dimyI, (V) =dimV, is
dense and K-open in V. If ve O, , then the local rings §,(V) and §, ,(V) are
integrally closed; also, then the smallest number of elements that generate
the maximal ideal wm; ,(V) is dimV, and the cosets modulo m ,(V)* of
dim¥ such generators form a basis of the vector space w ,(V)img (V)
over L.

An element of V is said to be simple on V if it is in @) . By the proposi-
tion, if v is simple, then dim, TJ(V) = dim, T} (V) = dimV. In particular,
then I} (V) can be identified with the dual space to T, (V). A family
(&, ...»&4imy) Of generators of my (V) is called a system of wniformizing
parameters on V at v over L.
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In order to establish a connection between tangent vectors and deriva-
tions, it is helpful to introduce the following definitions. A derivation D on
V is holomorphic at a given element v € V if D(%,(/)) = §.(V): a differential
w on V is holomorphic at v if {D,w) € F,(V) for every derivation D on V
that is holomorphic at v. We denote the set of all derivations (respectively
differentials) on ¥ that are holomorphic at v by ©,(V) (respectively DEVY).
It is obvious that D, (V) and DX(V) are F,(V)-modules.

Given any De Dy(V), we can fix ¢,,...¢, € Fx (V) such that
K&, ... &)=5k(V). Then there exist polynomials  Pg, Py, ..., P, €
K[X,,...X,] with Pg(&,,...,&,) # 0 such that

= Pj(élv"‘;én)
! PO(EI"'wén)

for every j. It follows that for each D & Dy (V) there exists a dense K-open
subset @, of ¥ such that De D, (V) for every ve 0.

Given any v € ¥ and any De D, (V), there is a mapping D, §,(V)-> U
defined by the formula D, = (Dg)(v), and it is clear that D, e I (V).
D, is called the local component of D at v. The formula D+ D, defines a

canonical U-linear mapping

DE

D) - T, )

that maps D,(V) n D.(V) into T (V) for any extension L of K(v). 1t is
easy to see that if D, = 0 forevery v € €, (or even for one K'-generic element
v of V, where K’ is an extension of K with D€ D (V)), then D = 0.

We now consider the special case in which V is a homogeneous K-space
for a connected K-group G. For each x € G, the mapping p, : V' — V given by
the formula p,(¢) = vx is an everywhere bidefined K(x)-mapping of ¥ into
¥ and p,-. is its (generic) inverse. Therefore, for each v eV, the three homo-

morphisms

(05 o (V) = &),
(pa* T,V - T, (),
(pIF™ : TLY) = T

~ux

are isomorphisms and they induce by restriction isomorphisms
SL,I/‘X(V) - i}L,v(V)’
zL.v(V) - zL,vx(V)’

I7 () = L)
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for every extension L of K(v,x). Given r, there exists x such that rxe@,,
so that dimT (V}=dim I, (V) =dimV and ve 0, , whence &, = V. Thus,
in a homogeneous K-space every element is simple.

Now, (p)¥ is the restriction to F.(V) of the automorphism p * of T(V).
Also, for each De D(V), p,**(D) = p,- *oDop *. Therefore

pHR,() = Do) (veV, xeG) @)
Furthermore, for any y € §,.(V),
(P DN () = (p (DY) () = (p,- *(D{p*(W)))) (vx)
= (D(p*) () = D,((p)s(¥))
= ((p) " (D) (W),
so that
(P *(D) = (p*(D)e  (DeD(V), vEV, xe€G). (€))
Since for any D there exists a v such that De D,(V), Eq. (2) shows that

an invariant derivation on the homogeneous K-space V is holomorphic at
every element of V. Equation (3) then shows that

(P)3*D) = D,.  (DeR(V), veV, xeG) @

[t follows from this that if D is invariant and D, = 0 for one element v eV,
then D, =0 for every v eV, whence D = 0. Therefore for each veV the
canonical U-iinear mapping D,(V) — T, (V) injects L(V) into T, (V) and
injects £, (V) into I, ,(V) for every extension L of K{(v).

For the rest of this section we suppose that V is a principal homogeneous
K-space for the connected K-group G. Then 2(F) and T, (V) both have
dimension equal to that of ¥, as do £,(V) and I, (V) for any L> K(v).
Hence we have a canonical vector space isomorphism

£ = T,(V)

that maps £, (V) onto I, (V) for every extension L of K(v). The transpose
of this isomorphism is a canonical isomorphism

;) = &)

that maps I ,(V) onto 27(v) for every L> K(v). The inverse of this
transpose maps an invariant differential @ on ¥ onto a cotangent vector to
V' at v that we denote by w, and that is called the local component of w at v.
By definition,

(D, w,> =D, 0y (De V), wel*V)).
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Now suppose that we have a K-mapping fe€ M (V,W), where WFis,
like V, a principal homogeneous K-space for a conngctefi K—group.. or
any v € V at which fis defined we then have the composite linear mapping

Q) = T,(V) L Ty (W) = L),

which we denote by
fELLQ) = 2W).

v

For any extension L of K(v), f* maps £,(V) into 9, (W). The transpose
of f*, that is, the composite mapping
QW) = T (W) S THW) = 2%,
we denote by
o) - 2 ).

* maps 2¥(W) into LI(V). It is easy to verify that

#
For any L > K0), /; space for some connected

if g is a K-mapping of ¥ into a homogeneous K-
K-group, and g is defined at f(v), then

(@GNt = glw ot (geNE* =L7* 2970 ©)
Also, (idy)? = idgy,. Equation (4) shows that
(pf = idey, eV, x€0) (6)
and hence also that ‘
(Px)f* = ldgwy)-

For any De&(V)and o € Aut(U/K) we have, for every ¥ € Fe rinW),
(S (Daisen ¥ = (@(SHDNY) (/@) = (S DY) (6 (f@)
s((FA(DYW) (f0)) = o (D) ¥) = o o (DYY)
(D, (f¥W)) = o(DUFW) @) = (D)o (£5(¥))) (ov)
5(D)po(Wof) = o(D)eu(¥20()
= 0(D),,(c(NEW) = (NI (D)) )
= (UU)::;(“(D)))a(f)(au)l// = (a(f),’i(a(D))).,ww,

It

and therefore

s(f(D)) = o()(a(D)).
It easily follows that also, for any w & £*(V),

O'(fv#*((i))) = O'(f)ru*("(w))-

21 CROSSED K-HOMOMORPHISMS 341

EXERCISES

1. Let V be an irreducible K-set, let ¥’ be an irreducible K-subset of V,
and let ve V. Prove that the vector space homomorphism

(iny, v )o* : T,00) - T,(V)

is injective. (Hint: See Section 19, Corollary 3 of Proposition 25.)

2. Let V be an irreducible K-set and let ve V. Show that each Te
I,(V) induces a linear form T’ :wm,(V)/m, (V)*> - U, and prove that
the formula 7+ T’ defines a vector space isomorphism T,(V) =~
(m, (), (V).

21 Crossed K-homomorphisms

We now generalize the notion of homogeneous K-space for a K-group G.

Let M be a K-set, and suppose given an everywhere defined K-mapping
MxG— M (for which we shall use the notation (v, x)— vx and which
we shall regard as an external law of composition) such that

v(xyx;) = (vx,) X, (veM, x,eG, x,€0),
vl =v (ve M).

We then say that M is a K-space for G. By Section 15, Proposition 17(a),
every homogeneous K-space for G is a K-space for G. It is easy to verify
that a K-space M for G is homogeneous if and only if vG = M for some
(and hence every) ve M.

Suppose that M is a K-space for G. For each x e G, the mapping
pc:M— M given by the formula p (v) =wvx is an everywhere bidefined
generically invertible K(x)-mapping of M into M, and p,-. is its generic
inverse and inverse. For each ve M, the mapping 1,: G — M given by the
formula 4,(x) = vx is a K(v)-mapping of G into M. If N is another K-space
for G, a K-homomorphism of M into N is defined as an everywhere defined
K-mapping fe Mg (M,N) such that flvx)=f(v)x (veM, xeG). By
Section 15, Proposition 17(b), when M and N are homogeneous, a K-
homomorphism M — N of K-spaces is the same thing as a K-homomor-
phism M — N of homogeneous K-spaces. The mapping 1,:G— M is a
K(v)-homomorphism.

If M’ is a K-space for a K-group G’, then any K-homomorphism of K-
groups g : G — G’ induces on M’ a structure of K-space for G, the external
law of composition being given by the formula (v',x) — v'g(x). It follows
that if /1 is an everywhere defined K-mapping of M into M’ such that

A(vx) = h(v) g(x) veM, xeG),
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then 4 is a K-homomorphism of K-spaces for G. We sometimes refer to
the pair (4, g) as a K-homomorphism of (M, G) into (M',G’). When 4 is an
everywhere defined K-mapping of M into M’ for which there exists a K-
homomorphism of K-groups g:G — G’ such that (4, g) is a K-homomor-
phism of M,G) into (M',G"), we call /i a relative K-homomorphism of M
into M’ and refer to g as being associated to h.

In the special case in which M’ is a principal homogeneous K-space for
G’, on the one hand any K-homomorphism (/, g) of (M,G) into (M',G")
has the property that 4(v)” 'i(vx) = g(x) for every (v,x) e M x G, and on
the other hand, for any everywhere defined K-mapping h of M into M’
with the special property that /4(v)” 'A(vx) is independent of v, the formula
g(x) = h(v)” *h(vx) defines a K-mapping of G into G’ such that (h,g9) is a
K-homomorphism of (M, G) into (M, G"). Thus, in this special case, # com-
pletely determines g. When M too is principal homogeneous, we have the
identity

gor tvy) = h(w) ™ h(vy).

Any K-homomorphism of G into G’ is also a relative K-homomorphism
of the regular K-space for G into that for G’ and is its own associated K-
homomorphism.

If M, is a K-subset of M and G, is a K-subgroup of G such that M| G, <
M,, then M, has a natural structure of K-space for G,. When M, G M,
we call M, a K-subspace for G of M.

To see an example, consider a K-homomorphism f: M — N of K-spaces
for G, and let C denote the closed image of f. By Section 15, Proposition
15(c), Cis a K-subset of N. If we C and ye G, we can fix (v, x) € Tyxgk,
with f(v)? w and x>V, and then evidently f(vx)=f(v)s— wy, so
that wy e C. Thus, the closed image of the K-homomorphism M - N is a
K-subspace for G of N.

Let G and G’ be K-groups. By a K-operation of G on G’ we mean a structure
on G’ of K-space for G such that

(x'x3)x = (x,'x) (x3'x) (x,/€G, x,'€G, xeG),

that is, such that for each x & G the formula x' — x'x defines a group auto-
morphism of G’ (and therefore, evidently, a K(x)-automorphism of G’).

Now let M’ be a K-space for G'. By a K-operation of G on M, G we
mean a structure on M’ of K-space for G together with a K-operation of
G on G’ such that

Wx)x = (Vx) (x'x) @WeM, xXeG, xeG),

that is, such that for each x € G, the formulas v' — v'x and x’ + x'x define
mappings y,: M’ —> M’ and y,’:G'—> G for which (75, 7%) 15 a K(x)-

LR YRY 2

T

e
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automorphism of (M’, G'). (Note that y, respectively . is the K(x)-
mapping p, of the K-space M’ respectively G’ for G.) By a K-operation of
G on M’ we mean a structure on M’ of K-space for G that, for some K-
operation of G on (7, gives a K-operation of G on (M', G'). We then refer
to the K-operation of G on G’ as associated.

When a K-operation of G on G’ respectively (M’, G') respectively M’
is given, we say that G K-operates on G’ respectively (M', G") respectively M".

{n the special case in which M’ is a principal homogeneous K-space for
G', on the one hand any K-operation of G on (M, (') has the property that
(x)"'((vx)x) = x'x for every (v,x',x)e M'xG'xG and W ey x =
(v,/x)" Hvy'x) for every (v, vy, x)€ M’ x M’ x G, and on the other hand
for any structure on M’ of K-space for G with the special property that
(vx)”'((v'x’) x) is independent of v’ the formula (X, x) = (X))~ ((v'x") x)
defines a K-operation of G on G’ such that the given structure on M’ of
K-space for G together with this K-operation of G on G’ is a K-operation
of G on (M’, G’). Thus, in this special case, a K-operation of G on (M, G')
is completely determined by a structure on M’ of K-space for G having the
special property mentioned above.

For example, any K-operation of G on G’ is also a K-operation of G on
the regular K-space for G’ that is its own associated K-operation of G on G'.

We now describe a generalization of the notion of K-homomorphism.
Let G K-operate on G'. A crossed K-homomorphism of G into G’ means an
everywhere defined K-mapping f of G into G’ such that

fey) =fX)y-fy) (x,yel).

It i5 easy 10 see that the kernel of a crossed K-homomorphism f (that is,
the set of all x € G such that f(x) = 1) is a K-closed subgroup of G. When
the K-operation of G on G’ is trivial (that is, when x'x = x" (X' e ¢/, x € Q)),
the notion of crossed K-homomorphism of G into G’ reduces to that of
K-homomorphism of G into G’

Now let M and M’ be K-spaces for G and G, respectively, and suppose
that G K-operates on (M', G’). By a crossed K-homomorphism of (M,G)
into (M’, G') we mean a pair (k,g) such that h is an everywhere defined
K-mapping of M into M’, g is a crossed K-homomorphism of G into G,

and
hvx) = h(v)x - g(x) (veM, xeG)

When (h, g) is such a pair, we also call 4 a crossed K-homomorphism of M
into M’ and refer to g as an associated crossed K-homomorphism of G into G

In the special case in which M’ is a principal homogeneous K-space for
G’, on the one hand any crossed K-homomorphism (4, g) of (M, G) into
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(M’, G") has the property that (h(v)x)™'h{vx) = g(x) for every (v,x)e
M x G, and on the other hand for any everywhere defined K-mapping 4 of
M into M’ with the special property that (h(v)x)”'h(vx) is independent
of v, the formula g(x) = (h(v) x)~'h(vx) defines a K-mapping g of G into G’
such that (h,g) is a crossed K-homomorphism of (M,G) into (M’, G").
Thus, in this special case, & completely determines (4, g). When both M
and M’ are principal homogeneous K-spaces, we have the identity

9(01—102) = (h(vy) (Uflvz))_lh(vzl

Any crossed K-homomorphism of G into G’ is also a crossed K-homomor-
phism of the regular K-space for G into the regular K-space for G’ that is
its own associated crossed K-homomorphism.

When the K-operation of G on (M', G') is trivial (that is, when v'x = v’
(veM’', xeG) and X'x =x' (x’ € G, xe()), the notion of crossed K-
homomorphism of (M, G) into (M’, G’) reduces to that of K-homomorphism
of (M, G) into (M’, G).

We now return to the situation and notation of the last part of Section 20.

Proposition 27 Let G and G’ be connécted K-groups and let V and V' be
principal homogeneous K-spaces for G and G’, respectively. Suppose that G
K-operates on V', and for each x € G let y, denote the relative K(x)-auto-
morphism of V' given by the formula y,(v') = v'x. If h is any crossed K-homo-
morphism of V into V', then

hut ;IYxGh)f = ('yx)lﬁu) e hf!

hEY = (o m)}* = h* o (i
forallveV and xeG.

Proof For each xe G, the identity h(vx)=h({)x-g(x) in v can be

expressed in the form fop = p, ,0y.ch. Referring to Egs. (5) and (6) near
the end of Section 20, we find that :

hle = hlyo (p)f = (hap)f = (g )]
= (pg(x)):;v)x ° (Vx):;u) ° hf
= (¥ dhw o bl = (o b))
The rest quickly follows.
Corollary 1 If f:V V' is a relative K-homomorphism of principal
homogeneous K-spaces for connected K-groups, then the linear mapping

fE 80y Q(V') is a Lie algebra homomorphism that is independent of
veV.
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Proof For the trivial K-operation of G on V', y,=id,. (x€G) and
hence f is a crossed K-homomorphism of V¥ into V'. Hence by the proposi-
tion, £,¥ =fF (veV, xeG), so that £* is independent of v and therefore

may be denoted simply by f*.

To show that f* is a Lie algebra homomorphism, consider any D e £(V)
and any ¢’ € (V') such that ¢'sf exists. For any ve) such that ¢'s
Frw(V), we can write

((f*(D)@)=f) (v) = (f*(D)9") (f) = f* D)y ¢’
=1 (D)e" = Dy(£H(9))
= D,(¢'af) = D(p"=f) (v),
so that (f*(D)¢")af= D(p'sf), that is,
[XSH(D)¢) = D(£H@).
Therefore for any D, Ee (V) and any ¢ and v as above,
(fHD)VFHE) @) (f©) = (D) gy [HE) 9" = ¥ (D) S*(E) o’
= D,(fM(f*(E)¢")) = DE(/S @)
= D(E(£,())) ).
Interchanging D and E here, and then subtracting, we find that
L *D),f* ()l @’ = (LF* (D) H(EN] ) (f0) = ([D, E1f () @)
= [D,E1,(£Me)) = ;D E]) ¢’
= (D, EDsw @

S0, DDy = L (D) f*(E)) 5oy
whence f*([D, E]) = [f*(D).f*(E)].
REMARK We shall consistently use the notation f* for f;* when fis a
relative K-homomorphism of principal homogeneous K-spaces. Of course,
“#* is also independent of v and hence can be denoted by /**. We know that
f* maps 24(V) into 84,y (V’) for every v, and hence that f* maps 2,(V)
into £,(V’). A proof similar to that of Corollary 1 shows that when the
field characteristic p is not 0, then f*(D?) = f*(D)? for every De £(V).

so that

Corollary 2 Let H be a connected K-subgroup of the connected K-group G,
and write in=ing y and © = wgy. The homomorphism in* . 2(H) - 2(G)
is injective. If H is normal in G, then in*(2(H)) is an ideal of £(G) and the
sequence

in* n*

0 2(H) 2(6) G/H) —> 0

is exact.
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Proof 1f EeKer(in®), then the local component £, is in Ker(inT*),
that is, E,ein} = 0. Since in* is surjective by Section 19, Corollary 3 to
Proposition 25, then E, =0, whence E=0. Thus, in* is injective. Now
let H be normal. Since n*oin? = (zz=in)* =0 (see Example 1, below),
Ker(n*) o Im(in*). If De Ker(n™). then, for any ¢ e F(G/H), we can
fix an extension L of K with De ¥,(G) and ¢ € §,(G/H) and then fix
xelgy. Then DE¥W))(x) = De(ri()) = nf* (D¢ = n*(D)yy ¥ = 0,
whence D(7*(y)) = 0. Thus, Ker(z*) is contained in the space of all deri-
vations of the extension F(G) over a*(F(G/H)). Since this extension is
separable and of transcendence degree equal to dim H = dimIm(in*),
this space has dimension equal to this transcendence degree, so that
dim Ker(z*) < dimIm(in*), whence Ker(n*)=Im(in*). A dimension
argument now shows that n* is surjective and completes the proof.

We conclude this section with some examples.

ExampLEl For any v eV’ the constant mapping k, : V-V’ with
value v’ is a separable relative K(v')-homomorphism of V into V' and
k,” = 0. Indeed, by Section 15, Proposition 17(e) and the fact that
k(0) 'k, (vx)=1 for all (v,x)eV xG, k, is a separable relative K(v')-
homomorphism of ¥ into V'’ and the associated K(v’)-homomorphism of G
into G’ is the trivial one. For any v € ¥, and for evefy @ €T, W) k) o)
is a constant function and therefore (k,)}*(T)¢ = T((k,)5(¢")) =0 for
every Te I, (V), so that (k,)** =0, whence k,* =0.

In the opposite direction, if f is any separable K-mapping of ¥ into }’
such that £* =0 for veTl, , then f=k, for some »" € V' Indeed, for
any @' € §x. V") and any D e 24 (V), then (D(¢'=o/))(v) = D,(f*(¢") =
SEX DY@ = [7(D))y ¢ =0, whence D(g'of)=0. Hence D(p'af)=0
for every De Dg(V) and every ¢ € Fx ;,y(V'), so that d(¢'(f(v))) =0
for every derivation & of K(v) over K, whence 5(K(f(v))) =0. Since K(v)
is separable over K(f(v)), f(v) must be algebraic over K and hence, because
V' is connected, f{v)e V', and fis constant.

ExampLe2 For any x € G the mapping p,: ¥V — V is a K(x)-mapping of
V into V. Since p.(v)" ! p (vy) = (vx) ' opx) =x""yx =1.-.(p), p, is a
relative K(x)-automorphism of V' and .-, is its associated K(x)-automor-
phism of G. We have seen (Section 20, Eq. (6)) that p.* =idy.,.

ExampLE 3 For any v e V the mapping 4,: G -V is a K(v)-isomorphism
of the regular K-space for G onto V. Therefore ;* : 2(G)— £(V) is an
isomorphism of Lie algebras. '

ExamMPLE4 V? has a natural structure of principal homogeneous
K-space for G2, The canonical projections pr,,pr, of ¥'* into V are relative
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K-homomorphisms, the associated K-homomorphisms of G* into G being
the canonical projections of G* into G. For each v € I the injections i, , /.,
of Vinto V2, given by the formulae i, (i) = (w,v), i,, (W) = (v, w), are relative
K(v)-homomorphisms, the associated K(v)-homomorphisms of G into G?
being the canonical injections i,,i, of G into G®. Evidently pr =i, =
pra=iy, =idy and prisi,, =pryai, = k,. It follows that if aj,a,e U and
D,, D, e e(¥) and a,i,* (D) +a,i,," (D,) =0, then

0 = a,pr (i, " (D)) + as pri*(i,," (D))
= a,id,* (D)) + a,k*(D,) = a, D,

and, similarly, a, D, = 0. Thus, if a,,a, are not both 0, then a, i,* +a,i,,"
is injective (in particular, i,,* and i, are linearly independent over U), and
i, * (2(V)) N i, (L(V)) = 0. Since

dimL(r?) = dimV? = 2dim¥ = 2dim 2(V),
we infer that
LY =i, (L) + 1,7 (L) (direct sum).

Thus, every element D of ¥(V?) can be expressed in the form b=
i, *(D)+i,* (D) with unique D,,D,e (V). If pr,*(D)=0, then 0=
id,*(D,)+kJ(D,)=D,, and if pr,*(D) = 0, then D, = 0. Therefore

Ker(pr*) n Ker(pr,*) = 0.

ExampPLES The diagonal mapping A, :V — V%, given by the formula
Ay (w) = (w,w), is a relative K-homomorphism, the derived K-homomor-
phism of G into G? being Ag. Evidently pr,oA, = prys4, =idy, so that
pri* oAy —i,* —i,*) = id,* —id,* =k =0 by Example I, and similarly
pri (A —i,* —i,,*) = 0. It follows from the last equation in Example 4
that

A =0, i, (veV).

ExampLE 6 The formula (x, (x;,x,)) — x{ ' xx, defines a K-operation of
G? on G. For each (x,, x,) € G? the corresponding K(x, x;)-automorphism
Vixnxp Of G is given by the formula y, ., (x) = x7Yxx,. In particular,
Vo x = idg, whence y " = ide.g). The mapping ¢ V% > G given by the for-
mula (v, w) = o 'w is a K-mapping, and 7, «,,(¥ (5, W)™ ¥ (vxy, wx,) =
x7 ! x,. Therefore ¢ is a crossed K-homomorphism of V? into G. Evidently
A,oWai, =id, and A,o@od, =k,, so that A% oyl ., 00" = idey, and
(by Examples 5 and 1) 4, oy, 0iy® = 1,* oylh )0 (A% — i) = —idey,)-
Hence

(lu#o‘//(;:,w)-‘rprl# .—prl#)oivj# = 0 (.}= 1’2)
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Since 2(V?) = i, * (L") +i,,* (2(¥)) by Example 4, we conclude that
'{v# o l//(f,w) = prz# - P"1# (v,weVl).

ExampLE 7 Let the connected K-group G be commutative. Then the
group law u: G* - G is a K-homomorphism. Because

## °(i1#—[2#) = (Hoil)# - (Uaiz)# = idc# - idG# =0,

we see that
Im(i, * —i,*) = Ker(u®),  Im(i,*) = Ker(pr,*), Im(i,*) < Ker(pr, *).

However, by Example 4 the linear mappings 7,* —i,*, i,*, i,* are injective,
so their images have dimension equal to dim £(G); also

dim Ker(u*) = dim 2(G?) — dimIm(u*)
< 2dim 2(G) — dim Im (u* oi,*)
= 2dim £(G) — dimIm (ida(,) = dim 2(G),
and similarly dim Ker(pr,*) = dim Ker{pr,*) < dim 2(G). Therefore
Im(i,* ~i,*) = Ker(u*), Im(i,*) = Ker(pr,*), \ Im(i,*) = Ker(pr,*),

so that the three images are ideals of 2(G?) and (by the last equation in
Example 4) T

Im@i,*) A Im(@i,*) = 0. %)

It follows that if-D,, D, are any elements of 2(G), then there exists an
element D, € £(G) such that

[ (Dy), i*(Dy) — i,*(D2)] = i,*(D3) — i2*(D3),
and also [i,*(D,),i,*(D,)] =0, so that
i*([Dy, D,1) = [i*(Dy), i/ (Dy) — 1% (D))
1i,*(D3) — i,*(Dy),
ii*(Dy —[Dy,D,;]) = i,*(Dy). %

I

Since both sides of this equation must be 0 by (7), and since i,* and i,* are
injective, we conclude that [D,,D,] =0. This shows that if G is com-
mutative, then so is 2(G). The converse of this statement is false when
D # 0 (see Section 18, Exercise 3 and Exercise 1(d)) and true when p =0
(see Section 22, Exercise 3).
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EXERCISES

1. Let f:¥V -V’ be a relative K-homomorphism of principal homo-
geneous K-spaces for connected K-groups, and suppose that p # 0.
Prove the remark (made after the proof of the corollary to Proposition
27) that f*(D?) = f*(D) for every De £(V).

2. (Borel's closed orbit lemma) Let M be a K-space for a K-group G.
For each v € M let M, denote the smallest closed subset of M that con-
tains the orbit vG. Prove that M, is a K(v)-subspace of M for G, that
the components of M, all have the same dimension, that vG is K(v)-
open in M,, and that dim(M,—vG) < dim M,. Conclude that when v
is chosen so that dim M, is minimal, then vG is closed.

3. (Generalization of the result in Example 7) Let G be a connected
K-group. Denote the commutator subgroup of G by [G,G] and the
commutator subalgebra of £(G) by [£(G), 2(G)], so that [G,G] is a
normal connected K-subgroup of G (see Section 10, Proposition 14)
and [2(G), £(G)] is an ideal of £(G). Prove that

[2(G), 2(G)] < in* 2([G,GD),

where in = ing (g ;- (Hint: Use Example 7 and Corollary 2 of Propo-
sition 27.)

4. Let G be a connected K-group, fix a basis (D, ..., D,) of 24(G), and for
each x€G let A(x) = (A;;(x)) denote the matrix such that .*(D)) =
Y <icn Ay (x)D; (1 <j < n). Prove that the formula x+— A(x) defines
a K-homomorphism 4 : G — GL(n) with kernel containing the center
of G. (Hint: Use the penultimate displayed equation in Section 20 to
show that a(4(x)) = A(ox) for every o € Aut(U/K).)

22 Logarithmic derivatives

Let G be a connected K-group and V' be a principal homogeneous K-space
for G. Let L be a field (over which U may have finite transcendence degree)
with Lo K, and let § be a derivation of L over X.

For any element v eV, we can define a mapping & ,(V)— U by the
formula ¢ — 8(@(v)). This mapping is evidently a local derivation of
®k..(V) at v and therefore (see Section 20) can be extended to a unique
tangent vector &, € T,(¥). The inverse of the canonical isomorphism £(V) =
I,(V) (see Section 20) maps J, onto an invariant derivation that we denote
by /6(v) and call the logarithmic derivative of v (relative to §). Thus, the in-
variant derivation /§(v) is characterized by the condition that

15(0)ye = 5(p(0))
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for every ¢ € &k (V) (and hence also for every g e F_ (V), where L; is
the kernel of §). We call the mapping
5.V, —2W)

the logarithmic derivation on V, (relative to 9).

Proposition 28 Let L be a field (over which U may have finite transcendence
degreey such that L> K and let & be a derivation of L over K. Let V be a
principal homogeneous K-space for a connected K-group, and let veV,. Set
K, = K(@©)-K(3(K(@®))).

(@) 5(v)e Ly, ().

(b) If ¢ is an isomorphism of K, over K onto an extension of K lying in
L such that oda = Sou for every x € K(v), then o(l6(v)) = l6(ov).

(€) 18(v)=0if and only if 5(K(v)) = 0.

Proof (a) For any ¢e @ ,(V), 16(v),0=205(p()ekK,, and hence
(by Section 19, Proposition 25) 5(v), ¢ € K, for every ¢ € §,.,(¥). Thus,
1(v), € Tk, ,(¥V), whence 16(v) € Lx (V).

(b) We have o(F, (V) = Tk ., (V) and, for every ¢ € Fx (V)

o (I8(0))gy0(9) = (a(l5(1))5(9)) (ov) = a(l6(v) p) (av) = o(({5(v) @) (v))
g (16(v),0) = a(3(p () = 3(a(p(¥))
3{a (@) (ov)) = 16(ov),,0(0);

therefore a(/6(v)),, = 16(ov),,, whence ¢(I6(v)) = /6 (ov).
(¢) By Section 19, Proposition 25, we have

B)y=0 <= B, =0 (peFk.))
<= 0(e®) =0 (peFk.)
=  5(K@)=0

if

Il

Proposition 29 Let L be an extension of K, over which U may have finite
transcendence degree, and let 5 be a derivation of L over K. Let V and V' be
principal homogeneous K-spaces for connected K-groups, let veV,, and let
feMy ,(V,V"). Then

LA @) = 16(f(v)).
Proof For any @' € Fg p,,(V')-
LBy o = LHw),) 0" = 16(v), f(@)
= (£ (@) ) = o(¢'(f(v))
= I6(f(0))y @'
Therefore £, (I6(0)) ) = I6(f(1))vy» Whence the desired equation.
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Now, G itself is a principal homogeneous K-space for G, and /4, is an
everywhere defined K(r)-mapping (and even is a K (v)-isomorphism) of
G into V. If xe G, and v satisfies the condition 5(K(v)) = 0, it follows from
Proposition 29 (with K, V,V',0.f now K(v), G,V,x,4,) that 5(vx)=
J,%(16(x)). Without this condition we have the following important general-
1zation.

Theorem 14 Let L be an extension of K, over which U may have finite tran-
scendence degree, and let 3 be a derivation of L over K. Let ¥V be a principal
homogeneous K-space for the connected K-group G, and let (v, x) eV x Gy.
Then

18(vx) = I3(v) + 4,7 (I8 (x)).
Proof Recall from Section 21, Example 6, that the mapping  : VoG

given by the formula ¢ (v, 02) = vi'e, is a crossed K-homomorphism of
V2 into G, and that 4, * oy, = pr,® —pr,* for all v,,v, € V. Therefore

A8 (x) = 4,716 (g (v, vx)))
= 1,5 (W8, (10 (v, vX)))
= (pr,* —pr/®) (16 (v,vx))
= 15(pry(v,vx)) — I6(pr, (v,vx))
= Bx) - 50).

REMARK When V is G, then i, = t,ap,. Because p,* =idyg,, we see
that 4,* = 7,*. Thus, as a special case of Theorem 14,

8(xy) = 16(x) + .2 (5(»)  (x,yeGL).
Of course, when G is commutative then this reduces to the identity

16(xy) = 16(x) + I6(y) (x,yeGy).

Corollary Let G be a connected commutative K-group and let re N, p1r.
The mapping G— G given by the formula xw— x" is a surjective K-endo-
morphism of G with finite kernel.

Proof It is easy to see that the mapping is a K-endomorphism. Its kernel
N is a K-closed subgroup of G. Taking x e [y x,, we see that if § is any deriva-
tion of Ki(x) over K, then rid{(x)=1[6(x") =/6(1) =0 so that B(x)y=0
and §(K;(x)) = 0. Therefore x is algebraic over K, so that dim N = O (that
is, N is finite). The image of the endomorphism is a closed subgroup of G
of dimension equal to dim G—dim N = dim G, and therefore is G.
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We conclude this section with some examples. They should be read in
conjunction with the corresponding examples at the end of Section I8, the
notation of which we use here.

ExampLE | For any xe(G,),,
1800 = 3(Z(x) = dx = ((6x) (d/dE) &) () = ((9x) d[dE). <.

However, by Section 19, Proposition 25, ¥,(G,) is the localization of U[(]
at its prime ideal U[&] nm(G,), so that I§(x), = ((0x) d/dS),, whence
18 (x) = (6x) d}dé and {16 (x),ds)y = dx.

ExampLE2 For any xe(G,),,
18(x). & = 8(E(x)) = dx = ((dx-x~1) < (d]dE) §) (x) = ((6x-x"1) ¢ dfd¢). &.

As in Example 1, we conclude with the help of Proposition 25 that /§(x) =
(0x-x~1)E djdE and ($5(x), &1 dEy = 6x-x7 .

ExampLE3 Let p#2. For any z=(l:x:))e W, = W,(g,,95) other
than (0:0:1) and the three elements with y =0, /6(2),£ =5({(2)) = dx =
((0x-y~ Yy (d]dE) E)(z) = ((6x-y~"yn djdZ).é. From the equation N =
483 — g, E—g, we infer that also 0(z).n = ((6x-y~")n d/d&).n. By Proposi-

1

tion 25, hence 15(2) = (6x-y™ ") n d/d¢ and {{5(z), p_ ' dE> = dx-y~".
ExaMpLE4 For any x = (x;;)) € GL_(n), if we set x~' ={(y)), then
16(x) &y = 6(Ei;(x) = dx;;

= < Z (5Xx/1 'ylu) éuv (a/aéxv) 5U'> (X)

K, A, 1Y

= <Z <; (SX’*'X .ylﬂ> Z éuv a/aéxv>x éij
K, it v
for every (i,j), and therefore /5(x) = Y, (3, 6xe1 Vau) 2o Suv 0/0E,,. In
matrix notation this can be written as [5(x) = Tr(éx-x~'¢¢/2(’%)). An

easy computation shows that ({/5(x), &, 1, dEu D)1 <i<m 1 <j<n = 0X-X 71

EXERCISES

1. Let G be a connected K-subgroup of GL(n) and consider the Lie algebra
isomorphism V : 2(G) ~ (G) defined in Section 18, Exercise |. Show
that if L is an extension of K x € G,, and 8 is a derivation of L over K,
then V(/8(x)) = dx-x~ 1.

2. Let G be a connected K-group, L be an extension of K (over which the
transcendence degree of U need not be infinite), xe G, and § be a
derivation of L over K. Let 6* denote the derivation of &, (G) over

|
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F« (G) that extends o (see Section 16, Exercise 3), and let 6% denote
the derivation of 2,(G) defined by the formula §*(D) = [6* D,] (see
Section 18, Exercise 4).

(a) Prove that if @& Fx (G), then 5*(i.*(p)) = A, *(8(x) ¢). (Hint:
Using the last part of Section 18, Exercise 4, and properties of /5, show
that the two L-functions are defined and agree at every element z € G,
at which 4,*(¢) is defined.)

(b) Prove that if De 2,(G), then

t*(3%(D)) = 8* (v (D)) + [I6(x), 7.* (D)].
(Hint: First take D € 24(G) and show that for all ¢ € ¥y

t (0% (- F (D))o = (1)F* (0" (0 - *)(D)s
= (AT (-* (D)) @
= 6% (1,-* (D)) (A:*(9))
= 5(te-* (D)1 (A:X(9))) — 7= (D) (8*(L*(0)))
= 8(D, (1e- * (4*(0))) = D1 (1o~ * (A (0 (%) 0))
= 0(D. @) — D, (I5(x) ) = [16(x), D] 0,

whence ©.*(6%(z,-*(D))) = [/6(x), D]. Then infer that, for any De&
2,(G), 1.7 (0% (z.-* (D)) = 6*(D)+[16(x), D].)
(¢c) Prove that if §,,8, are derivations of L over K, then

8,7 (16, (x)) — ,*(18,(x)) = [0, (x), 16, (x)] — 1[5, 6,] (x).
(Hint: Show for any ¢ € §g .(G) that
T2 (8, (te-* (B2 (0N))x @ = 7(8, (1x-1* (182 (0)))1 £x*(9)
8% (1= (16, (x)))1 4:%(0)
=0 1(Tx- (16, () ;tx*((P))
= T-* (18, (x)), (51 *(Ax*(‘P)))
= 51(152 (x)1(Px*(‘P)))
— 135 ()1 (2= * (12*(18, () )
=0,(l6,(x)x0) — 16,(x): 161 (x) @
= 3,05(p(x)) — 16:(x): 10, (x) 9,

and infer by part (b) that
3. (18,00 + [16,(x), 16, ()]x 0 = 8,8, (p (%)) — 16,(0)< 16, (x) @;

then interchange J,,0, and subtract.)



354 V ALGEBRAIC GROUPS

3. (Partial converse of Section 21, Example 7) Let G be a connected
K-group and suppose that p =0. Prove that if £(G) is commutative,
then so is G. (Hint: Let (x,y) € ;24 and consider the K-homomor-
phism A4 : G — GL(n) in Section 21, Exercise 4. Use Exercise 2(b), to
show that 3(K(4(x))) = 0 for every derivation § of K(x) over K, infer
that K(4(x)) = K,, and hence that t,* = idy,. Deduce by Theorem 14
that /6 (xy) = 16(yx) for every derivation § of K(x,y) over K, and hence
that K(x~ 'y~ 'xy) = K,, and conclude that x™ 'y 'xy = 1.)

23 Linear K-groups

A. DEFINITION AND ELEMENTARY PROPERTIES

Let G be a K-group. If G is K-isomorphic to a K-subgroup of GL(n) for
some n, then it is obvious that G is K-affine in G (see the definition in
Section 16).

If for some n there exist a K-subset B of G," and a generically invertible
fe M (G, B) that is bidefined on G, then f(G) is a dense K-open subset of B,
the canonical coordinate functions &,,...,¢, on B (given by the equations
&, =prioing,. g) are elements of Ty ;(B) with the property that
Fx(B) = QKL ., &), and F(G) = *(Fk(B) = [HQKIE,, ... &D) =
Q(K[S*E)) ..., f*(E)]). Since f*(&)) = &;ofe i, o(G), this shows that if
G is K-affine in G, then §(G) = Q(F, c(G)).

Now suppose that F(G) = Q(Tk ¢(G)). Since F,(G) is the complete
ring of quotients of a finitely generated algebra over K (indeed, is the
direct product of a finite number of finitely generated extensions of K),
it follows that there is a finite subset ® of Ty c(G) such that F(G) =
Q(K[®]). By Section 16, corollary to Proposition 23, we can write §(G) =
Q(K[¢,-..,@.)) with elements ¢, ..., ¢, € T, ¢(G) that are linearly in-
dependent over U and have the property that p *(@;) =23 ;¥ (x)@;
(1 <j <n, xeG), the ;. being everywhere defined K-functions on G
such that the formula x — (i/;;(x)) defines a K-homomorphism ¥ :G—
GL{n). If x e Ker(¥), then p,*(¢;) = ¢; (1 <j <n), so that p*()=¢
for every ¢ € Q(K[@y,-.., 9,]) = §x(G), whence x = 1. Thus ¥ is injective.
If xelgk, then K(x)=K(@(x),...,0,(x)) and ¢;(x)=p*e;) (1) =
¥ @Dy (x) e K(¥Y (x)), so that K(x) = K(¥(x)). This shows that ¥
induces a K-isomorphism of G onto the K-subgroup ¥ (G) of GL(n).

Proposition 30 Let G be a K-group and choose an extension L of K. The
following three conditions are equivalent and are independent of the choice

of L.
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(a) For some n, G is L-isomorphic to an L-subgroup of GL(n).
(b) G is L-affine in G.
© TG =0(Frc(0)

Proof The preceding discussion, with K replaced by L, shows that the
three conditions are equivalent. If G is K-affine in G, then obviously G is
L-affine in G. To complete the proof, it suffices to show that if (c) is satisfied,
then it remains satisfied when L is replaced by K, that is, then for any
¢ FelG), ©€Q(Fy c(G). To show this, fix a basis (4;);y of L over K.
By Section 16, Proposition 22, (u;) is a basis of §, ¢(G) over § ¢(G) too.
Because of (c), there exist ¥, x € &L ¢{G), with x not a divisor of 0, such
that @y—y =0. Writing ¥ =X Y4, x=Xu With ¥, 5 € §,6(0);
we find that ¥ (@7, —¥.)u; = 0 and hence that @y;—y; =0 (i e I). Because
4 is not a divisor of 0 in &, ¢(G), ¢ does not vanish at any element of Ig,.
Letting V,, ..., V, denote the K-components of G, we can, for each index k,
fix x, € I,k such that x, € I, = [g;,. Then there exists an index ikyel
such that y(x) # 0. Of course, Yy,oing y, and yiqy©ing y, are every-
where defined K-functions on ¥,. Let & and 7 denote the unique K-functions
on G such that

{a ing vy, = '//f(k) aing v, neing v, = Xigy© ing v, (k<)

Evidently &, 5 & §x g(G), 1 is not a divisor of 0 in F¢ ¢(G), and en—¢ = 0.

Therefore
(5 Q(L&K,G(G))'

A K-group that satisfies the conditions in Proposition 30 is said to be
linear (or affine). Thus, the groups SL(n),0(n), T(n), T(n,k) (1 <k <),
D(n) defined in Section 1, all of which are K'-subgroups of GL(n) for every
field X', are linear, as are G, and G,,.

If G is a K-subgroup of GL(n), the function &;;: G — G, that maps an
arbitrary matrix (x; )y <i-<n, 1<j < ONLO its (i,j)-coordinate x;; is an every-
where defined K-function on G. The »” functions &; form a system of K-
affine coordinates on G at each element of G, and are called the canonical
coordinate functions on G. The family (that is, the matrix) & = ()1 <i<a
has the property that det & is a unit in the ring &, ¢(G).

1<j<n

>

Proposition 31 Let G be a K-subgroup of GL(n) and let & = (&,;) denote the
matrix of canonical coordinate functions on G. Then Fx ¢(G) = K[¢, 1/detl].

Proof Let @ € §¢ ¢(G). For any x € G, there exist polynomials P, Q, €
KI(X)1 <isn 1<jn] With Q.(x) # 0 such that Q. ()¢—Pu(E)=0. Let
a denote the ideal of all polynomials in K[(X;;)<i<n 1<j<s] that vanish at
every element of G. Each zero of a that is not a zero of det(X};) is an element
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of G. Tt follows that a zero of a that is a zero of every Q, must be a zero of
det(X;)). Therefore some power of det(X;;) is in the ideal a+3..5(Q.),
that is, there exist an exponent e € N, finitely many elements xy,...,x,€G,
and polynomials C,, ..., C, € K[(X;;)] such that det(X,)* = 2 G Q,, (moda),
whence deté® =3 C (&) Q,, (). Therefore

pdetE =Y C(d) 04D = 3 Culd) PelO)
and ¢ € K[&, 1/det<].

Proposition 32 (a) Every K-subgroup of a linear K-group is linear.

(b) A direct product of linear K-groups is linear.

(¢) If G is a K-group and G° is linear, then G is linear.

(d) If G is a K-group and there exists a surjective K-homomorphism of
G onto a linear K-group of the same dimension, then G is linear.

Proof (a) and (b) are obvious. Let G be a K-group. Each component
of G is of the form p_(G°) for some x € Gy,. Hence, if G°is K -affine in itself,
then so is each component of G. Since the components are pairwise disjoint,
G is K,-affine in G. This proves (c). Now let f: G — G’ be a surjective K-
homomorphism with dimG = dimG’ and G’ linear. Because of (c), it
suffices to prove that G° is linear, that is, we may suppose that G is con-
nected. Then F.(G) and F(G') are fields and, because dim G = dim ¢,
% (G) is an algebraic extension of the field f*(Fx(G) =1*Q(Fk, ¢ (G)) =
Q(f*(Fk.¢-(G")), hence a fortiori of the field 0(F«.c(G)). Thus, for any
@ € F(G), there exists a nonzero n € Fy,¢(G) such that ¢n is integral over
&k, (@), hence over Fin. < (G) for every x G. Since every x is simple on G,
Sk, () is integrally closed by Section 20, Proposition 26, so that ¢n €
B (@) for every xeG, whence @ne Fe(G) N Fx(G) = Fx,a(0)
and @ € Q(Fx, ¢(G)). This proves (d) and completes the proof of the propo-
sition.

We shall show later (Proposition 34) that a K-homomorphic image of a
linear K-group is linear. The following subsection prepares the way.

B. SEMI-INVARIANTS

Let G be a connected K-group and A be a K-subgroup of G. An element
@ € F(G) such that p,*(p)e Up for every ye H is called a semi-invariant
of H on G. If ¢ is a semi-invariant of H on G and ¢ # O, then there is a
unique function y on A with values in U* such that p,¥(@) = x(¥) ¢ (ye H),
and it is easy to see, for any extension L of K such that ¢ € §.(G), that x
is an L-homomorphism of H into G,,; x is called the weight of the semi-
invariant . The element 0 € F(G) is obviously a semi-invariant of 4 on G.
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We adopt the convention that every {-homomorphism of H into G, is a

weight of 0.

Consider any nonzero ¢ € &g ¢(G). by Section 16, Corollary to Proposi-
tion 23 there exist elements ¢,,...,¢, € Fx c{G). linearly independent
over U and elements i, ..., ¥, € &k ¢(G), such that

P8 = Yoii(x)  (xeQ).

[n particular, & = X ¥, (1). Of course, ¥ (1), b, (D e K, and ¢, (1) #0
for some i,. Evidently, for x € G, the condition p,*(¢) € U¢ is equivalent to
the condition lpio(])lpi(x)—wi(l)gb,-o(x) =0 (1 <i< m). It follows that for
any subset = of Fy ¢(G), the set of elements x & G such that p*p)e Up
(¢ € ) is a K-closed subgroup of G, and the elements of = are semi-invariants
of it on G. The following proposition is the converse of this result for the
case in which G is linear.

Proposition 33 Let H be a K-closed subgroup of the connected linear K-
group G. There exist finitely many semi-invariants @, ..., Pm € Fx.6(G) of
H on G, all of the same weight, such that H is the set of elements x € G for
which p.*(p) e Up, (1 i< m).

Proof 1f p#0 and ¢ € g, ¢(G), then ¢ € Fg g(G) for any suffi-
ciently big e € N. Therefore we may suppose that the field K is perfect, so
that H is a K-subgroup of G. By Proposition 31, there exist finitely many
K-functions &,,...,¢, on G such that, for any extension L of K, &, ¢(G) =
L[, .., & and &, y(H) = L[ 0ing s - Eaing y]. It follows that the
homomorphism F;(G) — Fu(H) induced by ing  is surjective. Its kernel
a is defined over K, that is, U-(a n &, ¢(G)) = a, and an element x of G
isin Hif and only if £(x) =0 ((ea). If xe H and £ €, then p OO =
E(yx) =0 (ye H), whence p.*({)ea so that p*(a) = a. Conversely, if
p.X(@) ca, then &(x)=p () =0 (Cea), whence x € H. Thus H con-
sis of the elements x € G such that p,*(a) = a.

Since a is defined over K and the ring §x (G) is obviously Noetherian,
there are finitely many elements n,,..,n, € §k (G) that generate the
ideal a. We may suppose that n,,...,n, are linearly independent over K
and hence over U. By Section 16, corollary to Proposition 23, there are
finitely many further elements n,,,,..,7ns€ Fx. ¢(G) and an invertible
matrix (A;); cr<s 1<r<s OVer Tk ¢(G) such that n,...,7, are linearly in-
dependent over U and

p*nr) = Z A (X) g (1<sr'<ys)

1€i€s

for every x € G. If some nontrivial linear combination of n,,,,...,#s over
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U is in a, then so is some such combination over K, say { =2, ., <, a;n, € a.
Supposing that, say, a,,, # 0, we can replace n,,, by {. On this basis we
see that we may suppose (increasing r if necessary) that no nontrivial linear
combination of n,,,,...,n, over U is in a. Since xe A if and only if
pf(a) = q, it follows that xe H if and only if
P = ¥ Jwlone (<K<,

that is, if and only if 4,.{x) =0 (r </<s, 1 <k’ <r). Thus, the formula
x> (A {X))) <15, 1 <ir<s defines a K-homomorphism G — GL(s), and the
formula y = (4 (1)) <i<r.1 <o <. defines a K-homomorphism H — GL(r),
so that, also, the formula y > det(Z,, (3)); <i<r, 1 <1 <- defines @ K-homo-
morphism y: H—G,,.

For each family of indices (i,,...,7,) with 1 <i, <---<i <5, set
@iy = Aoty ) cisr 1 << Then @ € F¢, c(G) and, for any (x,y)e
Gx H,

Ql’n--.i,(x,v) det(}'ikk‘(xy))l$k$r, 1 <k'sr

det( ':'ikl (x) A (}’)>1 <k<r 1Sk <r
1<7<s

= det( Z< }-ikl(x)ilk'(y)>l$k<r,1<k'<r

1<€isr
= 9.5, (0 (P,

so that ¢;,..; is a semi-invariant of H on G of weight x.

Counsider any xe G such that p *(¢, .)€ Up,.., for all (i,... i)
When (iy,...,i)# (1,...,r), then ¢, ., (y) =0 (ye H) because 1,.(y)=0
(r<i<s, 1<k <r, yeH). Since ¢, (x) = p*@;,...) (1) € Ug; ., (1),
this implies that

@i (x)=0 (G, #(,....0),

and hence also that
q)l-nr(-x) ?é 0

because otherwise all the r-rowed minors of the matrix (4, (%)), </<s, 1 <k <
would vanish and det(4, (X)), ¢/<s, 1 <rr<s Would too. It follows that, for
each index / with r </ < 5, the system of equations

1<;< A (X) Xje = Qe () (I<sk<r)
has a unique solution which, by Cramer’s rule, must be (0,...,0). There-
fore A (x)=0(r<!<s, 1 <k <r), so that xe H.
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C.” K-HOMOMORPHISMS OF LINEAR K-GROUPS

We are now in position to prove the following result.

Proposition 34 Let f:G— G’ be a K-homomorphism of K-groups. If G is
linear, then so is f(G).

Proof We may suppose that G is a K-subgroup of GL(n). Since f(G°) =
F(G)°, we may (by Proposition 32(c)) suppose also that G is connected.

First we treat the special case in which f is injective. When p = 0, then
f maps G K-isomorphically onto f(G) and hence f(G) is linear. Therefore
we suppose in this case that p+#0. Fix x=(x;)el;. For any g€
Aut{U/K(f(x))), flox) = a(f(x)) = f(x) so that ox = x and ¢ € Aut(U/K(x)).
Hence K(x) is a purely inseparable algebraic extension of K(f{(x)), so that
K((x;”)) = K(f(x)) for some e N. The formula (z;;) — (z;7") defines a bi-
jective K-endomorphism of GL(n), and G is mapped thereby onto a con-
nected K-subgroup G, of GL(n). Because f(x) € I';(s)«, the above inclusion
shows that there is a K-mapping ge M (f(G),G,) such that g(f(x)) =
(x;;7). Evidently g is a bijective K-homomorphism of f(G) onto G,. Since
G, is linear, Proposition 32(d) shows that f(G) is linear.

Now we relinquish the assumption that f is injective. Set H = Ker(f)
and let = : G — G/H denote the canonical homomorphism. By Proposition
33, there exists a finite set ® = F¢ ;(G) of semi-invariants of H on G, all
having the same weight, such that H is the set of elements x € G for which
p.*(&) e UE (£ e d). By Section 16, corollary to Proposition 23, @ is con-
tained in a finite-dimensional subspace V' of the vector space F;(G) over U
such that p,*(¥) =V (x e G). The elements of ¥ that are semi-invariants
of H of a given weight y form a subspace V/, of V. It is easy to see that non-
zero semi-invariants of H of distinct weights are linearly independent over U.
It follows that there are finitely many distinct weights x,, ..., x, such that
V.#0 (1 <i<h), the sum 3V, is direct, and every semi-invariant of H
on G that is in V is in V,, for some i.

Because H is normal in G, for each x & G the inner automorphism 7,-.
of G induces a K(x)-automorphism ¢, of H. For any ¢ €V, if y € H, then
P, ¥(05(@)) = Pt (Px-1yx (@) = P (x7 ' yx) @) = (;01:) (¥) p,*(g), s0 that
p.*(@) is a semi-invariant of H on G of weight y;o¢,. Thus, y;ot, = y; for
some index i’, and p,*(V,) =V,,. However, for each y e H, the formula
x> ;(x " 'yx) defines a continuous mapping G — G,, so that the set
X, of elements xe G with w(x " yx) =y () is closed. Hence the set
Xy ={)yen Xiw, of elements xe G with yot, =y is closed, too. Since
the h sets X;,,..., X, are pairwise disjoint (because x,,..., ¥, are distinct),
and G = X,, u--u X;, and G is connected, this implies that all but one
of these & sets are empty. Since 1 e X;, we conclude that p *(V,) =V,
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(x e G) for each index i. Now, @ is contained in some V, , say dc=V, .
Enlarging K if necessary, we may suppose that ¥, has a basis (¢,,...,0,)
with @, € §x ¢(G) for each j. Then, for each x € G, there exists a matrix
W(x) = (;;(x)) € GLg,(n) such that p *(¢;) =2, ¥, (X)¢;, and it easily
follows from Section 16, corollary to Proposition 23, that the mapping
Y. G- GL(n) is a K-homomorphism. By the above, // consists of the
elements x € G such that W(x) is a scalar matrix.

Let J denote the set of all pairs of indices (j, /) with 1 €< n, 1 </ < n,
and let GL(J) denote the set of all invertible square matrices (#,g),c; gy
over U. Then GL(J) has an obvious structure of K-group for which it is
K-isomorphic to GL(n?) and hence is linear. If, for each x = (x;;) € GL(n),
we write x ! = (x};), then the formula x = (x;; X)) e s, 1), e defines a
K-homomorphism A : GL(n) » GL(J), and the kernel of A is the set of
all scalar matrices in GL(n). Therefore Ao¥ :G— GL(J) is a K-homo-
morphism with kernel H, and hence there exists an injective K-homomor-
phism k : G/H — GL(J). It follows by Proposition 32(d) that G/H is linear.
As there exists a bijective K-homomorphism G/H — f(G), we conclude by
the special case already treated that f(G) is linear.

D. G, AND G,

A polynomial P e K[X] is said to be additive if it satisfies the condition
P(X+Y)= P(X)+P(Y). It is easy to see that P is additive if and only if
either p =0 and P = cX for some ce K or else p # Oand P =3¢ <n an"’
for some n € N and some (aq, ...,a,) € K"*'. In the latter case, P is separable
precisely when either a, # 0 or P= 0. It is clear that if Pe K[X] is additive
then the formula x — P(x) determines a K-endomorphism of G,, which is
separable if and only if P is separable.

Proposition 35 (a) Every K-endomorphism of G, is determined as above
by a unique additive polynomial in K[X].

(b) Every K-subgroup of G, is the kernel of some separable K-endomor-
phism of G,.

(©) If a nontrivial K-group is a K-homomorphic image of G,, then it is
K-isomorphic to G,.

(d) If G is a K-group for which there exists a bijective K-homomorphism
G - G,, then G is Ki-isomorphic to G,.

REMARK When p =0, part (a) shows that every K-endomorphism of
G, other than 0 is a K-automorphism and then (b) shows that 0 is the only
closed proper subgroup of G,.

Proof (a) A K-endomorphism of G, is an everywhere defined K-function
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on G, and hence is given by a polynomial in K[X] which obviously is
additive.

(by When p =0, a K-subgroup of G, that contains a nonzero element
x contains the infinite subgroup Zx, hence is of dimension 1, and there-
fore coincides with G,. When p # 0, a proper K-subgroup £ of G, is finite
and hence consists of the roots of the unitary separable polynomial P =
[Tecr{X—x), which must be in K{X]. For any ye F, evidently P(X+y)
— P(X) =0. Therefore the polynomial P(X+Y)— P(X)— P(Y) in ¥ of
degree less than ord £ vanishes on F and hence is 0.

() Let f:G,—G be a nontrivial surjective K-homomorphism. Then
Ker(f) is a K-closed proper subgroup of G,. When p = 0, the remark shows
that Ker(f) = 0 so that f is a K-isomorphism. Letting p # 0, fix rel¢ .
Then there exists a greatest e € N such that K(f(1)) < K(¢#°). Since *" € I';_jx
and f(f) € [k, this shows that there exists a K-mapping f, € M (G,, G)
such that f, (£%%) = f(#).

It is now easy to see that f, is a separable surjective K-homomorphism. By
part (b) Ker(f,) = Ker(¢p), where ¢ is a separable K-endomorphism that
obviously is surjective. Therefore there exists a K-isomorphism f': G, = G
such that f"op = f.

(d) We may suppose that p# 0 and that K=K;. Let g: G~ G, be a
bijective K-homomorphism, and fix selg,x. Then K(s) is a purely in-
separable extension of K(g(s)) of finite degree, so that for some ee€N,
K(s) = K(g(s))'/?"* = K(g(s)'/7). Since g(s)"'"elg,x and selgy, this
shows that there exists a K-mapping /e M (G,, G) such that f(g(s)'/"") =,
Applying an arbitrary ¢ € Aut(U/K), we find that this equation holds for
every se [,x. Hence if (s,,5,) € [y, s0 that (g(s)"'", g(s2)'""") € Tg 2/
then

Fg)P +9(s)VP) = fg(s15)'7") = 515,
= fg(s)' ") f(g(s)'P).

Therefore f is a surjective K-homomorphism of G, into G. Tt follows by
part (c) that G is K-isomorphic to G,.

When p # 0, let = denote the K-endomorphism of G, given by the formula
Z=(x) = x?. By part (a) of the proposition, every K-endomorphism of G,
can be expressed as a polynomial Y a;=/ with coefficients in K.
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Corallary 1 Let E, denote the ring of K-endomorphisms of G,.
(a) According as p =0 or p # 0, E¢ is naturally identified with the field K

or the noncommutative polynomial ring K[Z] in which Za = a”= for every
aeK. :
(b) The ring of K-endomorphisms of G, is naturally identified with the

matrix ring Mg (n).

Proof This is clear.

The direct product G,* has a natural structure of vector space over U.
A vector subspace V of G." is a connected closed subgroup of G," and its
dimension as a vector space coincides with its dimension as a closed sub-
group of G,”; V is a K-group if and only if U-(V n K") =V, that is,
K is a field of definition of V relative to the canonical basis of U" (see
Chapter [, Section 5), and when this is the case, then V' is K-isomorphic to
G}, where d = dimV. When p =0, then every K-subgroup of G," is a vector
subspace of G,". Indeed, if x = (x,,...,x,} is in 2 K-subgroup H, and Pe
K[X,,...,X,] vanishes on H, then the polynomial P(Tx,,...,Tx,) e U[T]
vanishes on the infinite set Z and hence is 0, so that P vanishes at rx for
every te U, and txe H. When p # 0, a description of the K-subgroups of
G," is more complicated (see Exercise 1(c)).

Corollary 2 The only K-homomorphism of G, into G,, is trivial.

Proof G,, has nontrivial-finite subgroups of order not divisible by p, and
G, does not, so that G, is not isomorphic to G,. Therefore the state-
ment follows from part (¢) of the proposition.

It is easy to see that an element P e K[X,X '] satisfies the condition
P(XY)= P(X)P(Y) if and only if P = X* for some ec Z. For any e Z
the formula x+— x° determines a K-endomorphism of G,. It is separable
when either pte or e = 0. When pte, the kernel of this K-endomorphism
is the group P, of eth roots of 1. When e = ¢'p*, where keN, e’ Z, pre’,
and p # 0, then the kernel is P,..

Proposition 36 (a) Every K-endomorphism of G, is determined as above by a
unique integer ¢ € L.

(b) The K-subgroups of G,, are the groups P, (e€ N, pte) and G,,.

(¢) If a nontrivial K-group is a K-homomorphic image of G,,, then it is
K-isomorphic to G,,.

(d) If G is a K-group for which there exists a bijective K-homomorphism
G— G, then G is Ki-isomorphic to G,,.

Proof Since a K-endomorphism ¢ of G, followed by the inclusion
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G, = G, is an everywhere defined K-function on G,, and since G, =
GL(1), Proposition 31 shows that there exists a unique element Pe
K[X, X '] such that ¢(x) = P(x) (x € G,). Since P must obviously be multi-
plicative, P = X* for some e € Z, which evidently is unique. [t is well known
that the finite subgroups of G,, = U* are the groups P, (e e N, p te). Parts (c)
and (d) are proved in the same way as parts (¢) and (d) of Proposition 35.

Corollary 1 (a) The ring of K-endomorphisms of G,, is naturally identified
with the ring Z.

(b)Y The ring of K-endomorphisms of G, is naturaily identified with the
matrix ring My (n).

Corollary 2 The only K-homomorphism of G, into G, is trivial.

For any subset I of G, let £* denote the set of all (e|,...,e,) € Z" such
that [{x{ = 1 for every (x,,...,x,) € Z. Then T' is a subgroup of Z" without
p-cotorsion, that is, such that Z"/Z* has no p-torsion. (When p = 0, every
group has no p-torsion.) Similarly, for any subset £ of Z7, let E* denote
the set of all (x,,...,x,) € G, such that [Tx§/ = 1 for every (e,...,e,) € E.
Then E* is a K-subgroup of G," The following proposition establishes a
sort of duality between G," and Z".

Proposition 37 The formula G — G* defines a mapping from the set of all
K-subgroups of G, into the set of all subgroups of 1" without p-cotorsion,
the formula M — M* defines a mapping of the latter set into the former set,
and these mappings are bijective and inverse to each other. If G is any K-
subgroup of G," and d=dimG, there exist a K-automorphism % of G,"
and n—d natural numbers e, ... e,_, not divisible by p such rthat «{G) =
P, x--xP, _,xG,"

Proof Let (¢,,..,&,) denote the canonical coordinate system on G,"
(so that &;(x) = x; for every x=(x,,...,x,) € G,"). There is an obvious
identification of G, with the diagonal group D(n). It follows by Proposi-
tion 31 that §x ¢, (G,") = K[&(,....,&,, 1/, -+ &,] and hence any nonzero
everywhere defined K-function ¢ on G," can be written in the form ¢ =
P(E,, . ENE, &) withheNand P=Ya; ., Xit - Xire K[X,, ... X,],
where a; # 0 for some (i,q,...,1,0). For any x =(x,...,x,) € G," then

en-d

10°*in0
px*((P) = P(il Xis ""énxn)/(gl Xy énxn)hﬁ

so that the condition that p *(p)e U- ¢ is equivalent to the condition that
[Txi"b =1 for all (i,...,i,) with a; ., # 0. Given any K-subgroup G of
G,", we infer by Proposition 33 that there exists a subset E of Z" such that

G = E*. Evidently £ = G*, whence E* > G**, that is, G > G**. Since the
relation G = G** is obvious, we conclude that G = G**.
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On the other hand, if M is any subgroup of Z" without p-cotorsion, and
we put r = rank M, then (by the classical theory of free modules over prin-
cipal rings) there exist n elements f; = (f,;, cof)ELT (1Kj<n) and r
nonzero natural numbers e,,...,e, such that f,,....f, form a basis of the
Z-module Z" and e, f,, ..., e, £, form a basis of M. Of course, det(f};) = +1
and, because M has no p-cotorsion, pte, (I <k <r). For each x=
(XX € G, set a(x) =(x,(x),...,2,(x)), where a;(x) =T xIv
(1 <j<n). Then z is a K-automorphism of G,", and evidently x M*Eif
and only if o (x)* =1 (I <k <r). Hence a(M*) =P, x-xP, xG™".
In particular, M* is a K-subgroup of G,". For any b=(b,,....b)eZ",
there exist ¢, ...,c, € Z such that # = Y. ¢, f;, and clearly TT x5 = [Ta;(x).
Therefore b e M** if and only if (c,, ..., c,) € a(M*)*, which by the above
happens if and only if e/|c, (1 <k < r)and ¢; =0 (r <j < n), thatis, if and
only if be Y Ze, f, = M. Thus, M = M** This completes the proof.

Corollary Let G be a closed subgroup of G,,".

(a) Then G is a K'-subgroup of G," for every field K’, in particular for
the prime field. ,
(b) The rorsion subgroup of G is dense in G.

E. JORDAN DECOMPOSITION

A matrix x € GL(n) is said to be unipotent if the matrix x—1 is nilpotent,
that is, if all the characteristic values of x equal 1. Denoting the characteristic
polynomial of x by y,, we see that x is unipotent if and only if x, = (X—1)".

If two unipotent matrices x,x’ € GL(n) commute with each other, then
xx' is unipotent (because xx'—1 = (x—1)x’ +x'~1).

For any x € GL(n) and any ke N,

*=+x-DF= Z (llf)(x-—l)",

ieN

and any subgroup G of GL(n) that contains x contains x*. Suppose that x
is unipotent and G is closed. When p =0, the “binomial coefficient” poly-
nomial

(lT) = T(T—1) - (T—i+ /il

is defined for every i € N, and for any ¢ € U we can define x' by the formula

X = Z(ﬁ)(x—l)";
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every polynomial Pe U[(X;;), < j<n 1¢j<a] that vanishes on G has the
property that the polynomial P(¥,(T)(x—1)")e U[T] vanishes on N and
hence vanishes identically, so that x* = G (€ U); it is easy to see that the
formula 7+ x' defines a K(x)-homomorphism G, — GL(#n), injective when
x # 1, and that its image is the smallest closed subgroup G(x) of GL{n)
that contains x. When p # 0 then, for any ee N, x”" = [ +(x—1)*; since
(x—1)?" = 0 when e is big, x is of finite order equal to a power of p. Thus,
regardless of the value of p, if x € GL(n) is unipotent, then G(x), the smallest
closed subgroup of GL(n) that contains x, is a K(x)-group in which every
element is unipotent.

The matrix ring M (#n) has a natural identification with the endomorphism
ring of the vector space U" over U, a matrix a = (a;;.) operating on a vector
v = (v;) according to the formula av = (%, a;,v,). (The matrix a is the
matrix, relative to the canonical basis of U", of the endomorphism a.) For a
given xeM(n), U" has a structure of U[X]-module such that, for
any P=Y a, X" e U[X] and any ve U,

Pv = P(x)v,

P(x) denoting the matrix Y a,x*. The matrix x is said to be semisimple if
this U[X]-module is semisimple, that is, if the vector space U™ is generated
by characteristic vectors of x. When this is the case, the matrix of the endo-
morphism x, relative to a basis consisting of characteristic vectors of x, is
diagonal. It follows that a matrix x € GL(n) is semisimple if and only if
there exists a matrix a € GL(n) such that x e aD(n)a™'. Hence if x is both
semisimple and unipotent, then x = 1. It is easy to see that if x is semisimple,
then a can be taken rational over the extension L of K generated by the co-
ordinates and characteristic values of x, and hence that G(x) is an L-group,
conjugate to an L-subgroup of D(n) by an element of GL(n), and that every
element of G(x) is semisimple. Note that L is a separable algebraic extension
of K(x), because the minimal polynomial of x evidently is separable and
has coefficients in K(x).

We observe that if ¢ is a characteristic value of a matrix xe M(n),
and reN, and ¥, ,(x) denotes the space of all vectors ve U" such that
(x—c)'v =0, then x'V_,(x) =V, (x) for every x’ € M(n) that commutes
with x. Indeed, if veV, ., (x), then (x—clY x'v=x'(x—cl)v =0 whence
xveV, (x).

An easy consequence of this observation when r =1 is that if two semi-
simple matrices commute, then their product is semisimple.

Another easy consequence is the following: If G is any commutative sub-
group of GL(n), then there exist finitely many natural numbers ny,...,n,
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with i, = n and a matrix a € GL(»n) (that is algebraic over K when G is a
K-group) such that, for every x e G, axa~ ' decomposes into diagonal blocks

[ Xy 0
axa~ ' = - ,
0 X,

where, for each index k, x, € T(n,) and all the coordinates of x, on the
main diagonal have the same value ¢, (x). We observe, in particular, that
for every commutative subgroup G of GL (), there exists a matrix a € GL(n)
such that aGa™' < T(n).

Now, every matrix x € GL(n) is in some closed commutative subgroup G
of GL(n) (for example, in G{(x)). Using the above decomposition, we can set

( c ()1, 0 _
x,=a ! i a, x, = x; 'x.

0 oW1,

\

Then x, is semisimple, x, is unipotent, and X X, = X, X; = X. For each
diagonal block x,, (x,—c,(x)1,)™ = 0; by the Chinese remainder theorem,
there exists a polynomial P e U[X] such that ‘

P=c(x) (mod(X—c () ) (L<k<r);

evidently x, = P(x). It follows that any matrix that commutes with x
commutes with x, and x,, and conversely. In particular, if 7,0 are any com-
muting elements of GL(n), with ¢ semisimple, v unipotent, and tv = x, then
x7't=x,07" and the matrices,. x,, x,,f, v commute with each other‘;
hence x. 't is semisimple and x,»”" is unipotent, whence both are 1. This
proves that, to each matrix x€& GL(n), there corresponds a unique pair
(x5, X,) € GL(n)? such that x, is semisimple, x, is unipotent, and x = x,x, =
x, x,. (This is the Jordan decomposition of x.)

Proposition 38 Let G be a commutative K-subgroup of GL(n), and let G,
respectively G, denote the set of semisimple respectively unipotent elements
of G. Then G is a K-subgroup of G, G, is a K-closed subgroup of G, and the
formula x> (x,, x,) defines a Ki-isomorphism G = G,xG,.

Proof Using the above decomposition into diagonal blocks, we see that
the formulae xm— x, and x> x, define K{(a)-homomorphisms p G-
a” 'D)a and p,/:G—a 'T(n a. Since p/(G) is a closed subgroup
of a~'D(n)a ~ G,”, the torsion subgroup of p/(G) is dense in p,/(G) (see
corollary to Proposition 37). Hence, to prove that p/(G) = Gand p,/(G) = G,
it suffices to show that this torsion subgroup is in G. However, if x, is of
finite order m, then psm and x,™ = x™ € G, whence x,€G (when p =0,
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because x, = (x,”)'"e G, and when p+#0, because x, has finite order
relatively prime to m), so that x, = xx,; ' € G. It follows that p,(G) = G,
and p,(G) = G,, so that G, and G, are K(a)-subgroups of G, and p," and
p. induce K(a)-homomorphisms p,: G- G, and p,: G- G,. For any
e Aut(U/K), evidently (ox)=0(x,) and (ox), =0(x,) (xeGLn));
hence G, and G, are K-closed. When p # 0, there is an ee N such that
X’ =1 (xeG), so that the formula x— x*° defines a K-homomorphism
G — G, that evidently is surjective. Therefore G, is a K-group. The K(a)-
homomorphism p x p, : G — G, x G, and the Ki-homomorphism G x G, =
GxG—2>G (where p is the group law of G) are obviously inverse to each
other. Therefore p, x p, i1s a K;-isomorphism.

Corollary 1 Let G be a K-subgroup of GL(n). If xe G, then x,e G and
x,€G.

Proof Apply the proposition to G(x).

Corollary 2 Let G be a K-subgroup of GL(n), let x € G, and let G(x) denote
the smallest closed subgroup of G that contains x. A necessary and sufficient
condition that x be unipotent is that either p =0 and G(x) have no torsion or
p #0 and G(x) be a finite p-group. A necessary and sufficient condition that
x be semisimple is that the torsion subgroup of G(x) be dense in G(x) and
G(x) have no p-torsion.

Proof This is clear.

The notions of unipotent element and semisimple element can now be
extended to any linear K-group G: An element of G is called unipotent or
semisimple when it satisfies the corresponding condition in Corollary 2.
Then, for each element x € G, there is a unique pair (x,, x,) € G* such that
X, is semisimple, x, is unipotent, and x = x, x, = x, x,. Proposition 38 and
its two corollaries continue to hold in this more general context.

F. REDUCTION

As in the preceding subsection, we identify M(n) with the ring of endo-
morphisms of the vector space U'" over U, and hence identify GL(n) with
the group of automorphisms of U".

The following proposition generalizes a result of Sophus Lie.

Proposition 39 Let G be a connected solvable K-subgroup of GL(n), and
suppose that K is algebraically closed. Then there exists a matrix a € GL(n)
such that aGa™' <= T(n).
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Proof First we claim that it suffices to prove that aGa™' = T(n) for
some @ € GL(n). Indeed, for each x e G the mapping f,: GL(n) — GL(»)
given by the formula f,(a) = a”'xa is continuous, so that SOHT@m) is a
closed subset of GL(rn), and the intersection A = Niec e (T () is, too;
evidently 64 = A for every o € Aut(U/K), so that 4 is K-closed. Since K is
algebraically closed, it follows that if 4 is not empty, it has an element
rational over K.

Next we claim that it suffices to show that U" has a nonzero proper sub-
space that is invariant under G. Indeed, if ¥ is such a subspace, of dimension
say m, we can fix basis vectors v; = (b, ..., b)) of U" such that vy,...,v,
form a basis of I. The mairix b = (b;;) is in GL(n), and for every x e G we

can write
A
- X1 X2
b™'xb =
0 x5

with x,, € GL(m) and x,, € GL(n—m). The formulae x - x,, and x+— x,,
define rational homomorphisms of G onto connected solvable closed sub-
groups G, of GL(m) and G, of GL(n—m). Arguing by induction on n, we
may suppose that there exist matrices a, € GL(m) and a; € GL (n—m) such
that @, G, a;' = T(m) and a,G,a; ' = T(n—m). Setting a = (% )b we
then find that aGa™' = T(n). h

The two claims established, we suppose as we may that G is not trivial.
The commutator group G’ = [G,G] is a connected solvable K-group and
dim G > dim G’. Arguing by mduction on dim G, for fixed n, we may suppose
that @’G’a’ ! < T(n) for some a’ € GL(n). Then there exists a nonzero vector
in U™ that is a common characteristic vector of all the elements of &'. Let
V denote the vector space generated by the set of all such vectors. If v is any
such vector, then, for any x’ € G', there is an element ¢(x’) € U* such that
x'v = c(x’)v, and evidently ¢: G’ = G,, is a rational homomorphism. For
any rational homomorphism ¢ : G’ - G,,. the set V, of all vectors v" e U"
such that x'v’ = ¢(x)v' (x’ € G') is a subspace of V, and if v’ €V, and x € G,
then, for every x’ e G’, we have x'-xv’ = x-(x"'x'x)v" = xc(x” "' x)v =
c{x”'x’x)xv’. Since the mapping ¢': G — G, defined by the formula
¢(x)=c(x"'x'x) is a rational homomorphism, this shows that xV. =
V... Using these remarks it is easy to see that there exist finitely many rational
homomorphisms ¢, : G’ > G,, such that each V,, is nonzero and V' = SVe
(direct sum), and that each x € G permutes the set of subspaces V', . Because
G is connected, all the elements of G give the same permutation, which of
course must be the identity. Thus, the nonzero subspace V,, of U" is in-
variant under G. If ¥, # U”", the proposition follows from the second claim
established above, so we may suppose that ¥, = U”. Then for any (x,y) €
G2, xyx 'y v =c,(xyx"'y o (ve U") so that xyx~ 'y is a scalar
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matrix. Since det(xyx~'p~ ") =1, the scalar ¢;(xyx™ 'y~ ") is an nth root
of unity, and because xyx~'y~' is a continuous function of (x,r) and G
is connected, therefore ¢, (xyx™ 'y "y =1. Thus, in this case G is com-

mutative, and the proposition follows from an observation made in Sub-
section E.

Proposition 40 Let G be a K-subgroup of GL(n) every element of which is
unipotent. Then there exists a matrix a € GLg(n) such that aGa™' < T(n, 1).

Proof If there exists a nonzero proper subspace W of U" that is invariant
under G, then, as in the proof of Proposition 39, we can argue by induction
on # to prove the existence of a matrix b € GL(n) such that 6Gb6™' = T(n, 1).
However, then the set } of vectors that are invariant under G is a nonzero
subspace of U” that is defined over K; (because evidently oV =V for every
o e Aut{U/K)). Since Gy, is dense in G,v e V' if and only if xv = v for every
x € Gg,, so that V is defined over K, and hence over K, n K; = K. Using
V instead of W, we can use the induction argument above to prove the
existence of a matrix a € GLg(n) such that aGa™' = T(n, 1). However, if
there does not exist a subspace W as above, then G contains n* linearly
independent matrices (this is a theorem due to Burnside; see, e.g., Lang [22,
p. 444], or Bourbaki [6, § 4, No. 3]). Since the trace of any unipotent matrix
in GL(n) is n, and therefore Tr(x(y—1))= Tr(xy)—Tr(x) =0 for all
x,y € G, it follows in this case that y—1 =0 for every ye G, so that G is
trivial and n = 1.

Proposition 41 Let G be a connected K-subgroup of GL(n) every element of
which is semisimple, and suppose that K is separably closed. Then there exists
a matrix a € GLg(n) such that aGa™' < D(n).

Proof First strengthen the hypothesis by supposing that X is algebraically
closed and is not an algebraic extension of a finite field. Fix x e[ and

let %,, ..., %, denote the characteristic values of x arranged so that (a, ..., )
is a transcendence basis of K(x,,...,x,) over K. For any a,...,q,€K
(a,,...,a,) is a specialization of (x,...,%,) over K. If (a,,...,a,) fails to

annul a certain nonzero polynomial over K, then (see Chapter 0, Section 14,
Proposition 9(c)) this specialization can be extended to a specialization
(a,,...,a,,u) of (a,...,%,,x) over K with ay,...,a,€ K, ue Mg(n), and
detu #0. When p =0, then a,...,a, can be chosen as distinct prime
numbers, and when p # 0 and e K is transcendental over the prime field
F,, then a,, ..., a, can be chosen as distinct irreducible polynomials in F,[¢].
Thus, in either case, there is a specialization (a, ..., a,, ¥) of (a;,...,%,, X)
over K with ue Gg and ay,...,a,€ K such that [], ¢;<,af" # 1 whenever
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(e,,...,e) # (0,....,0). Of course, a,, ..., a, are the characteristic values of u.
For some @’ € GL, (n), a’'ua’~" € D(n). Replacing G by a'Ga’~ ', we suppose
that

a, 0

=
i

0 ' a,
Then the smallest closed subgroup D of G that contains u is a K-subgroup
of D(n). Fixing an element

B1 0
v = € Ipok;
0 B,

we see that some nonzero power of u is a specialization of v over K and there-
fore by Proposition 37, that §,, ..., 3, are algebraically independent over K.
Because x — o0, we infer that trdeg K(f,,...,B.)/K < trdeg K(«y, ..., 2,)/K.
Therefore trdeg K(8,,...,8,)/K = h.

Assume G & D(n). Then x has the following two properties: (i) x ¢ D(n);
(ii) every principal minor of x is different from 0. As G is dense in G, there
exists a matrix ye G, having the same two properties. Of course x — vy
As 2%y, ..., 2, are integral over K[x], this specialization extends to a speciali-
zation (x,%,,...,%,) = {ty,7,,...,7.) (see Chapter 0, Section 14, Proposi-
tion 9(a)), and evidently y,,...,7, are the characteristic values of vy and
trdeg K(v,,....,v)/K < h. Letting y(i,,...,1,) denote the v-rowed principal
minor of y in which the row and column indices are iy, ..., i,, and setting

AV(XU'“’Xn): Z y(ils""iv)Xi,“'Xiv’

1€ig < <i,sn
we readily see that the characteristic polynomial of vy is
X" — Al(ﬁh '-'?Bn)X"_l + o+ (_I)HAn(ﬁI’ -'-vﬁn)'

Now, the only zero of the ideal (4,,...,4,) of K[X,....,X,]is (0,...,0),

because if (¢, ..., ¢,) is a zero, then the equation 4,(c,, ..., ¢,) = 0 implies that
some ¢; vanishes, say ¢, = 0, and then the equation 4,_,{c,,..., ¢y~ L =0
implies that some other ¢; vanishes, say ¢,—, =0, etc. It follows by the

Hilbert theorem on zeros that, for some re N and every index j, X/ €
(A,,...,A,), that is, X/ =Y, ¢, <, H;;- A;, where each H;; e K[X,,..,X,]
can evidently be taken homogeneous of degree r—j;’. This implies that
K{X,,..,X] is a finitely generated K[4,,...,A,}J-module, so that each
X; is integral over K[A4,,...,4,]. Therefore each B; is integral over

K{A, By s Ba)s -y A8y, .-, B)], hence a fortiori over K[y, v It
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follows  that trdegK(y,,...,7,)/K=1h, so that (2, ..,%) < (....,7.).
Because x—1,, we see that (x,,...,%,)—(l,...,1). Hence (y,,...,7,)—
(1,..., 1), so that

(717""})717 Al(ﬁl"“’ﬁn)’ Tt An(ﬁlf'“sﬁn)) —')(1*"-5 1:(7)1 ;(Z))

Because each f; is integral over K[y ,...,7,], this specialization can be
extended to a specialization

(YI’ "-v})nyAl(ﬁl7 "'7ﬁn)v RS An(ﬁlv ...,,B,,), ﬁl: "'7ﬁn)

n n
- (11<1> (n> bl,...,bn>

where evidently b,,...,b, € K*. Thus, the matrix vy € G with characteristic

values y,, ..., 7, specializes over K to the matrix
b, 0
T Y
0 b,
with characteristic values 1....,1. Since every matrix in G is semisimple,

we must have

b, 0
y =1,
0 b,

whence y € D(n). This contradiction completes the proof under the strength-
ened hypothesis.

Reverting to the original hypothesis, we see by the above that, for some
a’ e GL(n), a’Ga’~ ' = D(n). Therefore the vector space U" is generated
by the set of common characteristic vectors of the elements of G. Thus U"
is a direct sum, U" =3, ¢, <, Vi of nonzero subspaces V, with the following
two properties: (i) For each k& and each x e G, all the elements of V; are
characteristic vectors of x for the same characteristic value; (ii) For any
two distinct indices k, k', there exists an x € G having characteristic value
in ¥, distinct from that in V.. Evidently { } ¥, is the set of common charac-
teristic vectors of the elements of G, and hence (because Gy is dense in G)
is the set of common characteristic vectors of the elements of G, and there-
fore is the set of common characteristic vectors of finitely many elements
Xy, ...x, € Gg. Since each x; is semisimple, its characteristic values
%y, ..., %, are in K (see Subsection E), and since the condition that ve U”"
be a characteristic vector of x; is equivalent to the condition that

XU = ;v or --- or X v = 0,0,
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it follows that |V, is a K-subset of U". Its components are 2bviously
V,,..,V, and therefore these vector spaces are K-subsets of‘ U., Henc‘e
each ¥, has a basis consisting of elements of K", and from this it follows
that there exists a matrix a € GLg(n) such that aGa~' < D(n).

EXERCISES

1. Suppose that p # 0 and K = K;. Let = and E have the same signi_ﬁgance
as in Corollary | to Proposition 35. For each ¢ = Socker G2 € Ex
with g, K (0<k<r) and a, #0, define degp =r. Also, define
deg0 =—1. . .
(a) Show that if ¢,y € Ex and ¢ # 0, then there exist x,p€ Ey with
degp < dego such that ¢ = px+p. ‘ ‘

(b) Show that if f: G,"— G, is a nontrivial K-homomorphlsm:lthen
there exists a K-automorphism « of G,” such that Ker(fox) = G ' X F,
where F is a finite K-subgroup of G,. (Hint: Let in;: G, — G," denote
the jth canonical injection, set ¢; = foin;, m= Y (1 +degoy), and d =
mindegg; (1 <j<n, ¢;#0). Permuting indices, suppose that dego, =
d and by part (a) write @; = @, x;+p; with degp; < d. Observe ‘th.at
the formula (x;,...,X,) = 2 (< <n P;(X)+ @n(xy) defmes a nontrivial
K-homomorphism f* : G, - G,, and argue by inductlop on m.)

(c) Show that if G is a K-subgroup of G," and d = dm; G, then there
exists a K-automorphism x of G," such that «(G) = G,"x F, where £
is a finite K-subgroup of G,"”“. (Hint: First show that G may bne_slup-
posed connected with d < n, that it suffices to prove B(G) =G, 'x0
for some K-automorphism f of G, that it may be supposed that
pri(G)=G, (1<j<n), and that when x = (X150 X,) € Ig,, then
(x,,...,x;) is a separating transcendence basis of K(x) over K. Infer
that then the canonical projection pr": G,"— G,"”' onto the product
of the first n—1 factors induces a surjective separable K—homompr-
phism G — G’ with finite kernel G ~ (0771 x G,) = ot x_['l"A Arguing
by induction on n—d, fix a K-automorphism z' of G, : such tihat
2(G) = GAx 0"t let p: G, — G, denote the canonical projec-
tion onto the product of the first 4 factors, and by Proposition 35
fix a K-endomorphism ¢’ of G, with kernel F’. Show that theri
exists a K-homomorphism f':G.®— G, such that f’op’oa'opr
coincides with ¢'opr, on G, and apply part (b) to the difference f'=
frep oo opr,— @ opr,) o

2. Let G be a connected linear K-group of dimension 1.

(a) Show that either every element of G is semisimple or every element
of G is unipotent. (Hint: Observe that it may be assumed that G <
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GL(n). Show that when x e T,k is unipotent, then so is every element
of G. When not, show that x, has infinite order, ix g e GL(n) such that
ax,a” ' e D(n), and conclude that aGa™' = D(n).)

(b) Show that if every element of G is semisimple, then G is K,-
isomorphic to G,,. (Hint:  Use Propositions 41 and 37)

(c) Show that if every element of G is unipotent, then G is commutative
and there exists a separable surjective K;-homomorphism G- G, the
kernel of which is a finite K-group of order a power of p. (Hint: Use
Proposition 40 to reduce to the case in which G < T(n, 1), then define
ke N such that G < T{n,k—1) and G & T(n, k), and show that for
some h with | <A< n—k+1 the formula (Xi;) = X g~ defines a
surjective K-homomorphism G — G, with finite kernel N then use
Proposition 35(d) to infer that G/ is K;-isomorphic to G,.)

(d) Conclude in the case p = 0 that if every element of G is unipotent,
then G is K-isomorphic to G,. (In the case p % 0, when all the poly-
nomials X*~c and X?—X—-¢ (ce K) have roots in X, then again G
is K-isomorphic to G,, but the proof is more delicate. See Chevalley
[10, exposé No. 7], or Borel [3, p. 257].)

Let G be a connected K-group and let re N, p+r. Prove that the sub-
group generated by the set of elements x" (x € G) is G. (Hint: Denoting
the subgroup by H, use Section 8, Proposition 7 and the remark there-
after, to show that H is a connected normal K-subgroup of G. Replacing
G by G/H, reduce to the case in which // = 1. In the special case in which
G is a K-subgroup of GL(n), observe that the characteristic roots of
the elements of G all are rth roots of unity, infer from the connectedness
of G that every element of G is unipotent, and conclude that G = 1. In
general, apply this result to the image of the K-homomorphism
a™ : G- GL(r(h) in the discussion at the end of Section 19 to show
that G is commutative, and then use Section 22, Corollary to Theorem 14.)
Let /1 G— G’ be a K-homomorphism of linear K-groups, let xe G,
and let G(x) respectively G'(f(x)) denote the smallest closed group
containing x respectively f{(x).

(a) Prove that f(G(x)) = G'(f(x)).

(b) Prove that if x is unipotent respectively semisimple then so is
J(x).

Let G be a connected linear K-group of dimension 2, and suppose that
p=0. Prove that G is solvable. (G is solvable when p+#0, too,
but the proof is more difficult; see Borel [3, p. 265].) (Hint:
Using Propositions 40 and 41, show that it may be assumed that G
contains connected closed subgroups T and W of dimension 1 that
consist, respectively, of semisimple elements and of unipotent elements.
Letting L be an extension of K such that T and W are L-groups, fix
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(t,w) € Ir ., and observe that twt ™! — W Show that this special-
ization is generic and conclude that W is normal in G.)
Let G be a linear K-group.
(a) Call G K-Liowvillian if there exists a normal sequence G =
Gy=>G, > =2 G, =1 of K-groups such that every G,_ /G, either is
K-isomorphic to G, or G, or is finite. Call G Liouvillian if it is L-
Liouvillian for some extension L of K. Prove that the following three
conditions are equivalent: (L1) G is K,-Liouvillian; (L2) G is
Liouvillian: (L3) G° is solvable. (In proving (L3)=(L1), use is made
of Exercise 2; therefore K must be subject to the same restriction as
in Exercise 2(d).)
(b) Let i be an integer with 1 < i< 7. Call G K-Lioucillian of type (i)
if the normal sequence in part (a) can be chosen so that every G,_,/G,
is K-isomorphic to a K-subgroup of a K-group in the ith line of the
following list:

() G,, G,, a finite K-group;

2 G, Gy

3) G,, a finite K-group;

4) G, a finite K-group;

(%) G,

(6) Gus

(7) a finite K-group.
Call G Liouvillian of type (i) if G is L-Liouvillian of type {i) for some
extension L of K. Prove, for each (i), that the following three conditions
are equivalent: (L()1) G is K,-Liouvillian of type (i); (L12) Gis
Liouvillian of type (i); (L()3) G satisfies the ith condition in the
following list:

(1) G° is solvable;

(2) G is solvable;

(3) G° consists of unipotent elements,

(4) G° consists of semisimple elements,

(5) G consists of unipotent elements,

(6) G is solvable and consists of semisimple elements,

(M G¢°=1
(See the parenthetical remark at the end of part (a).) For each i, examine
condition (L(i) 1) to see whether K, can be replaced by a smaller exten-
sion of K.
Let p = 0 and let G be a commutative K-subgroup of GL(n) of dimen-
sion d every element of which is unipotent. Prove that G is K-isomorphic
to G, (Hint: Let U, respectively N, denote the set of all unipotent
respectively nilpotent elements of GL(n) respectively M(n). Show
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that U, respectively N, is a K-subset of GL(n) respectively M(n)
(M(n) being identified with G"), define everywhere defined K-mappings
log: U,— N, and exp:N,— U, that are inverse to each other, and
show that log maps G K-isomorphically onto a K-subgroup of M(n).)
(Kolchin [18]) A K-group is said to be K-simple if it Is infinite and
every K-closed normal proper subgroup is finite.

(a) Show that a K-simple K-group is connected, that a connected
K-group of dimension 1 is K-simple, and that in a noncommutative
K-simple K-group the center is finite and every K-closed normal proper
subgroup is central.

(b) Prove that if G, ...,G, are K-simple K-groups and G is a proper
K-subgroup of P =X <<, G;. then cither (i) there exists an index j
such that pr;(G) # G;, or (i) there exist distinct indices j, k with G
and G, noncommutative, and a finite normal K-subgroup £ of G, and
a surjective K-homomorphism f: G;— G/F such that f{x;) = 7m(x,)
for every (x,...x,)€G (m denoting the canonical homomorphism
G,— G/F), or (ii) there exist distinct indices j(1),...,j(/) with
/> 2 and each G, commutative, a finite K-subgroup F of Gy,
and surjective K-homomorphisms f, : G,y — G;w/F (1<4i<!) with
f; separable such that [T <i<ifalxjay =1 for every (X1, X) €G.
(Hint:  Reduce to the case in which  pryeinp g : G— G, and
pricing o G— Xi<j<n-1 G; ate surjective and the latter is separable.
Then show that Ker(pr"oinpg ) = 1"~ !'x F, where F is a finite normal
K-subgroup of G,, and (m denoting the canonical homomorphism
G,— G,/F) that mepr,einp g =@oprioinp ; for some surjective K-
homomorphism @ : X;<j<n—1 G; = G,/F. Let iny: Gy Xi<jen—1 Gj
denote the canonical injection and set @, = @oin, (1 <k<n—1).
When G, is noncommutative, show that there is a unique k such
that ¢, is nontrivial, and set f= ¢,. When G, is commutative, let
(1), ...,j{{—1) denote the indices k such that ¢, is nontrivial (and
hence surjective), show that each Gy, is commutative, and set f, =
@i (1<A<I=D), j(l)=n, and f, =mot, where 1 denotes the auto-
morphism x+— x~! of G,.)

(c) It is known that SL(r) is K-simple (r 2 2), that the center of
SL(r) is P,1, (P, denoting the group of rth roots of unity), that every
K-automorphism of SL(r)/P, 1, is induced by a K-automorphism of
SL(r), and that every K-automorphism of SL(r) is of the form x—
axa"' or of the form x+a¥a™' where ae GLg(r) and X denotes the
inverse of the transpose of x. (These facts can either be found or be
deduced from what can be found in Dieudonné [13]; complete proofs
are given in Kolchin [17].) Using these facts, show that if p =0 and
G is a proper K-subgroup of SL(r)" with pr;(G) = SL(r) a<j<n),
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then there exist distinct indices j, k, and a matrix a e GL(r), and a

K-homomorphism y: G — P, such that either x,(«—-wy()c)a.\'ja'l (x=
(x),..,x)€G) or x,=7y(x)akja”" (x=1(x1,...,X,) € G). Show that
when r =2, then the matrix a € GL(2) can be chosen so that x, =
y(x)ax;a” (x={(x,....,x,) € G).

(d) Show that if p=0 and G is a proper K-subgroup of the direct
product of commutative K-simple K-groups G, ..., G,, then there exist

an index k£ and K-homomorphisms f;: G, = G, (I </ < n) not all trivial,
such that [1, ¢, <./f;(x;) =1 for every (x,...,x,) € G.

24 Abelian K-groups

A K-set A is said to be complete if, for every extension L of K and every
L-set X, the canonical projection X x 4 — X is closed (that is, maps every
closed subset of X x A onto a closed subset of X).

When X x 4 — X is closed for a particular X and X' is any closed subset
of X, then (because the inclusion mapping X' x4 — Xx 4 is closed and
the diagram shown here is commutative) the projection X'XA-X"is

closed too.
XxA —> X

L]

X' xA — X'
Therefore it suffices to verify the condition that X'x 4 — X be closed when

X is a homogeneous L-space. _
A similar argument shows that every closed subset of a complete K-set

is complete.
XxA

| >
Xx A

If A and B are complete K-sets, then 4 x B is complete (because, in the
composite mapping X x 4x B— X x A — X, each arrow stands for a closed
mapping).

Let f: A— Y be an everywhere defined K-mapping of K-sets. It is easy
to see that the graph of /is closed in 4 x Y. Since f(4) is the projection of
the graph into Y it follows that if A is complete, then f(A) is closed in ¥,
because the diagram shown here is commutative, f(4) is complete, too.

XA xA
| >+
/
X% f(A4)
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It is easy to see (by Chapter 0, Section 14, Proposition 9(b)) that projective
n-space P(xn), which is a homogeneous K-space for GL(n+ 1), is complete.

The formula x+ (l:x) gives an everywhere defined K-mapping G, —
P(1). The image is the complement of the point (0:1), and hence is not
closed. Therefore G, is not complete. It follows that if 4 is complete and f
is an everywhere defined K-mapping of 4 into G,", then f(4) is finite; when
A is also connected, f is a constant mapping.

A K-group is said to be Abelian if it is connected and complete. It follows
from the above that every connected K-subgroup of an Abelian K-group is
Abelian, that the direct product of finitely many Abelian K-groups is Abelian,
that a K-homomorphic image of an Abelian K-group is Abelian, and that
any K-homomorphism of an Abelian K-group into a linear K-group is trivial.

Since a K-homomorphic image of a linear K-group is linear (Section 23,
Proposition 34), any K-homomorphism of a connected linear K-group into
an Abelian K-group is trivial.

Because the quotient of a connected K-group G by its center is linear (see
Section 23, Proposition 32(d), and the example discussed at the end of
Section 19), every Abelian K-subgroup of G is central in G. In particular,
every Abelian K-group is commutative.

It follows that if 4 is an Abelian K-group and n € Z, the formula x = x"
defines a K-endomorphism of 4. By Section 22, corollary to Theorem 14,
when p tn, this K-endomorphism is surjective and has finite kernel.

In what follows we describe (mostly without proof, but with references)
further properties of Abelian K-groups.

If 4 is an Abelian K-group, then, for any nonzero ne Z, the K-endo-
morphism x — x" of 4 is surjective and has finite kernel. (Lang [21, p. 96]
or Mumford [23, pp. 62-64] or Weil {27, p. 127].) More precisely, the order
of the kernel divides #*¢"™*, and equals this number when p  #. (Mumford
[23, pp. 62-64], or Weil [27, p. 127].) This implies that for any prime number
[ # p, the [-torsion subgroup of A (that is, the group consisting of all elements
x e A such that x'" = | for some n e N) is dense in A4.

A K-mapping of an irreducible K-set V into an Abelian K-group is defined
at every simple point of V. (Lang [21, p. 20] or Weil [27, p. 27].)

If fis a2 K-mapping of a connected K-group into an Abelian K-group and
f(1y =1, then fis a K-homomorphism. (Lang [21, p. 24} or Mumford [23,
p. 431)

If 4 is an Abelian K-subgroup of a connected K-group G, then G has a
normal connected K-closed subgroup G, such that G, n 4 is finite and
G, A = G; when G, is Abelian, then so is G. (This is Rosenlicht’s generaliza-

XPNT3

tion of Weil’s generalization of Poincaré’s “theorem of complete reducibility.”)
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Proof (after Lang [21, pp. 27-29]) Fix xe T and set K= K(x4),
so that K’ < K(x). Then x4, a K'-subset of G, has an element x, separably

algebraic over K’. Let x,, ..., x, be the conjugates of x, over K’ and set y =
X7l x e x T x,, Then XTI e A, Xogyy o Xggm = XX Xy XX Xy =
x"y for every permutation m of the set {l,...,n}, and x, ---x, is rational

over K’ hence a fortiori over K(x), whence y € Ag,,,. Therefore there exists
a geM (G, A) with g(x) = y; this g is defined at | and g(l) & 4, so0
that there exists an fe WM (G, 4) with fix)=g()7'gx); fis a K-
homomorphism. Set G, = Ker(f)°. Then G, is a normal connected K-
closed subgroup of G. Now. x4 is a K-generic element of G/A4, so that
trdeg K’/K = dim G/4, whence dimy x =dimG—dimG/4 =dim4, and
xel k. However, for any rel ., ecvidently xrel,  x, so that
X o> Xt Therefore there exists a ¢ € Aut(U/K’) with ox = x¢, so that

fxh) = flox) = of(x) = a(g(1)" ' g(x)) = g(1)" "oy
= gD o x e x) = gD ) Ty e x, = g (DT = Sl

1t follows that f{r) = +™", and hence that f is surjective and that Ker(f) n 4
is finite, so that G, n A is finite too. The formula (z,u) — zu defines a K;-
homomorphism G, x A — G. Its kernel is finite; hence its image G, A has
dimension dim G, +dim 4 = dim Ker(f)+dim4 = dimG,sothat G, 4 = G.
When G, is Abelian, then so is G, x 4 and hence G. too. This completes the
proof.

Before we state the fundamental structure theorem due, independently,
to Chevalley and Barsotti, we give two very special cases used in its proof.

A commutative connected K-group that is not Abelian has a closed sub-
group U-isomorphic to G, or G,,. (Rosenlicht [24]. Without assuming com-
mutativity, Rosenlicht proves, beginning on p. 437, that there is a con-
nected linear closed subgroup of strictly positive dimension, he remarks
elsewhere that a commutative closed subgroup of GL(#n) of strictly positive
dimension has a closed subgroup U-isomorphic to G, or G,,, which we know
from Section 23, Proposition 39, and the fact, alluded to in Section 23, that
every connected linear K-group of dimension one is K,-isomorphic to G,
or G,.)

If H is a central K-subgroup of a connectcd K-group G such that f 1s
K-isomorphic to G, or G,, and G/H is linear, then G is linear. (Rosenlicht
[24, p. 438])

We now state (and even prove) the fundamental structure theorem.

Let G be a connected K-group. Then G has a connected linear normal
K-closed subgroup L such that G/L is Abelian. Every connected linear closed
subgroup of G is a subgroup of L.

24 ABELIAN K-GROUPS 379

Proof (After Rosenlicht [24, pp. 439-440]) First we show by induction
on dim G that G has a connected linear normal closed subgroup L such that
G/L is Abelian. Let C denote the center of G. If C° is not Abelian, then (by
the first special case) C° has a closed subgroup f/ that for some extension
K’ of K is K'-isomorphic to G, or G,,; because dimG/H < dim G, we may
suppose that G/H has a connected linear normal closed subgroup, which
we may write as L/H with L a connected normal closed subgroup of G con-
taining H, such that (G;H)/(L{H) is Abelian; then G/L is Abelian and (by
the second special case) L is linear. If C°is Abelian, then either C° =1 or
C°+# 1. In the former case G =~ G/C° is linear and we can take L = G. In
the latter case G has a normal connected K-closed subgroup G, such that
G, n C°is finite and G, C° = G; since then dimG, < dim G, we may sup-
pose that G, has a connected linear normal closed subgroup L such that
G,/L is Abelian. Evidently L is normal in G, and G/L=(G, (/L=
(G,/L)-(C°L/L); since the composite K;-homomorphism C°— C°/(C°n L) —
C°L/L is surjective, C°L/L is Abelian, so that G,/Lx C°L/L is too, and so
is the image of the K;-homomorphism G,/Lx C°L/L —(G,/L)-(C°L/L) =
G/L. This proves the existence of the closed L. For any connected linear
closed subgroup L of G, g, (L) is linear because L' is, and is Abelian
because G/L is, and hence is trivial, so that I’ = L. In particular, for any
¢ e Aut(U/K), oL< L and hence L is K-closed. This completes the proof.

The K-groups W(g,,g3), which are defined when p # 2 and the coeffi-
cients g,, g, € K have the property that g,°>—27g,% # 0, are closed in P(2)
and hence are Abelian. Conversely, when K is a perfect field and p # 2,3,
then every nonlinear connected K-group of dimension 1 is K-isomorphic to
some W(g,,g3)-

Proof Denote the K-group by G. The linear K-subgroup L of G that
appears in the Chevalley-Barsotti structure theorem is not G and hence
is trivial, so that G is Abelian. §(G) is a regular finitely generated
extension of transcendence degree 1 of the algebraically closed field U, and,
for each x & G, p,* is an automorphism of this extension. By a well-known
theorem, going back to Klein and Poincaré when U = C, if such an extension
has infinitely many automorphisms, then its genus is 0 or I (for a proof of
the general theorem see Iwasawa and Tamagawa [14]). Since K is perfect,
U is separable over K and hence the extension g (G) of K has genus Oorl,
too (see Chevalley [8, p. 99]). Of course, G has an element that is rational
over K, namely 1. If the genus were 0, then (see Chevalley [8, Chapter 11,
§ 2]) there would exist a K-function { on G such that Fx(G) = K(©),
and hence there would exist a generically invertible K-mapping of G,
into G: since G is Abelian this would, after translation, be a K-isomorphism
G, ~ G. Therefore the genus is 1. Hence (see Chevalley [8, Chapter 11,
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§ 2]) there exist K-functions &7 on G such that F,(G)= K(&,n) and
n* is a cubic polynomial in § over K with distinct roots. Replacing (<, 1)
by (af+b,cn) for suitable a,b,ce K with ac# 0, we may even suppose
that n® =4¢>—g,¢é—g,, where g,,g9;€ K and g,°—27g5% # 0. Fixing
xe Tk, we see that (1:¢(x):n(x)) € Ty, Where W =W(g,,9g53), so that
there exists a generically invertible K-mapping f of G into W. As W is
Abelian, and every element of G is simple, f is everywhere defined, so that
we may replace f by the K-mapping p,-of; that is, we may suppose that
f(1) =1, and then fis a K-isomorphism.

In order to describe the conditions under which two K-groups W(g2, g;)
are K-isomorphic, we introduce the classical invariant

(g2, 93) = 64-279,°1(92°—2795%).

It is clear that j(g,,g,) = 0 if and only if g, =0, and that Jj(g2,93) =64-27
if and only if g; = 0.

Consider two such K-groups, W = W(g,,9;) and W' = W(g.', 93),
and set j = j(g,, g;) and j/ = j(g,’, 95'). We claim that if W and W' are K-
isomorphic, then j=j and there exists a nonzero element ce K such that
g, =g,¢* and gy’ = g, ¢®, and that, conversely, if j=j #0, 64-27 and
g4']g; is a square in K, or if j=j' = 0 and g3'/gs is a square and a cube in K,
orif j=j =64-27 and g,'g, is a fourth power in K, then there exists a non-
zero element c e K such that the formula (1:x:y)— (1 cetxic?y) defines a
K-isomorphism W ~ W'. Indeed let ¢ and 5 denote the K-functions on W
such that £((1:x:»)) = x and n{((1:x:y)) =y, and let & and n’ denote the
analogous K-functions on W’; then ¢ and »n have a pole at 1 =(0:0:1) of
order 2 and 3, respectively, and have no other pole (see Chevalley [8, p. 51).
The set of K,-functions on W that are of order greater than or equal to —2
respectively —3 at (0:0:1) and are of odrer greater than or equal to 0 every-
where else is a vector space over K, of dimension 2 respectively 3; this is a
consequence of the Riemann-Roch theorem (see Chevalley [8, Chapter 1,
§ 5, Theorem 3 and the corollary to Theorem 6). If f:WaxW is a
K-isomorphism, evidently /*(¢") and f*(r’) have a pole at (0:0:1) of order
2 and 3, respectively, and have no other pole, so that, by the above, there
exist a, a’, b, b’, b” € K, such that

FHE) =a+a, frn)=bn+bi+ b

Evidently ab # 0, and because Fx(W) and K; are linearly disjoint over K,
we have a, @', b, b', b" € K. Because ' = 4&'*—g,'¢’ — g3, we have

(bn+bE+b")? = 4(ag+a’)’ — g;'(aC+a) — g3,

and because n? =4&2—g,¢—g;, we infer that @’ =b =b"=0, a’ = bz,
g,'a=g,b% and gy =b*g;. Setting c =bja, we conclude that a=c%,
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b=2c% g, =g.c*, g3 =g5¢*, and j =/ Conversely, if j =/ #0, 64-27
(so that g,959,'95 #0) and gy'/g; = b* with be K, set a=g,4:'/9,'9;
and c=bfa. If j=j =0 (sothat g, =g,"=0and gy 9," # 0) and g;'/g, =
b* =a* witha,be K, set c = bfa. If j=j = 64.27 (so that g5 = g3’ =0 and
9,9, #0)and g,'/g, = ¢* withce K, seta = c*and b = ¢>. In all three cases
then g, = g,¢* and gy = g;¢®, and the formula (l:x:y)m (1:c?x:c’y)
defines a K-isomorphism W x W', Thus, our claim is established.

The existence of a nontrivial K-homomorphism f: W —» W’ is more diffi-
cult to ascertain than that of a K-isomorphism. For such an f, and for any
extension K’ of K, (W) is an extension of f*(Fx (W)) of finite degree,
and this degree is independent of K'. Hence it may be called the degree of f
and denoted by deg /. The degree is 1 if and only if f'is a K-isomorphism.

Henceforth let K be algebraically closed.

For each nonzero ne N, there exists a polynomial F,(X,Y), with co-
efficients in Z when p =0 and in the prime field when p # 0, such that
F,(j,j') = 0 if and only if there exists a nontrivial K-homomorphism W —
W’ of degree n. (When U = C this is a classical result in the theory of elliptic
functions; see Weber [28]. For the general result, see Deuring [12].) The
polynomials F, have the following properties:

FXY)=X-Y7,;

F(Y,X)=F(X,Y) (n22);

F.(X,Y) is unitary as a polynomial in X (all n);
F,(X, X) is unitary (all » not a square in N).

In particular, the condition that there exist a K-homomorphism W — W’
is symmetric in W and W',

Now consider the set Endg (W) of K-endomorphisms of W = W (g,, g;).
Because W is commutative, Endy(W) has a natural ring structure. For
any ne Z the formula z— 2" defines a K-endomorphism of W, and by
identifying # with it we obtain an identification of Z with a subring of
End,(W). Any element of Endg(W) that is not in Z is called a complex
multiplication of W. “In general,” W has no complex multiplication. More
precisely, when p =0, then W has complex multiplication if and only if
F,(j,j) =0 for some neN that is not a square (in which case j is an al-
gebraic integer), and when p# 0, then W has complex multiplication if
and only if j is algebraic over the prime field. (For p = 0, this is classical;
see Weber [28]. For p # 0, see Deuring [12].)

We close this section (and chapter!) with some descriptive remarks about
Abelian K-groups in the classical case in which U = C. (In this case every
algebraic group has a natural structure of complex analytic manifold.)
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These generalize some remarks about the K-groups W(g,,9;) made in
Section 1. Proofs can be found in Mumford [23].

Let ne N, n# 0. A lattice in C" is a subgroup of C" that is generated by a
basis of the vector space C" over R. Let A be a lattice in C". An Abelian
function for A is a meromorphic function on C of which every element of
A is a period. (Thus, when n = 1, the notion of Abelian function reduces
to that of elliptic function.) The set & = o/ (A), consisting of all the Abelian
functions for A, is a field, and even a differential field, relative to the set of
derivation operators 8/ézy,...,0/0z,, where z= (zy,...,z,) denotes the
canonical system of coordinate functions on C". The Abelian function field
of is degenerate if, by means of some invertible C-linear transformation
on C" the elements of & can be expressed as meromorphic functions of
fewer than n variables, that is, if there exist complex numbers ¢y, ..., ¢, 0ot
all 0 such that ¥ ¢; 8¢/dz; = 0 {¢ € ). A necessary and sufficient condition
that &/ be nondegenerate is that there exist a positive definite Hermitian
form H on C" such that the imaginary part of H(z,z) is in Z for every
(z,2)e Ax A. When & is nondegenerate, there exist an Abelian variety
(that is, an Abelian K'-group for some finitely generated field K’ < C),
say A, of dimension n, and a surjective holomorphic group homomorphism
P:C"— 4 with kernel A, such that the formula ¢ — @= P defines an iso-
morphism of fields F(4) ~ o (p=P denoting the meromorphic function
on C" that is holomorphic and has value ¢(P(c)) at every point c€ C" with
Qe ‘&P(C)(A)). Conversely, if A is any Abelian variety of dimension n, then
there exist a lattice A in C" with nondegenerate Abelian function field and
a surjective holomorphic homomorphism C"— A4 with kernel A, exactly as
above.

When n = 1, then every lattice has nondegenerate Abelian (= elliptic)
function field. This foliows from the fact that we can always construct a
nonconstant meromorphic function having as periods two generators » =
a+fi and o =o' +fi of the lattice, for example, the corresponding
Weierstrass function @. It follows also from the fact that the formula

H(z,2') = |po’ —af| 7' 7'

defines a positive definite Hermitian form on C such that the imaginary
part of H(z,z") is in Z whenever z and z’ are in the lattice.

When # > 1, there exist lattices for which the Abelian function fields are
degenerate.
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CHAPTER Vl

Galois Theory of Difierential Fields

Throughout this chapter % denotes a fixed universal differential field of
characteristic O with field of constants A . The set of derivation operators
of U, the set of derivative operators of U, and the set of derivative operators
of % of order less than or equal to s are denoted by A, ©, and O(s), re-
spectively; the elements of A are denoted by 6,,...,5,,. Every differential
field considered is tacitly assumed to be a differential subfield of %. F and %
always denote differential fields over which U is universal.

1 Specializations of isomorphisms

By an isomorphism of 4 we mean an isomorphism of % onto a differential
field.

Lemma 1 Let (6));.; and (6/),.; be two families of isomorphisms of 4, both
having the same set of indices I. The following three conditions are equivalent:

(2) (0/%icr oo 15 a differential specialization of (6,%);c; 49 OVer 4.
(b) (0/%)icr,2e9 is a specialization of (0,0),.; 4.4 OVer %.
(¢) The isomorphisms ¢/ o6 ' : 6,9 = 09 (i€ I) and idy are compatible.

Proof It is obvious that (a) implies (b), and that (b) implies the existence
of a ring hcir{lomorp.hlsm G Uie1 6:%]) > 9[U;e; 6/9] extending id, and
every o/00; !, that is, (c). However, 4[| J);.; 0,%9] and 9[J;c; 0/%] are
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obviously differential rings, and a ring homomorphism between them that
extends id, and every o,/ oo; ! is obviously a homomorphism of differential
rings. Therefore (c) implies (a).

When (¢));.; and (g;);.; satisfy the conditions in Lemma 1, we say that
(6, )ies 18 @ specialization of (6;);,. The relation “(d/);c; is a specialization
of (6);.,” is a pre-order, being reflexive and transitive.

When (o,);.; is a specialization of (4;);., such that (5,);¢, is a specializa-
tion of (6);c;, we say that (¢));., is a generic specialization of (6);c;. Tt is
equivalent to say that the isomorphisms o/c0; ' (iel) and id, are bi-
compatible.

If (6,);.; is a specialization of (6));;. then, for every subset J of I,
(6/)., is a specialization of (6,);.,. Conversely, if the latter condition is
satisfied for every finite subset J of 7, then the former condition is satisfied.

A single isomorphism may be regarded as a family for which the set of
indices reduces to a single element. Therefore the above definition contains
as a special case a definition of specialization of an isomorphism of %. Let
¢’ be a specialization of the isomorphism ¢ of %. For any element re¥
with gx € %, it is evident that o’x = oa. It follows, for a differential subfield
F of 4, that if ¢ is an isomorphism of % over #, then so is ¢’. Also, if ¢ is
an automorphism of ¢, then ¢’ = g.

For isomorphisms of an extension, the definition of specialization can be
put in terms of generators.

Lemma 2 Let % be an extension of F, let n = (n);, be a family of elements
of 4 such that F{n) =% (respectively F(n)=9%), and let (61)ic, and
(67 )ic; be two families of isomorphisms of 4 over F. A necessary and suffi-
cient condition that (¢);; be a specialization of (o)< is that (6/N)ict,jes
be a differential specialization (respectively a specialization) of (6if)ics jes
over 4.

This is apparent.

An isomorphism of ¥ over & is said to be isolated (over F) if there does
not exist an isomorphism of  over & of which it is a nongeneric spectalization.

Proposition 1 Let % be a finitely generated extension of F, and let n =
(11, ....n,) be any finite family of elements of 4 with F{n) =%.

(@) If o is an isomorphism of % over F, then W,y S Wy7, and ¢ is
isolated if and only if Wype = Wy 5. ' _

(b) If ¢ is a specialization of an isomorphism ¢ of & over F, then
Wyoyrg S Woyg, and the specialization is generic if and only if Wy yg = Wanjg -
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(¢) There exist finitely many isolated isomorphisms o, ...,0, of 4 over F
such that every isomorphism of 4 over F is a specialization of one and only
one of these. If 4 is regular over F, then r = 1.

Proof For each isomorphism ¢ of 4 over # let p, denote the defining
differential ideal in %{y,,...,»,} of (on,,...,0n,); then w,,,,= w, . If
¢’ is a specialization of o, then p,. > p,, and by Lemma 2, the specialization
is generic if and only if p,. = p,. By Chapter 111, Section 5, Proposition 2,
this means that w,.,4 < 0,4, and that the specialization is generic if and
only if equality holds here. This proves part (b).

Now let p denote the defining differential ideal of (n,,...,7,) in
F ¥, Var; then w,, > = w,. By Chapter 111, Section 6, Proposition 3,
%p is a perfect differential ideal of 4{y,,...,y,} with finitely many com-
ponents p,,...,p, (r being | if 4 is regular over #), w, = w, for each £,
every generic zero of p, is a generic zero of p, and every generic zero of p
is a zero of a unique p,. Let 7™ = (n;,, ..., 7. be a generic zero of p,. By
the above, there exists an isomorphism o, : () & F*> over F with
o n; = (1 <j<n). Thus, o, is an isomorphism of ¥ over &, o,n is a
generic zero of p,, and w,, .y = w, 5. If ¢ is any isomorphism of ¥ over
&, then on is a generic zero of p and hence is a zero of a unique p,. Then
by Lemma 2, ¢ is a specialization of a unique o,. 1t follows that each g, is
isolated, that w4 < w, 5, and that o is isolated if and only if w,,, =
w,, 5. This completes the proof.

We observe that for an isomorphism ¢ of 4 over & we have o,,,; =
w,, 7. Therefore the condition w,,s = w, s is equivalent to the condition
that, for big values of s€ N, any of the elements o8y, (0 O(s), 1 << n)
that are algebraically independent over & are algebraically independent
over 4. Thus, an isomorphism a of 4§ over F is isolated if and only if 4 and c%
are algebraically disjoint over .

Corollary Let 4 be a finitely generated extension of F of finite transcendence
degree, and let ¢ be an isomorphism of 4 over F .

(a) trdeg%o¥9/9 <trdeg¥9/#, and o is isolated if and only if equality
holds.

(b) If ¢ is a specialization of o, then trdeg%c'%/4 < trdeg%c¥%/¥%,
and the specialization is generic if and only if equality holds.

Proof 1f & is any differential field and { is a finite family of elements of
% such that &£{{> is of finite transcendence degree over &, then w4 =
trdeg & ({>/&. Therefore in the present case, parts (a) and (b) of the propo-
sition reduce to parts (a) and (b) of the corollary.
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Proposition 2 Let 4 be a finitely generated extension of F, and let F° denote

the algebraic closure of F in 4. Let ¢ and o' be isomorphisms of ¥ over F
such that o is isolated and ¢’ F° < 4 (whence ¢’ F° = F°).

) ¥no¥%=F"noF°
(b) o is a specialization of & if and only if 6 and ¢’ coincide on F°. When
this is the case, then 9 and 6% are linearly disjoint over F°.

Proof (a) Since o is isolated, ¥ and o% are algebraically disjoint over
F. so that 4 n 0% < Z#°. Similarly, 4 n 6% = ¢7°. Therefore ¥ n 0¥ =
FonoF°

(b) Let ¢’ be a specialization of 5. Then there exists a surjective homo-
morphism % {c.#°} - ¥ {c’ F°} over 4. Each element of the differenual
field 0.#° is algebraic over ¥4, so that 4 {0.F°) = %0%°; also, {0’ F°} = 4.
Therefore our homomorphism is actually an isomorphism Yo#°x ¢
over %, so that 0.7° < ¢. It follows that ¢'x = ox for every « € #°, so that
o and ¢’ coincide on #°. Conversely, let them coincide on #° Then
6F° =g F°=F° and g'o0” ' 1 0%~ ¢'% is an isomorphism over F°.
However, ¥ and ¢% are algebraically disjoint over # and hence over F°,
and ¥ is regular over #°, so that ¢ and ¢% are linearly disjoint over F°.
Therefore ¢’ oo ' can be extended to a homomorphism #[6¥] - ¥ [0'%]
over 4, so that ¢ is a specialization of a.

Corollary Let 4 be a finitely generated extension of F, and let F° denote
the algebraic closure of # in 4.

(@) Ifo,, ... 0, are isolated isomorphisms of 4 over F having the property

described in Proposition 1(c), then the differential field of invariants of

Cyy..s 0, IS F.

(b) If o is an isolated isomorphism of % over F of which idy is a special-
ization, then the differential field of invariants of ¢ is F°, and an isomorphism
o' of 4 is a specialization of o if and only if ¢’ leaves invariant every element
of F°.

Proof (a) Letxe¥, o,x=2 (1 <k<r). By Proposition 2(a), x€ F°.
Moreover, every isomorphism of 4 over & leaves « invariant. Since every
isomorphism y of #° over # can be extended to an isomorphism of ¥, every
such 7 leaves x invariant. Hence a € .

(b) This is an immediate consequence of Proposition 2(b).

2 Strong isomorphisms

Let ¥ denote the field of constants of the differential field 4. An iso-
morphism o of % is said to be strong if it satisfies the following two conditions.
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St1 o leaves invariant every element of %.
St2 c49<9%A and ¥ <o¥%.-4.

Of course, the two parts of St2 can be written as the single condition 4.7 =
6% - A" 1t is obvious that every automorphism of % over % is a strong iso-
morphism.

REmark  This notion of strong isomorphisms can be of interest only
when (as in the present chapter) the field characteristic p is 0. Indeed, when
p # 0, then Stl and the fact that ¥” < % imply that the only strong iso-
morphism of 4 is the identity.

For any isomorphism o of ¢, let $(s) denote the field of constants of
%0%. The first inclusion in St2 is equivalent to the inclusion %0% <« 44"
which, by Chapter I, Section 1, Corollary 2 to Theorem 1, is equivalent
to the condition ¥0% = 9% (s). Similarly, the second inclusion in St2 is
equivalent to the condition ¥6% = 6% -%(5). Therefore the isomorphism
o of & over ¥ is strong if and only if

Y% (o) = 909 = 0% - % (o).

Proposition 3 If ¢ is a strong isomorphism of 4, then
trdeg%c¥9/9 = trdeg¥(0)/%.

Proof Since %o¥% = 4% (o), this follows from the fact (Chapter 1,
Section 1, Corollary 1 to Theorem 1) that 4 and % (o) are linearly disjoint
over 4.

The utility of strong isomorphisms rests on the following result.

Proposition 4 Each strong isomorphism of 4 can be extended to a unique
automorphism of 44 over A". Conversely, the restriction to 4 of each auto-
morphism of 44 over A is a strong isomorphism of 4.

Proof We know % and ¢ are linearly disjoint over ¥, as are 6% and ¢
(o denoting any isomorphism of % over ¥). Therefore ¢ can be extended
to a unique isomorphism s: 494 x~ 6% -4 over . When ¢ is strong then
c%- 4 =%, and s is an automorphism of 42¢". The converse is obvious.

Proposition 4 provides a canonical identification of the set of all strong
isomorphisms of 4 with the set of all automorphisms of 4.4 over A4". Since
the latter set has a natural group structure, this identification makes the set



390 VI GALOIS THEORY OF DIFFERENTIAL FIELDS

of all strong isomorphisms of % a group. If 7 is a differential subfield of %,
the set of all strong isomorphisms of & over Z is a subgroup of this group,
canonically identified with the group of all automorphisms of ¥.¢" over # ¢

Proposition 5 Let o and t be strong isomorphisms of 4. Then % (6)6(o1) =
C(o)6(t) =% (c1)4 (1) and €(67") = % (o).

Proof
G€(0) =909 =0(07'9-9) =0(c7'%9 %0 ") = 46,

whence (by Chapter 11, Section I, Corollary 2to Theorem 1) € (o) = € (o™ ).
Similarly,

96 (0)%(01) = 96% - 019 = Y5(%19)
= Y5(9% (1)) = 909 -6 (1) = 9% (0)%(z),

whence % (o) € (o1) = € ()% (1). Finally, replacing 0,7 in this equation by
o we find that ¥(x )% (t e ) =%(t HN%(0 "), that is

£}

E(t) % (o7) = €(0) ¥ (7).
We now consider specializations of strong isomorphisms.

Proposition 6  Every specialization of a strong isomorphism of 4 is strong.

Proof Let o’ be a specialization of the strong isomorphism ¢ of &,
and let xe . We must show that ¢'2 e ¢ and xe ¢4 . ¢, Fix a vector
space basis (8;) of 4 over 4. Since ox e 94, there exist constants b, not
all 0 and constants a; such that ox =Y a8/ b, 8, that is, such that
2 b;pioa—73 a,f; = 0. Therefore the family ((f; ox), () is linearly dependent
over . Since this condition is equivalent to the vanishing at {(B; o), (B))
of certain differential polynomials with coefficients in the prime field Q
(see Chapter 11, Section 1, Theorem 1), we infer that the family ((8;0"2), (8)))
is linearly dependent over ', so that there exist constants a; and b, not
all 0 with 3.5/ 8, 6’2~ a/f; = 0. However, (8,) is linearly independent over
constants, and therefore Y 5/8,#0. Hence o'x =3 a/B/>b/Bic%x.
The proof that x € ¢'4- ¢ is similar.

REMARK  We observe from the proof that if ¢ is an isomorphism of %
over ¥ satisfying the first (respectively second) inclusion in the condition
St2, then every specialization of ¢ is an isomorphism of % over € satisfying
the first (respectively second) inclusion.

If ¢’ is a generic specialization of the strong isomorphism ¢ of ¢, then
there exists a unique isomorphism %¢% ~ %¢’% over ¥ that, for each

o it m et A 38 e
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x €%, maps ox onto ¢'x. This isomorphism yields on restriction an iso-
morphism %(c) x~ % (") over ¢ which we call the isomorphism induced by
the generic specialization.

Proposition 7 Let ¢ be a Strong isomorphism of 4.

(a) If ¢ is a generic specialization of 6, and 6" is a generic specialization
of ¢ (and therefore of o), then the composite of the induced isomorphisms
(o) x4 (0') and €(0") x ") is the induced isomorphism % (o) = € (¢").

(b) IfS:%(o)~ % isany isomorphism over €. then there exists a unique
generic specialization o’ of ¢ such thar C(o') =%" and S is the induced iso-
morphism € (o) ~ % (a").

Proof (a) This follows from the corresponding facts about the iso-
morphisms Y04 ~ 90’9, 96'% ~ 95°%, and Y069 ~ %c"9.

(b) %(o)and ¢ are linearly disjoint over %, as are ¥’ and % ; therefore
S can be extended to an isomorphism 7T: b€ (c) ~ 9%’ over 4. The com-
posite mapping 4 X ¢% < EAAC)) < 9y yields an isomorphism ¢ : % a
To% over 4. Evidently 7: 96% ~ %06'9, s0 that ¢’ is a generic specialization
of 6,4 =% (5), and S is the induced isomorphism. The uniqueness is clear.

Proposition 8 Let 0,0, 7, 7' be strong isomorphisms of 4.

(@) If (¢’. %) is a specialization of (o,7), then (¢’ !, o 't isa special-
ization of (6", 67 7).

(b) Suppose that ¢’ and ' are generic specializations of ¢ and 1, re-
spectively. If (07, T') is a specialization of (6,7), then the induced isomorphisms
€ (o) = 6(c") and 4 (7) ~ €(t') are compatible, and conversely.

(©)  Suppose that ¢’ and < are generic specializations of ¢ and , respect-
ively, and let h: 2 - 9’ be a homomorphism petween subrings of A" If h
and the induced isomorphisms  (¢) ~ % (0") and € (1) =~ € (<) are compatible,
then 6’ ' is a generic specialization of 7" and ¢’ ™' ' is a specialization
of 67't; when the latter specialization is generic, then h and the
induced isomorphisms % (6™ ") ~ €('™") and € '7)~ (o’ "'7') are
compatible.

Proof (a) By hypothesis there exists a homomorphismf: 4% U 9] -

Y[06'9% U v'9] that, for each a G, maps x onto «, ga onto ¢'x, and ta onto
'z The formula x— 6’ ~!(f(ox)) defines a homomorphism

Ylc7'9 0o ' 19] > Y79 v ry]

that, for each x€ G, maps x onto %, ¢~ '« onto ¢’ 'a, and ¢ '7x onto

r=1

g TQ&.
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(b) By hypothesis, the homomorphism f in the proof of part (a) maps
%4{c%] and ¢ [t¥%] isomorphically onto % [¢'#%] and ¥[¢'%]. and hence can
be extended to a3 homomorphism % [496% u 919] > ¥ [90'% U 97'%4]. This
homomorphism is an extension of the induced homomorphisms %(o) =~
#(c’y and €(t) = #(¢'), so that these are compatible. For the converse,
see the proof of part (c).

(¢) By hypothesis there exists a homomorphism ¥[2 v € (0) v €(1)] —
%[ U %(c") u¥(r)] that extends 4 and the induced isomorphisms
%(c) ~ %(c’) and € (1) = € (z'). Because ¥ and ¥ are linearly disjoint over
%, this homomorphism can be extended to a homomorphism

4[2 U@ UuE()] - %[2 vF(o)u €]

over %. This homomorphism maps % [%(s)] and ¥[¥(7)] isomorphically
onto ¥[%(¢")] and %[%(¢')], and therefore can be extended to a homo-
morphism of 4[2 U 9% (o) LU 9% ()] into 4[2' U ¥€(c") v 96()], that
is, to a homomorphism %[2 v %0% v 919] > %[22 v 909 L GTY],
which evidently maps « onto a, ca onto o’a, and ta onto r'a for each
a €%. By restriction, this yields a homomorphism g: 4[2 U 69 U 9] >
G[D" U e'% uT'Y] over 4 such that g(oa) = ¢'x and g(ra) = 7'« for every
ae%. This shows that (¢/, 7') is a specialization of (g,7) (and therefore
completes the proof of part (b)). Hence, by part (a), ("™, ¢’ "'7) is a
specialization of (67!, 67 1), so that ¢'~" and ¢'~ '’ are specializations
of 671 and ¢~ ' 1, respectively. However, if p’ is a specialization of a strong
isomorphism p, then part (), applied to (p, p) and (p’, p'), shows that p !
is a specialization of p~!. Since ¢’ is a generic specialization of ¢, we con-
clude that ¢’~! is a generic specialization of ¢~'. If the specialization
' "'t of 67!t is also generic, then the formula x+ ¢~ '(g(ox)) defines a
homomorphism #{2 U e~ '% U o™ '1¥9] > %4[2 U 'Y U T TG over
% that extends 4 and that, for each x € 4, maps ¢ 'z onto ¢’ "'xand 67 ' 7
onto ¢’ 4 ¢'x, and that maps 4 [0~ !¥4] and 4 [c~ ' t4] isomorphically onto
%[0~ '%4] and 4[c¢’~'v'¥], respectively. This homomorphism can then be
extended to a homomorphism

4(DUG G UG 1Y) - Y[D Vo T G LG Y],

which evidently is a common extension of 4 and the induced isomorphisms
Flo™Hx% (e NYand ¥(c™ ' 1) ~ ¥ (¢’ "' t'). Therefore / and these induced
isomorphisms are compatible.

Corollary (3) If ¢’ is a specialization of o, then o'~ is a specialization
of 6~'. When the former specialization is generic, then so is the latter, and

the induced isomorphisms € (o) ~ 4 (0’) and €(c” YW €(a’ ™) coincide.
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(b) If o' and t' are generic specializations of ¢ and r, respectively, such
that the induced isomorphisms € (o) = € (¢') and € () ~ € (t') are compatible,
then o’t' is a specialization of 6t. When the last specialization is generic, and
h:9— 2 is a homomorphism between subrings of A" such that h and the
induced isomorphisms %(c) ~ % (c") and 6(t) = € (1) are compatible, then
h and the induced isomorphism € {ct) ~ 6(c’'t’') are compatible.

Proof (a) The first assertion follows from Proposition 8(a), in the
special case in which 7 =0, " =06’ The second assertion follows from
Proposition 8(c), in the special case in which t =¢, " =¢’, and 4 is the
induced isomorphism % (o) ~ % (c¢’).

(b) Because of part (a), we may replace 6,¢6' by ¢, o'~ '. The result
then follows from Proposition 8(c).

3 Strongly normal extensions. Galois groups

By a strongly normal extension of the differential field % we mean a
finitely generated extension % of # such that every isomorphism of 4 over
& is strong.

Proposition 9 If 4 is a strongly normal extension of F, then F and % have
the same field of constants.

Proof By Section 2, condition Stl, the constants in ¢ are invariant under
every isomorphism of ¢ over #. By Section I, part (a) of the corollary
to Proposition 2, then the constants in 4 are in &.

Proposition 10 Let & be a finitely generated extension of & having the same
field of constants as F. Let oy, ..., 0, be isomorphisms of 4 over F such that
every isomorphism of 4 over F is a specialization of one of these. If 6,9 <
YA (1 <k <r), then 4 is strongly normal over F .

Proof By Section 2, the remark following the proof of Proposition 6,
69 = 9% (o) for every isomorphism ¢ of 4 over #. The isomorphism
67! 6% =~ % can, because % is universal over %, be extended to an iso-
morphism ¢ of ¥o¥. The restriction of ¢ to 4 is an isomorphism  of ¥
over . Thus, we have an isomorphism ¢ : 906% ~ 1%-% over &F, 0% =19,
p(0¥%) =9, and evidently ¢(%(0))=%(z). Therefore %= (%) <
¢ N FE () =90 "% ¢ (¥ (1)) = 0% -%(0), 50 that every isomorphism o
of 4 over # is strong.

Corollary Let 9, and 4, be extensions of F such that 9, %, has the same
field of constants as F. If 4, and 4, are strongly normal over &, then so is
Y,9,.
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Proof Obviously 4, %, is a finitely gencrated extension of #. If ¢ is
any isomorphism of 4,9, over Z, then the restriction o; of o 10 ¥, is a
strong isomorphism of ¢, so that o(%,%,) = 0,9,.0,9, <% A G, X =
9,9, 4. It follows by Proposition 10 that %, %, is a strongly normal
extension of #.

Proposition 11 Let 9 be a strongly normal extension of F, and let € denote
the field of constants of . Then 4 is finitely generated as a field extension
of .#, and for every isomorphism o of 4 over F, € (o) is a finitely generated
ficld extension of %.

Proof The extension 9o@ of ¢ is finitely generated. Hence by Chapter
11, Section 11, Corollary | to Proposition 14, € (o) is a finitely generated
ficld extension of %. Take for ¢ an isolated isomorphism of & over F,
and let = (iy,,...,n,) be a finite family of elements of ¥ such that ¥ =
F¢n>. Then by Section 1, part (a) of the corollary to Proposition I, and
Section 2, Proposition 3, trdeg%/# = trdeg%0%/¥ = trdeg%(0)/% so that
degw,;# < 0. It foilows by Chapter 1I, Section 13, Theorem 7, that 4 is a
finitely generated field extension of #.

The key to the study of strongly normal extensions is provided by the
following theorem.

Theorem 1 Let G be a strongly normal extension of the differential field %
with field of constants %, and let G denote the set of all strong isomorphisms
of @ over F. For each g & G let 6(0) denote the field of constants of Go%.
For cach (o,6")y e G2, let ¢ — ¢’ mean that ¢’ is a specialization of c in the
sense of Section 1. For each (o,0") € G? with o & o' (that is, with o' a generic
specialization of @), let S, , denote the induced isomorphism €(o) ~ é(c')
in the sense of Section 2. These data define on G a pre-6-set structure relative
to the universal field # . This pre-G-set structure, and the group structure
that G has by virtue of its canonical identification with the group of auto-
morphisms of 9.4 over F A, define on G a G-group structure. The dimension
of the €-group G equals the transcendence degree of 4 over F.

Proof We must verify the axioms in Chapter V, Sections 2 and 3. By
Proposition 11, % (o) is a finitely generated field extension of ¢ in A for
every ¢ € G. We saw in Section 1 that the relation o — o' is a pre-order.
Part (¢) of Proposition 1 (Scction ), and Proposition 3 (Section 2) and
part (b) of the corollary to Proposition [, establish axiom AS!. Proposition 7
(Section 2) establishes axiom AS2. Therefore we have a pre-%-set structure.

To prove axiom AG3 we must show that if ¢ is an isolated isomorphism
of 4 over # with 0 - id.,, then % (o) is regular over 4, or {(since 4 and % (o)
are linearly disjoint over %) that the field 9% (o) = %0¥ is tegular over 9, or
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(S|-nce, by Section 1, part (b) of Proposition 2, 4 and ¢% are linearly dis-
Jomt over #° = o) that 6% is regular over ¢.#°, which is obvious since
% is regular over #°. Axiom AGI follows from Section 2, Proposition 5
Parts (a) and (c) of axiom AG?2 follow from Section 2, part (c) of Proposition.
8 and part (b) of the corollary to that proposition. It remains to prove parts
(b) and (d) of AG2.

Let g, o', 7’ be strong isomorphisms of ¥ over # with ¢ - ¢’ and
T 1T .le a family i = (1,,...,n,) of generators of ¥ over &, and let p
respf:chvely q denote the defining differential ideal of ¢~ 'y respectively
™ in the differential polynomial algebras %{y1,....p.} respectively
G{zy,...,z,} over 4. Let 4, denote the algebraic closure of #. and refer
to Chapter I, Section 6, Proposition 3 and its corollary.’ Y.p and
%.q have %,-regular components, say p,,...,p, and Qiyoony G- Eaach dif-
ferential ideal v, = (0, U q) of Z, {»,, ..., ,, Zyy s Zy} I8 primg and there-
fore has a generic zero (5", {*") where y*-" is a generic ze’:ro of 1, N
Galyis--va} = py and therefore of p, N %{y,,...,y,} = p, so that ;;‘I""’
is a generic differential specialization of ¢~ 5 over 4 and ,hence over &
Therefore 7" is the image of # by a strong isomorphism of ¥ over 9'"
which we denote by o,;'. By Section I, Lemma 2, ¢! & ol Similarly’
{®P = 1,5 for some strong isomorphism Ty of @ over F with t o1 )
By hypothesis, ¢ — ¢’, whence 67! ¢’ ! so that 'Yy is a zero of P ar,;lci
hence of some p,. Similarly, 77 is a zero of some q;. Thus, (6"~ 9, v'y) is
a zero of r,, that is, is a differential specialization of (o;'y, T h) over 4
and .h?llce over 4. It follows by Section 1, Lemma 2, that (¢, oY is atll
specialization of (z,;, 05;'), and hence by Section 2, Proposition 8(a) and
(b), that (v'~', 7' "'¢’""} is a specialization of (ta', T toY) and that if
t'og' et ¢ and 15" e ¢!, then the induced isomorphisms
Clta'oq )2 6@ o' and F(r; )Y~ €Y are compatible. By
part (a) of the corollary to Proposition 8, then a,,t,— ¢'t’ and if
O Tt ,H o'’ and 71, o v/, then the induced isomorphisms % (0,7, =~
€(o't") and %(ty) ~ ¥(r)) are compatible. This proves axiom AG2
part (b), and (because o~ ' —¢'"! whenever o —¢’) also part (d) an(i
eslablishes G as a #-group. ’

Finally, let ¢ be a ¥-generic element of G°, that is, an isolated isomor-
phism of ¢ over # with ¢ - id,. Because 4 and % (o) are linearly disjoint
over €, and ¢ and ¢% are algebraically disjoint over F,

trdeg % (0)/% = trdeg 9% (c)/% = trdeg 9o %/%
= trdego¥/# = trdeg¥/#.

This completes the proof of the theorem.

By virtue of Theorem 1, the set of strong isomorphisms of the strongly
normal extension % of # has a natural structure of %-group relative to the
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universal field . We call this €-group the Galois group of 4 over &, and
denote it by G(%/%). We denote the component of the identity of G(%/#)
by G°(9/%).

For reasons that will appear later, it is desirable to consider €-groups
and, more generally, #-sets relative to the universal field %, and therefore
.we adopt the convention that when we refer to a €-group that is not the
Galois group of a strongly normal extension (or to an F-set) we mean, unless
the contrary is indicated, a €-group (or F-set) relative to the universal field
9. Of course, when G is such a €-group, then G, is a ¥-group relative to
the universal field 2#". Furthermore, we know by Chapter V, Section 4, that
every #-group relative to X" is obtainable in this way from a %-group
relative to %. When X is an %-set and a € X, F{a) will denote the dif-
ferential field generated by #(«).

Theorem 1 permits us to classify strongly normal extensions of the dif-
ferential field #. If G is any %-group, by G-extension of ¥ we mean any
strongly normal extension ¢ of & such that G(%/%) is ¢-isomorphic to
a %-subgroup of G, . When G(%/#) is %-isomorphic to G itself, we say
that the extension is full. By a linear (respectively Abelian) extension of &
we mean a GL(n)-extension of & for some ne N (respectively an A4-exten-
sion of & for some Abelian ¥-group A).

The following theorem interprets, for an extension %’ of ¥ in A, the
induced ’-group of the @-group G(%/F) (see Chapter V, Section 5).

Theorem 2 Let % be a strongly normal extension of &, denote the field of
constants of F by €, and let €' be an extension of € in A such that U is
universal over F€'. Then U is universal over 9¢°', 9%’ is a strongly normal
extension of F€ with field of constants €', and the €’-group G(9%€'|F€")
is the induced ¥'-group of the %-group G(9|%F), both these groups being
identified with each other by means of their canonical identifications with the
group of automorphisms of 44" over FA .

Proof Since 9%’ is finitely generated over #¢’, Chapter 111, Section 7,
Proposition 4(b) shows that % is universal over ¥%¢’. That €' is the field
of constants of both £’ and 9%’ follows from Chapter 11, Section 1,
Corollary 2 to Theorem 1. If o is any. isomorphism of ¢’ over ¢,
then the restriction of & to & is an isomorphism of % over & and as such
is strong, so that o(%%’) =09 0% < g ¢ =9¢ A, and similarly
Y% < 6(9%")- A, and hence o is strong. Therefore %%’ is strongly normal
over #¢'.

Identifying o with the automorphism of GG A =9GA over FE A =
F 4 that extends o, and hence also with the strong isomorphism of % over
% to which o restricts, we find that ¥%’(o) =9% -¥'(0) = %% 0(%%¢') =
96%.-4' = 9%(c)€’, whence (by Chapter 11, Section !, Corollary 2 to
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Theorem 1) €'(0) =4 (0)%¢’. If ¢’ is a specialization of ¢ in G(9%'|F¢¥’),
then (¢'a),.4 is a differential specialization of (oa),.4 Over ¥%’, hence over
%, so that o’ is a specialization of ¢ in G(¥%/%). When the specialization
in G(%%¢'|#%’) is generic, there exists an isomorphism 9%'0% =~ 9%'0'%
over 9%’ mapping ox onto ¢'a for every a € %, and this restricts to an iso-
morphism %6% ~ 90'% over %, so that the specialization in G(%/%) is
generic; the induced isomorphism S¥,:€¢'(c) = 4'(¢') is a restriction of
the former of these two isomorphisms, and the induced isomorphism
SE . € (o) = €(o") is a restriction of the latter, and hence S¥, is an ex-
tension of S¥ ,. This shows that the identity mapping G(9%'|F%¢') -
G(%|F) is a (¢, ¥)-homomorphism in the sense of Chapter V, Section 3.

Now let H be any €’-group relative to the universal field & and f/: H -
G(%)%) be a (¢, €)-homomorphism. To complete the proof of the theorem,
we must show that this is a €’-homomorphism f: H - G(9%'|#%'). For
any ye H, ¢'(y) > €(f(y)) because f is a (%', ¥)-homomorphism, so that
@(») > €(/(») % = €'((1)) by the above. If y <-—> ', then /() © /()
in G(%9/#) and S, extends the induced isomorphism Sy, s, and hence
S iy, sy And idy. are bicompatible. Since ¢ and €[€(f(y) v ¥'] are line-
arly disjoint over 4, as are 4 and ¥[€(f(y)) v ¥'], it follows that id,
Sy, s » idege are bicompatible, and hence that there exists an isomorphism
GE(f(YNE =~ 96 (f()) € over 96’ extending Sy, sy, that is, an iso-
morphism 9% -f(y)(%%') ~ 4€ - f(y')(9%') over 9%’ that maps f(y)«
onto f(y')a for every ae 4. Therefore f(p)« f()) in G(%¥'|F¥') and
Sk, extends the induced isomorphism St rin iU =€ (f(¥)). Tt
follows by Chapter V, Section 9, Corollary 1 to Proposition 9, that fis a
%’-homomorphism.

Proposition 12 Let % be a sirongly normal extension of F with field of
constants €, and let @ be an isomorphism of 4 over € such that U is universal
over p%. Then ©% is a strongly normal extension of ¢% . There is a unique
isomorphism 44 =~ @4 - A over A" that extends ¢ (and that we shall permit
ourselves 1o denote by ¢). When G(4|F) respectively G(o%[@F) is canoni-
cally identified with the group of automorphisms of X over F A, respec-
tively of ¢%-A over gF -A, the formula T,(0) = @ocop ' defines a
G-isomorphism T, : G(9/F) =~ G(¢o¥%/pF).

REMARK When ¢ is an isomorphism of % over #, then ¢ & G(9/%).
After G(%/F) and G(¢p%/pF ) are canonically identified with the group of
automorphisms of the differential field ¥4 = ¢% - A" over # A, then they
coincide as groups (but not necessarily as €-groups), and T, is the inner
automorphism determined by ¢.

Proof Let t be any isomorphism of ¢% over ¢#. The isomorphism
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@ ' @%~Y can be extended to some isomorphism \//:qf%gp{f%
G yrp®, and evidently the formula ot frpx defines an isomorphism of
@ over #. Therefore the field of constants %' of @-yrr@% has the property
that 9% = G- Ytp% = Yrrp¥-4’. Since ' maps ¥ onto % and ¢’ onto
the field of constants %(r) of @% te¥, then 9%-6() = ¥ 1% =
1¢0%-% (1), so that 7 is strong. Hence % is strongly normal over ¢

Since @ and . are linearly disjoint over 4, as are 9% and &, ¢ can be
extended to a unique isomorphism X" ~ @9 -4 over 4, and we denote
it, too. by @. Making the canonical identifications, we see that for egch
ceG(Y|F), pooop™ ' € GloF/eF). Therefore we can define a .m'appmg
T,: G(9]F)— G(e%/pF) by the formula 7,,(¢) = @ocogp ', and 1tllS clear
that 7, is a group isomorphism. Since 9@ -6 (T, (0)) = 9% (pooeop YpYG =
p(Ha9) = (4% () = 0% -4 (o), we infer that C(T,(0)) = (o) Further-
more, if o «> o', then therc exists an isomorphism Yo% ~ 9o'% over ¥
mapping oa onto o’a (x e %) and inducing the isomorphism S, ,:6(a) =
“(a"). Since ¢ maps Yo% respectively %o’9 onto 0%-T,(0)p% respe&
tively % T,(0) ¢4 and leaves constants fixed, we obtain an isomorpllusm
0% T, (0)pY = 0% -T,(5") 9 over @% mapping T,(g) px onto T,(6") o
(e €¥), so that T, (o) & T,(0") and Sy o), Totr = Sorya It fol'lows fr.om
Chapter V, Section 9, Corollary 1 to Proposition 9, that T, is a %-iso-
morphism.

4 The fundamental theorems

The following theorem establishes a Galois correspondence between the
set of intermediate differential fields of a strongly normal extension and the
set of @-subgroups of its Galois group.

Theorem 3 Let @ be a strongly normal extension of the differential field %
with field of constants €.

(a) If F, is adifferential field with F = F, < 4, then G is strongly normal
over F,. G(9]F,) is a C-subgroup of G(%/|F), and the set of invariants of
G(%|F,) in ¥ is F,. . ‘

(by If Gy is a G-subgroup of G(%4/F) and F, denotes the set of invariants
of G, in@. then 7, is a differential field with F o F <Gand G(4]%)=G,.

Proof (a) Every isomorphism of @ over &, is over #, too, al?d hence
is strong. Therefore ¥ is strongly normal over %, and the Galois group
G(%/F,) is a G-group. It is obviously a subgroup and a %-subset of G(¥/F),
and hence (by Chapter V, Section 8, Proposition 5) is a @-subgroup Qf
G(%|F). By definition, every element of #, is an invariapt of G(%/#,) in
%, and by Section 1, part (a) of the corollary to Proposition 2, every such
invariant is in #.
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(b) Tt is obvious that &, is a differential field with % = £, = ¥4, and
therefore, by part (a), G(9/#,) is a €-subgroup of G(¥4/%). Of course,
G, c G(9]#,). We must show that G, = G(%/%,), and we do this first
under the extra hypothesis that € is algebraically closed.

Assume, under the extra hypothesis, that G, # G(¥4/%,). Fix %-generic
elements g,,...,0, of the ¥-components of G,. By assumption, there exists
an element t € G(%/%,) that is not a specialization of any ¢,. Fixing elements
N n €4 wWith Fny,...,ny =%, we see by Section 1, Lemma 2, that
for each index k there exists a differential polynomial F,e %{y,,...,7.}
that vanishes at (g, %,...,0.#,) but not at (tny,...,t4,). Considering the
product []F,, we infer that there exists a differential polynomial in
%{y,,...,y.y that vanishes at (on,,...,on,) for every ¢ € G, but not for
every o € G(%/%,). Let F be such a differential polynomial with as few non-
zero terms as possible. We suppose, as we may, that one of the coeflicients
in Fis 1. Consider any ¢’ € G, (that is, any ¢’ € G, that is rational over %,
or in other words that is an automorphism of #). Since F° (on,,...,01,) =
o'(F(e' 'an,,...,a' " 'on,), F° vanishes at (on,,...,0n,) for every oG,
and therefore F— F° does too. Since F— F® has fewer nonzero terms than
F, F—F° must vanish at (on,,...,0n,) for every ¢ € G(%/%,). Hence, for
any a € 4, F—a(F—F) vanishes at (¥, ...,0on,) for every ¢ € G, but not
for every o€ G(¥9/#,). If F—F° were not 0, we could choose a so that
F—a(F—F°) had fewer nonzero terms than F. Therefore F—F =0 for
every o’ € G,. Since (by Chapter V, Section 7, the corollary to Proposi-
tion 3) G, is dense in G, and since (by part (a)) the set of elements e
G(9/%) with F° = F is closed in G(%4/%), this means that F’ = F for every
6eG,, so that Fe # {y,...,7,}. However, then F° = F for every o€
G(%/7), so that F(on,,...,on,) =a(F(y,....,n,)) =0 for every such o.
This contradiction shows that G, = G(%/%,) under the extra hypothesis
that & is algebraically closed.

Now relinquish this hypothesis, and let %, denote the algebraic closure
of €. Let #’ denote the set of invariants of G, in 9%,. Then #' is a dif-
ferential field with %, <« F' < 9%,, and 4 n F' = F,. We claim that
% and ' are linearly disjoint over #,. To establish this, consider elements
®,,..., 0, € F' that are linearly dependent over 4. We must show that they
are linearly dependent over #,, and in doing this we may suppose that
s> 1 and that no s—1 of them are linearly dependent over #. Then there
exist nonzero elements ay,...,0,€ % with 3, <;<, @, ¢; = 0. Dividing by a,,
we may suppose that e, = 1. For any g € G, evidently 3, < ;< (o)) ¢; = 0,
and therefore 3, ¢ < - (00, —a;)p; = 0. Taking o€ G4, and denoting
the #-conjugates of ¢ by ¢,,...,0,, we therefore may write

Y (-, =0 (1<k<).

1<€s~1
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If ou; —a, were not 0, then, for each k, o, 4, —«; would be different from 0,
and we would have ¥, ¢ < - (042, —0) (o 0;—a) ;=0 (1 <k <1);
setting

o Z (akal_al)_l(akaj_aj)
1skse

-1
Trwma)/g(‘ml —ay) (ij_ aj):

we would therefore find that

%'p; =0, ' ed (I<j<s—0), o) = Trgguyel # 0,

1€j€s~1
contradicting the linear independence of ¢,,...,0,_, over 4. Therefore,
oy = o, for every o€ G ¢,, and hence (because G, is dense in G,) for
every ¢ € G, whence o, € #,. Similarly, a, € #, for every index k, so that
@y, ..., are linearly dependent over #,. This establishes our claim.

Evidently #, 4, = #'. Consider any element ¢ € #°. Fixing a basis (¢,)
of €, over €, we can write ¢ =3 f;¢,, where the §; are elements of 4, and
therefore @ —3 B;c; =0. Thus ¢ and the various elements ¢; of ' are
linearly dependent over ¢. By the claim established above, they must be
linearly dependent over &, that is, there exist elements B, and y’ of #,,
not all 0, such that y¢—3 B/ c; = 0. However, the elements ¢; of %, are
linearly independent over %, and therefore y’' 5 0, so that ¢ =Yy " '8/¢, €
F,%.. This shows that #, ¢, = #". It follows by Section 3, Theorem 2,
and by the present theorem with the extra hypothesis, that G(%/#,) =
G(%9%./# %,) = G(9%,/#') = G,. This completes the proof of Theorem 3.

Corollary Let % be a strongly normal extension of & with field of constants
€, and let F, and #, be intermediate differential fields. Then G(%|F, F,) =

GEIF) N G(#|F,), and G(%|F, nF) is the smallest 6-subgroup of

G(%/%) containing G(9]F,)G(%/F,).

Proof An isomorphism of # leaves invariant every element of %, %,
if and only if it leaves invariant every element of &, and every element of
#,, whence the first assertion. The smallest 4-subgroup of G(¥%/%) con-
taining G(%/#,) G(94/%,) is of the form G(¥/F’), where evidently #' < &,
and &' c &, that is, F' c F N &,, so that G(%/F") > G(%|F, 0 F,).
On the other hand, G(¥4/7, n #,) is a %-subgroup of G(%/%) containing
G(9/#,) and G(%|%,), so that G(4/F') = G(%|F, N F,).

Theorem 4 Let 4 be a strongly normal extension of & with field of constants
€, and let F, be an intermediate differential field. Then the following four
conditions are equivalent,
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(@) &, is a strongly normal extension of #.

(b) For each element ae F, with a ¢ F, there exists a Strong isonor-
phism o of F\ over F such that ¢, o # a.

(¢) G(9/#)) is a normal subgroup of G(9/|F).

(d) oF, c F, A for every e G(%|%).

When these conditions are satisfied, then, Jor each o € G(9/F), the restric-
tion o, of o 10 F, is an element of G(F,|F), and the Jormula o~ ¢, defines
a surjective €-homomorphism G(%4/F) — G(F,|F) with kernel G(%/#)).

Proof 1f (a) is satisfied, then, by Theorem 3, the set of invariants of
G(F/F)in #, is F, so that (b) is satisfied. Let (b) be satisfied. The normal-
izer N of G(%/#,) in G(%/F) is a %-subgroup of G(¥4/%) containing
G(%/#,) (see Chapter V, Section 10, Corollary 2 to Proposition 13). By
Theorem 3, there exists a differential field #, with & < F, @ &, such that
G(%/#) = N. If ¢, is any strong isomorphism of &, over #, ¢, can be
extended to an isomorphism of 4, that is, to an element ¢ € G(Y9/F). Then,
for any 7€ G(9/#)) and any e Z,, of =0, BeF A, whence 10 = off
and ¢ '10f =B, so that ¢ 'zoe G(9/#)). Thus, ce N = G(%/%,), so
that ¢, leaves invariant every element of #,. It follows by (b) that &, = &,
that is, N = G(¥9/%), and therefore (c) is satisfied. Next, let (c) be satisfied.
Consider any ¢ € G(%/#) and any fe F,. For every 1€ G(9/%,), we have
0”10 € G(4/#,), so that ¢ '16f = f and tofi = ¢f. Since by Section 3,
Theorem 2, we can write G(%/%F,) = G(9%(0)/F,%(0)), and since of e
Y09 = 4%(0), we see that of is an invariant of G(%%(0)/#,%(0)) in
%% (o), and hence, by Theorem 3, that o € #, ¢ (). Therefore (d) is satis-
field. Finally, let (d) be satisfied. If oy is any isomorphism of &, over &,
then o, can be extended to an element o G(%9/%). Then because of (d),
0, % =0F < F A. It follows by Section 3, Proposition 10, that (a) is
satisfied. Thus, the four conditions are equivalent.

Let the conditions be satisfied. It is obvious that the ‘restriction mapping,
defined by the formula g0, is a group homomorphism G(¥%/%) -
G(ZF,/#F) with kernel G(%/%,). We have already observed that every iso-
morphism of #, over # can be extended to an isomorphism of 4, and this
shows that the homomorphism is surjective. It remains to prove that it is a
%-homomorphism. First of all, %(g) = Gy A > (Fio, F) NN =
€ (0}). Next, if o’ is a specialization of ¢, then (0'%), ¢ 4 s a differential special-
ization of (sa), .4 Over %, so that a fortiori (¢,'a),. &, is a differential special-
ization of (0, «),. 4, over &,, that is, o,’ is a specialization of o,. Finally,
it ¢’ is a generic specialization of &, then by the above, o,’ is a generic
specialization of ¢. Since the induced isomorphism S,. , : 4 (c) = €(0’) is
a restriction of the isomorphism %0% ~ 90’4 over ¥ mapping oa onto
g'a (€ %), and the induced isomorphism S, :b(@)x%(c,)) is a

€', 0,
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restriction of the isomorphism #, ¢, %, ~ %, ¢,'%, over ¥, mapping o,
onto a,'% (x€.F), it is evident that S,. , is an extension of S, ;. This
shows that the restriction mapping is a ¥-homomorphism, and completes
the proof of the theorem.

Corollary 1 Let @ be a strongly normal extension of F, and let F° denote
the algebraic closure of F in 4. Then G(9/F°) = G(4]F), F° is a strongly
normal extension of %, and G(F°|F) =~ G(%[F)|G(G|F). In particular,
the degree of F° over F equals the index of G(9]F) in G(9]F), so that
F is algebraically closed in G if and only if G(4[%) is connected, and 9 is
algebraic over F if and only if G(¥]F) is finite.

Proof By Section 1, part (b) of the corollary to Proposition 2, the set
of invariants of G°(%/#) is .#°, and therefore by Theorem 3, G°(¥9/F) =
G(4)7°). As G°(9]F) is a normal %-subgroup of G(%/F) (see Chapter V,
Section 3. Theorem 1), Theorem 4 shows that #° is strongly normal over

F and G(F°[7) = G(G]F)|G(FG]F).

Remark  The algebraic extension #° of .# need not be normal (in the
usual sense). In other words, a strongly normal algebraic extension may fail
1o be a normal extension (see Exercise 1). However, if the field of constants
% is algebraically closed, then this phenomenon does not arise. In fact, if
% is strongly normal over % and @ is algebraically closed, then the set of
invariants in % of the group of automorphisms of % over & is #. Indeed,
for any « € % with a ¢ #, G(4/F<«)) is a proper %-subgroup of G(9/%).
Since the set of elements of G(%/#) that are algebraic over % is dense (see
Chapter V, Section 7, corollary to Proposition 3), there exists an element
o e G(9]F) wilth g ¢ G(4/F{«)) such that C(g) =%, that is, such that ¢
is an automorphism of 4.

Corollary 2 Let 4, and @, be strongly normal extensions of F such that
G, 4, and F have the same field of constants €. Then G, G, is a strongly

normal extension of F .

Proof By Section 3, the corollary to Proposition 10, 4, %, is strongly
normal over . By Theorem 4, G(%4,%,/%,) and G(¥,%,/%,) are normal
%-subgroups of G(%, %,/7), so that their product is too (see Chapter V,
Section 11, Coroliary 2 to Theorem 7). By the corollary to Theorem 3, the
product is G(%,%9,/%, n%,). Since it is normal in G(¥, 4,]7), it follows
by Theorem 4 that %, n ¥, is strongly normal over .

Theorem 5 Let ¢ be a strongly normal extension of F with field of constants
%. Let & be an extension of F such that % is universal over & and the field of

4  THE FUNDAMENTAL THEOREMS 403

constants of 98 is G. Then 48 is a strongly normal extension of &, for each
elenent 1 € G(9&/[5) the restriction 1, of © to 4 is an element of G(%]9 N &)
and the formula v 1., defines a G-isomorphism G(%88) ~ G(%|% 6).

{’/'oof For any isomorphism 7 of 4& over &, 7, is obviously an isomor-
phism of % over ¥ n & and hence is a strong one. Therefore, 48 -1(%68) =
GE1G -6 =91,%9-8 =96(1))- 6 =48%(¢,). It follows by Section 3,
Proposition 10, that 46 is strongly normal over &, and clearly the formula
T+ 7, defines an injective group homomorphism G(#&/8) —» G(%/% n &).
It also follows that 486 (1) = ¥8%(z,), whence (by Chapter 11, Section |
Corollary 2 to Theorem 1) 4(1) =% (z)). If 7,7 € G(%4/§) and r~>r”
then (U'f)s.qs is a differential specialization of (1f);.45 over %4, so thaE
(1" B)pe» is a differential specialization of (z, Bpew Over 4, whence 1, —» 1',.
If moreover 1> 1, then 1, «» 1’|, and the isomorphism %&t(%8) ~
GST(GE) over 44 mapping tff onto o' (f€ 948) is an extension of the
isomorphism %1, % ~ 41", over ¥ mapping ¢, onto 1", (B %). Since
these (wo isomorphisms are extensions of the induced isomorphisms
Se 1 C()=6(7') and S, 1 F(1,) = ¥ ('), and since ¥ (1) = ¢(r,) and
F(1") =6(z'|), we see that S,. =S, .. It follows that the injective group
homomorphism is a #-homomorphism. Its image is a #-subgroup G, of
G(9]% n &). If an element w € 9 is an invariant of G, then it is an invariant
of G(95/8), whence « € &. Thus, the set of invariants of G, in % is 4 1 &,
so that G| = G(%/% ~ &). This completes the proof of the theorem.

EXERCISES

I. Let # be the ordinary differential field R(x), x being transcendental
over R and the derivation operator being d/dx. Let 4 = % (u), where
u is a zero of the prime differential ideal [y*—x] of F{y}. Show that
% is strongly normal over # and that the formula ¢ — u~ ! ou defines
an .R-isomorphism of G(%/#) onto the R-subgroup P, of G, con-
sisting of the cube roots of unity.

2. Let % be a strongly normal extension of %, and let & be an extension
of # such that every constant in 4§ is in %. Show that 4 and & are
linearly disjoint over ¥ N 4.

3. Let#%,,...%, be strongly normal extensions of & with field of constants
’6 and suppose that the field of constants of 4, ---4, is ¥. For each
isomorphism ¢ of %, --- 4, let g; denote the restriction of o to %,. Show
that %, -.-%, is strongly normal over & and that the formula ¢+
(6y,...,0,) defines an injective %-homomorphism G(%,---4,/%)—
Xi<j<n G(G,/F).

m
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5 Examples

In this section we consider some very simple examples of a strongl.y
normal extension of the differential field #. The field of constants of & is

denoted by €.

A. The formula «—(8,4a,...,06,a) defines a mapping ¥ U™
that is a group homomorphism (and even a homomorphism of vector
spaces over ). The kernel of this homomorphism is 2. An ?lemellt xe U
is said to be primitive over F if (8,4,...,0,,0) € F", that is, if fqr suitable
elements a,,...,a, € &, a satisfies the system of differential equations

Sa=a (1<ism).

When « is primitive over &, evidently #{a) = F(a).

Let & be primitive over & and suppose that the ﬁFld of con\stants of
F{a) is €. For any isomorphism o of #{a) 0ver.97, (8, (ow), ..., d,,(c0)) =
(c(®,9),...,0(0,®) = (8, 4,...,0,0); hence the difference c(o) =oo—ao is
in the kernel. As F()a(FLlad) = FL) Flat (o)) = FLa)E(c(o)),
we infer that F{a) is strongly normal over &, and that (o) = €(c(v)).
For two eclements 0,6’ € G(F{aOIF), a+c(oo’)=o0da=o(a+c(c))=
a+c(o)+c(a’), so that c(aa’) = c(o)+c(o’), and evidently c(o) =Q only
when ¢ = idg,,. If ¢’ is a generic specialization of g, then lh;re exists an
isomorphism F<a) F{ao) ~ F(a) F{c'ay over F{a) mapping o« ont.o
o'a, and therefore mapping c(c) onto c(o’); therefore c(¢’) is a generic
specialization of ¢(o) over ¥, and the isomorphisms S, , and S.“,"')"(")
coincide. Hence (by Chapter V, Section 9, Corollary 1 to Proposition 9)
¢ is a ¥-homomorphism. Thus, we have an injective ¥-homomorphism

c: G(FLOHIF) - (G-

In particular, #<&) is a G extension of &. .
As the only #-subgroups of G, are 0 and G,, either a € &, or else « is
transcendental over . In the latter case the only differential fields between

F and F<{a) are ¥ and F<{a).

B. If « and B are nonzero elements of %, then (oc[})_‘é,-_(a[}) =
a 18,0+ B 18,8 (1 <i<m). Thus, the formula a— (x™'8,a,...,a""8,a)
defines a group homomorphism #* — %™ Its kernel is 2™*. An element
a e U* is said to be exponential over F if («™'6,a,...,a” "' d,,a) 6.9'_'", th.at
is, if for suitable elements a,, ..., a,, € &, « satisfies the system of differential
equations

;00 = a;u a<gis<m).

When a is exponential over &, then F<{«a) = F(«).
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Lot « be exponential over Z, and suppose that # {a) has field of constants %.
For any isomorphism ¢ of #(a) over #, (6a) ™" 8, (0a), ..., (0w) "' 8,,(c0)) =
(e(@™'d,a),...,0(a "6, 0)) = (¢ '8, a,...,a"'8,a). Hence the element
c(0) = o 'oa is in the kernel. Just as in the case of an element primitive
over &, we find that # (&) is strongly normal over &, and that

¢ G(FLIF) - (G,)y

is an injective 4~homomorphism. Thus, % (a) is a G, -extension of %.

If o is algebraic over &, say of degree d, then G(Fa)/F) is finite of
order d. Since the only subgroup of G,, of order d is the group P, of dth
roots of unity, G(#{a)/F) is cyclic, say with generator o, and c¢(o) is a
primitive dth root of unity. Then o(«’) = (c(0)a)! = o, whence e .

If « is transcendental over &, then ¢ is a %-isomorphism. For any inter-
mediate differential field &, other than %, the element « is of some finite
degree d over #,. The result proved for the algebraic case shows that
a’e #,, whence #, = #(a". Thus, in the transcendental case the only
differential fields between # and #(a) are the #<a’> with de N,

C. Let g,,9; be elements of 4 with g,°—27¢,2#0, and con-
sider the Weierstrass %-group W = W(g,,g;) described in Chapter V,
Section 1. Define a mapping of W into %™ as follows: When y = (1 i fye W
has the property that f# 0, then yr (87'3,,...,7 "5, 4). When y is
one of the three elements of W of order 2 (that is, when y = (1 :a:0) with
o one of the three roots of the polynomial 4X*— g, X—g,) or when y is
the element | € W (that is, when y = (0:0: 1)), then y — (0, .. ,0). We claim
that this mapping is a group homomorphism, the kernel obviously being W, .

Indeed, by Chapter V, Section 18, Example 3, the Lie algebra of W is
(W) =% -ydldi, where 5 denote the %-functions on W such that
C(L:a:f) =a, n(l:a:f8) = B, and by Chapter V, Section 22, Example 3, the
logarithmic derivation /5, : W — (W) is given by the formula /5,((1 o)) =
(B 8;a)n dfdg (B +#0), 16,(y) =0 (y2> = 1). Hence the claim follows from
the equation /8,(yy") = 16,(y)+16,(y') (see Chapter V, Section 22, remark
following Theorem 14).

For any element « € 4, there exists an element f e # such that the point
y={(l:a:f) is an element of W. Moreover, 8 is determined by o up to a
factor +1, and hence the same is true of the image of y under the homo-
morphism. The element « is said to be Weierstrassian over % (for the co-
efficients g,, g, € €) if the image of y is in #™, that is, if for suitable elements
a,,..,a, € F, a satisfies the system of differential equations

(8;0)* = ai2(4°‘3_92°‘_93) a<i<m).

Let « be Weierstrassian over & for the coecfliients Y293 fix fand y =
(1:a:B) as above, and suppose that the field of constants of Fyy is 6.
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It is easy to see that then F{y> = F(a). For any isomorphism ¢ of # o)
over 7, y and oy have the same image under the homomorphism W — #"
because when y = (I:a:f8) with f# 0, then (off)” '5,(ox) = (B~ ;0) =
A3, %, and when y? =1, then (67)? = | so that y and oy both have image
(0,...,0). Therefore the element c(6) =7 'oy of W is in the kernel W,
Just as for a primitive or exponential element, we find that & (o) is strongly
normal over .# and that the mapping

¢ G(F(OIF) - Wy,

is an injective %-homomorphism. Thus, Fay is a W-extension of #.
When « is transcendental over &, then ¢ is a %-isomorphism.

Lel us consider the classical case in which & is a differential field of
meromorphic functions on some region R of complex m-space C”, and
« is C. There exists a lattice A in C such that g,, the doubly periodic
Weierstrass function with period group A, is a solution of the ordinary dif-
ferential cquation

Yo = 4)‘3 — GV~ g3

As noted in Chapter V, Section 1, the formula a — (1 @A(@): pA'(a)) defines
a surjective group homomorphism C — W with kernel A. Now consider
a holomorphic function & on a subregion R" of R, and suppose that & is
primitive over & (when meromorphic functions on R are identified with
their restrictions to R’). Then the composite function pA(&) = gac on R
is Weierstrassian over .# for the coefficients g,, g3, and y = (1:pA(3): A (8)
is an element of W. The differential field # {pA(£)) contains ¢ (&) for every
meromorphic function ¢ on C admitting all the elements of A as periods.
For any ¢ € Gc(F {pp(E)>]F) we have oy = ye(o) with c{o) e W, and we
can fix a € C such that (1: p\(@): 9, (@)) = c(o). Then o (1 pA(E): @2 (E)) =
oy = ye(o) = (11 9A(E): o () (1@ 2 (@) = (11 0E+@): 92 (E+a)),
so that o(pA(8) = Al +a), whence (&) = @(&+a) for every mero-
morphic function ¢ on C admitting the elements of A as periods.

It &) is algebraic over F, then G(FLpAE)D/F) is finite and the
numbers @ € C such that (& +a) = a(A(Y)) for some o € G(F L&V F)
form asubgroup A’ of Cwith A’ > Aand A'/A isomorphic o G(F {InED/F).
Now. @, is a meromorphic function on C. admitting the elements of A as

periods. and hence @a-(&) € FLPA(E)). Because a(E+a) = pa (&) for
every a € A, on.(¢) is invariant under the Galois group, whence (5 (§) € Z.
Conversely, if A’ is a lattice, A" 2 A, and @, (&) e #,and if A’ is minimal
with this property, then it is easy to see that @A(E) is algebraic over & and
G(F {palE)/F) is isomorphic to NIA.

If (&) is transcendental over &, then CAF LPAODIF) = We = CA.
The proper C-subgroups of W are finite and therefore correspond to the
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lattices A’ in C such that A’ > A. The differential fields & (g, (£)) are
between & and F {¢,(£)), and there are no others.

EXERCISES

In all the following exercises the field of constants of the differential field
Z is denoted by 4.

1. Let 3 denote the set of all points (a,,...,a,) € %™ that satisfy the
integrability conditions §;a; =, a, (1 i< m, 1<i"<m).
(a) Show that 3 is the image of the homomorphism % — %™ intro-
duced in Subsection A. (Hint: Use Chapter 1V, Section 9, Lemma 2.)
(b) Show that if (a,,...,a,)e I N F", then there exists an element
ae WU, with a s (ay,...,a,) under the homomorphism, such that either
a is transcendental over % and the field of constants of #(a) is €. or
“we F. (Hint: Use part (a) and Chapter 111, Section 10, Proposition
7(d), to find an « such that every constant in & («) is algebraic over &.
When o is transcendental show that this o suffices, and when « is algebraic
of degree n replace « by n~ ' times its trace.)

2. Let 3 have the same meaning as in Exercise 1.
(a) Show that J is the image of the homomorphism %* — Y™ intro-
duced in Subsection B.
(b) Show that if (a;,...,a,) eI n F", then there exists an element
wed*, with ars (a,,...,a,) under the homomorphism, such that the
field of constants of #{a) is ¥ and, either a is transcendental over &,
or « is algebraic over & of some degree n and «" € . (Hint: If there
exists an algebraic nonzero «, choose one of minimal degree n. Replac-
ing « by an nth root of its norm, show that «" ¢ #. Then show that
every constant in F(ad = Yo <, Fo is in F.)

3. Let 3 have the same meaning as in Exercise 1.
(a) Show that J is the image of the homomorphism W — #™ intro-
duced in Subsection C.
(b) Show that if (ay,...a,)eInF" and (a,,...,a,)%# 0,...,0),
then there exists a y = (1:a: f) € W, with 3 0 and with y (a,-..,a,)
under the homomorphism, such that either o is transcendental over &
and the field of constants of # (v is &, or « is algebraic over & and
y"e W, for some nonzero ne N. Show that when € is algebraically
closed then y can always be chosen so that the field of constants of
F(yy is 6.

4. (Ostrowski [32a], Kolchin [21]) Let the elements a,...,, €% be

aigebraically dependent over &, and suppose that the field of constants
of F{oy,...,n,> is 6.
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(a) Prove that if «y,...,a, are primitive over &, then there exist con-
stants ¢, ...,c, € 4 not all 0 and an element a € # such that e =a.
(Hinr: Use Example A and Section 4, Exercise 3, to show that
FLay,...,a,> is strongly normal over & and that the formula ¢i—
(ooy ~ay, ..., 00,~a,) defines a @-isomorphism of the Galois group
onto a proper §-subgroup of (G,"),, and hence (see Chapler V, Section
23, Subsection D) into some hyperplane 26X, =0 with ¢,,...,c,e %.
Then consider the element 3 ¢;a;.)

(b) Provethatifa,,...,a, are exponential over &, then there exist num-
bers e,,...,e, € Z not all 0 and an element a € #* such that o =a
() Prove that if «,...,«, are Weierstrassian over % for coefficients
92,93€% and «,...,a, ¢ 4, and if we fix ;€ % so that yi=(l:a;:8)
is a point of W(g,,93), and if W(yg,,g,) is without complex multipli-
cation (see Chapter V, Section 24), then there exist numbers e, ..., e, €Z
not all 0 and an element we Wg(g,,95) such that yii=w. (Hint:
See Chapter V, Section 23, Exercise 7(d).)

(d) Let k,/eN and k <I<n. Prove that if a,,...,a, are primitive
over # and o, ,...,, are exponential over # and X gqy-.., %, are
nonconstant and Weierstrassian over #, then either «,,...,q, are
algebraically dependent over &, or o, , ..., are, or o, , o, 0, are.

5. (Kolchin [16]) (a) An extension £ of & is Liouvillian if there exist
elements o, ..., o, with F(a,,...,a,> = £ such that, for every index k,
@ is primitive or exponential or algebraic over % (a,, oty Let @
be an extension of & with field of constants %, and suppose that & is
algebraically closed. Prove that if % is contained in a Liouvillian ex-
tension of &, then 4 is contained in a Liouvillian extension of % that
has field of constants 4. (Hint: Write 4 € & with & = FLoyy ey 0,
as above, show that («,, ..., %,) can be replaced by a suitably constrained
differential specialization of («,,...,a,) over ¢, and apply Chapter il
Section 10, Proposition 7(d).)

(b) If in the definition given in part (a) the expression “‘primitive or
exponential or algebraic” is replaced by the jth expression in the list:

(1) primitive or exponential or algebraic,

(2) primitive or exponential,

(3) exponential or algebraic,

(4) primitive or algebraic,

(5) exponential,

(6) primitive,

(7) algebraic,
then & is a Liouvillian extension of # of rype (i). Refine the result of
part (a) to take account of this heierarchy of types.
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6 Picard-Vessiot extensions

Denote the set of all n x » matrices over % by M(n) and, for any subfield
K of %, let M (n) denote the set of elements of M (n) that have all their co-
ordinates in K. For any o = (o) e M(n) and any S€ A, set du = (0at;.).
It is easy to verify that 3(af) = du-f+a 08 for all o, f e M(n). Of course,
M(n) is a vector space over % isomorphic 1o %",

The group GL(n) of invertible n x n matrices over % operates on the left
on the vector space M(n), or more generally, on the vector space M(n)t =

M(n) x ---x M(n) for any k e N, by the formula
((X, (éb sey ék)) t— 7;(6]) [EEY] ék):

where 7, denotes the automorphism of M(n)* defined by the formula
L) = (@€ a7, L aga ).
Consider the mapping f: GL (1) » M(n)™ defined by the formula
J@) = @ a0t 8, aa7 ).
A trivial computation shows that

f@p) = fl) + Tf(B)  («feGL(n)).

Thus fis a crossed homomorphism of the group GL(r) into the additive
group M(n)™ for the indicated operation of GL(n) on M(n)™. The kernel
of f'is GL, (n). When n = 1 the operation is trivial and the crossed homo-
morphism is 2 homomorphism (which we have already met in Section 5,
Subsection B), but when # > 1 the operation is not trivial and f is not a
homomorphism,

Suppose that the matrix a« € GL(n) satisfies the condition fl@) e Mg (m)™,
that is, that the n® coordinates a;;. of « satisfy a system of mn? linear dif-
ferential equations
;o0 = a;a (I<igm

i

for suitable matrices a,,...,a, € M, (n). If ¢ is any isomorphism of % (ad
over &, then the matrix oa = (0;;) is an element of GL(n) and Sfloa) =
af () = f(a). Hence, if we set ¢(o) =a  'oa, so that ou = uac(o), then c(o)
is in the kernel of f; that is, ¢(0) € GLy(n). Just as in the examples in
Section 5, we infer that if the field of constants of F{a) is €, the field of
constants of &, then #{«) is a strongly normal extension of % and the
mapping
c: G(FLad/F) - GL,(n)

is an injective ¥-homomorphism. In particular, then #<«) is a GL(n)-
extension of &.
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An extension ¥ of # having the two properties, that the field of constants
of 4 is %, and that, for some ne N, there exists an « € GL(#) such that
Sica”leMz(n) (1<i<m and Fay =9, is called a Picard-Vessiot
extension of % . By what we have just seen, every Picard-Vessiot extension
of # is a linear extension of #. It is obvious that if % is a Picard-Vessiot
extension of #, and %, is a differential field with & < #, < %, then % is a
Picard-Vessiot extension of .%|.

Picard—Vessiot extensions can be characterized in another way. Let the
n elements ;= (;y, .. ) €U (L << n) form a fundamental system of
zeros of a linear differential ideal of #{y,,...,»,} of finite linear dimension
n (sce Chapter 1V, Section 5). By Chapter 11, Section |, Theorem 1, we can
fix derivative operators 0,,....0,€ ®, and integers k(1),...,k(n) between
1 and r inclusive, such that the matrix a = (0,1, xan) 1 <hsn 15j<n 15 i GL().
By Chapter 1V, Section S, Corollary 3 to Proposition 2, S;a-a” ' e M, (1)
for cvery i. Furthermore, il f}, denotes the matrix obtained when the first
row in a is replaced by (4, ..., 1), then o € My (), so that F(a) =
F iy n,>. Henee, if the field of constants of #{ny,...,n,» is €, then
F Ny, ...,y is a Picard-Vessiot extension of #.

Conversely, let % (x> be any Picard-Vessiot extension of #, where « =
(2;;) € GL(n) and S,a-a” ' eMs () (I <i<m). We claim., ﬁrst,.that tl'us
extension is generated by a fundamental system of zeros of a linear differential
ideal of Z{y,,...,y,} of linear dimension n, and second, that it is generated
by a fundamental system of zeros of a linear differential ideal of #{y} of
linear dimension less than or equal to n?. Indeed, for every o € G(F (o) [F),
oo = ac(a), where c(ag) € GLg(n). It follows that for any 0,,...,0,€ © and
any indices k(1),..., k(n), the matrix B = (0,m )i <nsn 1<jcn DAS the
property that off = fic(o), so that o(fa™') = Po~!, whence Ba™' € M (n).
Hence by Chapter 1V, Section 5, Corollary 3 to Proposition 2, the n columns
of & form a fundamental system of zetos of a linear differential ideal of
F{¥....,v,} of linear dimension n. This establishes the first claim. Further,
if we fix a maximal set of the elements o, that is linearly independent over con-
stants. and denote the elements of this set by i, ..., then Z{ny, ..,n0> =
F (x) and (since each oa;;- is a linear combination over K of all the elemems
@) N = Yy ener My () (1 <i< /), where the matrix d(g) = (c/,,,-(o'))' is
in M, (); for any 0,,...,0,e @ evidently o(0,n) = (0,n,)d(c). Fixing
0,....0/€® such that det(0,/n)#0, we infer first that d(o) is
invertible, so that d(o)e GL, (n), and sccond that a((0,n)(0/n)" N =
(0,n) (0 90", so that (0, )0, n) ' eMg() for all 0,,..,0,€0.
Hence by Chapter 1V, Section 5, Corollary 3 to Proposition 2, the
elements y,,.. ., form a fundamental system of zeros of a linear
differential ideal of Z{y} of lincar dimension /< n’. This established the
second claim.
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Thus, we have the following characterization: 4 is a Picard-Vessiot ex-
tension of & if and only if 4 has the same field of constants as F and, for some
natural number r = 1, 9 is an extension of F generated by a fundamental
systenr of zeros of a linear differential ideal of F{y,,...,y,} of finite linear
dimension. Furthermore, when this is the case then r can be taken equal 1o 1.
When & is a Picard-Vessiot extension of #, and the » elements n,,...,1, €
4" form a fundamental system of zeros of a linear differential ideal [ of
FA{yy, -y such that Fny, .. 0> =¥, then the equations

oty = Z nici{o) (0 <j <n), c(0) = {¢;(0)) 1 <iem s <5 n

1<j<n
define an injective ¥-homomorphism
¢:G(EF)—> GLy(n)

which we call the representation of G(9|%) associated with the fundamental
system (n,,...,n,). The image of ¢, which is a @-subgroup of GL, (1), we
cail the Galois group of | relative to (i7,,...,1m,). If A is any subset of [ with
[A] =1, we refer to the Galois group of I relative to (y,,...,7,) also as the
Galois group of A over # relative to (y,,...,1,)-

I (ny,...,n,) and ({y,...,(,) are two fundamental systems of zeros of a
linear differential ideal Lof #{y,...,,}, generating the same Picard-Vessiot
extension ¢ of #, then there exists a matrix b = (b;;) € GL4(n) such that
M= Li<jen§ibiy (1 € < ). Letting ¢ and o denote the representations
of G(%4/%) associated with (5,,.. ,n,) and ({,,...,{,), respectively, we find
that d(o) = be(o)b™ ' (0 € G(%/F)), that is, that the accompanying diagram
(in which 7, denotes the inner automorphism of GL, (1) determined by 5)
is commutative.

G(%|F)
c d
GL, () - GL, (n)

This shows that, given % and [, the Galois group of [ relative to an unspecified
fundamental system of zeros generating % is unique up to conjugation of
GL, (n) by a matrix of GL,(n).

Now, a given linear differential ideal I of #F{y,,...,y,} of finite linear
dimension n need not have a fundamental system of zeros that generates a
Picard-Vessiot extension of #, that is, I may have the property that the
extension of # generated by any fundamental system of zeros of [ contains
constants not contained in % (see Exercise 1). Furthermore, even when |
has a fundamental system of zeros that generates a Picard-Vessiot extension
of #, different such fundamental systems will in general generate different
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Picard-Vessiot extensions. The following proposition shows that when €
is algebraically closed then the first difficulty does not arise, and, in any
case, that the Galois group of [, relative to a fundamental system of zeros
that generates a Picard-Vessiot extension of #, is (when such a fundamental
system exists) determined by [ up to an inner automorphism 7, of GL, (n)
with b € GLe, (1) (where, as usual, %, denotes the algebraic closure of €).

Proposition 13 Let | be a linear differential ideal of F{y,, ..y YVt Of finite
linear dimension n. Denote the field of constants of & by €.

(@) If € is algebraically closed, then | has a Sundamental system of zeros
that generates a Picard-Vessiot extension of #.

) IOy, -onw) and (4, .., (,) are two fundamental sysiems of zeros of 1
respectively generating the Picard-Vessiot extensions 4 and # of &, and if
¢ and d denote the representations of G(%|F) and G(H|F) respectively
associated with these fundamental systems, then there exist an isomorphism
@96, ~ HE, over FE, and a matrix be GLyg, (n) such that the diagram

G(%%,|FEC,) — > G(HEC,|FE,)

Il i
G(4|F) G(#|F)

c d
GL,(n) ——  GLg(n)
is commutative (T, denoting the € ,-isomorphism determined as in Proposition
12, and 1, denoting the inner automorphism of GLy(n) determined by b).

Proof Part (a) is an immediate consequence of Chapter 1V, Section S5,
Corollary 2 to Proposition 2. In proving part (b) we may replace &, ¢, o’
by F%,,%4%,, #%,, and therefore may suppose that € is algebraically
closed. We may suppose, too, that trdeg %/% < trdeg#’/# . By Chapter II,
Section 1, Theorem 1, there exist derivative operators 0,,...,0,€0, and
integers k(1), ..., k(n) between | and r, such that the differential polynomial
W = det(8,y; k)1 <hen 1<j<n OF F{(yjK)i <j<m1<k<a) does not vanish at
the point (1, ..., M) = (p)1 <j<m, 1 <x<-- By Chapter I, Section 10, Propo-
sitions 6 and 7(d), there exists a differential specialization (13, ..., 11,) of
(11, -..,1,) over 3 that is constrained over # with constraint W, and the
field of constants of #<,, ..., .Y is €. By Chapter 11, Section 1, Theorem I,
(74, ..., n,) is linearly independent over constants and hence is a funda-
mental system of zeros of 1. It follows that there exists a matrix b = (bj;) e
GL, (n) such that n}, =3, {;b; (1 < j' < ), and since the field of constants
of #y,, ..., n,> in € we even have be GLg(n). Hence F)y, ..om) =
#. Letting ¢ denote the representation of G(#/#) associated with
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(1, ..., ), we see by an earlier remark that the accompanying diagram is

commutative. Now, (17, ...,n,) is a dif-

G(#|%) ferential specialization of (n,,...,n,) over F,

/ l" and because trdeg 4/# < trdeg #/ it must

be a generic one. Therefore there exists an

GL,(n) - GL,(n) isomorphism ¢ : 4 ~ 3 over & with ¢(,) =

n; (1 €j< n), and by Section 3, Proposition

12 and the Remark thereafter, the inner automorphism that ¢ determines

on the group of automorphisms of ¥4 over F.4 is a €¥-isomorphism
T,: G(%|F)~ G(A|F). For any 0 € G(%/F), the computation

;r]}c}j,(Twa) = (T, 0)n; = oo™ on; = gon;
=9 ; n; (o) = Z’?}ij'(a)
J

G(%)F) —>> G(#|F) shows that ¢'(T, o) = c(o), that is, shows that

the accompanying diagram is commutative.

Combining this with the preceding diagram,

GL, (n) we see that the diagram in the statement of
the proposition is commutative.

c ,
©

EXERCISES

1. (Seidenberg [39]) Consider R as an ordinary differential field of
constants, let « be a zero of y'?24+4p?+1 with o’ #0, and set & =
R<o). Let n be any zero of y”+y with n % 0. Show that the field of
constants of & is R and that the field of constants of # () is not R.
(Hinr:  After establishing the first point, show that the elements
y,=n*+np? and y, = an’+a'ny’ —an’? are constants. If y,,7,€R
and y, #0, set ¢ =y,/y, and { =y'/n, and then observe that { is a
root of the quadratic polynomial (¢+a)Z? — «’Z + ¢ —«, s0 that the
discriminant of this polynomial is a square in F{n).)

2. Let « € % and suppose that the constants in #F<{a)> are in #.

(a) Show that if « is exponential over &, then % (a) is a Picard-
Vessiot extension of %.

(b) Show that if « is primitive over &, then #<a) is a Picard-Vessiot
extension of #.

(c) Show that if a is Weierstrassian and transcendental over %, then
F {a) is not a Picard-Vessiot extension of &.

3. Let %, denote a differential field over which % is universal, 4 denote
the field of constants of %;, and G be a ¥-subgroup of GL,(n). Let
ty,...,1,€ % be differentially algebraically independent over #,, and
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sel. G =F,(t,,...,1,> Fix distinct 0,, ...,0, € ®, and for all choices
of 0y,....,0,€ O, set ay 4 =det(0/r,)”" det(0,7)). Finally, set F =

(AR

Fol(Ag,. .. 000,001y, .0, c0m -

(@) Prove that the field of constants of @ is @ and that (s,,...,¢,) is a
fundamental system of zeros of a linear differential ideal | of #{y},
and hence that 4 is a Picard-Vessiot extension of Z#. (Hint: See
Chapter 11, Section 9, Corollary 5 to Theorem 4, and Chapter 1V.
Section 5, Corollary 3 to Proposition 2.)

(b) Prove that the Galois group of I with respect to (¢y,...,1,) is
GL, (n).

(c) Show that there exists a differential field & with # < § < € such
that the Galois group of [ over & with vespect to (¢,,...,1,) is G.

(d) Prove that in part (c), & = F(E 0 Fo((0/ )1 cisn 1< j<n)y- (Hint:
By part (c) there exist distinct 0,",..,0,,...,0, € © such that & =
FLED, where &y =& N F((0/t)) 1 cicq 1 <jen)- 1f ¢ > n, set

07y 0/ty - 01,
M(y) = de‘(oi'fj);slisn, | Sand'et 0'.'”1} 0':’,' 0': Tn
Onv,y On/fl o ()"'f"

and observe that M =0,y —3 <<, a;0/'y, where

—_ 72 ?
aj - a0|’-'-€'j—10q'0'j+|-"9n' € ¥ < 5’

and that the elements 0;'t; (I <ig<g—-1, 1<j<manda; (1<j<n)
are algebraically independent over %,. Infer first that each fe &, can
be written in the form f= A/B, where 4 and B are relatively prime
polynomials in ay,...,a, with coeflicients in Zo((0/'t))) <icq-1.1<j<n)
one of the cocfficients in B being 1, and second that each coefficient
is in &,_y, so that &, < FE,_,) and &§ = F(E,_ 1))

Let (1y,...,1,) be a fundamental system of zeros of a linear differential
ideal [ of #{y} and suppose that (y,,...,n,) generates a Picard—Vessiot
extension of #. Fix 0,...,0,€® with det(J;n;) # 0. Show that the
Galois group of [ relative to (y,,...,1,) is a subgroup of SL, (n) if and
only if det(0;n,) e #.

Let (#,...,1,) be a fundamental system of zeros of a linear differential
ideal [ of #{y,,...,»,}, and suppose that #{y,,...,y,> is a Picard—
Vessiot extension of #. Let G be the Galois group of | relative to
(is--H,), and let W e N, 1 <n' <n.

(a) Show that (i7,,...,n,) is a fundamental system of zeros of a linear
differential ideal of #{y,,...,y,} if and only if ¢;=0 (n' <i<n,
1 <j<n) for every (¢;) € G.
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(b) Show that if (y,,...,5,) is a fundamental system of zeros of a
linear differential ideal I’ of #{y,,...,»,}, and L,,...,L, are linear
differential polynomials in #{y,,...,»,) such that [Ly,...,L]=1,
and we set {; = (L,(n;),...,L,(n,)) € %* (n' <j < n), then (TR
is a fundamental system of zeros of a linear differential ideal I of
F{Y1,.- 0} and as (¢;)); ci<n, 1 <5<n FURNS Over G, then (¢ij)
runs over the Galois group of I” relative to ({,,,,...,(,).
(Bialynicki-Birula [5]) A Picard-Vessiot element over & is defined
as an element a € % such that the vector space ¥,.¢ #0x over Z is
finite-dimensional (or, equivalently, an element that is a zero of a
linear differential ideal of % {y} of finite linear dimension). Let 4 be
a strongly normal extension of # and let 2 denote the set of all Picard—
Vessiot elements of 4 over .#. Prove that & is a differential subring
of ¥ and that ¥ is a Picard—Vessiot extension of & if and only if
is the differential field of quotients of 2.

(Vessiot’s theorem on “solvability by quadratures.” See Kolchin [15D)
Let 4 be a Picard-Vessiot extension of #. Denote the field of constants
of # by 4.

(a) (Recall the definition of Liouvillian extension given in Section 5,
Exercise 5(a), and the definition of Liouvillian (and %-Liouvillian)
%-group given in Chapter V, Section 23, Exercise 6.) Prove the impli-
cations 1,2,3 in the accompanying diagram. The dotted implication

n <i<nnw<ign

G(%4/#) is Liouvillian % is contained in a Liouvillian exten-
sion of #

(Chapter V, Section 23,
Exercise 6) (Section 5, Exercise 5)

@ is contained in a Liouvillian exten-
—>__sion of & with field of constants
algebraic over ¥

G(%/%) is €,-Liouvillian

{Obvious) (Obvious)

% is contained in a Liouvillian exten-

/ sion of & with field of constants @
G(%/F) is %-Liouvillian /

H (Obvious)

is to be proved later {Section 9, Exercise 1). (Hint: (1) Suppose
% < F{ay,...,a,)> with o, primitive or exponential or algebraic over
F{ay, ..., oy and with all constants in %, and argue by induction
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on r. Show that when #{a,)> is strongly normal over %, then
G(%|% n F{a,>) is ¥-isomorphic to G(¥{a,>[F{a,)) and is normal
in G(%/%) with quotient ¥-isomorphic to G(F {a,>/% N F{a,)), and
that in the contrary case G(%4/% °) is ¢-isomorphic to G (%o, >/ F°Ca,)).
(2) Show that &#,% may be replaced by #%,, 9%, and then use (1).
(3) Again justify the assumption that € is algebraically closed, and use
Chapter V, Section 23, Proposition 39, to show that there exists a
fundamental system of zeros (1, ...,n,) of a linear differential ideal |
of #{y} of linear dimension # such that #{n,,...,n,> =% and such
that the Galois group of  over #° relative to (y,, ...,n,) is triangular,
Then show that 5, is exponential over #° and that, for each /, a maximal
subfamily of (8;(12/1,), ..., 8;(n./n,)) that is linearly independent over €
is a fundamental system of zeros of a linear differential ideal of
Z°{y} of linear dimension less than or equal to n—1, and argue by
induction on n.)

(b) (Recall the definition of Liouvillian extension of type () given in
Section 5, Exercise 5(b), and the definitions of Liouvillian and €-
Liouvillian %-groups of type (i) given in Chapter V, Section 23,
Exercise 6.) Refine the result in part (a) by establishing a diagram “‘of
type (i) for each i.

Let #, be an ordinary differential field such that % is universal over
Fo. Let uy,...,u,e€ % be differentially algebraically independent over
F,, and let F = F,(uy,..u,>. Set L=y 4u ym D4 quy.
Prove that every fundamental system of zeros of L generates a Picard-
Vessiot extension of & and that the Galois group of L over & relative
to any such fundamental system is GL,(n). (Hint: See Exercise 3.)
Let # be an ordinary differential field, let a,...,q,€ &, set L=
yWia,y" '+ ta,y and M=y +a,y, and let (g,...,n,) be a
fundamental system of zeros of L that generates a Picard-Vessiol
extension of #. Prove that a necessary and sufficient condition that
the Galois group of L over & relative to (n,,...,1,) be contained in
SL, (n) is that M have a nontrivial zero in &. (Hint: Show that the
Wronskian determinant of (1,,...,,) is a zero of M, and refer to
Exercise 4.)

Let & be an ordinary differential field, let a,,q,€ &, set L=
y'4a,y +a,yp, and consider the Riccati diflerential polynomial R =
y+yita yta,

(a) Show that the formula 5+ 5’/ defines a surjection of the set
of nontrivial zeros of L onto the set of zeros of R.

(b) Prove that a necessary and sufficient condition that L have a
fundamental system of zeros generating a Picard-Vessiot extension of
Z relative to which the Galois group of L over & is triangular (that
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11

12

is, is contained in T(2)), is that R have a zero in &. (Hint: For the
sufficiency, use Section 5, Exercises 1(b) and 2(b).)

Let % be the ordinary differential field C(x) of rational functions
of a complex variable x, the derivation operator being d/dx. Let
ve C and consider the Besse/ differential polynomial B, =
YHxThy (1 =vixT Yy

(a) Prove that if v—4 e Z, then, relative to a suitable fundamental
system of zeros, B, has a Galois group over & consisting of all matrices
(§ 23) with ¢ e %, and therefore the Galois group is C-isomorphic
to (%,)x. (Hint: Replacing v by —v if necessary, suppose that
v—3% =5, where se N, and set

tix (s+ k)

G (2T
O0<ks<s e

ng =¢€

Show that (7., %.) is a fundamental system of zeros of B,, that n,
and 7. are exponential over &, and that their product is in %)

(b) Prove that if v~} ¢ Z, then the Galois group of B, over &,
relative to any fundamental system of zeros of B, that generates a
Picard-Vessiot extension of &, is SLy(2). (Hint: Assume not. Use
Exercise 9 to show that the group is a proper C-subgroup of SL, (2),
then use Chapter V, Sections 23, Exercises 5 and 2, and Chapter V,
Section 23, Proposition 39, to show that the fundamental system of
zeros can be chosen so that the Galois group of B, over #° is tri-
angular, and then use Exercise 10 to infer that some algebraic function
¢ of x is a zero of the differential polynomial R, = Y+yitxTty+l
—v?x~ % Examining an expansion of ¢ in (possibly fractional) powers
of x™', show that no nonintegral exponent occurs, that no negative
exponent occurs, and that the term of degree 0 is +i. Similarly, for
any ¢ e C with ¢ # 0 and any expansion of ¢ in powers of x— ¢, show
that nonintegral exponents do not occur and if ¢ has a pole at ¢, it is
a simple one with residue 1. Infer that ¢ € &, that the expansion of
@ in powers of x is @ =bx"'+---, where b= +v, and hence that
Pp=a+bx ' +3, <, (x—c)7!, where c,,...,c, are the poles of
¢ other than 0, and @ = +i. Compute the coefficient of x**! in
R (@) x* TT, cx<, (x— )%, and conclude that +v+r+4 =0.)
(Kolchin [21]) Let & be an ordinary differential field and % be its
field of constants. For each integer j with 1 <j < n let

L= » o T + Py,

where p;,...,p;, € #, suppose that y'+p;, y has a nontrivial zero in
&, let (n;,...,n;,) be a fundamental system of zeros of L;, and set
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=% " <icr.1<x<r- Suppose that the field of constants of the
differential field 4 = Z ()1 << 1<ksry = F (5., 0,) is €, and set
Gi=F M5ty =F ) (1< j<n). )

(zi) Show that # is a strongly normal extension of & and that the
formula c(a) = (ny 'ony,...,n; 'on,) defines an injective @-homomor-
phism ¢ : G(%/F)— SL, (r)". . ‘

(b) Prove that if trdeg@/# < n(r?—1), then either there exists an
index j such that trdeg®,/# <r’—1 or else there exist two distinct
indices j,j', and a nonzero element xe %%, with «' € #, and a
matrix a € GL 5 (r), and a matrix h € GL,(r), such that one of the two
conditions

H; = aan; b, iy = O((Iﬁj b

is satisfied, where Jj; denotes the inverse of the transpose of 57;,. When
r =2, the second of these two conidtions is superfluous. (Hint:  As-
suming that trdeg%;/# = r*— 1 (I <j < n), use Chapter V, Section 23,
Excrcise 8(c), to obtain a relation of the form ci(0) =y(a)b™ ' c;(0) b
(6 €G@F)) or ¢;(0)=7y(a)b™"&(0)Yh (o€ G(FF)), wherf? () €
GL,(r), (o) € P,, and for each i, ¢; is the composite of the restriction
mapping G(%/7)— G(%,/7) and the representation of G(9:/7)
associated with  (p;1,...,1;). Set w=n;b""ny' or wu=n;b 'y,
let @ be a nonzero coordinate of u, and set ¢ = o™ 'u.)

7  G-Primitives

In the two preceding sections we saw that when G is one of the é-groups
G,, G,. W(g,.93), GL(n), then the adjunction to &% of a solution of a
suitable system of differential equations yields, when no new constants are
thereby introduced, a G-extension of % . These results are special cases of
a general result that applies to any connected %-group, where as usual (.6
denotes the field of constants of % . The present section provides an exposi-
tion of this morc general result.

Let G be a connected %-group. We recall from Chapter V, Section 22,
that to each derivation ¢ of % over % there corresponds the logarithmic
derivation /8 : G — ¥(G). Since each of the /m derivation operators J; may
be identified with the derivation of # given by the formula u+s §;u, we
have the m logarithmic derivations /5, on G. Consequently we can define a
mapping

A G- LGy

by the formula
[A(0) = (10, (), ..., 16,,{)).
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By Chapter V, Section 22, Proposition 28, we have /A(a) € Lo (G)" for
every aeG. Writing ¢*(Dy,..,D,) = (1,*(D,), 17 (D)) for any
(Dy, ..., D,y e 2(G)", we see from Chapter V, Section 22, Theorem 14 and
the remark following it, that

IA@B) = IA() + L *(IA(B) (¢, G).
Thus, /A is a crossed homomorphism of the group G into the additive group
£(G)". By Chapter V, Section 22, Proposition 28, /A(a) = 0 if and only if
%€ 9y It follows that /A(x) = /A(B) if and only if a~'f e Gy.
By a G-primitive over % we mean an element a € G such that /A(a)e
L#(G)™. If we fix a basis (w,, ..., ,) of LX(G), the condition that an element
o€ G be a G-primitive over & can be expressed as the condition that, for

some elements ay e F (I<i<m, 1<k <r), a satisfy the system of dif-
ferential equations

(), ) = ay, (I<ig<m, 1<k<r).

A glance at the examples at the end of Chapter V, Section 22, shows that
an element a € % is a G,-primitive over % if and only if a is primitive over
Z, that an element a e U* is a G,-primitive over # if and only if « is ex-
ponential over Z, that an element (1 Bl eW=W(g,,g,) isa W-primitive
over # if and only if o is Weierstrassian over % for the coefficients g,, g,
and that a matrix ae GL(n) is a GL (n)-primitive over % if and only if
dio-a” e Mg (n) (1 <i<gm).

If « is a G-primitive over &, then, for any ¢ ¢ Fe,«(G), we have

di(@ (@) = (13:(x) ) (2) € F(x)
(because /5,(x) € 25 (G), whence 1) g € 5 ,(G)), so that (by Chapter V,
Section 19, Proposition 25) 0(F (@) « F (). Thus, if o is a G-primitive
over F, then F{a) = F(x).

By a G-primitive extension of # we mean an extension of F of the form
F{ay where o is a G-primitive over %. The following theorem shows that

every G-primitive extension of & having the same field of constants as &
is a G-extension of #.

Theorem 6 Let % denote the field of constants of the differential field #,
let G be a connected €-group, let o be a G-primitive over &, and suppose that
the field of constants of F(a) is 4. Then F {a) is a strongly normal extension
of #, and the formula ¢(o) =o' ga defines an injective &-homomorphism
CG(FLDIF) > Gy

Proof By hypothesis () e L4 (G) (1 <i<m) Hence, for any iso-
morphism o of F(a) over &, o (16;(2)) = I6,(@). However, g (16,(x)) =
[6;(cx) by Chapter V, Section 22, Proposition 28(b). Therefore /A (oo) =
/A (), so that the element c(o) =2~ 'ga of G is rational over #. Hence
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FLay o (F(ad) = FLa, 00) = Fa, c(0)) = FladE
strongly normal over % and (by Chapter 11,
Theorem 1) € (o) =

(¢(o)), so that FLad is
Section 1, Coroliary 2 10
%(c(9)). For any 5, TG (FLL)/F) the computation

ac(01) = g = o(ac(t)) = ox - c{t) = ac{o) c(1)

shows that ¢ is a group homomorphism. If ¢ ¢ Ker(c), then oo = ac(o) = o
and o = jdg,,. Hence ¢ is injective. Finally, if 0,
phism ?—(a)a(f(a))zﬁ(a) o' (F{ad) over F{a)> that maps oa onto
a’a for each ae F{a) maps oa onto go’ and hence maps c(0) =oa " 'ou
onto ¢(¢’) =« 'g'a. Therefore e(6) & ¢(o’), and S
restricting the above isomorphism, that is
Se.a- By Chapter V, Section 9, this shows t

In Section 9 we shall describe circumst
every G-extension of &

then the isomor-

» is the induced isomorphism
hat ¢ is a %-homomorphism.
ances under which

, conversely,
is a G-primitive extension of &,

&

EXERCISES
In the following exercises € is the fi
nected €-group. For each S, 8;*
8 (G) that extends J; (see Chapte
denotes the derivation of 2(G) gi
(see Chapter V, Section 22, Exercis
cise 4). Also 3(G) denotes the set
the “integrability conditions

% (D) =0/ (De) = [D, D] (1<i<i'<m)

1. Prove that 3(G) is the image of the crossed homomorphism /A, (Hint:
For the inclusion IA(G) = 3(G), see Chapter V, Section 22, Exercise 2.
For the opposite inclusion, consider any (Dy,...,D,) e 3(G). Fix ¢ =
(&), ...,&,) such that &4 (G) =€), write Di&; = Pii()/Q(E), where
Py, QeU(y,...,p] and Q) #0, let A denote the set of nmin dif-
ferential polynomials A, = Q0,y,—P,;, and let po denote the set of
polynomials Peuly,,...,y,] such that P(&) =0. Show for any Pe
Po N ¥€[y,,...,»,] that z,.(ap/ay,) Pij € py. Observe that Po is a prime
ideal defined over %, and infer that (ol = ([AT+(pe)):0®. Fix an
orderly ranking of (15 -, ¥), Observe that A s an autoreduced set in

U{yy,-.,ya}, and show that QZ((S,»,A,.J.—(S,-A,-,I-)EE,U (mod(A)),
where

00 apP; 0Py,
Fy; = Z (07v (Piy Py~ Py, Prj) — Q(a Pin = o,
+0(Q% P~ QP ~ Q%P+ QPi ).

eld of constants of % and G is a con-
denotes the derivation of F(G) over
IV, Section 16, Exercise 3), and §*
ven by the formula §*(D) = fo:*, D]
¢ 2, and Chapter V, Section 18, Exer-
of all (Dl,...,D,,,)eL’(G)'" that satisfy

cta’), clo) 1S Obtained by ]
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Apply the integrability condiztio;js to éjl t:)o s:;ofz\; tflé&;t all?;jgepoé tl}lx]earl
r i emma
rezfir‘"j(z(()célj?ti 015’.’ jif)“cf)l(]@ (,ord 0) - A)+(po) und hence (see Chapt;r
lQll Sec1i0;1 8'; that A is (pg)-coherent. Use Sh.alpter .lll, s;:f::rzlr:“ai
Ex;rcise 1, to conclude that p = ([A]+(p,)):Q% is a pnrlrj:t ferential
ideal not containing any element of' UL Yy Vad —dp(;‘. ooy denote
the closed image of &, x ---x &, let f'e M(G, W) be ( c':‘m yica“ "
iti ing,n wof = & x-x&,, and obser.ve': tha(/ is generically :
(\jle[rlgglel.nlf::t,g denote the domain of bidefinition ofj, and show thalte::ee:z
exists a polynomial Fe %[ y,, ...',y,,]——p0 that vanlst)le;fat etv;;?/ ,'es ment
of W—f(0). Show that there exist a zero (al,...<., a, Fm:)” L8 not o
zero of QF and an o€ 0 with §;(a) =a; (1 < \l r(zi). [h,u‘(g’ P
D & = 10;(0), & (1 < i< m, 1 <j< n),and conclude th: 1seeer Doy
) Y ™. Show that there exists an ae G
> L(?t (1?31’.)‘112%)63(16)) )nsiih(Gt:qa.t ?he field of constants ofﬁ*‘(a) 1S
“;lthb ic(:ao;er (g“(.i,lin';: Show that, in the proof in' Exercise 1, P
3%;- 0 can undér the present conditions, be taken in Flyi- b
Zlcr)1 thgl p 15 defined over &, and F can alsg pe taken C|1n79;)[))zl,...,y,,].
Then apply Chapter 111, Section 10,' Prop(l)smons 6 amf . ((G.) e
3. Let (Dy,..,D,) e &(G)", fix a basis (D, ..., D,,)<o.<,, ) and h
. dual basis (w,,...,w,) of E:(Q), lft cipy (1< ? 1,11;5“ (\5({. [\ha;
1 < v<n) denote the corresponding structlure lczn‘s<a o e
[D/, D;1=73, ¢ D)), and set a;; = <D, w; >(<gism I <
Pr({)ve that (D, ..., D,) € 3(G) if and only if . g
Spay; — 0y, =Y @,y Couyj <gigm 1<i"sm, 1<j<n).
re o v, v

4. Suppose further that G is a %’-subgrogp of GL(n.),.}elll(]zl) ge'n;)teb)ll:
. Lic algebra defined in Chapter V, Sectxon 18, E)felzml: [,V(m) . .B(G)m >
[(G) denote the isomorphism dehfled there, ]dl? ; Coord.inateWise.
I(G)" denote the isomorphism obtained by apg' y‘lngh o
Let i(G) denote the set of all («,,...,a,) € [(G)" suc
0.0 — 8;ap = [o;, o] d<gi<i?<m).

Prove that V"(3(G)) = i(G).

8 Differential Galois cohomology

Let % be a strongly normal extension of the differential field 9lw'1th rfi)e‘}d
of constants %, and let G be any €-group. The elememS of‘ l[f;a ?Ee%eforg
G(%/F) are identified with automorphisms of 44" over F 4.

G(%/|%) operates on the group Gy, .



422 VI GALOIS THEORY OF DIFFERENTIAL FIELDS

By a (one-dimensional) cocycle of G(%/F) into G, we mean a mapping
S G(F[F) - G that satisfies the following four conditions (in the state-
ment of which g, 67, 7 denote arbitrary elements of G(%/7)):

(1) f10) € Gyoy = G0
i) ife - a’, then f(0) 7/'((7’);
(i) ife <> d’, then the isomorphism 969 ~ Go'% over @ mapping ca
onto g'a (a € 9) is an extension of S}";a»,.ﬂﬂ);

(iv) flot) = fle)o (f(2).

We denote the set of all one-dimensional cocycles of G(%/%) into G by
ZN%|F, G). It is easy to see that for any o« € Gy, the mapping G(9/#) - G
defined by the formula ¢ — o™ 'oa is a cocycle of G(%/#) into G. We call
such a cocycle a (one-dimensional) coboundary of G(%/%F) into G, and denote
the set of all such coboundaries by B'(%/#, G). It f1./,€ ZY(9]7, G),
we say that f; is coliomologous to f, when there exists an element « e Gy
such that f5(0) =« '/, (0)oa for every g€ G(%/F). The relation “f, is
cohomologous to /,” is an equivalence relation on 2! (9/#, G). We denote
the set of equivalence classes by H'(%/#, G) and call it the (one-dimensional )
cohomology set of G(4/#) inte G. The set B (%/#,G) is an element of
(%)%, G) and as such is denoted by I (or, when G is commutative and
wrilten additively, by 0). Thus, H'(%9/%,G) has a canonical structure
of pointed set. When G is commutative then Z'(%|F,G) is a com-
mutative group (subgroup of the group of all mappings of G(%/#)
into G), B %/7,G) is a subgroup of Z'(%/#,G), and HY %7 ,G) =
ZNG|F,G)B(F|F, G), so that H'(9/F, G) then is a commutative group.

Let M be a principal homogeneous & -space for G. For any e M, the
formula o+ B~ 'af defines a mapping G(¥%/%)— G and it is easy to see
that it is a cocycle of G(%/#) in G. For a given fe ZN¥%/F, G), if there
exists an element fe M, such that f(o) = B 'ap for every ge G(9|F),
then we say that f splits in M. In particular, to say that Jsplits in G is the
same as to say that f'e B9/, G).

The following theorem and its first corollary explain how H'(%/#, G)
can, for a suitable #-set W, be injected into the F-cohomology set
HL(IV,Y) (see Chapter V. Section 17), and can be canonically injected
into the Galois cohomology set H (%, G) (sec Chapter V, Section 12).

Theorem7 Ler G be a strongly normal extension of the differential field
F with field of constants €, let n = (y,, < lly) € 9" have the property that
F () =9, and let W denote the locus of n over #. Let G be a 6-group.

@) For each fe ZN%|F, G) there is a unigue f,e ZL(W,G) such that
Sy, 0n) = f(o) for every o € G(%|F).
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(b) For any f,f" € ZNGIF,G), [ is cohomologous to f if and only if
Sy is F-cohomologous to o

Proof For any %-generic element ¢ of a %-component of G(%/F), 4 and
0% are algebraically disjoint over &, so that dimg(n,0n) = 2dim; 5 =
dim(W?), and hence (4, on) is an -generic element of an & -component
of W2

Let p denote the defining differential idea} of nin F{y,,...,y,}. Then the
intersection py = p N FLy,,...,y,]is the defining ideal of n in #[ y,, T
Referring to Chapter 111, Section 6, Proposition 3, let p,,...,p, denote the
componeuts of #¥p, so that ¥p =p, n--n p,. For each index k, set
Pro=pNF[y,..., 5], so that

Pio NN Pro =P Nn--nN PN g[}’l"“;)’n] = (gp) N g[yh---’yn]'

Fixing a basis (y;) of 4 over %, we know that for each Pe G{Vis- b}
there exist unique elements PieF{y,...,y,} such that pP= > Py
Evidently

Pe%p <> Piep (everyi),
Pe@Gly, ...yl <> Pie FLy,...p.d (everyi),
and therefore
Pe(@p) n Gy, ...,v.] = Prepn Fly,...p.] (everyi);

that is,
(F0) N GLyi, 0] = Dp,.
Therefore
GPo = Pio N 0 Py

Consider ‘a generic zero 7™ of p,. It is also a generic zero of p, N
F{yy,-.,ya} =P, so that there exists an isomorphism g, : Flpp =
F ™ over # mapping  onto 7™, It is easy to see that o,,...,0,/form a
complete set of %-generic elements of the €¢-components of G(%/%) (that
is, every element G(4/%) is a specialization over € of a unique ¢,.) For
each k, o, 7 is a generic zero of p,, and hence also of p and of p,y. Now,
% and 0,9 are algebraically disjoint over &, and hence dimgo, =
dimg o,y = dimgy = dimW. Therefore if oy is a specialization of g,5
over 4, it is a generic one and hence (by Section 1, Lemma 2) is a generic
differential specialization of o, over 4, whence k = /.

What we have shown implies the following: If ¢, ..., 0, are any elements
of G(%/%) that form a complete set of %-generic elements of the ¥-com-
ponents of G(%/#), then a,n,...,0,1 form a complete set of %-generic
elements of the %-components of W. Applying this result to the strongly
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normal extension 9€(o,) of F% (o)), we see that if gy, ..., 04, form a com-
plete set of % (o,)-generic elements of the % (o,)-components of G(¥9/%),
then oy, N, ..., Ok, Mt fOrm a complete set of (Yo, %)-generic elements of the
(%0, %)-components of W. This and the preceding result can be restated as
follows:

The (4,0,n) with 1 <k <r form a complete set of % -generic elements
of the #-components of W2

The (17, o, on) With 1 <k <r and 1< /< s, form a complete set of
F-generic elements of the #-components of W3,
Finally, because

trdeg 6 (o )b (o) = tr deg 9% (0,)%(0,)/¥9 = trdeg¥ -0, % - 0.%|%

= dimg (0,7, oy n = dim(W?) = dim(G({g/?‘)z),

we see that (o,, 0y) is a €-generic element of a €-component of G(%4/F)?,
and hence that o, ' oy, is a $-generic element of a ¢-component of G(%/%).

All this being the case, consider any f€ Z\(%|F, G). Then f(o,) € Gga9 =
Gsin o Therefore (see Chapter V, Section 15, the discussion follow-
ing the proof of Proposition 15) there exists a unique & -mapping /€
M, (W2, G) such that f,(n, o,n) = f(o,) for every k. For any €-generic
element o of a ¢-component of G(#/#) there is a unique k such that
o, < 0, that is, such that there exists an isomorphism F(y, 0,n) =
90,9 ~ 909 = F(n,0n) over F that maps (4, o,n) onto (n,0n). Because
/, is an & -mapping and because fe Z'(%|#, G), this isomorphism maps
f4(n, ayn) onto f,(n,0on) and maps f(g,) onto f(o). Therefore f,(n,0n) =
/(o) for every o that is a 4-generic element of a ¢-component of G(4/%).
Hence

L3015 @, gy = £,01, aen) - o, (1, 05 auam))
= f(o,) ak(f(ak—lakl))
=f(ak'ak_lakl) = flow) =ﬁ,('1; )

for all (k,1), so that f, € Zz(W,G).

For any o€ G(%/%), it follows from Chapter V, Section 17, Proposi-
tion 24, that f, is defined at (n,on). Fixing a € (o)-generic element 1 of
G°(%|F), we see that f, is defined at (tn,01), too, and that 1™ ' is a 4-
generic element of a ¥-component of G(%/%). Therefore

£, (n,om) = £,(n, ) fy(xn, o)
= f,(n, e (S, (0,7~ " om))
= f()1(ft" o)) = f(z-17 ') = flo).

This completes the proof of part (a) of the theorem.

e e
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For part (b) we observe that for any #-mapping h e M, (W, G), h is de-
fined at n and h(n) € Gy, and conversely, for any a€ Gy = Gz, there
exists an /1 e MW, G) such that h(y) = «. Thus, for given cocycles f,f' €
Z(%|#,G), there exists an aeGy such that (o) =a” flo)ou
(0 € G(¥/#)) if and only if there exists an he My (W,G) such that
Son) = hi(n) ™, (n,on) h(an) (0 € G(%/#)), and therefore f” is co-
homologous to fif and only if /*, is #-cohomologous to -

Corollary 1  Let the hypothesis and notation be as in Theorem 1.

(a) There exists a unique mapping H'(%4/%F, G)—» HL(W,G) that, for
each fe Z' (9%, G), sends the cohomology class of 1 to the F-cohomology
class of f,. This mapping is an injective homomorphism of pointed sets, and
of groups when G is commutative.

(b) The homomorphism given in part (a) Sfollowed by the homomorphism
HLW,G)— H'(#, G) given in Chapter V, Section 11, Theorem 12 and
its Corollary 1, is an injective homomorphism H'(%|%, G) - HY#F, G
that is canonical (being independent of the choice of n).

Proof Part (a) is an immediate consequence of the theorem. Part (b)
follows by Chapter V, Section 17, Corollary 3 to Theorem 12.

Corollary 2 (a) Each of the following five conditions is sufficient for
HI(@Z,G) to be trivial: (i) G=G,; (i) G=G,; (i) G=GL;
(iv) G =SL(); (v) & is algebraically closed.

(b) If G is commutative, then every element of the commutative group
H'(%|#, G) has finite order.

Proof This follows from Corollary 1(b), and Chapter V, Section 12,
Theorem 9.

Corollary 3 Let the hypothesis and notation be as in Theorem 1. Let
feZ " (%|F, G), let ¢ be an element of the image of the cohomology class of
f under the canonical injection H' (4%, G)~ HYWZ, G), and let M be a
principal homogeneous F-space for G. Then f splits in M if and only if ¢
splits in M.

Proof There exists an eclement fe My = Mg, with f(o) =B 'off
for every o if and only if there exists an he My (W, M) with f,(n,0n) =
h(n)~*h(an) for every o. Thus fsplits in M if and only if f, #-splits in M.
Therefore the desired conclusion follows from Chapter V, Section 17,
Corollary 2 to Theorem 12.
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9 Applications

We continue with the differential field F, its field of constants €, and the
@-group G. If % is a G-extension of &, that is. if @ is a strongly normal ex-
tension of & and there exists an injective ¥-homomorphism ¢ : G(%/F) —
G, , we can consider ¢ as a mapping of G(%/%) into G. It is easy to see that
then ¢ satisfies the first three conditions in the definition of a cocycle of
G(%/%) into G. Furthermore, since (1) e Gy (te G(¥9/F)),

c(o1) = c(o) (1) = c(o)o(c(1)) (0,1€ G(9/F)).
Therefore ce Z'(9/Z, G).

Theorem 8 Let & be a differential field with field of constants €, let G be
a connected G-group, and let G be a G-extension of F and ¢: G(4|F) -
Gy be an injective 6-honomorphism.

@) If ce BUGIF,G), then there exists a G-prin.itive a over F such
that G = F{a) and sa=ac(o) (o€ G(%17))

(b) If G is commutative., then there exist a nonzero r € N and a G-primitive
a over F such that & < Fla> < 4, G is of finite degree over F{ad>, and
oo =ac(o) (0 € G(4/F)).

Proof (a) Let ce B (%/F, G). Then there exists an o e G, such
that c(o) =a™ "o (0 € G(%/#)). For any index i, a(l8{a)) = 15,(00) =
18(nc(0)) = I8,(a), so that /6,(«) € £5(G). Hence a is 8 G-primitive over #.
Of course, # « F(ad %, and if ge G(9/F{a)), then ga = o, whence
c(6) =a "oa =1 so that o = id,. Therefore Flay =9,

(b) Let G be commutative. By Section 8, Corollary 2 to Theorem 7,
there is a nonzero re N such that ¢ e B'(4/%, G). Then there exists an
o€ Gg such that c(0) = a 'oa (e G(%/F)). As in the proof of part (a),
we find that o is a G-primitive over # and # — F{ay < @, but this time if
o€ G(4]/F (o)), then c¢(¢") = c{o) =1, whence ¢ = idy. However, by
Chapter V, Section 22, Corollary to Theorem 14, the group of all elements
o € G(%9/F) with ¢" = id, is finite, so that G(%/F {a)) is finite, too. There-
fore, by Section 4, Corollary 1 to Theorem 4, 7 is algebraic (and hence of
finite degree) over &.

Corollary I Let F he a differential Jield swith field of constants € and let
G he a connected %-group. If HAF,G) =1, then every G-extension of F
is a G-primitive extension of F.

Proof  Let % be a G-extension of #. By Section 8, Corollary 1 to Theorem
7, H'(%/#,G) can be injected into H'(Z,G). Hence if H'(#,G) =1,
then Z'(9/7,G) = B' (9|, G), and the desired conclusion follows from
Theorem 8(a). ’
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Corollary 2 Every G, -extension of F is an extension by an element that
is primitive over F. Every G, -extension of F is an extension by an element that
is exponential over F. Fvery linear extension of & is a Picard-Vessiot ex-
tension of F.

Proof  This follows from Corollary 1 and Section 8, part (a) of Corollary 2
to Theorem 7.

Corollary 3 Let G be a strongly normal extension of F, and let F° denote
the algebraic closure of F in 4. There exist an Abelian €-group A and a
differential field & between F° and @ such that & is an A-primitive extension
of F° and 9 is a Picard-Vessiot extension of &.

Proof By Section 4, Corollary I to Theorem 4, G(%/%°) is a connected
‘@-group. By the Chevalley-Barsotti structure theorem (Chapter V, Section
24), G(9/#°) has a normal linear connected €-subgroup L such that
G(%/F°)/L is Abelian, and by Section 4, Theorem 3, there exists a differential
field £° between %° and % such that L =G(%/&°). Thus GE/F)/L is
%-isomorphic to 4., for some Abelian ¢-group A. By Section 4, Theorem 4,
67 is an A-extension of %#°, so that by Theorem 8 (b), there exists a differential
field & between #° and &° such that & is an A-primitive extension of #°
and &° is algebraic over E. Because G(%/6°) = L is connected, 4 is a regular
extension of &°, so that £° is the algebraic closure of & in %. By Section 4,
Corollary 1 to Theorem 4, G°(9/&) = G(%/&°), and since this €-group is
linear, it follows from Chapter V, Section 23, Proposition 32(c), that
G(%/£) is linear. Hence by Corollary 2, 4 is a Picard-Vessiot extension of &.

EXERCISES

I. Prove the dotted implication in Section 6, Exercise 7.

2. Let & be a Picard-Vessiot extension of # and let #, be an intermediate
differential field that is strongly normal over & (see Section 4, Theorem
4). Prove that #, is a Picard-Vessiot extension of &. (Hint: See Chapter
V, Section 23, Proposition 34)

10 V-Primitives

Corollary 3 to Theorem 8 does not give a complete description of the
strongly normal extensions of a given differential field #, not even of the
regular ones. For if, for some Abelian %-group A, & is an A-primitive ex-
tension of & and % is a Picard—Vessiot extension of &, then ¢ need not be
strongly normal over &, In what follows we obtain a more complete and
precise description.
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Let G be a connected €-group, and consider any principal homogeneous
F-space V for G. When V is not #-isomorphic to the regular & -space for G,
then V does not have an element that is rational over &, but ¥ always has
an element that is algebraic over &. Choose such an element u. Then
4,: G-V is an #(u)-isomorphism of principal homogeneous % -spaces
for G. The corresponding Lie algebra isomorphism A L(G) -2
maps 2;,,(G) onto ¥z, (V).

There exists a normal field extension of & of finite degree containing
F(u). Of course such a field extension is an extension of # and every auto-
morphism of the field extension is an automorphism of the extension.
Choose any such normal extension &, and denote its Galois group g(&/F)
by g. For each index i with 1 <i<m, the formula

1 # -1
[év_gg‘] y;g '1}'11 (Iai(lyu (U)))

1708 o 4

then defines a mapping of V into £(V), which evidently is independent of
the choice of &. We denote this mapping by

1,6;: V- (V).
Proposition 14 Let & be a differential field, € be its field of constants, G be

a connected €-group, and V be a principal homogeneous ¥ -space for G. Let
uu eVg, and v,v' V.

() 1,6;() €Ly (V) (1 <i<m)
(b) If o is any isomorphism of F{v) over F, then

o(l,6:;() = L) (I <i<m)
(c) If x is any element of G, then
1,8;(vx) = 1,8,(v) + A,7(16;(x)) (1 <igm).

(@) 1,8,(v) =1,6;(") 1 < i< m)if and only ifv 7' eGy.
&) 1:6;)—Lé@)els(V) (I <i<m)

Proof Fix a normal extension & of &, as above. Then &£¢v) is a normal
extension of F(v), and evidently /,6;(v) € L4,5(V). For any isomorphism
7 of &¢v) over #, and for any y€g and §;, we see from Chapter V, the
penultimate equation in Section 20, that

(A% (182" ) = 1(h)* (t(6:(4,,7" O)))-
However, by Chapter V, Section 22, Proposition 28(b),
T(lyu)# T([al'('{yu_ ! (D))) = }'ryu# (15‘(‘[ ()‘yu_l (D)))) = Aryu# (15,-(/1”“_ ! (TD)))

10 V-PRIMITIVES 429

Therefore we have the equation
T(Iuai(u)) = Iuai(‘”))'

This shows, in particular, that ] §,(v) is invariant under the Galois group
g(EY[F {v)), so that [,6,(v) € L4,,(V), proving (a). Since any isomor-
phism ¢ of F(v) over & can be extended to an isomorphism t of £(v)
over &, it proves (b) too.

By Chapter V, Section 22, Theorem 14,

1,6,(vx) = W ,}; ly“# (lai(lv"_](l)x)))

1
- [£:. 7] y}; A (I(S"('{Y“— ' v)+4,,-1 o ([5i(x)))

1
[év‘g'—] g )'u#léi(x)

= 1,6,(v) +
= 1,8,(v) + 4,*(18,;(x)).
This proves (c). Setting x = v~ v', we therefore see that
L,o,() =16 (1<ism) <« B,(x)=0 (1<i<m
<> X € Gx'

This proves (d).
To prove (e) we may suppose that & > % (u,u’) and set y = u~'u’. Then
ye Gg and

1
1, 6;(v) = 571 y};ﬂ Ap® (1:(Ryuy” )

1
= G o BT AT )

1

- [6.F yzg Ay (léi(yy' N Ay (1847 (D))))

e S B ) + A 8 )

[6:F] v

1

= G B0 0,07) + L),
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Since ye G, and u'eV,, we have 4,7 (/5,(y™")) e £,(V'), and hence the
sum over g here is in L4 (V). This proves (e) and completes the proof of
the proposition.

By a V-primitive over & we shall mean an elementn eV having the property
that

l,o:n) e L5 (V)  (I<i<m)

for some element u € Vz_. By part () of Proposition 14, n must then have
this property for every element ue Vg .
The follewing theorem describes the G-extensions of .

Theorem 9 Let F be a differential field, € be its field of constants, and G
be a connected €-group.

(a) IV is a principal homogeneous F-space for G and n is a V-primitive
over F such that the field of constants of F{n) is G, then F{n) is a strongly
normal extension of F and the formula c(a) =n""'an defines an injective
G-homomorphisin ¢ : G(FLH|F) - Gy

(b) If % is a strongly normal extension of F and ¢:G(G|F) - Gy is
an injective G-homomorphism, then there exist a principal homogeneous F -
space V for G and a V-primitive n over & such that 4 = % {(n) and on =
ne(o) (o € G(G/F)). V is unique up to F-isomorphism.

Proof (a) Because of Proposition 14, we can copy the proof of Theorem
6 in Section 7.

(b) As we saw in the beginning of Section 9, ce Z'(¥9/#,G). The
canonical injection H'(9/#, G) - H'(#, G) associates to the cohomology
class of ¢ some cohomology class in Z'(#, G). Fix an element ¢ of the
latter cohomology class. By Chapter V, Section 13, Theorem 10 and the
remark thereafter, ¢ splits in some principal homogeneous #-space V for G,
this V being unique up to Z-isomotphism. The desired conclusion now
follows from Section 8, Corollary 3 to Theorem 7.
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Glossary of Notation

A list of the more or less systematically used symbols, and the pages on

which they are first explained.

pPLES (P a polynomial, /' a mapping of the coefficient ring,
Z a set of polynomials)

N,Z,R,C,F,

K., K, K; (K afield)

f:2,f:5,1:5° (X asubset, s an element, f an ideal, of a ring)

L7IR,Z7'E (R aring, T a multiplicatively stable subset of R, Fa
Z-prime ideal of R)

Q(R) (R aring)

R, (R aring, p a prime ideal of R)

e (X a subset of a module, € a conservative system of the
module)

Clr,€/f, 27 '€ (€ a conservative system of a ring R, t a subring or
ideal of R, t an ideal of R, £ a multiplicatively stable

subset of R)
3() (T an ideal)
dim p (p a prime polynomial ideal)

RI[X1] (Raring, X afamily of indeterminates)
h, (A4) (A a power series)

v(A4) (A a power series)

R((X)) (Raring, X an indeterminate)
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12
16
20
29
29
30,33
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J, (A4 a power series in one indeterminate) 33
N, (n a natural number) 49
wg (E a subset of N™) . 51
v, (%) (t an ideal and x an element of a ring 57
A 58
(&) 59
ord ¢ (0 a derivative operator) 59
a',a’,a”,a® {(aan element of an ordinary differential ring) 59
R, (X} (%, a differential subring and X a subset of a differential
ring) ' 59
F (L) (F,adifferential subfield and X a subset of a differential
field) 60
. F, (#,, ¥, differential subfields of a differential field) 60
¢ (0, 0’ derivative operators) 60
[Z]., [E] (X a subset of a differential ring %) 6!
RL{LY,, F{ED 65
g, (e a basis of a vector space, ¢ an automorphism of the
field of scalars) 66
P.(f) (e a basis of a vector space, f a family of vectors) 66
P,(W) (¢ a basis of a vector space, W a subspace) 67
deg G, deg, G, ord G (G a differential polynomial) 70
den A4 (A a differential polynomial) 72
wtF (F a differential polynomial) 73
uy, 1., 5, (A4 a differential polynomial) 75
H, (A an autoreduced set) 71
‘%{{yl""’yn}} 85
O(s) 86
AP 93
AP 94
Fy (F a differential polynomial, X a set of ‘“points™) 95
W, 5 (# a differential field, x a finite family with coordinates
in an extension of &) 15
We (® a finite subset of a differential vector space) 118
{Z}4.{X} (£ a differential ring, £ a subset of #) 122
{Z},,5.{2},5s (o a differential algebra over &, X a subset of &) 122
w, (p a prime differential ideal of differential polynomials) 129
3(E&) (Z a set of differential polynomials) 145
M (# a subset of a differential affine space) 146
(M) (M a subset of a differential affine space) 147
Wy (¥ an irreducible closed subset of a differential affine
space) 148
150

g{yl""’y’l}l

GLOSSARY OF NOTATION

ps(4) (4 a pseudo-led irreducible differential polynomial
over F)

Fy, F* (F a differential polynomial)

Aut(U/K) (U a field, K a subfield)

Ga 3 Gm
GL(n), SL(n), O (n), T(n), T(n, k), D(n)
W(g,.9;)
K(x) (K a field, x an element of a pre-K-set)
X —> X', X <> x'
K K
s¥ .
dim, x
A, (4 a pre-K-set, L an extension of K)
X-x, xex, S,
ox (x\ an element of a pre-K-set, ¢ an isomorphism over X
of an overfield of K(x))
I"'A/K (A a pre-K-set)
dim 4 (4 a pre-K-set)
G° (G a K-group)
j'y’ py! j'w
K(A) (A a closed subset of a homogeneous K-space)
d, (g a group operating on a set, v an element of the set)

Ny, Cy  (Aasubsetofa K-group)

(6,11 (b, j subgroups of a group)

Teu (H a subgroup of a group G)

a(L/K) (L a Galois extension of a field K)

H®(L/K,G), H*(K, G) (K afield, L an extension of K, Ga K-gr

Z'(LIK,G), H' (L/K, G), B'(L/K,G) (K a field, L an exterlsgx'o(r)1u(};)12
K, G a K-group)

Z'(K,G), H' (K, G), B'(K, G) (Kafield, G a K-group)

q)M"'\ (M a principal homogeneous K-space, ve My )
Px(G) (G a K-group) :
o, F (F a surjective ring homomorphism with prime kernel)

‘JJl}(A, B), M (A4, B), My ¢(4,B) (Aand B K-sets,ve 4, % = A)
gD

’-
U (M a homogeneous K-space)

Yu (M a principal homogeneous K-space)
k., (w an element of a K-set)

ng u (B" a K-subset of a K-set B)

Jix o x f, (/; a K-mapping of a K-set 4 into a K-set B))
g (G a group)
WA, B), M, (4, B), My (4, B)
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155, 157
175
212
213
213
214
215
215

215
216
216
216

216
216
216
223,232
227
241, 243
257
264
265
269
273
274

274-275
276
281
287
288
296
299
301
301
30!
301
302
302
302
303
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Fr(A), FA.F(A). Fi, (A), Fe(A), Fx, 1 (A) 306 IA 418
I (fa K-mapping) 312 ZY (9] F,G), B (4| F,G), H(%/#,G) (% a strongly normal
ZIA.G), B (A,G). HE(A,G) (A a K-set, G a K-group) 318-319 extension of the differential field & with field of constants %,
P, (f'a K-cocycle) 319 G a ¢-group 422
fa (fe ZHAGLue P, 0 Ag) 320 1,9 428
D). D (V) (Vanirreducible K-set) 322 ‘
DHV) 323
{(D,w) 323
DEW) 323 ‘
do 323
a(D) (De D), 0 e Aut(U/K)) 323
o (w) (w e D*(V), 0 € Aut(U/K)) 324
[**f¥¥%(fua generically invertible K-mapping) 324
L), L V), L*(V), L5 (V) (V a homogeneous K-space) 325
n, (V)0 V) (Van irreducible K-set) 331
Ik (f a K-mapping defined at v) 331 i
e (fa K-mapping defined at v, k € N) 333
T, T (x an element of a K-group) 333 ,
T.(V). T, (V) (Vanirreducible K-set) 335
THV). XL L) 335
[EX fEx(fa K-mapping defined at v) 335
o, (V an irreducible K-set) 337
D), D) 338
D, (DeD,()) 338
, (we 2*(V)) 339
2 f¥*  (faK-mapping defined at v) 340
VarPx 342
f*.f**  (farelative K-homomorphism of principal homogeneous !
K-spaces) 345
ST 347 ?
Ay, Ag 347 '
16(v) 349
16 350
P, (eeZ) 362
A (x a unipotent matrix, t € U) 364 i
X, X, (x e GL(n)) 366
— (x an element of a linear K-group) 367 .
P (») (neN) 377
€ (0) (o an isomorphism of a differential field, € the field of ;
constants of the differential field) 389 1
o —-0,0-0,S,, 394 l

G(|F), GG F) / 396 \



Index of Definitions

A

Abelian extension, 396

Abelian function, 382

Abelian K-group, 377

Additive polynomial, 360

K-Affine coordinates, 331-332

Affine K-group, 355

K-Affine subset of K-set, 307

Algebraic codimension, 4

Algebraic element of pre-K-set, 215-216

Algebraic group, 212

Algebraically dependent (or independent)
derivative operators, 36

Algebraically dependent (or independent)
over constants, 93

Artin-Rees lemma, 39

Autoreduced set, 77

$-Basis, 11
Basis theorem, 126

historical remark, 128-129
Bessel differential polynomial, 417
Bicompatible isomorphisms, 218

Bidefined, 303
Birational correspondence, 17
Birationally equivalent ideals, 17

C

Canonical coordinate functions on K-sub-
group of GL(n), 355
Characteristic set, 82
Choice function for characteristic set, 183
Closed graph, 304
Closed image, 298
Closed set in homogeneous K-space, 240
K-closed set in homogeneous K-space, 240
Closed set in %", 146
F-Closed set in %", 148
Coboundary
g(L/K) into G, 275
G(%/%) into G, 422
K-Coboundary, 319
Cocycle
g(L/K) into G, 274
G(¥%/#) into G, 422
K-Cocycle, 318
Coherent autoreduced set, 136, 167
f-Coherent autoreduced set, 135-136

441
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Cohomologous cocycles

a(L/K) into G, 275

G(%/&F)into G, 422
K-Cohomologous K-cocycles, 319
Cohomology set

a{L/K)into G, 275

G(%/F)into G, 422
K-Cohomology set, 319
Commutator, 264-265
Commutator group, 265
Compatible homomorphisms, 218
Complete difterential ring of quotients, 64
Complete ring of quotients, 7
Complete K-set, 376
Complex multiplication, 381
Component of closed subset of homogene-

ous K-space, 243
Component of | of K-group, 232
Component of perfect ideal, 14
G-Component of perfect $-ideal, 13
K-component of pre-K-set, 216
Component theorem, 185
Conjugates of algebraic element of pre-X-
set, 216

Conservative mapping, 11
Conservative system, 10
Constant, 60 66
Constrained family (or element) 142
Constraint, 142
Cotangent space, 335
Cotangent vector. 335
Crossed K-homomorphism

of K-group into K-group, 343

of K-space into K-spacc, 343

D

Defining differential ideal, 71
Degenerate Abelian function field, 382
Denomination, 72
Dependent (or independent) derivative
operators, 97

Derivation on irreducible K-set, 322
K-Derivation on irreducible K-set, 322
Derivation operator, 58
Derivative, 59
Derivative operator, 59
Diagonal group, 213
Differential

on irreducible K-set, 323

of rational function, 323

INDEX OF DEFINITIONS

K-Differential on irreducible K-set, 323
Differential affine space, 145
Differential algebra, 69
Differential basis, 108
Differential conservative system, 121
Differential dimension

of differential vector space, 108

of irreducible closed set in #", 148

of prime differential polynomial ideal, 130
Differential dimension polynomial

of irreducible closed set in #", 148

of prime differential polynomial ideal, 130
Differential field, 58
Differential field of definition

of closed set in " 149

of differential polynomial ideal, 125
Differential field of quotients, 64
Differential field extension, 59-60
Differential grading, 73
Differential ideal, 61
Differential indeterminates, 69
Differential inseparability basis, 105
Differential inseparability degree

of extension, 107

of prime differential polynomial ideal, 129
Differential inseparability polynomial

of finite family, 117

of prime differential polynomial ideal, 129
Differential integral domain, 58
Differential module, 66
Differential monomial, 70
Differential overfield, 59-60
Differential overring, 59
Differential polynomial, 70
Differential polynomial algebra, 70
Differential polynomial function, 95
Differential power series, 85
Differential power series algebra, 85
Differential quotient module, 66
Differential rational fraction, 71
Differential residue ring, 61
Differential ring, 58
Differential ring of quotients, 64
Differential specialization

of differential integral domain, 138-139

of family of elements, 139
Differential subfield, 59
Differential submodule, 66
Differential subring, 59
Differential subspace, 66

INDEX OF DEFINITIONS

Differential transcendence basis, 108
Differential transcendence degree, 109
Difference transcendence polynomial, 117
Differential type
of finitely generated extension 118
of irreducible closed set in %" 148
of prime differential polynomial ideal, 129
Differential vector space, 66
Differential Zariski topology, 146
relative to.#, 149
Differentially algebraic closure in extension
(characteristic 0), 102
Differentially algebraic element, 69
Differentially algebraic extension, 100
Differentially algebraically dependent (or
independent), 69
Differentially homogeneous, 71
Differentially inseparable, 99-100
Differentially linear, 104
Differentially linearly independent, 108
Differentially perfect, 92
Differentially quasi-perfect, 92
Differentially separable closure in extension,
102
Differentially separable element, 99-100
Differentially separable extension, 100
Differentially separably dependent (or
independent), 99
Differentially transcendental, 69
Dimension
of element of a pre-K-set, 216
of pre-K-set, 216
of prime polynomial ideal, 20
Direct product
of K-groups, 257-258
of homogeneous K-spaces, 258
Divisible conservative system, 12
Domain of bidefinition, 303
Dominate, 178
factorially, 179
strongly, 179
Domination lemyma, 181-182

E

K-Equivalent pre-K-mappings, 294
Essential order, 83

Exponential, 404

Extension (of differential field), 59-60
G-Extension, 396

443

F

Field of constants, 60
Field of definition
of polynomial ideal, 125
of subspace of vector space, 67
K-Function, 306
Fundamental system of zeros, 151

G

Galois cohomology set, 276
Galois group
of linear differential ideal, 411
of set of linear differential polynomials,
411
of strongly normal extension, 396
General component, 157
General irreducible component, 157
General linear group, 213
General solution, 157
%-Generated, 11
Generic composite of K-mappings, 299
Generic differential specialization, 139
K-Generic element, 216
Generic inverse, 301
Generic point, 150
Generic specialization
of element of pre-K-set, 216
of family of elements of a field extension,
33
of family of isomorphisms, 386
Generic zero
of prime differential polynomial ideal, 146
of prime polynomial ideal, 19
Generically invertible, 301
Generically surjective, 301
K-Group, 218-219
K-Group quotient, 267

H

Habitat 294
Holomorphic at a specialization, 288
Holomorphic at an element of a K-set
derivation, 338
differential, 338
K-function, 317
K-mapping, 318
Homogeneous part, 29
Homogeneous space, 219
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Homogeneous K-space, 220-221
Homogeneous K-space quotient, 267
Homomorphism

of differential modules, 66

of differential rings, 61

of pointed sets, 275
K-Homomorphism

of K-groups, 226

of homogeneous K-spaces, 226

of pointed pre-K-sets, 277

of K-spaces, 341

of (M, G) into (M’,G"), 342
(L,X)-Homomorphism

of L-group into K-group, 230

of homogeneous L-space into homo-

geneous K-space, 230

i

@¢-Ideal, 10
Implicit function theorem, 31
Independent elements of pre-K-sets, 217
Induced

L-group, 230

homogeneous L-space, 231

pre-K-mapping, 217
Initial, 75
Inseparability basis, 4
Inseparability degree, 4
Integrated ranking, 75
Invariant derivation, 325
Invariant differential 325
K-Irreducible, 216
Irreducible closed set in homogeneous K-

space, 243

Irreducible component, 147
Irreducible topological space, 147
Isobaric, 73
I1solated isomorphism, 386
K-Isomorphism

of K-groups, 226

of homogeneous K-spaces, 226
Isotropy group, 257

K

Krull topology, 274
Krull’s theorem, 39-40

L

Lattice, 382
Leader, 75

INDEX OF DEFINITIONS

Leading coefficient theorem, 172
Levi’s lemma, 177
Lexicographic order, 49
Lie algebra of homogeneous K-space, 325
Linear differential polynomial ideal, 150
Linear dimension, 151
Linear extension, 396
Linear K-group, 355
Linearly dependent (or independent) deriva-
tive operators, 96
Linearly dependent (or independent) over
constants, 88
Liouvillian extension, 408
of type (i), 408
Liouvillian K-group, 374
of type (i), 374
K-Liouvillian K-group, 374
of type (i), 374
Local component
of derivation, 338
of invariant differential, 339
Local derivation, 334-335
Local ring on ¥ at v, 331
Localization at prime ideal, 7
Locus, 216
Logarithmic derivation, 350
Logarithmic derivative, 349
Low power theorem, 187

M

K-Mapping, 295

K-Minimal, 294

R-Morphism of ideals, 17

Multiplicity
of differential polynomial at point, 164
of zero of differential polynomial, 164

N

Nakayama s lemma, 34
Noetherian conservative system, 13
Noetherian topological space, 147
Nonsingular zero or solution, 155
Normalization lemma, 43
Numerical polynomial, 50

o

K-Operation of K-group
on K-group, 342
on K-space, 342-343
Opposite K-group, 223

INDEX OF DEFINITIONS

Order

of derivative, 59

of derivative operator, 59

of differential polynomial, 70
Orderly ranking, 75
Orthogonal group, 213

P

Partial remainder, 77, 78
Partially pseudo-reduced, 83
Partially reduced, 77
Perfect conservative system, 12
Perfect ideal, 7
Permissible grading, 73
A-Permissible homomorphism, 174
Picard-Vessiot element, 415
Picard-Vessiot extension, 410
Point, 145
Pointed pre-K-set, 277
Pointed set, 275
Positive grading, 73
Power series, 29
Pre-K-homomorphism

of K-groups, 250

of homogeneous K-spaces, 250
Pre-K-mapping 217
Preparation congruence 184
Preparation equation, 183
Pre-K-set, 215
Pre-K-subset, 216
Prime factor of differential monomial, 70
T-Prime ideal, 7
Primitive, 404
G-Primitive, 419
G-Primitive extension, 419
V-Primitive, 430
Principal homogeneous space, 219
Principal homogeneous K-space, 220-221
Product K-group structure, 261
Product homogeneous K-space structure, 261
Product order, 49
Proper derivative, 59
Pseudo-leader, 83
Pseudo-led, 83
Pseudo-separant, 83

Q

Quasi-independent, 217-218
Quasi-perfect, S
Quasi-separable field extension, 5

445

Quasi-separable integral domain, 8
Quasi-separable prime ideal, 9

R

Rank comparison

of autoreduced sets, 81

of derivatives, 75

of differential polynomials, 75-76
Ranking, 75
Rational element, 215
Rational function, 306
Rational mapping, 303
Reduced, 77
Regular element of pre-K-set, 215-216
Regular field extension, 8
Regular ideal, 9
Regular integral domain, 8
Regular K-space, 221
Relative XK-homomorphism, 342
Remainder, 79
Restriction of set of derivation operators, 65
Riccati differential polynomial, 416
Ring of constants, 60
Ritt problem, 191
Ritt’s analog of Liiroth’s theorem 163
Rosenfeld’s criterion, 167

S

Semi-invariant, 356

Semisimple matrix, 365

Semisimple element of linear K-group, 367

Semiuniversal extension, 92

Separable closure of difterential field, 91

Separable element of pre-K-set, 215-216

Separable ideal, 9

Separable overring, 8

Separable pre-K-mapping, 217

Separably dependent (or independent), 2
over constants, 93

Separant, 75

Separating difterential transcendence basis,

108-109

Sequential ranking, 75

Series-order, 30

K-Set, 227

Shapiro’s lemma, 53

Simple element of irreducible K-set, 337

K-Simple K-group, 375

Singular component, 157

Singular irreducible component, 157
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Singular solution, 155
Singular zero, 155
Solution, 145
K-Space, 341
Special linear group, 213
Specialization
of element of pre-K-set, 216
of family of elements of field extension, 33
of family of isomorphisms, 386
of integral domain, 33
Splits, 281, 422
K-Splits, 321
Stability group, 257
Strictly positive A-permissible homomor-
phism, 175
Strictly positive grading, 73
Strong isomorphism, 388-389
Strongly normal extension, 393
K-Subgroup, 226
K-subset, 227
K-Subspace, 342
Substitution homomorphism
of differential algebra of power series, 85
of differential polynomial algebra, 71
of differential power series algebra, 85

T

Tangent space, 335

Tangent vector, 335

F -Topology of %", 149

K-Topology of homogeneous K-space, 240

Transformation of set of derivation opera-
tors, 65

Transporter, 257

Triangular group, 213

Twisting, 282

INDEX OF DEFINITIONS

Typical differential dimension

of irreducible closed set in #", 148

of prime differential polynomial ideal, 130
Typical differential inseparability degree,

of finitely generated extension, 118

of prime differential polynomial ideal, 130
Typical differential transcendence degree,

I8

U

Uniformizing parameters, 337

Unipotent matrix, 364

Unipotent element of linear K-group, 367
Universal differential field, 133

Universal extension, 133

Usual grading, 72

v

Value

of differential polynomial, 71

of element at a specialization, 288
f-Value 57

w

Weakness 179

Weierstrassian, 405

Weight
of differential polynomial, 73
of semi-invariant, 356-357

zZ

Zariski topology, 240

Zero
of subset of K[K(vt) U K(1)], 236
of subset of Z{y,, ..., y»}, 145
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