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1. Introduction

Differential algebra, founded by Ritt and Kolchin, aims to study differential polyno-
mial equations in a way similar to how polynomial equations are studied in algebraic 
geometry [39,27]. There are many interesting open problems in differential algebra; see 
[39, p. 177] and [3]. One classical problem is the Jacobi bound conjecture, which is one 
of the five problems formulated by Kolchin at the ICM, Moscow in 1966 [26].

In this paper, we first prove the Jacobi bound conjecture for prime differential ideals 
given by characteristic sets. Then, based on this result, we propose algorithms to compute 
differential Chow forms for prime differential ideals represented by characteristic sets.

1.1. Around the Jacobi bound conjecture

The first main problem we consider in this paper is related to the Jacobi bound 
conjecture.

Let S = {f1, . . . , fm} ⊂ F{y1, . . . , yn} (m ≤ n) be a system of differential polynomials. 
Let eij be the greatest natural number k such that y(k)

j effectively appears in fi. If yj
and its derivatives do not appear in f , set eij = −∞. Set e∗ij = max{eij , 0}. The (strong) 
Jacobi number Jac(S) (see Definition 11), the weak Jacobi number, of S, are defined to 
be the maximal diagonal sums of matrices (eij), (e∗ij) respectively. The Ritt number R(S)
of S is defined to be R(S) =

∑n
j=1 maxi{e∗ij}.

The order of an irreducible differential variety V (see Definition 5), or the prime 
differential ideal I(V ), is the sum of orders of the elements of any characteristic set of 
this ideal with respect to an orderly ranking. In the case when the differential dimension 
of V is equal to zero, the order of V is just what in the classical literature is called the 
number of arbitrary constants on which the solution of the system S = 0 depends. So it 
measures the size of the zero set of S.

The Jacobi bound conjecture is the following:

Jacobi bound conjecture. (See [38].) Suppose m = n. Let V be any component of the 
radical differential ideal generated by S with differential dimension 0. Then the order of 
V does not exceed Jac(S).

If we replace Jac(S) by Jac∗(S), we get the so-called weak Jacobi bound conjecture.
The Jacobi bound was proposed heuristically by Jacobi [20]. Ritt proved the conjecture 

in the case when S is a linear system and also in the case when n ≤ 2 [38]. Ritt’s results 
have been extended to partial differential systems by Tomasovic [44]. Lando showed 
that the weak Jacobi bound conjecture holds for the case eij ≤ 1 [31]. A system S
is called independent (see Definition 13) if it satisfies the regularity hypothesis defined 
by Johnson [23]. Kondratieva et al. proved that the Jacobi bound conjecture holds for 
independent (partial) differential systems [29].
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Without the assumption m = n, Ritt proved that the order of any component of S
of differential dimension 0 is bounded by the Ritt number of S [39, p. 135]. Combining 
Ritt’s result on relative orders [39, p. 135] and [12, Theorem 2.11], we obtain that the 
Ritt number is also an upper bound for the order of each component of S. The work of 
Greenspan and of Lando, summarized in [7], has provided improvements on the bound, 
but as remarked by Cohn, their work seems unlikely to have yielded bounds best possible 
for the information in E or E∗ [8].

It was shown by Cohn [8, p. 3] that the Jacobi bound conjecture implies the famous 
differential dimension conjecture [39, p. 178].

Differential dimension conjecture. Suppose m ≤ n and the system S = 0 has solutions. 
Then the differential dimension of each component of the radical differential ideal gen-
erated by S is at least n −m.

In addition to radical differential ideals given by generators, Golubitsky et al. also 
worked on the order bound problem for prime differential ideals given by characteristic 
sets under arbitrary rankings [15]. Let I ⊂ F{y1, . . . , yn} be a prime differential ideal 
and A a characteristic set of I under an arbitrary ranking. Golubitsky et al. showed that 
the order of I does not exceed the number |A| ·max{ord(C) : C ∈ A} [15, p. 337], where 
|A| is the cardinality of A. Moreover, since this bound is likely to be non-optimal, they 
also conjectured the following stronger upper bound in terms of the Ritt number.

Conjecture. (See [15, p. 337].) For each j = 1, . . . , n, let oj be the greatest number k
such that y(k)

j appears in A. Suppose ok1 ≥ ok2 ≥ · · · ≥ okn
. Then ord(I) ≤

∑|A|
i=1 oki

.

Clearly, the Jacobi number is in general smaller than this conjectured bound.
In this paper, we prove the Jacobi bound conjecture holds for prime differential ideals 

given by characteristic sets with respect to arbitrary rankings, which implies the above 
conjecture proposed by Golubitsky et al. is true.

Theorem 1. Let I ⊂ F{y1, . . . , yn} be a prime differential ideal of differential dimen-
sion d, and A = {A1, . . ., An−d} a characteristic set of I under any fixed ranking R. 
Then ord(I) ≤ Jac(A).

1.2. The computation of differential Chow form

The Chow form, also known as the Cayley form, is a basic concept in algebraic geome-
try [5,19] and also a powerful tool in elimination theory. Suppose V ⊂ Cn is an unmixed 
variety of dimension d. Given a matrix (aij) ∈ C(d+1)×(n+1), let

Li := (ai0 + ai1y1 + · · · + ainyn = 0), i = 0, . . . , d
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be d + 1 hyperplanes. The Zariski closure of the set {(aij) : V ∩ L0 ∩ · · · ∩ Ld �= ∅} is an 
irreducible hypersurface. The minimal defining polynomial of this hypersurface is called 
the algebraic Chow form of V .

The Chow form has important applications in many fields, for example, [2,35,37,45]. 
Recent studies also show that the Chow form has closely related to sparse elimination 
theory [14,42,36,24]. There are efficient algorithms to compute the Chow form [30,4,21].

Recently, the algebraic Chow form was generalized to the differential algebraic set-
ting and the theory of differential Chow forms in both affine and projective differential 
algebraic geometry was developed [12,32]. The theory of sparse differential resultants 
and efficient algorithms to compute sparse differential resultants were then developed in 
[33,34]. A natural next problem is to develop efficient algorithms to compute the differ-
ential Chow form. In general, there is no algorithm to test whether a given differential 
ideal is prime or not, because this primality testing problem is equivalent to the Ritt 
problem; see [16, Theorem 1] and [17, Conjecture 1.1]. However, for most applications, 
prime differential ideals are given by characteristic sets.

Thus, the second main problem we consider in this paper is the following:
Given a prime differential ideal I ⊂ F{y1, . . . , yn} represented by a characteristic set 

A under an arbitrary ranking R, devise an algorithm to compute its differential Chow 
form, and estimate the computational complexity.

Although, as mentioned in [12, Remark 4.4], the differential Chow form could be com-
puted by means of algorithms for algebraic transformation of differential characteristic 
decompositions from one ranking to another [1,40,15], on the whole, either there is no 
computational complexity analysis, or the algorithms are so general that they are not 
efficient. In this paper, taking advantage of properties of the differential Chow form, 
we will propose single-exponential algorithms for computing differential Chow forms for 
prime differential ideals represented by characteristic sets under arbitrary rankings. Our 
algorithms require only linear algebraic computations over the base field of the ideals.

The differential dimension of I is equal to d = n − |A| (see Lemma 4). Let

Pi = ui0 + ui1y1 + · · · + uinyn (i = 0, . . . , d)

be generic differential hyperplanes (see Definition 7). The differential Chow form is the 
unique (up to a factor in F) differential polynomial F (uij) with minimal order and of 
minimal degree under this order contained in [I, P0, · · · , Pd] ∩F{uij} (Definition 9). By 
[12, Theorem 4.11], the order of the differential Chow form is equal to the order of the 
corresponding prime differential ideal. So by Theorem 1, the order of the differential 
Chow form is bounded by Jac(A). Apart from giving an upper bound for the order in 
Theorem 1, we also give a Beźout-type degree bound for the differential Chow form of 
I in terms of the degrees of elements in A.

Based on the order and degree bounds, we are able to use the method of undetermined 
coefficients to give algorithms to compute the differential Chow form. In the special case 
when R is an orderly ranking (defined in Section 2.2), the order of I is equal to the sum of 
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orders of elements in A, and we give a simpler algorithm to compute the differential Chow 
form. In the general case when R is an arbitrary ranking, we give two different algorithms 
to compute the differential Chow form. One uses the searching strategy prioritizing order 
over degree and the other uses the searching strategy prioritizing degree over order. All 
the algorithms have single exponential complexity in terms of the Jacobi number, the 
number of variables, the degrees and the orders of the polynomials in A.

The paper is organized as follows. In Section 2, we give some basic notation and 
preliminary results about differential algebra. In Section 3, we prove the Jacobi bound 
conjecture for prime differential ideals given by characteristic sets. In Section 4, we give an 
algorithm to compute differential Chow forms for prime differential ideals represented by 
characteristic sets under orderly rankings. In Section 5, we give two different algorithms 
to compute differential Chow forms for prime differential ideals given by characteristic 
sets under arbitrary rankings.

2. Preliminaries

In this section, some basic notation and preliminary results in differential algebra will 
be given. For more details about differential algebra, please refer to [3,28,27,39,41].

2.1. Differential polynomial algebra

Let F be a fixed ordinary differential field of characteristic zero with a derivation 
operator δ. For ease of notation, we use primes and exponents (i) to denote derivatives 
under δ, and for each a ∈ F , denote a[n] = {a, a(1), . . . , a(n)} and a[∞] = {a(i) : i ≥ 0}. 
Throughout this paper, unless otherwise indicated, δ is kept fixed during any discussion. 
A typical example of differential field is Q(t) which is the field of rational functions in 
the variable t with δ = d

dt .
Let G be a differential extension field of F and S a subset of G. We denote respectively 

by F [S], F(S), F{S}, and F〈S〉 the smallest subring, the smallest subfield, the smallest 
differential subring, and the smallest differential subfield of G containing F and S. And 
G is said to be finitely differentially generated over F if there exists a finite subset S ⊂ G
such that G = F〈S〉.

Let Θ be the free commutative semigroup with unit (written multiplicatively) gener-
ated by δ. A subset Σ of a differential extension field G of F is said to be differentially 
dependent over F if the set (θα)θ∈Θ,α∈Σ is algebraically dependent over F , and other-
wise, it is said to be differentially independent over F , or to be a family of differential 
indeterminates over F (abbr. differential F-indeterminates). If Σ consists of only one 
element α, we simply say that α is differentially algebraic or differentially transcendental
over F respectively. A maximal subset Ω of G which is differentially independent over F
is said to be a differential transcendence basis of G over F . The cardinality of Ω is called 
the differential transcendence degree of G over F , denoted by d.tr.degG/F .
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Suppose G1 and G2 are two differential extension fields of F . A homomorphism (resp.
isomorphism) φ from G1 to G2 is called a differential homomorphism (resp. isomorphism) 
over F if φ commutes with δ and leaves each element of F invariant.

A differential extension field E of F is called a universal differential extension field, 
if for any finitely differentially generated extension field F1 ⊂ E of F and any finitely 
differentially generated extension field F2 of F1 not necessarily contained in E , there 
exists a differential extension field F3 ⊂ E of F1 such that F3 is differentially isomorphic 
to F2 over F1. Such a universal differential extension field of F always exists [27, p. 134, 
Theorem 2].

Now suppose E is a universal differential extension field of F , and Y = {y1, . . . , yn}
is a set of differential indeterminates over E . For any y ∈ Y, denote δky by y(k). The 
elements of F{Y} = F [y(k)

j : j = 1, . . . , n; k ∈ N] are called differential polynomials
over F in Y, and F{Y} itself is called the differential polynomial ring over F in Y. 
A differential polynomial ideal I in F{Y} is an algebraic ideal which is closed under 
derivation, i.e. δ(I) ⊆ I. A prime differential ideal is a differential ideal which is also 
a prime ideal. For convenience, a prime differential ideal is assumed not to be the unit 
ideal in this paper.

By a differential affine space, we mean any one of the sets En(n ∈ N). Let Σ be 
a subset of differential polynomials in F{Y}. A point η ∈ En is called a zero of Σ if 
f(η) = 0 for any f ∈ Σ. The set of all zeros of Σ is denoted by V(Σ), which is called a 
differential variety defined over F . A point η ∈ V(I) is called a generic point of a prime 
differential ideal I ⊆ F{Y} if for any f ∈ F{Y} we have f(η) = 0 ⇔ f ∈ I. It is well 
known that:

Lemma 2. A non-unit differential ideal is prime if and only if it has a generic point.

2.2. Characteristic sets of a differential polynomial ideal

Let f be a differential polynomial in F{Y}. The order of f with respect to yi is the 
greatest number k such that y(k)

i appears effectively in f , denoted by ord(f, yi). If yi does 
not appear in f , set ord(f, yi) = −∞. The order of f is defined to be maxi{ord(f, yi)}, 
denoted by ord(f).

A ranking R is a total order over Θ(Y) if satisfying 1) δα > α for all α ∈ Θ(Y) and 2) 
α1 > α2 ⇒ δα1 > δα2 for all α1, α2 ∈ Θ(Y). Below are two important kinds of rankings:

1. Elimination ranking: yi > yj ⇒ δkyi > δlyj for any k, l ≥ 0.
2. Orderly ranking: k > l ⇒ δkyi > δlyj for any i, j ∈ {1, . . . , n}.

Let f be a differential polynomial in F{Y} endowed with a ranking R. The leader of 
f is the greatest derivative with respect to R which appears effectively in f , denoted 
by ld(f). Regarding f as a univariate polynomial in ld(f), its leading coefficient is called 
the initial of f , denoted by If , and the partial derivative of f with respect to ld(f) is 
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called the separant of f , denoted by Sf . For any two differential polynomials f , g in 
F{Y}, f is said to be of lower rank than g, denoted by f < g, if 1) ld(f) < ld(g), 
or 2) ld(f) = ld(g) and deg(f, ld(f)) < deg(g, ld(f)). And f is said to be reduced with 
respect to g if no proper derivatives of ld(g) appear in f and deg(f, ld(g)) < deg(g, ld(g)). 
Let A be a set of differential polynomials. Then A is said to be an auto-reduced set if 
each element of A is reduced with respect to any other element of A. Every auto-reduced 
set is finite [27, p. 77].

Let A be an auto-reduced set. We denote HA to be the set of all initials and separants 
of A and H∞

A the minimal multiplicative set containing HA. The saturation differential 
ideal of A is defined by

sat(A) = [A] : H∞
A = {f ∈ F{Y} | ∃h ∈ H∞

A , s.t.hf ∈ [A]}.

The algebraic saturation ideal of A is defined by asat(A) = (A) : I∞A , where I∞A is 
the multiplicative set generated by the initials of polynomials in A. We use capital 
calligraphic letters such as A, B, . . . to denote auto-reduced sets and use notation A =
A1, . . . , At to specify the list of the elements of A arranged by increasing rank.

An auto-reduced set C contained in a differential polynomial set S is said to be a 
characteristic set of S if S does not contain any nonzero element reduced with respect 
to C. A characteristic set C of a differential ideal J reduces all elements of J to zero. 
Furthermore, if J is prime, then J = sat(C).

Definition 3. For an auto-reduced set A = A1, . . . , At with ld(Ai) = y
(oi)
ci , the set 

Y \ {yc1 , . . . , yct} is called the parametric set of A and the order of A is defined by 
ord(A) =

∑t
i=1 oi.

We conclude this section by recalling the definition of differential dimension and order 
for a prime differential ideal I, which are closely related to characteristic sets of I.

Let I be a prime differential ideal in F{Y} and ξ = (ξ1, . . . , ξn) a generic point 
of I. The differential dimension of I or V(I) is defined as the differential transcen-
dence degree of the differential extension field F〈ξ1, . . . , ξn〉 over F , that is, dim(I) =
d.tr.degF〈ξ1, . . . , ξn〉/F . Suppose dim(I) = d and {ξi1 , . . . , ξid} is a differential tran-
scendence basis. Then U = {yi1 , . . . , yid} is called a parametric set of I. The relative 
order of I with respect to U is defined as the transcendence degree of F〈ξ1, . . . , ξn〉 over 
F〈ξi1 , . . . , ξid〉, denoted by

ordU (I) = tr.deg〈ξ1, . . . , ξn〉
/
〈ξi1 , . . . , ξid〉.

The differential dimension and relative orders can be read off from characteristic sets.

Lemma 4. (See [6, Theorem 4.11].) Let A be a characteristic set of a prime differential 
ideal I in F{Y} endowed with some ranking. The cardinality of the parametric set U of 
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A gives the differential dimension of I. The relative order of I with respect to U is equal 
to the order of A.

In [25, Theorem 1], Kolchin proved that there exists a unique numerical polynomial 
ωI(t) such that for all sufficiently large t ∈ N,

ωI(t) = tr.degF(η(j)
i : i = 1, . . . , n; j ≤ t)/F .

This ωI(t) is called the differential dimension polynomial of I [25, p. 572].

Definition 5. (See [40, Theorem 13].) The differential dimension polynomial of I is of the 
form

ωI(t) = dim(I) · (t + 1) + h.

The nonnegative integer h is defined to be the order of I, denoted by ord(I). Or equiva-
lently, if A is a characteristic set of I under any orderly ranking, then ord(I) = ord(A).

By the relation between the order and relative orders of a prime differential ideal [12, 
Theorem 2.11] and Lemma 4, we have the following result.

Lemma 6. Let I be a prime differential ideal of differential dimension d. Then

ord(I) = maxAord(A),

where A runs over all characteristic sets of I under arbitrary rankings.

2.3. Differential Chow form for a prime differential ideal

In this section, we recall the definition of the differential Chow form and some of its 
basic properties. For more details about the differential Chow form, please refer to [12].

Definition 7. A generic differential hyperplane is the solution set of a linear differential 
polynomial equation

u0 + u1y1 + · · · + unyn = 0

contained in En where the coefficients ui ∈ E are differentially independent over F . We 
also call P = u0 + u1y1 + · · · + unyn a generic differential hyperplane.

Let I ⊆ F{Y} be a prime differential ideal of differential dimension d and

Pi = ui0 + ui1y1 + · · · + uinyn (i = 0, . . . , d)
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be d + 1 generic differential hyperplanes. For each i, denote

ui = {ui0, ui1, . . . , uin} and u = {uij : 0 ≤ i ≤ d; 1 ≤ j ≤ n}.

Let

IY,u = [I,P0, . . . ,Pd]F{Y,u0,...,ud}

be the differential ideal generated by I and the Pi in F{Y, u0, . . . , ud}. Then by [12, 
Lemma 4.3], we have the following result.

Lemma 8. IY,u ∩ F{u0, . . . , ud} is a prime differential ideal of differential codimension 
one.

By [12, Lemma 3.10], there exists a unique (up to a factor in F) irreducible differential 
polynomial F (u0, . . . , ud) ∈ F{u0, . . . , ud} such that {F} is a characteristic set of IY,u∩
F{u0, . . . , ud} under any ranking endowed on u0 ∪ · · · ∪ ud. That is,

[I,P0, . . . ,Pd] ∩ F{u0, . . . ,ud} = sat(F ) (1)

is valid for whichever ranking we choose.

Definition 9. The unique irreducible differential polynomial in (1) is defined to be the 
differential Chow form of I.

The following theorem gives some basic properties of differential Chow forms.

Theorem 10. (See [12, Theorem 1.1].) Let I ⊂ F{Y} be a prime differential ideal of 
differential dimension d and order h with F (u0, . . . , ud) its differential Chow form. Then 
the following assertions hold:

1) The order of the F is equal to the order of I. That is, ord(F ) = h.
2) F (u0, . . .ud) is differentially homogeneous of the same degree in each ui (i =

0, . . . , d). Namely, there exists r ∈ N such that for each i and a differential inde-
terminate λ,

F (u0, . . . , λui, . . . ,ud) = λr · F (u0, . . . ,ui, . . . ,ud).

3) Let

C = F,
∂F

∂u
(h)
00

y1 −
∂F

∂u
(h)
01

, . . . ,
∂F

∂u
(h)
00

yn − ∂F

∂u
(h)
0n

.

Then C is a characteristic set of IY,u with respect to the elimination ranking u <

ud0 < · · · < u00 < y1 < · · · < yn [12, Lemma 4.10].
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4) Suppose Fρτ is obtained from F by interchanging uρ and uτ in F . Then Fρτ and F
differ at most by a sign [12, Lemma 4.9].

5) Suppose ζ is a generic point of sat(F ) ⊂ F{u0, . . . , ud}. Let

ηi = ∂F

∂u
(h)
0i

/ ∂F

∂u
(h)
00

∣∣∣∣
(u0,...,ud)=ζ

, i = 1, . . . , n.

Then (η1, . . . , ηn) is a generic point of I [12, Theorem 4.13].

From property 5) of Theorem 10 and the definition of differential Chow form, we can 
see that differential Chow forms can uniquely characterize their corresponding differential 
ideals.

When d = n, I = [0]. The differential Chow form of I is the determinant of the 
(n + 1) × (n + 1) matrix whose (i − 1)-th row vector is (ui0, ui1, . . . , uin). This is the 
simplest case to compute the differential Chow form. In the remaining part of the paper, 
all prime differential ideals in question are assumed to have differential dimension d < n.

3. Jacobi bound for the order of a prime differential ideal in terms of characteristic 
sets

In this section, we prove that the order of a prime differential ideal I = sat(A) is 
bounded by the Jacobi number (defined below) of A, where A is a characteristic set of 
I under an arbitrary ranking, not necessarily an orderly ranking.

Definition 11. (See [8, p. 2, Section 4].) Let A = (aij) be an r× n matrix. A diagonal of 
A is a sequence of the aij with no two entries in the same row or in the same column 
of A, whose cardinality is equal to min{r, n}. Denote Jac(A) = maxD

∑
aij∈D aij where 

D runs over all the diagonals of A.
Let S = {f1, . . . , fr} ⊂ F{y1, . . . , yn} be a system of differential polynomials. Let 

eij = ord(fi, yj) if yj occurs effectively in fi and we set eij = −∞ otherwise. Let E denote 
the r× n matrices (eij). The Jacobi number Jac(S) of S is defined by Jac(S) = Jac(E).

It is conjectured that the order of each zero-dimensional component of S is bounded 
by the Jacobi number of S. This is the famous Jacobi bound conjecture as introduced in 
Section 1, which is so far open in general. In this section, given a characteristic set A of 
a prime differential ideal I under an arbitrary ranking R, we will show that the Jacobi 
bound conjecture is valid in this case. That is, we will prove the order of I is bounded 
by the Jacobi number of A. We should point out that if R is an orderly ranking, it 
is trivial because ord(I) = ord(A) = Jac(A). However, for an arbitrary ranking R, as 
explained in Section 1, it is much more complicated. The main tool here is using the 
result about the Jacobi bound for ordinary differential polynomials independent over a 
prime differential ideal proved by Kondratieva et al. [29].
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Before proving the main result, we first recall Kähler differentials and some results 
from [29] for later use. For more details on Kähler differentials, please refer to [10]
and [22].

Let F be a field and A an F-algebra. The module of Kähler differentials of A over F , 
written ΩA/F , is the A-module generated by the set {d(a) : a ∈ A} subject to the 
relations

d(aa′) = ad(a′) + a′d(a)

d(r1a1 + r2a2) = r1d(a1) + r2d(a2)

for all a1, a2 ∈ A, and r1, r2 ∈ F .

Theorem 12. (See [22, p. 94].) Let k be a field of characteristic zero and K a field 
extension of k. Then the elements η1, . . . , ηr of K are algebraically independent over k
if and only if d(η1), . . . , d(ηr) are linearly independent over K.

Furthermore, if F is a differential field and F{Y} is the differential polynomial ring 
over F in Y = {y1, . . . , yn} with a derivation operator δ, then the module of Kähler 
differentials of F{Y} over F , ΩF{Y}/F , has a uniquely canonical structure of differential 
module over F{Y} such that for each f ∈ F{Y},

δd(f) = dδ(f),

which was first introduced by Johnson [22, Proposition].
Suppose that I is a prime ideal of a commutative ring A and M is an A-module. A set 

H ⊆ M is called independent over I if {h + IM | h ∈ H} is a system of elements of 
M/MI linearly independent over the quotient ring A/I.

Definition 13. (See [29, Definition 2].) Let I be a prime differential ideal of the differ-
ential polynomial ring F{Y} = F{y1, . . . , yn}. The set {f1, . . . , fr} ⊂ F{Y} is called 
independent over I if the set {df (k)

i : 1 ≤ i ≤ r; k ≥ 0} ⊂ ΩF{Y}/F is independent over I.

In [23, Theorem 2], Johnson proved that if a system of n differential polynomials in 
n differential variables contained in a prime differential ideal I is independent over I, 
then the differential dimension of I is equal to zero. Further, Kondratieva et al. proved 
that the Jacobi bound conjecture is valid in this case, which will be needed in our proof 
for the main result.

Lemma 14. (See [29, Theorem 3].) Let I be a prime differential ideal in F{y1, . . . , yn}. 
Suppose f1, . . . , fn ∈ I. If f1, . . . , fn are independent over I, then ord(I) ≤
Jac(f1, . . . , fn).

We now proceed to prove the main result. The following lemmas are crucial to prove it.
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Lemma 15. Let I be a prime differential ideal in F{y1, . . . , yn}. Then the set

{y(k)
i : 1 ≤ i ≤ n; k ≥ 0}

is independent over I.

Proof. Denote R = F{y1, . . . , yn}. Note that {y(k)
i : 1 ≤ i ≤ n; k ≥ 0} is algebraically 

independent over F , so by Theorem 12, {d(y(k)
i ) : 1 ≤ i ≤ n; k ≥ 0} ⊂ ΩR/F is linearly 

independent over R, which is a linear basis of ΩR/F . Suppose 
∑n

i=1
∑

k≥0 āik
(
d(y(k)

i ) +
IΩF{y1,...,yn}/F

)
= 0 for some aik ∈ R and āik ∈ R/I. So there exists bik ∈ I such that ∑n

i=1
∑

k≥0 aikd(y
(k)
i ) =

∑n
i=1

∑
k≥0 bikd(y

(k)
i ) in ΩR/F . Thus, aik = bik ∈ I, which 

implies that d(y(k)
i ) + IΩF{y1,...,yn}/F (i = 1, . . . , n; k ≥ 0) are linearly independent 

over I. By Definition 13, {y(k)
i : 1 ≤ i ≤ n; k ≥ 0} is independent over I. �

Lemma 16. Let I ⊂ F{Y} be a prime differential ideal of differential dimension d, 
and A = {A1, . . . , An−d} a characteristic set under any fixed ranking R. Let Li =
ui0 + ui1y1 + · · · + uinyn (i = 1, . . . , d) be d independent generic differential hyperplanes 
with coefficient vector ui = (ui0, . . . , uin), and J = [I, L1, . . . , Ld]F〈u1,...,ud〉{Y}. Then

A1, . . . , An−d, L1, . . . , Ld

are independent over J .

Proof. For the sake of convenience, suppose ld(Ai) = y
(oi)
d+i (i = 1, . . . , n −d) with Ai < Aj

(i < j) and the parametric set of A is {y1, . . . , yd}. Let Fd = F〈u1, . . . , ud〉. By [12, Theo-
rem 3.6], J = [I, L1, . . . , Ld]Fd{Y} is a prime differential ideal of differential dimension 0. 
By Definition 13, we need to show that the set

{
d(A(l)

i ) + JΩFd{Y}/Fd
, d(L(l)

j ) + JΩFd{Y}/Fd
: 1 ≤ i ≤ n− d; 1 ≤ j ≤ d; l ≥ 0

}
⊂ ΩFd{Y}/Fd

/JΩFd{Y}/Fd

is linearly independent over J .
Let o = maxi{ord(Ai)}. Then d(A(l)

i ) =
∑n

j=1
∑o+l

t=0
∂A

(l)
i

∂y
(t)
j

d(y(t)
j ) and each d(L(l)

j )

has a similar expression. By Lemma 15, the d(y(t)
j ) are linearly independent over J . 

Thus, it suffices to prove that for each k ≥ 0, the Jacobi matrix Nk of Sk = {A[k]
1 , . . . ,

A
[k]
n−d, L

[k]
1 , . . . , L[k]

d } with respect to the variables {y(l)
i : i ≤ i ≤ n; 0 ≤ l ≤ o + k}

has full row rank module J . Note Nk is of size (n(k + 1)) × (n(o + k + 1)). Let T
be the (n(k + 1)) × (n(k + 1)) submatrix of Nk with columns indexed by variables 
y
(o1)
d+1, . . . , y

(on−d)
n ; . . . ; y(o1+k)

d+1 , . . . , y(on−d+k)
n ; y1, . . . , yd; . . . ; y(k)

1 , . . . , y(k)
d . Then after in-

terchanging rows or columns when necessary, T can be written in the following block 
form:
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T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 · · · 0 ∗ ∗ · · · ∗
∗ M1 · · · 0 ∗ ∗ · · · ∗
...

...
. . .

...
...

...
...

...
∗ ∗ · · · M1 ∗ ∗ · · · ∗
∗ ∗ ∗ ∗ M2 0 · · · 0
∗ ∗ ∗ ∗ ∗ M2 · · · 0
...

...
...

...
...

...
. . .

...
∗ ∗ ∗ ∗ ∗ ∗ · · · M2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where M1 =

⎛
⎜⎜⎜⎜⎝

SA1 0 · · · 0
∗ SA2 · · · 0
...

...
. . .

...
∗ ∗ · · · SAn−d

⎞
⎟⎟⎟⎟⎠ and M2 =

⎛
⎜⎜⎜⎝

u11 u12 · · · u1d
u21 u22 · · · u2d
· · · · · · · · · · · ·
ud1 ud2 · · · udd

⎞
⎟⎟⎟⎠. Here, 

for each 0 ≤ l ≤ k, M1 is the Jacobian matrix of A(l)
1 , . . . , A(l)

n−d with respect to 

y
(o1+l)
d+1 , . . . , y(on−d+l)

n , while M2 is the Jacobian matrix of L(l)
1 , . . . , L(l)

d with respect to 

y
(l)
1 , . . . , y(l)

d .
To complete the proof, it is enough to show that T has full rank module J , or 

equivalently, det(T ) /∈ J . Let ũ = {uij : 1 ≤ i ≤ d; 1 ≤ j ≤ n}. Note that det(T ) ∈
F{Y, ̃u}. Now, we claim that for each f ∈ J ∩ F{Y, ̃u}, if we rewrite f as a differential 
polynomial in ũ with coefficients in F{Y}, that is, f =

∑
φ φ(ũ)gφ(Y), then for each φ, 

gφ(Y) ∈ I.
Indeed, let J0 = [I, L1, . . . , Ld]F{Y,u1,...,ud} and ξ = (ξ1, . . . , ξn) be a generic point of 

I free1 from F〈u1, . . . , ud〉. Let ζ = (ξ, − 
∑n

i=1 u1iξi, u11, . . . , u1n, . . . , − 
∑n

i=1 udiξi, ud1,

. . . , udn). It is easy to show that ζ is a generic point of J0 and J
⋂
F{ũ, Y} ⊂ J0. So 

f(ζ) = 0, and consequently, for each φ, gφ(ξ) = 0, which implies that gφ(Y) ∈ I.
Rewrite det(T ) as a differential polynomial in ũ and suppose det(T ) =

∑
φ φ(ũ)gφ(Y), 

where φ runs through all distinct differential monomials in ũ. Take φ∗(ũ) = (
∏d

i=1 uii)k. 
Then its coefficient is gφ∗(Y) = (

∏n−d
i=1 sAi

)k+1, which is not in I. Thus, by the above 
claim, det(T ) /∈ J . �
Corollary 17. Let I ⊂ F{Y} be a prime differential ideal and A a characteristic set of I
under an arbitrary ranking R. Then A is independent over I.

Proof. By Lemma 16, {d(y(k)
i ) : i = 1, . . . , n; k ≥ 0} is a linear basis of the free 

F{Y}/I-module ΩF{Y}/F
/
IΩF{Y}/F . So A is independent over I if and only if for 

each s ∈ N, the Jacobian matrix Ms of A[s] = {A(k) : A ∈ A, k ≤ s} with respect to 
the variables {y(k)

j : 1 ≤ j ≤ n; k ≤ maxAord(A(s))} is of full row rank modulo I. Let 
r(s) = (s + 1) · |A|, the number of rows of Ms. By the proof of Theorem 16, Ms has an 

1 By saying that ξ is free from F〈u1, . . . , ud〉, we mean the ui are differentially independent over F〈ξ〉. 
Note that such a point ξ always exists.
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r(s) × r(s) minor equal to (
∏n−d

i=1 sAi
)s+1, which does not belong to I. So Ms is of full 

row rank modulo I, which implies that A is independent over I. �
Now, we prove Theorem 1, the main result in this section, which shows that the 

Jacobi bound conjecture holds for prime differential ideals represented by characteristic 
sets with respect to arbitrary rankings. For convenience, we restate the theorem here.

Theorem 18. Let I be a prime differential ideal of differential dimension d in F{Y}, 
and A = {A1, . . . , An−d} a characteristic set of I under an arbitrary ranking R. Then 
ord(I) ≤ Jac(A).

Proof. By [12, Theorem 3.13], J = [I, L1, . . . , Ld]F〈u1,...,ud〉{Y} is a prime differential 
ideal with ord(J ) = ord(I). By Lemma 16, A1, . . . , An−d, L1, . . . , Ld are independent 
over J . So by Lemma 14, ord(J ) ≤ Jac(A, L1, . . . , Ld) = Jac(A). Thus, ord(I) ≤ Jac(A)
follows. �

As a corollary, we show the conjecture proposed by Golubitsky et al. in [15, p. 337]
holds.

Corollary 19. Let I be a prime differential ideal in F{Y} and A a characteristic set of 
I under an arbitrary ranking R. Let oj = max{0, ord(A, yj) : A ∈ A} for j = 1, . . . , n. 
Suppose oi1 ≥ oi2 ≥ . . . ≥ oin . Then ord(I) ≤

∑|A|
k=1 oik .

Proof. Since Jac(A) ≤
∑|A|

k=1 oik , it is an immediate consequence of Theorem 18. �
We use the following simple example to show that the Jacobi bound is indeed much 

better than the bound in Corollary 19.

Example 20. Let I = sat(y1y2 + 1, y(n)
1 y

(n)
3 + y1) ⊂ F{y1, y2, y3} be a prime differential 

ideal with A = {y1y2 + 1, y(n)
1 y

(n)
3 + y1} a characteristic set of I with respect to the 

elimination ranking y1 < y2 < y3. By Theorem 18, we get an upper bound for the order 
of I, that is, ord(I) ≤ n = Jac(A). While the order bound in Corollary 19 for this 
example is 2n. For n >> 0, the Jacobi bound n is much smaller than 2n.

Remark 1. Theorem 18 shows the Jacobi bound conjecture is true for all prime differ-
ential ideals in terms of characteristic sets. But in general, we still cannot prove the 
Jacobi bound conjecture for prime differential ideals given by generators. More precisely, 
given a prime differential ideal I = {f1, . . . , fm}, we do not know whether ord(I) ≤
Jac(f1, . . . , fm). One possible idea to prove it from Theorem 18 is to show that a charac-
teristic set A of I can be computed from f1, . . . , fm such that Jac(A) = Jac(f1, . . . , fm).
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4. Computation of differential Chow forms for prime differential ideals represented by 
characteristic sets under orderly rankings

In this section, we give an algorithm to compute the differential Chow form for a 
prime differential ideal represented by a characteristic set with respect to an orderly 
ranking. This algorithm is based on linear algebraic techniques and has single-exponential 
computational complexity.

Given a prime differential ideal sat(A) with A a characteristic set under an orderly 
ranking, by Definition 5 and Theorem 10, the order of its differential Chow form is 
equal to ord(A). To give an algorithm and estimate the computational complexity of 
this algorithm, degree bounds are also needed. So before giving the algorithm, we first 
give a degree bound for the differential Chow form.

4.1. Degree bound of the differential Chow form in terms of a characteristic set under 
an orderly ranking

In this section, we will give a degree bound for the differential Chow form of a prime 
differential ideal I in terms of the orders and degrees of the polynomials in a characteristic 
set of I. We first recall several properties about the degrees of ideals in the algebraic 
case.

Let k be a field and k̄ its algebraic closure. Let I be a prime ideal in k[x1, . . . , xn]
with dim(I) = d and V ⊂ k̄n be the irreducible variety defined by I. The degree of I
(resp. V ), denoted by deg(I) (resp. deg(V )), is defined to be the number of solutions 
of the zero dimensional prime ideal (I, L1, . . . , Ld)k1[x1,...,xn] in the algebraic closure 
of k1, where Li = ui0 +

∑n
j=1 uijxj for i = 1, . . . , d are d generic hyperplanes and 

k1 = k((uij)1≤i≤n;0≤j≤n) [18,19]. That is,

deg(I) = |V(I, L1, . . . , Ld)|.

The following result gives a relation between the degree of an ideal and that of its 
elimination ideal, which has been proved in [33, Theorem 2.1] and is also a consequence 
of [18, Lemma 2].

Lemma 21. Let I be a prime ideal in k[x1, . . . , xn] and Ir = I ∩ k[x1, . . . , xr] for any 
1 ≤ r ≤ n. Then deg(Ir) ≤ deg(I).

The notion of degree can be defined for general varieties of k̄n other than irreducible 
varieties. Let V ⊂ k̄n be a variety and {V1, . . . , Vl} the set of all irreducible components 
of V . The degree of V is defined to be the sum of the degrees of Vi, that is, deg(V ) =∑l

i=1 deg(Vi). The following lemma shows how degree behaves under intersections.
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Lemma 22. (See [18, Theorem 1].) Let V1, . . . , Vr (r ≥ 2) be a finite number of varieties 
in k̄n. Then deg(V1 ∩ · · · ∩ Vr) ≤

∏r
i=1 deg(Vi). In particular, if V = V(f1, . . . , fm) for 

some fi ∈ k[x1, . . . , xn], then deg(V ) ≤
∏

i deg(fi).

We now go back to our differential case and proceed to prove an upper bound for the 
degree of the differential Chow form.

Lemma 23. Let I ⊆ F{Y} = F{y1, . . . , yn} be a prime differential ideal of differential 
dimension d with {A1, . . . , An−d} a characteristic set of I with respect to an orderly 
ranking and ei = ord(Ai), h =

∑n−d
i=1 ei. Suppose F is the differential Chow form of I. 

Then

(F ) = (A[h−e1]
1 , . . . , A

[h−en−d]
n−d ,P

[h]
0 , . . . ,P

[h]
d ,Hx0 − 1) ∩ F [u[h]

0 , . . . ,u[h]
d ],

where H =
∏n−d

i=1 IAi
SAi

, x0 is a new indeterminant and u[h]
i = {u(k)

ij : 0 ≤ j ≤ n; k ≤ h}.

Proof. First, we claim that I ∩ F [Y[h]] = (A[h−e1]
1 , . . . , A[h−en−d]

n−d , Hx0 − 1) ∩ F [Y[h]]. 
Indeed, let

J = (A[h−e1]
1 , . . . , A

[h−en−d]
n−d ,Hx0 − 1)

⋂
F [Y[h]]

= asat(A[h−e1]
1 , . . . , A

[h−en−d]
n−d )

⋂
F [Y[h]].

For any f ∈ I ∩ F [Y[h]], there exists l ∈ N such that H lf =
∑n−d

i=1
∑h−ei

ki=0 gki
A

(ki)
i =

[(Hx0 − 1 + 1)/x0]lf , where gki
∈ F [Y[h]]. So f ∈ (A[h−e1]

1 , . . . , A[h−en−d]
n−d , Hx0 − 1), 

and consequently f ∈ J . On the other hand, for any f ∈ J , we have f =∑n−d
i=1

∑h−ei
ki=0 gki

A
(ki)
i + g(Hx0 − 1), here gki

, g ∈ F [Y[h], x0]. Thus if we substitute 
x0 = 1/H into this equality, we get f ∈ I ∩ F [Y[h]]. Hence I ∩ F [Y[h]] = J .

Thus, we have

(F ) =
(
I ∩ F [Y[h]],P[h]

0 , . . . ,P
[h]
d

)
∩ F [u[h]

0 , . . . ,u[h]
d ]

=
(
(A[h−e1]

1 , . . . , A
[h−en−d]
n−d ,Hx0 − 1) ∩ F [Y[h]],P[h]

0 , . . . ,P
[h]
d

)⋂
F [u[h]

0 , . . . ,u[h]
d ]

⊆ (A[h−e1]
1 , . . . , A

[h−en−d]
n−d ,P

[h]
0 , . . . ,P

[h]
d ,Hx0 − 1) ∩ F [u[h]

0 , . . . ,u[h]
d ]

⊆ [A1, . . . , An−d,P0, . . . ,Pd,Hx0 − 1] ∩ F [u[h]
0 , . . . ,u[h]

d ]

= [I,P0, . . . ,Pd] ∩ F [u[h]
0 , . . . ,u[h]

d ]

= (F )

Thus, (F ) = (A[h−e1]
1 , . . . , A[h−en−d]

n−d , P[h]
0 , . . . , P[h]

d , Hx0 − 1) ∩ F [u[h]
0 , . . . , u[h]

d ]. �
Now, we give a degree bound for the differential Chow form.
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Theorem 24. Let I ⊆ F{Y} be a prime differential ideal of differential dimension d and 
{A1, . . . , An−d} characteristic set with respect to an orderly ranking. Suppose F is the 
differential Chow form of I. Let ei = ord(Ai), h =

∑n−d
i=1 ei and deg(Ai) = mi, then

deg(F ) ≤ 2(h+1)(d+1)
n−d∏
i=1

mh−ei+1
i

(
2
n−d∑
i=1

(mi − 1) + 1
)
.

In particular, let m = max{mi}, then deg(F ) ≤ (n − d)2(dh+d+h+2)m(h+1)(n−d)−h.

Proof. Set J = (A[h−e1]
1 , . . . , A[h−en−d]

n−d , P[h]
0 , . . . , P[h]

d , Hx0−1), where H =
∏n−d

i=1 IAi
SAi

. 
By Lemma 22, we have deg(J ) ≤ (

∏n−d
i=1 mh−ei+1

i )2(h+1)(d+1)(2 
∑n−d

i=1 (mi−1) +1
)
. And 

by Lemmas 21 and 23, we have deg(F ) = deg
(
J

⋂
F [u[h]

0 , . . . , u[h]
d ]

)
≤ deg(J ). Thus,

deg(F ) ≤ 2(h+1)(d+1)
n−d∏
i=1

mh−ei+1
i

(
2
n−d∑
i=1

(mi − 1) + 1)
)

≤ (n− d)2(dh+d+h+2)m(h+1)(n−d)−h. �
4.2. Complexity of differential reductions

In this section, we estimate the complexity of performing differential reductions, which 
will be used when analyzing the computational complexity of differential Chow forms. 
Before doing so, we first give the computational complexity of algebraic reductions.

Here, for the algebraic reduction, we use the method of solving linear equations as 
described in [43, p. 72], which was first introduced in [13]. For convenience, we restate 
the method here to give a formal definition of algebraic reductions and remainders. Here, 
we fix an ordering R among variables: x1 < · · · < xn < · · · < xl (l ≥ n) and consider the 
polynomial ring F [x1, . . . , xl]. The leading variable of a polynomial f ∈ F [x1, . . . , xl] is 
the greatest variable appearing in f with respect to R, denoted by lvar(f).

Let

f ∈ F [x1, . . . , xl], g ∈ F [x1, . . . , xn] (m = deg(g, xn) > 0).

The leading variable of g is xn. We now define the algebraic remainder of f with respect 
to g. Suppose deg(f, xn) = t and k = t − n. Write f =

∑t
i=0 fix

i
n and g =

∑m
i=0 gix

i
n

as univariate polynomials in xn with coefficients fi ∈ F [x1, . . . , xn−1, xn+1, . . . , xl] and 
gi ∈ F [x1, . . . , xn−1]. Using the method of undetermined coefficients to solve the equation

f = q′g + r′, deg(r′, xn) < m

over the field F(x1, . . . , xn−1, xn+1, . . . , xl). Let q′ =
∑k

i=0 qix
i
n. Then, equating the 

corresponding coefficients of xl
n (l = m, . . . , t) in the both sides of f = q′g + r′, we get a 

system of k + 1 linear equations in k + 1 variables q0, . . . , qk:
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gmqk = ft
gm−1qk + gmqk−1 = ft−1

...
...

gm−kqk + gm−k+1qk−1 + · · · + gmq0 = fm.

Clearly, the coefficient matrix M of the above linear equation system is lower triangular 
and its determinant is equal to gk+1

m . Using the Cramer’s rule, we can compute its 
unique solution (qk, . . . , q0) with gk+1

m qi ∈ F [x1, . . . , xn−1, xn+1, . . . , xl]. Thus, we obtain 

a polynomial q = gk+1
m (

∑k
i=0 qix

i
n) ∈ F [x1, . . . , xl] such that

gk+1
m f = qg + r,

where r = gk+1
m f − qg ∈ F [x1, . . . , . . . , xl] and deg(r, xn) < m.

The above r is called the algebraic remainder of f with respect to g under R, denoted 
by r = rem(f, g). For given f and g, this method to compute r is called the algebraic 
reduction of f with respect to g under R. If l < n or t < m, set f = rem(f, g) by 
convention.

Lemma 25. (See [43, Lemma 3.3.3].) Let f, g and R as above. Suppose we have computed 
r = rem(f, g) ∈ F [x1, . . . , xl] and q ∈ F [x1, . . . , xl] satisfying

(lc(g, xn))k+1f = qg + r,

where k = degxn
(f) −degxn

(g) and lc(g, xn) is the leading coefficient of g as a univariate 
polynomial in xn. Then for j < n,

degxj
(q) ≤ (k + 1)degxj

(g) + degxj
(f),

degxj
(r) ≤ (k + 2)degxj

(g) + degxj
(f),

and for j > n,

degxj
(q),degxj

(r) ≤ degxj
(f).

For further discussion, we fix an ordering on x1, . . . , xn. A sequence of polynomials 
A1, . . . , At in F [x1, . . . , xn] is said to be a triangular set, if 1) r = 1 and A1 �= 0, or 
2) A1 /∈ F , lvar(Ai) < lvar(Aj) for 1 ≤ i < j. The initial of Ai is the leading coefficient 
of Ai as a univariate polynomial in lvar(Ai), denoted by IAi

. Given a triangular set 
A = A1, . . . , Ar and f ∈ F [x1, . . . , xn], the remainder sequence of f with respect to A is

ft = f, ft−1 = rem(ft, At), . . . , f1 = rem(f2, A2), f0 = rem(f1, A1).

And f0 is called the the remainder of f with respect to A, denoted by rem(f, A).
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Based on Lemma 25, we now analyze the computational complexity of reducing a 
polynomial with respect to a triangular set. The similar result of reduction with respect 
to an ascending chain can be found in [11, Lemma 5.2].

Lemma 26. Let A = {A1, . . . , Ap} be an triangular set in F [x1, . . . , xn] with respect 
to any fixed ranking R. Set m = maxi{deg(Ai)}. Then for any f ∈ F [x1, . . . , xn], 
deg(f) = D, the remainder r of f with respect to A can be computed with at most 
[2(D + 1)n(m + 1)n(p+1)]2.376 F-arithmetic operations and the degree of r is bounded by 
(m + 1)p(D + 1).

Proof. Suppose lvar(Ai) = zi (i = 1, . . . , p). Let fp = f, fp−1, . . . , f0 = r be the remain-
der sequence of f with respect to A satisfying the following equations:

(IAi
)lifi = qiAi + fi−1,

where

li = degzi(fi) − degzi(Ai) + 1.

Then, by Lemma 25, deg(fi) and deg(qi) satisfy the following relations:

deg(fp) = deg(f) = D,

deg(fi−1) ≤ (m + 1)deg(fi) + m,

deg(qi) ≤ (m + 1)deg(fi).

So for all 0 ≤ i ≤ p, deg(fi) ≤ (m + 1)p−i(D + 1) − 1, and for all 1 ≤ j ≤ p, deg(qj) ≤
(m +1)p−j+1(D+1) −m −1. It follows that deg(r) ≤ (m +1)p(D+1) −1 < (m +1)p(D+1).

We now analyze the computational complexity of the above process. For i, suppose 
fi has been computed (we start from i = p). Since we know the degree bounds for 
qi and fi−1, we can use the method of undetermined coefficients to compute fi−1 from 
(IAi

)lifi = qiAi+fi−1. Denote Di = (m +1)p−i(D+1) −1 and Qj = (m +1)p−j+1(D+1) −
m − 1. More precisely, suppose

fi−1 =
∑
φ

c0φφ, qi =
∑
ϕ

c1ϕϕ,

where c0φ and c1ϕ are coefficients to be determined in F , φ runs through all the monomi-
als in x1, . . . , xn with total degree bounded by Di−1 and the degree in zk (k = i, . . . , p)
less than deg(Ak, zk), and ϕ runs through the monomials with total degree bounded 
by Qi.

Equating the corresponding coefficients of the polynomials in both sides of the equality 
(IAi

)lifi = qiAi + fi−1, we get a system of linear equations over F in variables c0φ, c1ϕ. 
Thus, fi−1 can be computed by solving this linear equation system consisting of at most 
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wi1 ≤
((m+1)(Di+1)+n

n

)
equations in wi2 <

(
Qi+n

n

)
+

(
Di−1+n

n

)
variables. To solve it, we 

need at most

(max{wi1, wi2})ω ≤ [2(m + 1)n(Di + 1)n]ω ≤ {2(m + 1)n(p−i+1)(D + 1)]n}ω

F-arithmetic operations, where ω is the matrix multiplication exponent and the currently 
best known ω is 2.376 [9].

Thus, f0 = rem(f, A) can be computed with at most

p∑
i=1

(max{wi1, wi2})ω ≤ [2(D + 1)n(m + 1)n(p+1)]2.376

F-arithmetic operations. �
In the following, we get back to the differential case and discuss the differential reduc-

tion of a polynomial with respect to an auto-reduced set. For the sake of convenience, we 
fix a differential ranking R endowed on the differential polynomial ring F{y1, . . . , yn}.

Let A = A1, . . . , At be an auto-reduced set with Ii and Si the initial and separant 
of Ai respectively. Let f be an arbitrary differential polynomial. Then there exists an 
algorithm, called Ritt–Kolchin algorithm of differential reduction [41, Section 6], which 
reduces f with respect to A to a differential polynomial r that is reduced with respect 
to A, satisfying

t∏
i=1

Sdi
i Ieii · f ≡ r,mod [A],

where di and ei (i = 1, . . . , t) are nonnegative integers. We call this r the differential 
remainder of f with respect to A, denoted by δ-rem(f, A).

It is worth pointing out that the differential remainder of f with respect to A coincides 
with the algebraic reminder of f with respect to some algebraic triangular set. More 
precisely, let s = ord(f) and ld(Ai) = y

(oi)
i (i = 1, . . . , t). We call the polynomial sequence

⎧⎪⎨
⎪⎩

A1, A
(1)
1 , . . . , A

(s)
1

· · ·
Ap, A

(1)
p , . . . , A

(s)
p

the prolongation sequence of A with respect to f . Let Ra be the total ordering of algebraic 
variables {y(k)

i : 1 ≤ i ≤ n; k ≥ 0} induced by the differential ranking R. Note that 
lvar(A(k)

i ) = y
(oi+k)
i and for k > 0, A(k)

i is linear in y(oi+k)
i . Arrange polynomials in the 

prolongation sequence as

A[s] : B1 < B2 < · · · < Bp(s+1)
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with respect to Ra, that is, lvar(Bi) < lvar(Bj) (i < j). We can perform algebraic 
reductions for f with respect to the triangular set A[s]. It is easily seen that rem(f, A[s])
is differentially reduced with respect to A. Actually, from the procedures described by 
Sit in [41, p. 28–30], by some tedious manipulations, one can show that the differential 
remainder of f with respect to A is simply the same as the algebraic remainder of f with 
respect to A[s].2 So differential remainders can be computed via algebraic reductions and 
throughout this paper, we always use this method to compute the differential remainders. 
We now give the complexity of differential reductions.

Theorem 27. Let A = {A1, . . . , Ap} be a differential auto-reduced set in F{y1, . . . , yn}
under some fixed ranking R and f ∈ F{y1, . . . , yn}. Set h = ord(f), D = deg(f), 
e = maxi{ord(Ai)} and m = maxi{deg(Ai)}. Then the differential remainder of f with 
respect to A can be computed with at most

22.376[(D + 1)(m + 1)p(h+1)+1]2.376n(e+h+1)

F-arithmetic operations and its degree is bounded by (m + 1)p(h+1)(D + 1).

Proof. Since δ-rem(f, A) = rem(f, A[h]), by Lemma 26, the differential remainder of f
with respect to A is of degree bounded by (m +1)p(h+1)(D+1). And it can be computed 
with at most

22.376[(D + 1)(m + 1)p(h+1)+1]2.376n(e+h+1)

F-arithmetic operations. �
4.3. An algorithm to compute the differential Chow form

Let I = sat(A) ⊂ F{Y} be a prime differential ideal of differential dimension d and 
A = {A1, . . . , An−d} a characteristic set of I with respect to an orderly ranking R. So 
ord(I) = ord(A). Let

Pi = ui0 + ui1y1 + · · · + uinyn (i = 0, . . . , d)

be generic differential hyperplanes. Let ui = (ui0, . . . , uin) be the coefficient vector of Pi

and u = {uij : 0 ≤ i ≤ d; 1 ≤ j ≤ n}. Let R1 be the elimination ranking with u < Y <
u00 < · · · < ud0 and R1|Y = R. Note, ld(Pi) = ui0. By [12, Remark 4.4], {A, P0, . . . , Pd}
is a characteristic set of the prime differential ideal J = [I, P0, . . . , Pd]F{u0,...,ud,Y} with 
respect to the ranking R1.

2 One should note that for particular cases, A does not need to differentiate s times. For example, if R is 
an orderly ranking, we just need to perform algebraic reduction of f with respect to A[o1]

1 , . . . , A[op]
p , where 

oi = max{0, s − oi}.
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Algorithm 1 DChowForm-1(A).

Input: A characteristic set A = {A1, . . . , An−d} of a nonzero prime differential 
ideal I under an orderly ranking R

Output: The differential Chow form F (u0, . . . , ud) of I.

1. For i = 0, . . . , d, let Pi = ui0 + ui1y1 + · · · + uinyn and ui = (ui0, . . . , uin).
2. Set h = ord(A) and U = ∪d

i=0u
[h]
i .

3. Set F = 0 and t = 1.
4. While F = 0 do

4.1. Set F0 to be a homogeneous GPol of degree t in v.
4.2. Set c = coeff(F0, v).
4.3. Compute F1 = δ-rem(F0, {A, P0, . . . , Pd}) under the elimination ranking

R1 : u < Y < u00 < · · · < ud0 and R1|Y = R.
4.4. Set P = coeff(F1, Θ(Y) ∪U). Note P is a system of homogeneous linear equations

in c.
4.5. Solve the linear equation system P = 0.
4.6. If c has a non-zero solution, then substitute it into F0 to get F and return F ;

else F = 0.
4.7. t := t + 1.

/*/ GPol stands for algebraic polynomial and generic algebraic polynomial.
/*/ coeff(F, V ) returns the set of coefficients of F as an algebraic polynomial in V .

Suppose F is the differential Chow form of I. Then by the definition of the differ-
ential Chow form, F is the unique (up to a factor in F) polynomial of minimal order 
and minimal degree under this order contained in J ∩ F{u0, . . . , ud}. And by Theo-
rem 10, ord(F ) = ord(A). Therefore, if F0 is a homogeneous differential polynomial of 
the smallest degree among all polynomials in F{u0, . . . , ud} with ord(F0) = ord(A), 
whose differential remainder with respect to {A, P0, . . . , Pd} under R1 is zero, then F0

must be the differential Chow form of I.
With the above idea, we now give Algorithm DChowForm-1 to compute the differential 

Chow form of sat(A).
With the fixed order h = ord(A), the algorithm works adaptively by searching a 

nonzero F ∈ F [u[h]
0 , . . . , u[h]

d ] = F [u(k)
ij : k ≤ h] with a minimal degree t. We start from 

t = 1. If we cannot find a nonzero F with such a degree, then we repeat the procedure 
with degree t + 1. Theorem 24 guarantees the termination of the algorithm. In this way, 
we need only to handle problems with the real size and need not go to the upper bound 
in most cases.

Theorem 28. Let I = sat(A) be a nonzero prime differential ideal of differential dimen-
sion d and A = {A1, . . . , An−d} a characteristic set of I under some orderly ranking. 
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Set h =
∑

i ord(Ai), m = maxi{deg(Ai)}. Algorithm DChowForm-1 computes the dif-
ferential Chow form F (u0, . . . , ud) of I with at most

[
(n− d)(m + 1)2(n+1)(h+1)+3]2.376(e+h+1)[n+(d+1)(n+1)]+1

F-arithmetic operations.

Proof. The algorithm finds a nonzero differential polynomial F ∈ F{u0, . . . , ud} of the 
smallest degree satisfying that ord(F ) = h = ord(A) and the differential remainder of 
f with respect to A, P0, . . . , Pd under R1 is zero. The existence of such an F is obvious 
since

[I,P0, . . . ,Pd] ∩ F [u[h]
0 , . . . ,u[h]

d ] = (Chow(I)),

where Chow(I) is the differential Chow form of I. So this F is the differential Chow 
form of I.

We estimate the computational complexity of the algorithm below. In each loop of 
step 4, the complexity is determined by the number of arithmetic operations needed 
to perform in step 4.3 and step 4.5. In step 4.3, we need to compute the differential 
remainder F1 of F0 with respect to the characteristic set {A, P0, . . . , Pd}. By Theorem 27, 
the degree of F1 is bounded by (m + 1)(n+1)(h+1)(t + 1) and F2 can be computed with 
at most

C1t = 22.376[(t + 1)(m + 1)(n+1)(h+1)+1]2.376(e+h+1)[n+(d+1)(n+1)]

F-arithmetic operations.
In step 4.6, we need to solve the linear equation system P = 0 in c. It is easy to see 

that | c |=
((d+1)(h+1)(n+1)+t−1

t

)
, then P = 0 is a linear equation system with W1,t =| c |

variables and W2,t =
(deg(F1)+n(e+h+1)+(d+1)(h+1)(n+1)

deg(F1)
)

equations. To solve it, we need 
at most

C2t = max{W1,t,W2,t}ω

F-arithmetic operations, where ω is the matrix multiplication exponent and currently, 
the best known ω is 2.376 [9].

Suppose T is the degree bound of the differential Chow form. The iteration in step 4 
may loop from 1 to T in the worst case. Thus, in terms of T , the differential Chow form 
can be computed with

T∑
t=1

(C1t + C2t)

≤ T
{

[(T + 1)(m + 1)(n+1)(h+1)+1]2.376(e+h+1)(nd+2n+d+1)

+
(
[(t + 1)(m + 1)(n+1)(h+1)]2.376[n(e+h+1)+(d+1)(h+1)(n+1)])

}
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F-arithmetic operations in the worst case. Here, to derive the above inequalities, we 
always assume that (m + 1)(n+1)(h+1)(T + 1) > n(e + h + 1) + (d + 1)(h + 1)(n + 1). 
Hence, the theorem follows by simply replacing T by the degree bound for F given in 
Theorem 24. �

We use the following example to illustrate the above algorithm.

Example 29. Let n = 1 and A = {y′ − 4y}. Clearly, d = dim(sat(A)) = 0. We use this 
simple example to illustrate Algorithm 1.

Let P0 = u00 +u01y, and u0 = (u00, u01). In step 2, h = 1 and U = (u00, u01, u′
00, u

′
01).

First, for t = 1, we execute steps 4.1 to 4.7. Set

F0 = c01u00 + c02u01 + c03u
′
00 + c04u

′
01 and c = (c01, c02, c03, c04).

In step 4.3, we get

F1 = −(c01 + 4c03)u01y + c02u02 − c03u
′
01y + c04u

′
01.

Then in step 4.4, P = {c01 + 4c03, c02, c03, c04} and P = 0 has a unique solution c =
(0, 0, 0, 0). So F = 0 and in step 4.8, we get t = 2.

Next, we execute steps 4.1 to 4.7 for t = 2. Set

F0 = c01u
2
00 + c02u00u01 + c03u00u

′
00 + c04u00u

′
01 + c05u

2
01 + c06u01u

′
00 + c07u01u

′
01

+ c08u
′ 2
00 + c09u

′
00u

′
01 + c10u

′ 2
01,

and c = (c01, . . . , c10). In step 4.3, we obtain

F1 = (c01 + 4c03 + 16c08)u2
01y

2 + (c03 + 8c08)u01u
′
01y

2 + c08u
′
012y2 − (c02 + 4c06)u2

01y

− (c04 + c06 + 4c09)u01u
′
01y − c09u

′
012y + c05u

2
01 + c07u01u

′
01 + c10u

′ 2
01.

So in step 4.4, P = 0 consists of equations
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c01 + 4c03 + 16c08 = 0
c04 + c06 + 4c09 = 0

c03 + 8c08 = 0
c02 + 4c06 = 0

c05 = c07 = c08 = c09 = c10 = 0

Hence c = (0, 4q, 0, q, 0, −q, 0, 0, 0, 0) where q ∈ Q\{0}. Substitute c into F0, then we get

F = 4u00u01 + u00u
′
01 − u01u

′
00.

Therefore, this algorithm returns F = 4u00u01 + u00u
′
01 − u01u

′
00, which is exactly the 

differential Chow form of I = sat(A).
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5. Computation of differential Chow forms for differential ideals represented by 
characteristic sets under arbitrary differential rankings

In Section 4, we give an algorithm to compute the differential Chow form of a prime 
differential ideal given by a characteristic set under some orderly ranking R. In this 
section, we will consider the more general case when R is an arbitrary ranking. More 
precisely, for a prime differential ideal I = sat(A), where A is a characteristic set of I
under an arbitrary ranking, we give algorithms to compute the differential Chow form 
based on the order bound given in Section 3 and the degree bound to be given later. 
Here, we give two different algorithms according to different searching strategies by giving 
order and degree distinct priorities.

5.1. An algorithm for computing the differential Chow form: order priority

Let I = sat(A) be a prime differential ideal of differential dimension d and A =
{A1, . . . , An−d} a given characteristic set of I under an arbitrary fixed ranking R. In 
this section, we will give an algorithm to compute the differential Chow form F of I
based on linear algebraic techniques.

To give the algorithm, we first need to give a degree bound for the differential Chow 
form of a prime differential ideal in terms a characteristic set under an arbitrary ranking. 
The method used here is similar to that in Section 4.3.

Theorem 30. Let I be a prime differential ideal in F{Y} of differential dimension d. Let 
A = {A1, . . ., An−d} be a characteristic set of I under an arbitrary ranking. Suppose F
is the differential Chow form of I. Set deg(Ai) = mi. Then

deg(F ) ≤ 2(Jac(A)+1)(d+1)(2 n−d∑
i=1

(mi − 1) + 1
) n−d∏

i=1
m

Jac(A)+1
i .

Proof. Suppose ord(I) = h. Let H =
∏n−d

i=1 IAi
SAi

. We first claim that

(F ) = (A[h]
1 , . . . , A

[h]
n−d,P

[h]
0 , . . . ,P

[h]
d ,Hx0 − 1) ∩ F [u[h]

0 , . . . ,u[h]
d ],

where x0 is a new indeterminant. Indeed, by the discussion above Theorem 27, for each 
polynomial f ∈ F [Y[h]], the differential remainder of f with respect to A is equal to the 
algebraic remainder of f with respect to {A[h]

1 , . . . , A[h]
n−d}. So similarly to the proof of 

Lemma 22, it is easy to show that I∩F [Y[h]] = (A[h]
1 , . . . , A[h]

n−d, Hx0−1) ∩F [Y[h]]. Then

(F ) =
(
I ∩ F [Y[h]],P[h]

0 , . . . ,P
[h]
d

)
∩ F [u[h]

0 , . . . ,u[h]
d ]

=
(
(A[h]

1 , . . . , A
[h]
n−d,Hx0 − 1) ∩ F [Y[h]],P[h]

0 , . . . ,P
[h]
d

)
∩ F [u[h]

0 , . . . ,u[h]
d ]
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⊆ (A[h]
1 , . . . , A

[h]
n−d,P

[h]
0 , . . . ,P

[h]
d ,Hx0 − 1) ∩ F [u[h]

0 , . . . ,u[h]
d ]

⊆ [A1, . . . , An−d,P0, . . . ,Pd] ∩ F [u[h]
0 , . . . ,u[h]

d ] = (F ),

which proves the claim.
Let

J = (A[h]
1 , . . . , A

[h]
n−d,P

[h]
0 , . . . ,P

[h]
d ,Hx0 − 1) ⊂ F [Y[h],u[h]

0 , . . . ,u[h]
d , x0].

Then by Lemma 22, we have deg(J ) ≤
∏n−d

i=1 mh+1
i 2(h+1)(d+1)(2 

∑n−d
i=1 (mi − 1) + 1

)
. 

From Lemma 21, we get deg(F ) = deg
(
J

⋂
F(u[h]

0 , . . . , u[h]
d )

)
≤ deg(J ). Thus

deg(F ) ≤ 2(h+1)(d+1)(2 n−d∑
i=1

(mi − 1) + 1
) n−d∏

i=1
mh+1

i .

By Theorem 18, h ≤ Jac(A). Thus, the result follows. �
Now we give Algorithm DChowform-2 to compute the differential Chow form F of 

I where the algorithm works adaptively by searching F with order h from ord(A)
to Jac(A). Indeed, by Lemma 6, ord(I) ≥ ord(A), and thus ord(F ) ≥ ord(A), that 
is why we start from h = ord(A). For a fixed order h, we search F from t = 1. If 
we cannot find F with such a degree, then we repeat the procedure with t + 1 until 
t >

∏n−d
i=1 deg(Ai)h+12(h+1)(d+1)(2 

∑n−d
i=1 (deg(Ai) − 1) + 1

)
. If for this h, a nonzero F

cannot be found, then we repeat the procedure with h + 1. In this way, we need only 
to handle problems with the real size and need not go to the upper bound in most 
cases. Note that the order bound given in Theorem 18 and the degree bound given in 
Theorem 30 guarantee the termination of Algorithm 2.

Theorem 31. Let I = sat(A) be a prime differential ideal of differential dimension d
and A = {A1, . . . , An−d} a differential characteristic set under an arbitrary ranking. Set 
mi = deg(Ai), m = max{mi}, ei = ord(Ai), and e = max{ei}. Algorithm 2 computes 
the differential Chow form F of I with

(Jac(A) + 1)
[
(n− d)(m + 1)(2n−d+1)(Jac(A)+1)+3]2.376n1+1

F-arithmetic operations in the worst cases, where n1 =
(
e +Jac(A) +1

)(
n +(d +1)(n +1)

)
.

Proof. Algorithm 2 computes a nonzero differential polynomial with minimal order and 
minimal degree under this order contained in the differential ideal [sat(A), P0, . . . , Pd] ∩
F{u0, . . . , ud}, which is exactly the differential Chow form of sat(A). Theorems 18 and 30
guarantees the termination of the algorithm. So it remains to estimate its computational 
complexity.
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Algorithm 2 DChowform-2(A).

Input: A characteristic set A = {A1, . . . , An−d} of a nonzero prime differential 
ideal I under an arbitrary ranking R

Output: The differential Chow form F (u0, . . . , ud) of I.

1. For i = 0, . . . , d, let Pi = ui0 + ui1y1 + · · · + uinyn and ui = (ui0, . . . , uin).
2. Set h = ord(A).
3. Set F = 0.
4. While F = 0 do

4.1. Set t = 1, v = ∪d
i=0u

[h]
i .

4.2. While t ≤ 2(h+1)(d+1)(2 
∑n−d

i=1 (deg(Ai) − 1) + 1
)∏n−d

i=1 deg(Ai)h+1 do
4.2.1. Set F0 to be a homogeneous GPol of degree t in v.
4.2.2. Set c = coeff(F0, v).
4.2.3. Substitute ui0 = −ui1y1 − · · · − uinyn (i = 0, . . . , d) into F0 to get F1.
4.2.4. Compute F2 = δ-rem(F1, A) under ranking R.
4.2.5. Set P = coeff(F2, Θ(Y) ∪ v). Note P is a set of linear homogeneous

polynomials in c.
4.2.6. Solve the linear equation system P = 0.
4.2.7. If c has a non-zero solution, then substitute it into F0 to get F and return F ;

else F = 0.
4.2.8. t := t + 1.

4.3. h := h + 1.

/*/ Pol and GPol stand for algebraic polynomial and generic algebraic polynomial.
/*/ coeff(F, V ) returns the set of coefficients of F as an algebraic polynomial in V .

Clearly, it is enough to estimate the complexity of steps 4.2.4 and 4.2.6. Similarly as 
in the proof of Theorem 28, for fixed h and t, step 4.2.4 can be done with at most

T
(h,t)
1 = 22.376[(m + 1)(n−d)(h+1)+1(2t + 1)

]2.376(e+h+1)[n+(d+1)(n+1)]

F-arithmetic operations, while in step 4.2.6, we needs at most

T
(h,t)
2 = [(m + 1)(n−d)(h+1)(2t + 1)]2.376(e+h+1)[n+(d+1)(n+1)]

F-arithmetic operations.
From Theorem 18, step 4 may loop from ord(A) to Jac(A), and for each fixed h, 

step 4.2 may loop from 1 to D(h) = 2(h+1)(d+1)(2 
∑n−d

i=1 (mi− 1) +1
)∏n−d

i=1 mh+1
i . Thus, 

the differential Chow form can be computed with at most

Jac(A)∑
h=ord(A)

D(h)∑
t=1

(T (h,t)
1 + T

(h,t)
2 )

≤ (Jac(A) + 1)
[
(n− d)(m + 1)(2n−d+1)(Jac(A)+1)+3]2.376n1+1
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F-arithmetic operations, where n1 =
(
e +Jac(A) +1

)(
n +(d +1)(n +1)

)
is the cardinality 

of the set {y(k)
i , u(k)

jl : 1 ≤ i ≤ n; k ≤ e + Jac(A); 0 ≤ j ≤ d; 0 ≤ l ≤ n}. Here, to derive 
the above inequalities, D(Jac(A)) > n1 is assumed. �

We use the following example to illustrate the above algorithm.

Example 32. Let n = 2, A = {y2−y′1} and R is the elimination ranking y1 < y2. Clearly, 
d = dim(sat(A)) = 1. We use this simple example to illustrate Algorithm 2.

In step 1, we set P0 = u00+u01y1+u02y2, P1 = u10+u11y1+u12y2, u0 = (u00, u01, u02)
and u1 = (u10, u11, u12). In step 2, h = ord(A) = 0.

For h = 0, we execute steps 4.1 and 4.2. In step 4.1, v = (u00, u01, u02, u10, u11, u12). 
The degree bound in step 4.2 is t ≤ 4. We first execute steps 4.2.1 to 4.2.6 for t = 1. Set

F0 = c01u00 + c02u01 + c03u02 + c04u10 + c05u11 + c06u12, and c = (c01, . . . , c06).

In steps 4.2.3 and 4.2.4, we get the following polynomials:

F1 = −c01u11y1 − c01u12y2 + c02u01 + c03u02 − c04u11y1 − c04u12y2 + c05u11 + c06u12,

F2 = −c01u11y1 − c01u12y
′
1 + c02u01 + c03u02 − c04u11y1 − c04u11y

′
1 + c05u11 + c06u12.

So P = 0 consists of equations {c01 = c02 = c03 = c04 = c05 = c06 = 0} and P = 0 has a 
unique solution c = (0, 0, 0, 0, 0, 0). So F = 0 and in step 4.2.8, t = 2.

Next we execute steps 4.2.1 to 4.2.6 for t = 2. In the following, to save space, we 
will just list the number of equations and the solutions of the linear equation system 
P = 0, which are easily computed by Maple due to the strong sparsity of the system. 
For t = 2, P = 0 is a system of 34 homogeneous linear equations which has a unique 
solution c = (c01, . . . , c21) = (0, . . . , 0). And for t = 3, we get 104 linear homogeneous
polynomials in P and P = 0 has a unique solution c = (c01, . . . , c56) = (0, . . . , 0). For 
t = 4, P = 0 is a system of 259 linear homogeneous equations in 126 variables, which 
only has a zero solution c = (0, . . . , 0). Thus, F = 0. Now, in step 4.2, t = 5 > 4. So we 
go on to step 4.3 and obtain h = 1.

Since F = 0, we execute steps 4.1 and 4.2 for h = 1. In step 4.1, set t = 1 and 
v = (u00, u01, u02, u10, u11, u12, u′

00, u
′
01, u

′
02, u

′
10, u

′
11, u

′
12). Now, we execute step 4.2 until 

t > 8 or F �= 0. For t = 1, P = 0 is the system

{c01 = c02 = c03 = c04 = c05 = c06 = c07 = c08 = c09 = c10 = c11 = c12 = 0},

which has a unique solution c = (c01, . . . , c12) = (0, . . . , 0). For t = 2, P = 0 is a system 
of 186 linear equations which has a unique solution c = (c01, . . . , c78) = (0, . . . , 0). For 
t = 3, we get 1122 linear homogeneous polynomials in P and P = 0 has a unique 
solution c = (c01, . . . , c364) = (0, . . . , 0). And for t = 4, in step 4.2.5, we get 5082 
linear homogeneous polynomials in P, and in step 4.2.6, P = 0 has a nonzero solution 
c = (c01, . . . , c1365) with
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c164 = c171 = c283 = c388 = c462 = c506 = c668 = c760 = q,

c110 = c177 = c256 = c442 = c449 = c568 = c675 = c725 = −q,

and all the remaining c equal to 0, where q ∈ Q\{0}. Therefore, this algorithm returns

F = u00u01u11u12 − u00u02u
2
11 + u01u02u10u11 − u2

01u10u12 + u′
00u02u11u12 − u′

00u01u
2
12

+ u00u02u11u
′
12 − u01u02u10u

′
12 + u01u02u

′
10u12 − u2

02u
′
10u11 + u01u

′
02u10u12

− u00u02′u11u12 − u00u02u
′
11u12 + u2

02u10u
′
11 − u′

01u02u10u12 + u00u
′
01u

2
12,

which is the differential Chow form of I = sat(A).

5.2. An alternative algorithm for computing the differential Chow form: degree priority

Algorithm 2 searches the differential Chow form with the order prior to the degree. In 
other words, the output of Algorithm 2 is a nonzero polynomial in [sat(A), P0, . . . , Pd] ∩
F{u0, . . . , ud} with minimal order and minimal degree under this order. Thus, by the 
definition of differential Chow form, it must be the differential Chow form.

In this section, we give an alternative algorithm for computing the differential Chow 
form of sat(A) which uses the searching strategy prioritizing degree over order. To be 
more precise, this algorithm works adaptively by searching F from degree t = 1 and 
for this fixed t searching it with order h from ord(A) to the order bound Jac(A). If a 
nonzero F with degree t is not found, then we repeat the procedures with degree t +1. If 
we find such a nonzero F , it requires to check whether F is the differential Chow form. 
Here, we using the following criteria.

Theorem 33. Let I = sat(A) be a prime differential ideal of differential dimension d
and A = {A1, . . . , An−d} a characteristic set under an arbitrary ranking R. Suppose 
f ∈ F{u0, · · · , ud} is an irreducible differentially homogeneous polynomial and h =
ord(f). Let R1 be the elimination ranking u < Y < u00 < · · · < ud0 with R1|Y = R. 
Let R2 be the elimination ranking u < ud0 < · · · < u00 < y1 < · · · < yn. Let Cf =
{f, ∂f

∂u
(h)
00

y1 − ∂f

∂u
(h)
01

, ∂f

∂u
(h)
00

y2 − ∂f

∂u
(h)
01

, . . ., ∂f

∂u
(h)
00

yn − ∂f

∂u
(h)
0n

}.
Then f is the differential Chow form of I if and only if f satisfies the following 

conditions:

1) The differential remainder of f with respect to {A, P0, . . . , Pd} under the ranking R1

is zero.
2) The differential remainder of each element in the set {A, P0, . . . , Pd} with respect 

to Cf under the ranking R2 is zero; while the differential remainder of IASA with 
respect to Cf is nonzero. Here IASA is the product of the initials and separants of 
elements in A under R.
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Proof. If f is the differential Chow form of I, then by Theorem 10, 1) and 2) are valid.
For the other direction, assume f satisfies 1) and 2). We will show that f is the 

differential Chow form of I. Let

J = [sat(A),P0, . . . ,Pd] ⊂ F{Y,u, u00, . . . , ud0}.

We first claim that Cf ⊆ J . Since {A, P0, . . . , Pd} is a characteristic set of J under the 
ranking R1 [12, Remark 4.4], by 1), f ∈ J . Let ξ = (ξ1, . . . , ξn) be a generic point of I =
sat(A) over F that is free from F〈u〉. Set ηj = − 

∑n
i=1 ujiξi, then (ξ1, . . . , ξn, η0, . . . , ηd)

is a generic point of J . So f(u, η0, . . . , ηd) = 0. Take the partial derivatives of the both 
sides of f(u, η0, . . . , ηd) = 0 with respect to u(h)

0ρ (ρ = 1, . . . , n), then we have

∂f

∂u
(h)
0ρ

− ξρ
∂f

∂u
(h)
00

= 0,

where ∂f

∂u
(h)
0ρ

and ∂f

∂u
(h)
00

are obtained by replacing u00, . . . , ud0 with η0, . . . , ηd in ∂f

∂u
(h)
0ρ

and 
∂f

∂u
(h)
00

respectively. So ∂f

∂u
(h)
00

yρ − ∂f

∂u
(h)
0ρ

∈ J . Thus, we have proved that Cf ⊆ J .
Obviously, Cf is an irreducible auto-reduced set with respect to the elimination rank-

ing R2. Thus, sat(Cf ) is a prime differential ideal with Cf a characteristic set [39, 
p. 107]. We now show that sat(Cf ) = J . For any g ∈ J = [sat(A), P0, . . . , Pd)], we 
have (IASA)tg ∈ [A, P0, . . . , Pd] for some t ∈ N. Since the differential remainder of each 
Pi and each element in A with respect to Cf is zero, Pi ∈ sat(Cf ) and A ⊂ sat(Cf ). 
Thus, (IASA)tg ∈ sat(Cf ). Since sat(Cf ) is a prime differential ideal, and the differential 
remainder of IASA with respect to Cf is nonzero, we have g ∈ sat(Cf ) and it follows that 
J ⊆ sat(Cf ). On the other hand, since f is irreducible, ∂f

∂u
(h)
00

/∈ J . For, if not then we 

have the relation ∂f

∂u
(h)
00

∈ J ⊆ sat(Cf ), and therefore ∂f

∂u
(h)
00

would be divisible by f , a 

contradiction. So sat(C) =
(
[Cf ] : ( ∂f

∂u
(h)
00

)∞
)
⊆ J . Thus, sat(Cf ) = J and Cf is a charac-

teristic set of J , and consequently f is a characteristic set of J ∩F{u0, . . . , ud} = sat(F )
under the elimination ranking u < ud0 < · · · < u00, where F is the differential Chow 
form of I. Since both f and F are irreducible, f and F differ at most by a factor in F . 
Thus, f is the differential Chow form of I. �

With the above preparations, we now give Algorithm 3.

Theorem 34. Let I = sat(A) be a prime differential ideal of differential dimension d with 
A = A1, . . . , An−d a characteristic set under an arbitrary ranking. Set mi = deg(Ai), 
m = maxi{mi}, ei = ord(Ai), and e = maxi{ei}. Algorithm 3 computes the differential 
Chow form of I with

(Jac(A) + n + 3)
[
(n− d)(m + 1)(2n−d+1)(Jac(A)+1)+3]2.376n1(ne+n+e+2)

F-arithmetic operations in the worst cases, where n1 = (e +Jac(A) +1)[(d +1)(n +1) +n].
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Algorithm 3 DChowform(A).

Input: A characteristic set A = {A1, . . . , An−d} of a nonzero prime differential 
ideal I under an arbitrary ranking R.

Output: The differential Chow form F (u0, . . . , ud) of I.

1. For i = 0, . . . , d, let Pi = ui0 + ui1y1 + · · · + uinyn and ui = (ui0, . . . , uin).
2. Set ĥ = Jac(A).
3. Set F = 0 and t = 1.
4. While t ≤

∏n−d
i=1 deg(Ai)ĥ+12(ĥ+1)(d+1)(2 

∑n−d
i=1 (deg(Ai) − 1) + 1

)
do

4.1. Set h = ord(A).
4.2. While h ≤ ĥ do

4.2.1. Set F0 to be a homogeneous GPol of degree t in v = ∪d
i=0u

[h]
i .

4.2.2. Set c = coeff(F0, v).
4.2.3. Substitute u(k)

i0 = −(ui1y1 + · · ·+uinyn)(k) (i = 0, . . . , d; 0 ≤ k ≤ h) into F0
to get F1.

4.2.4. Compute F2 = δ-rem(F1, A) under ranking R.
4.2.5. Set P = coeff(F2, Θ(Y) ∪ v). Note P is a set of linear polynomials in c.
4.2.6. Solve the linear homogeneous equation system P = 0.
4.2.7. If P = 0 has non-zero solutions, then select one and substitute it into F0

to get F ;
4.2.8. If F �= 0, then

4.2.8.1. If F is not differentially homogeneous, then F = 0, ĥ = h − 1,
goto step 4.3.

4.2.8.2. For 1 ≤ i ≤ n −d, compute αi = δ-rem(Ai, CF ), if αi �= 0 then F = 0, 
ĥ = h − 1, goto step 4.3; else i = i + 1.

4.2.8.3. For 0 ≤ i ≤ d, compute βi = δ-rem(Pi, CF ), if βi �= 0 then F = 0,
ĥ = h − 1, goto step 4.3; else i = i + 1.

4.2.8.4. Compute γ = δ-rem(IASA, CF ), if iγ = 0, then F = 0, ĥ = h − 1,
goto step 4.3.

4.2.8.5. Return F .
4.2.9. h := h + 1.

4.3. t := t + 1.

/*/ CF = {F, ∂F

∂u
(h)
00

y1 − ∂F

∂u
(h)
01

, . . . , ∂F

∂u
(h)
00

yn − ∂F

∂u
(h)
0n

}.

/*/ Pol and GPol stand for algebraic polynomial and generic algebraic polynomial.
/*/ coeff(F, V ) returns the set of coefficients of F as an algebraic polynomial in V .

Proof. First, we claim that (∗) for each fixed degree t, if there exists h ≤ Jac(A) such 
that 1) Pt,h has at least one nonzero solution and 2) P<t,≤h and Pt,<h has only the trivial 
solution 0, then either the obtained nonzero F is the differential Chow form, or ord(I) ≤
h −1. Indeed, if the obtained F does not satisfy conditions in steps 4.2.8.1 to 4.2.8.4, then 
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F is the differential Chow form by Theorem 33. Otherwise, F is a nonzero differential 
polynomials contained in sat(Chow(I)) = [sat(A), P0, . . . , Pd] ∩ F{u0, . . . , ud} which is 
not the differential Chow form. Here, Chow(I) is the differential Chow form of I. So 
ord(Chow(I)) ≤ h. But if ord(Chow(I)) = h, Chow(I) divides F , a contradiction to the 
hypothesis that each P<t,≤h does not have nonzero solutions. Thus, ord(Chow(I)) < h, 
and the claim (∗) is proved.

Second, we claim that it is enough to pick any one of the nonzero solutions in step 4.2.7. 
Suppose there are two distinct solutions c1 and c2 of P = 0 obtained in step 4.2.6. Let 
F1 and F2 be the polynomials obtained by substituting c1 and c2 into F0 respectively. 
Equivalently, we need to show that F1 does not satisfy steps 4.2.8.1 to 4.2.8.4 if and only 
if F2 does not. Suppose F1 does not satisfy steps 4.2.8.1 to 4.2.8.4, then by Theorem 33, 
F1 is the differential Chow form of sat(A). Since F2 has the same degree as F1 and the 
same order guaranteed by claim (∗), F2 = a · F1 (a ∈ F) must be the differential Chow 
form, which proves the claim.

The above two claims, as well as the order and degree bounds given in Theorems 18
and 30, guarantee that the algorithm finds a nonzero polynomial F ∈ [sat(A),P0,

. . . , Pd] ∩ F{u0, . . . , ud} satisfying the conditions in Theorem 33 with minimal degree. 
This F must be irreducible, for Pi,j = 0 only possess zero solutions for i < t and j ≤ h. 
By Theorem 33, the output F must be the differential Chow form of I.

We estimate the complexity of the algorithm below. It suffices to estimate the com-
plexity step 4.2.4, step 4.2.6, and step 4.2.8 in the algorithm. Similarly as in the proof 
of Theorem 28, for fixed t and h, step 4.2.4 and step 4.2.6 can be done with at most

T
(h,t)
1 = 22.376[(m + 1)(n−d)(h+1)+1(2t + 1)

]2.376(e+h+1)[n+(d+1)(n+1)]

and

T
(h,t)
2 = [(m + 1)(n−d)(h+1)(2t + 1)]2.376(e+h+1)[n+(d+1)(n+1)]

arithmetic operations respectively. For each fixed t, step 4.2.8 will be executed at most 
once. In step 4.2.8.2, we need to compute the differential remainder of Ai with respect 
to CF . By Lemma 27, this step can be done with at most

T
(t,h)
3 =

n−d∑
i=1

22.376[(mi + 1)(t + 1)(n+1)(ei+1)+1]2.376[n+(d+1)(n+1)](h+ei+1))

arithmetic operations. Similarly, we get step 4.2.8.3 and step 4.2.8.4 can be done with 
at most

T
(t,h)
4 =

d∑
i=0

22.376[(2 + 1)(t + 1)n+2]2.376[n+(d+1)(n+1)](h+1)

and
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Fig. 1. “◦” means the algorithm is executed for the corresponding (t, h) but Pt,h has only a zero solution, 
and “∗” means Pt,h has nonzero solutions but the corresponding nonzero F is not the differential Chow 
form, while “•” means the corresponding F is the output.

T
(t,h)
5 = 22.376

[(
2
n−d∑
i=1

(mi − 1) + 1
)
(t + 1)(n+1)(e+1)+1

]2.376[n+(d+1)(n+1)](h+e+1)

arithmetic operations respectively. From Theorem 30, we know that step 4 may loop 
from 1 to D = 2(Jac(A)+1)(d+1)(2 

∑n−d
i=1 (mi−1) +1

)∏n−d
i=1 m

Jac(A)+1
i , and for each fixed t, 

from Theorem 18, step 4.2 may loop from ord(A) to Jac(A). Thus, the differential Chow 
form can be computed with less than

D∑
t=1

Jac(A)∑
h=ord(A)

[
T

(t,h)
1 + T

(t,h)
2 + δh,h0(t)(T

(t,h0(t))
3 + T

(t,h0(t))
4 + T

(t,h0(t))
5 )

]

< (Jac(A) + 1)
[
(n− d)(m + 1)(2n−d+1)(Jac(A)+1)+3]2.376n1+1

+ (n + 2)
[
2(n− d)(m + 1)(Jac(A)+1)(n+1)+3]2.376n1(ne+n+e+2)

< (Jac(A) + n + 3)
[
(n− d)(m + 1)(2n−d+1)(Jac(A)+1)+3]2.376n1(ne+n+e+2)

F-arithmetic operations, where we set n1 = (n − d)(e + Jac(A) + 1)[(d + 1)(n + 1) + n]. 
Here, h0(t) is the smallest h such that Pt,h = 0 has a nonzero solution, and δh,h0(t) is 
the Kronecker delta. �
Remark 2. We use Fig. 1 to illustrate the searching strategies of Algorithm 2 and Algo-
rithm 3. Both algorithms have their own advantages and defects in different situations. 
Fig. 1 shows Algorithm 2 has higher efficiency than Algorithm 3 in some cases. And it 
may happen that Algorithm 3 has higher efficiency than Algorithm 2 in certain cases. 
For example, let n = 2 and A = {(y′1)2y′′2 − y1} with R the elimination ranking y2 < y1. 
Here, the differential Chow form of sat(A) is of order 2 and total degree 14. We use 
Fig. 2 to show the steps which are needed to execute in Algorithm 2 and Algorithm 3
respectively for this example. It is clear that Algorithm 3 is of higher efficiency than 
Algorithm 2 in this particular example.
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Fig. 2. Both Algorithm 2 and Algorithm 3 return the same differential polynomial F with h = 2 and t = 14. 
Algorithm 2 is executed at all the integer lattice points (h, t) which lie in the gray convex polygon as shown 
in the figure (c), while Algorithm 3 is executed at all the integer lattice points (h, t) of the gray convex 
polygon in the figure (d).

Remark 3. When using Algorithm 3 to compute the differential Chow form, in 
step 4.2.8.1, we can examine whether the current nonzero differential polynomial F
satisfies the symmetric properties described in Theorem 10. If it is not symmetric, goto 
step 4.3. This will improve the efficiency of the algorithm.

A few words should be said about the algorithms in this paper. All the algorithms are 
theoretical ones and we use them to estimate the computational complexity of differential 
Chow forms in the worst case. They are not implemented in computer algebra systems.

Remark 4. For a fixed prime differential ideal I, transforming characteristic sets from 
one ranking to another will not affect the results of the algorithms. That is because 
the differential Chow form is uniquely determined by the differential ideal I itself and 
it does not depend on the choice of ranking or the choice of characteristic set under a 
certain ranking. But the computational complexity in practice will definitely be affected. 
In general, if giving a characteristic set of I under an orderly ranking, the differential 
Chow form is more easily be computed using Algorithm 1.

We conclude this section by giving an application of the algorithms in this paper. 
Given a characteristic set A of a prime differential ideal I under an arbitrary ranking, 
Theorem 18 shows that ord(I) ≤ Jac(A). But what is the precise order of I? And how 
to compute it?

Since ord(I) = ord(Chow(I)), if the differential Chow form of I has been computed, 
then clearly we can read off the order of I. Thus, the above problem can be solved by 
computing the differential Chow form of I.
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