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ABSTRACT
In this paper, the concept of sparse difference resultant for a
Laurent transformally essential system of Laurent difference
polynomials is introduced and its properties are proved. In
particular, order and degree bounds for the sparse difference
resultant are given. Based on these bounds, an algorithm to
compute the sparse difference resultant is proposed, which
is single exponential in terms of the number of variables, the
Jacobi number, and the size of the system. Also, the precise
order, degree, a determinant representation, and a Poisson-
type product formula for the difference resultant are given.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation - Algebraic algorithms

General Terms
Algorithms, Theory

Keywords
Sparse difference resultant, difference resultant, Laurent trans-
formally essential system, Jacobi number, single exponential
algorithm.

1. INTRODUCTION
The resultant, which gives conditions for an overdeter-

mined system of polynomial equations to have common solu-
tions, is a basic concept in algebraic geometry and a powerful
tool in elimination theory [3, 6, 8, 16, 17, 26]. The concept of
sparse resultant originated from the work of Gelfand, Kapra-
nov and Zelevinsky on generalized hypergeometric functions,
where the central concept of A-discriminant is studied [15].
Kapranov, Sturmfels and Zelevinsky introduced the concept
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of A-resultant [18]. Sturmfels further introduced the general
mixed sparse resultant and gave a single exponential algo-
rithm to compute the sparse resultant [26, 27]. Canny and
Emiris showed that the sparse resultant is a factor of the de-
terminant of a Macaulay-style matrix and gave an efficient
algorithm to compute sparse resultants based on this matrix
representation [10]. A determinant representation for the
sparse resultant was finally given by D’Andrea [7]. Li [23]
studied resultants and subresultants for linear differential
and linear difference polynomials. Recently, in [13], a rigor-
ous definition for the differential resultant of n + 1 generic
differential polynomials in n variables was presented [13] and
also the theory of sparse differential resultants for Laurent
differentially essential systems was developed [20, 21]. It is
meaningful to generalize the theory of sparse resultant to
difference polynomial systems.

In this paper, the concept of sparse difference resultant
for a Laurent transformally essential system consisting of
n + 1 Laurent difference polynomials in n difference vari-
ables is introduced and its basic properties are proved. In
particular, we give order and degree bounds for the sparse
difference resultant. Based on these bounds, we give an al-
gorithm to compute the sparse difference resultant. The
complexity of the algorithm in the worst case is single ex-

ponential of the form O(mO(nlJ2)(nJ)O(lJ)), where n,m,J,
and l are the number of variables, the degree, the Jacobi
number, and the size of the Laurent transformally essential
system respectively. Besides these, the difference resultant,
which is non-sparse, is introduced and its basic properties
are given, such as its precise order, degree, determinant rep-
resentation, and Poisson-type product formula.

Although most properties for sparse difference resultants
and difference resultants are similar to their differential coun-
terparts given in [20, 21, 13], some of them are quite different
in terms of descriptions and proofs. Firstly, the definition
for difference resultant is more subtle than the differential
case as illustrated in section 7. Secondly, the criterion for
transformally essential systems given in Section 3.3 is quite
different and much simpler than its differential counterpart
given in [21]. Also, a determinant representation for the
difference resultant is given in Section 6, but such a repre-
sentation is still not known for differential resultants [28, 25].
Finally, some properties are more difficult in the difference
case. For instance, we can only show that the vanishing of
the difference resultant is a necessary condition for the cor-
responding difference polynomial system to have a common
nonzero solution. However, the sufficient condition part is
still open. Also, there does not exist a definition for homo-
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geneous difference polynomials, and the definition we give
in this paper is different from its differential counterpart.

The rest of the paper is organized as follows. In Section 2,
we prove some preliminary results. In Section 3, we first in-
troduce the concepts of Laurent difference polynomials and
Laurent transformally essential systems, and then define the
sparse difference resultant for Laurent transformally essen-
tial systems. Then basic properties of sparse difference resul-
tant are proved in Section 4. And in Section 5, we present an
algorithm to compute the sparse difference resultant. Then
we introduce the notion of difference resultant and prove its
basic properties in section 6. In Section 7, we conclude the
paper by proposing several problems for future research.

2. PRELIMINARIES
In this section, some basic notations and preliminary re-

sults in difference algebra will be given. For more details
about difference algebra, please refer to [5, 19].

Let F be an ordinary difference field with a transforming
operator σ. For each a ∈ F and n ∈ N0, we denote σn(a)

by a(n), and by a[n] we mean the set {a, a(1), . . . , a(n)}. A
typical example of difference field is Q(x) with σ(f(x)) =
f(x + 1). Throughout this paper, we shall often use the
prefix “σ-” to replace “difference” or “transformally”.

Let G be a σ-extension field of F . A subset S of G is said
to be σ-independent (resp. σ-dependent) over F or a set
of difference indeterminates if the set {σka

∣

∣a ∈ S , k ≥ 0} is
algebraically independent (resp. dependent) over F . We use
△tr.deg G/F and tr.deg G/F to denote the σ-transcendence
degree and the algebraic transcendence degree of G over F
respectively. The following property will be needed.

Lemma 2.1 Let Pi(U,Y) ∈ F〈Y〉{U} (i = 1, . . . ,m) where
U = (u1, . . . , ur) and Y are sets of σ-indeterminates. If
Pi(U,Y) are σ-dependent over F〈U〉, then for any U ∈ Fr,
Pi(U,Y) are σ-dependent over F.

Proof: It suffices to show the case r = 1. We denote u = u1.
Since Pi(u,Y) are σ-dependent over F〈u〉, there exist s and

l such that P
(k)
i (u,Y) (k ≤ s) are algebraically dependent

over F(u(k)|k ≤ s+ l). By [16, p.168], P
(k)
i (ū,Y) (k ≤ s) are

algebraically dependent over F and the lemma follows. 2

Let F{Y} = F{y1, . . . , yn} be a σ-polynomial ring and R

a ranking endowed on it. For a σ-polynomial f ∈ F{Y}, the

greatest y
(k)
j w.r.t. R which appears effectively in f is called

the leader of f , denoted by ld(f) and correspondingly yj is
called the leading variable of f , denoted by lvar(f) = yj .
The leading coefficient of f as a univariate polynomial in
ld(f) is called the initial of f and is denoted by If .

For each subset S ⊂ F{Y}, we use (S) and [S] to denote
the algebraic ideal and the σ-ideal in F{Y} generated by S.

A σ-ideal I ⊂ F{Y} is called reflexive if a(1) ∈ I =⇒ a ∈ I.
An n-tuple over F is of the form (a1, . . . , an) where the ai

are in some σ-overfield of F . An n-tuple η is called a generic
zero of a σ-ideal I ⊂ F{Y} if for each P ∈ F{Y} we have
P (η) = 0 ⇔ P ∈ I. It is well known that

Lemma 2.2 [5, p.77] A σ-ideal possesses a generic zero if
and only if it is a reflexive prime σ-ideal other than [1].

Let I be a reflexive prime σ-ideal and η a generic zero of I.
The dimension of I is defined to be △tr.degF〈η〉/F . There

is another description of dimension in terms of characteristic
set. Let A be a characteristic set of a reflexive prime σ-ideal
I w.r.t. some ranking R. We rewrite A in the following
form [14]

A =







A11, . . . , A1k1

· · ·
Ap1, . . . , Apkp

where lvar(Aij) = yci and ord(Aij , yci) < ord(Ai,j+l, yci).
Then p is equal to the codimension of I, that is n−dim(I).
Unlike the differential case, here even though I is of codi-
mension one, it may happen that k1 > 1. Below, we will
show a property of uniqueness still exists. Before this, we
list several algebraic results about regular chains [2].

Let B = B1, . . . , Bm be an algebraic triangular set in F [Y]
with lvar(Bi) = yi and U = Y

∖

{y1, . . . , ym}. A polynomial
f is said to be invertible w.r.t. B if either f ∈ F [U ] or
(f,B1, . . . , Bs) ∩ F [U ] 6= {0} where lvar(f) = lvar(Bs). We
call B a regular chain if for each i > 1, the initial of Bi

is invertible w.r.t. B1, . . . , Bi−1. By asat(B), we mean the
algebraic saturation ideal (B) : I∞B . For a regular chain
B, a polynomial f is said to be invertible w.r.t. asat(B) if
(f, asat(B)) ∩ F [U ] 6= {0}.

Lemma 2.3 Let B ⊂ F [Y] be a regular chain. If
√

asat(B)
=

⋂m

i=1 Pi is a minimal prime decomposition, then f ∈ F [Y]
is invertible w.r.t. asat(B) if and only if f /∈ Pi for all i.

Proof: By [12], the parametric set of B is that of Pi for each
i. The lemma follows from the fact that for prime ideals Pi,
f /∈ Pi if and only if (f,Pi) ∩ F [U ] 6= {0}. 2

Lemma 2.4 [2] Let B be a regular chain in F [U,Y], L 6= 0
invertible w.r.t B, and Lf ∈ (B). Then f ∈ asat(B).

Lemma 2.5 Let A ∈ F{Y} be irreducible with deg(A, yi0) >

0 for some i0. If f is invertible w.r.t. A[k] when A[k] is
treated as an algebraic triangular set, then σ(f) is invertible

w.r.t. A[k+1]. In particular, A[k] is a regular triangular set
for any k ≥ 0.

Proof: It is a direct consequence of [14, Theorem 4.2]. 2

The following fact is needed to define sparse σ-resultant.

Lemma 2.6 Let I be a reflexive prime σ-ideal of codimen-
sion one in F{Y}. The first element in any characteristic
set of I w.r.t. any ranking, when taken irreducible, is unique
up to a factor in F.

Proof: Let A = A1, . . . , Am be a characteristic set of I w.r.t.
some ranking R with A1 irreducible. Suppose lvar(A) = y1.
Given another characteristic set B = B1, . . . , Bl of I w.r.t.
some other ranking R

′ (B1 is irreducible), we will show there
exists c ∈ F s.t. B1 = c ·A1. It suffices to consider the case
lvar(B) 6= y1. Suppose lvar(B1) = y2. Clearly, y2 appears
effectively in A1 for B reduces A1 to 0. And since I is
reflexive, there exists some i0 such that deg(A1, yi0) > 0.

Suppose ord(A1, y2) = o2. Take another ranking under

which y
(o2)
2 is the leader of A1 and we use Ã1 to distinguish

it from A1 under R. By Lemma 2.5, for each k, A
[k]
1 and

Ã
[k]
1 are regular triangular sets.
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Now we claim that asat(A
[k]
1 ) = asat(Ã

[k]
1 ). Suppose f ∈

asat(A
[k]
1 ), then (

∏k

i=0 σ
i(IA1))

af ∈ (A
[k]
1 ). Since IA1 is in-

vertible w.r.t. Ã1, by Lemma 2.5, (
∏k

i=0 σ
i(IA1))

a is in-

vertible w.r.t. Ã
[k]
1 . So by Lemma 2.4, f ∈ asat(Ã

[k]
1 )

and asat(A
[k]
1 ) ⊆ asat(Ã

[k]
1 ) follows. Similarly, asat(Ã

[k]
1 ) ⊆

asat(A
[k]
1 ). Thus, asat(A

[k]
1 ) = asat(Ã

[k]
1 ).

Suppose ord(B1, y2) = o′2. Clearly, o2 ≥ o′2. Assume

o2 > o′2. Then B1 is invertible w.r.t. asat(Ã
[k]
1 ). Since

asat(A
[k]
1 ) = asat(Ã

[k]
1 ), by Lemma 2.3, B1 is invertible w.r.t.

asat(A
[k]
1 ). Thus, there exists a nonzero polynomial H with

ord(H, y1) < ord(A1, y1) s.t. H ∈ (B1, asat(A
[k]
1 )) ⊂ I,

which is a contradiction. Thus, o2 = o′2. Since B reduces A1

to zero and A1 is irreducible, there exists c ∈ F such that
B1 = c ·A1. 2

3. SPARSE DIFFERENCE RESULTANT
In this section, the concepts of Laurent σ-polynomials and

Laurent σ-essential systems are first introduced, and then
the sparse σ-resultant for Laurent σ-essential systems is de-
fined. And we also give a criterion for Laurent σ-essential
systems in terms of the support of the given system.

3.1 Laurent difference polynomial
Similar to [21], before defining sparse σ- resultant, we first

introduce the concept of Laurent σ-polynomials.

Definition 3.1 A Laurent σ-monomial of order s is of the

form
∏n

i=1

∏s

k=0(y
(k)
i )dik where dik are integers which can

be negative. A Laurent σ-polynomial over F is a finite linear
combination of Laurent σ-monomials with coefficients in F.

Clearly, the collections of all Laurent σ-polynomials form
a commutative σ-ring. We denote the σ-ring of Laurent σ-
polynomials with coefficients in F by F{Y,Y−1}.

Definition 3.2 For each F ∈ F{Y,Y−1}, the normal form
of F , denoted by N(F ), is defined to be the σ-polynomial
in F{Y} obtained by clearing denominators from F . The
order and degree of F is defined to be the order and degree
of N(F ), denoted by ord(F ) and deg(F ).

Definition 3.3 Let F ∈ F{Y,Y−1}. An n-tuple (a1, . . . , an)
over F with each ai 6= 0 is called a nonzero σ-zero of F if
F (a1, . . . , an) = 0.

3.2 Def nition of sparse difference resultant
In this section, the definition of the sparse σ-resultant will

be given. We first define sparse σ-resultants for Laurent σ-
polynomials whose coefficients are σ-indeterminates.

SupposeAi = {Mi0, . . . ,Mili} (i = 0, . . . , n) are finite sets
of Laurent σ-monomials in Y. Consider n+1 generic Laurent
σ-polynomials defined over A0, . . . ,An:

Pi =

li
∑

k=0

uikMik (i = 0, . . . , n), (1)

where all the uik are σ-independent over Q. Denote

ui = (ui0, ui1, . . . , uin) and u =
n
⋃

i=0

ui\{ui0}. (2)

The number li + 1 is called the size of Pi. To avoid the
triviality, li ≥ 1 (i = 0, . . . , n) are always assumed.

Definition 3.4 A set of Laurent σ-polynomials of the form
(1) is called Laurent σ-essential if there exist ki (i = 0, . . . , n)

with 1 ≤ ki ≤ li s.t. △tr.degQ〈
M0k0
M00

, . . . ,
Mnkn

Mn0
〉/Q = n. In

this case, A0, . . . ,An are also called Laurent σ-essential.

Although Mi0 are used as denominators in the above def-
inition, the σ-essential condition does not depend on the
choices of Mi0. Let IY,u = ([N(P0), . . . ,N(Pn)] : m) ⊂
Q{Y,u0, . . . ,un} where m is the set of all σ-monomials in
Y. The following result is a foundation for defining sparse
σ-resultants.

Theorem 3.5 Let P0, . . . ,Pn be the Laurent σ-polynomials
defined in (1). Then the following assertions hold.

1. IY,u is a reflexive prime σ-ideal in Q{Y,u0, . . . ,un}.

2. IY,u∩Q{u0, . . . ,un} is of codimension one if and only
if P0, . . . ,Pn form a Laurent σ-essential system.

Proof: Let η = (η1, . . . , ηn) be a sequence of σ-independent
elements over Q〈u〉, where u is defined in (2). Let

ζi = −

li
∑

k=1

uik
Mik(η)

Mi0(η)
(i = 0, 1, . . . , n), (3)

and ζ = (ζ0, u01, . . . , u0l0 ; . . . ; ζn, un1, . . . , unln). It is easy
to show that (η; ζ) is a generic zero of IY,u, and by Lem-
ma 2.2, IY,u is a reflexive prime σ-ideal.

Consequently, Iu = IY,u ∩ Q{u0, . . . ,un} is a reflexive
prime σ-ideal with a generic zero ζ. So Iu is of codimension
one ⇔ △tr.degQ〈ζ〉/Q =

∑n

i=0 li+n ⇔ there exist distinct
i1, . . . , in s.t. ζi1 , . . . , ζin are σ-independent over Q〈u〉 ⇔
P0, . . . ,Pn form a Laurent σ-essential system. And the last
“⇔” follows from Lemma 2.1. 2

Let [P0, . . . ,Pn] be the σ-ideal in Q{Y,Y−1;u0, . . . ,un}
generated by Pi. Then we have

Corollary 3.6 Iu = [P0, . . . ,Pn] ∩ Q{u0, . . . ,un} is a re-
flexive prime σ-ideal of codimension one if and only if {Pi :
i = 0, . . . , n} is a Laurent σ-essential system.

Proof: It is a direct consequence of Theorem 3.5 and the fact
that [P0, . . . ,Pn]∩Q{u0, . . . ,un} = IY,u∩Q{u0, . . . ,un}. 2

Now suppose {P0, . . . , Pn} is a Laurent σ-essential system.
Since Iu is a reflexive prime σ-ideal of codimension one, by
Lemma 2.6, there exists a unique irreducible σ-polynomial
R(u0, . . . ,un) ∈ Q{u0, . . . ,un} such that R can serve as the
first polynomial in each characteristic set of Iu w.r.t. any
ranking endowed on u0, . . . ,un. That is,

Lemma 3.7 Among all the polynomials in Q{u0, . . . ,un}
vanishing at (u; ζ0, . . . , ζn), R is of minimal order and degree
in each ui0 (i = 0, . . . , n).

Now the definition of sparse σ-resultant is given as follows:

Definition 3.8 The above R ∈ Q{u0, . . . ,un} is defined to
be the sparse difference resultant of the Laurent σ-essential
system P0, . . . ,Pn, denoted by ResA0,...,An or Res P0,...,Pn .
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We give an example to show that for a Laurent σ-essential
system, R may not involve the coefficients of some Pi.

Example 3.9 Let n = 2 and Pi has the form P0 = u00 +

u01y1y2, P1 = u10+u11y
(1)
1 y

(1)
2 , P2 = u20+u21y

(1)
1 y2. Clear-

ly, P0, P1,P2 form a Laurent σ-essential system. The sparse

σ-resultant of P0,P1,P2 is R = u
(1)
00 u11 − u

(1)
01 u10, which is

free from the coefficients of P2.

Example 3.9 can be used to illustrate the difference be-
tween the differential and difference cases. If P0,P1,P2 are
differential polynomials, then the sparse differential resul-
tant is u01u11u20u21u

′
00 − u11u20u00u21u

′
01 − u11u

2
20u

2
01 −

u01u00u
2
21u10, which contains all the coefficients of P0,P1,P2.

We now define the sparse σ-resultant for specific Laurent
σ-polynomials. For any finite set A of Laurent σ-monomials
in Y, let L(A) = {

∑

M∈A aMM} where the aM are in some
σ-extension field of Q. Then L(A) can be considered as the
set of all l-tuples over Q where l = |A|.

Definition 3.10 Let Ai = {Mi0, . . . ,Mili} (i = 0, . . . , n) be
a Laurent σ-essential system. Consider n+ 1 Laurent
σ-polynomials (F0, . . . , Fn) ∈

∏n

i=0 L(Ai). The sparse σ-
resultant of F0, . . . , Fn is obtained by replacing ui by the cor-
responding coefficient vector of Fi in ResA0,...,An(u0, . . . ,un).

The following lemma shows that the sparse σ-resultant
gives a necessary condition for a system to have common
nonzero solutions.

Lemma 3.11 Suppose (F0, . . . , Fn) ∈
∏n

i=0 L(Ai) have com-
mon nonzero solutions. Then ResF0,...,Fn = 0.

Proof: By Definition 3.8, ResA0,...,An ∈ [P0, . . . , Pn]. If the
Fi have a common nonzero solution, clearly, ResA0,...,An

vanishes at the coefficients of Fi. 2

3.3 Criterion for Laurent transformally essen-
tial systems in terms of the supports

LetAi (i = 0, . . . , n) be finite sets of Laurent σ-monomials.
According to Definition 3.4, in order to check whether they
are Laurent σ-essential, we need to check whether there exist
Miki

∈ Ai s.t. △tr.degQ〈M0k0/M00, . . . ,Mnkn/Mn0〉/Q =
n. This can be done with the characteristic set method [14].
In this section, we will give a conceptually and computation-
ally simpler criterion which is based on linear algebra.

Let Bi =
∏n

j=1

∏s

k≥0(y
(k)
j )dijk (i = 1, . . . ,m) be Laurent

σ-monomials. We now introduce a new algebraic indetermi-
nate x and let dij =

∑s

k=0 dijkx
k (i = 1, . . . ,m; j = 1, . . . , n)

be univariate polynomials in Z[x]. If yj and its transforms
do not occur in Bi, then set dij = 0. The vector (di1, di2,
. . . , din) is called the symbolic support vector of Bi. The
matrix M = (dij)m×n is called the symbolic support matrix
of B1, . . . , Bm.

Definition 3.12 A matrix M = (dij)m×n over Q(x) is called
normal upper-triangular of rank r if for each i ≤ r, dii 6= 0
and di,i−k = 0 (1 ≤ k ≤ i− 1), and the last m− r rows are
zero vectors.

Definition 3.13 A set of Laurent σ-monomials B1, . . . , Bm

is said to be in r-upper-triangular form if its symbolic sup-
port matrix is a normal upper-triangular matrix of rank r.

The following lemma shows that it is easy to compute the
σ-transcendence degree of a set of Laurent σ-monomials in
upper-triangular form.

Lemma 3.14 Let B1, . . . , Bm be an r-upper-triangular set.
Then △tr.degQ〈B1, . . . , Bm〉/Q = r.

Proof: Clearly, for each i ≤ r, Bi =
∏n

j=i

∏

k≥0(y
(k)
j )dijk

with ord(Bi, yi) ≥ 0, and Br+k = 1 (k > 0). Let B′
i =

∏r

j=i

∏

k≥0(y
(k)
j )dijk . Then r ≥ △tr.degQ〈B1, . . . , Bm〉/Q

≥ △tr.degQ〈B′
1, . . . , B

′
r〉/Q. So it suffices to prove that

△tr.degQ〈B′
1, . . . , B

′
r〉/Q = r.

It is clear for r = 1. Suppose it holds for r− 1. Let B′′
i =

∏r−1
j=i

∏

k≥0(y
(k)
j )dijk , then △tr.degQ〈B′′

1 , . . . , B
′′
r−1〉/Q =

r−1. Thus,△tr.degQ〈B′
1, . . . , B

′
r〉/Q = △tr.degQ〈B′

r〉/Q+
△tr.degQ〈B′

1, . . . , B
′
r〉/Q〈B′

r〉 ≥ 1 +△tr.degQ〈B′′
1 , . . . ,

B′′
r−1〉/Q = r. So △tr.degQ〈B1, . . . , Bm〉/Q = r follows. 2

In the following, we will show that each set of Lauren-
t difference monomials can be transformed to an upper-
triangular set with the same σ-transcendence degree. Here
we use three types of elementary matrix transformations.
For a matrix M over Q[x], Type 1 (resp. Type 3) operations
consist of interchanging two rows (resp. columns) of M ; and
Type 2 operations consist of adding an f(x)-multiple of the
j-th row to the i-th row, where f(x) ∈ Q[x]. Note that these
operations correspond to certain transformations of the σ-
monomials. For example, multiplying the i-th row of M by
a polynomial f(x) = adx

d + · · · + a0 and adding the result

to the j-th row means changing Bj to
∏d

k=0(σ
kBi)

akBj .

Lemma 3.15 Let C1, . . . , Cm be obtained from B1, . . . , Bm

by performing a series of transformations. Then

△tr.degQ〈B1, . . . , Bm〉/Q = △tr.degQ〈C1, . . . , Cm〉/Q.

Proof: It suffices to show Type 2 operations keep the σ-
transcendence degree. Indeed, given

∑d

i=0
pi
q
xi ∈ Q[x] with

pi, q ∈ Z∗, △tr.degQ〈B1,
d
∏

k=0

(B
(k)
1 )akB2〉/Q = △tr.degQ〈

d
∏

k=0

(B
(k)
1 )pk ,

d
∏

k=0

(B
(k)
1 )pkBq

2〉/Q = △tr.degQ〈B1, B2〉/Q. 2

Theorem 3.16 Suppose M is the symbolic support matrix
of B1, . . . , Bm. Then △tr.degQ〈B1, . . . , Bm〉/Q = rk(M).

Proof: Since Q[x] is an Euclidean domain, it is clear that
each matrix M can be reduced to a normal upper-triangular
matrix by performing a series of elementary transformations.
By Lemma 3.14 and Lemma 3.15, the theorem follows. 2

Example 3.17 Let B1 = y1y2 and B2 = y
(a)
1 y

(b)
2 . Then

M =

(

1 1
xa xb

)

and rk(M) =

{

1 if a = b
2 if a 6= b.

Thus, by

Theorem 3.16, if a 6= b, B1 and B2 are σ-independent over
Q. Otherwise, they are σ-dependent over Q.

Consider the set of generic Laurent σ-polynomials de-
fined in (1). Let βik be the symbolic support vector of

Mik/Mi0. Then the vector wi =
∑li

k=0 uikβik is called
the symbolic support vector of Pi and the matrix MP whose
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rows are w0, . . . , wn is called the symbolic support matrix of
P0, . . . ,Pn.

Now, we give the main theorem in this section.

Theorem 3.18 P0, . . . ,Pn form a Laurent σ-essential sys-
tem if and only if rk(MP) = n.

Proof: By Theorem 3.16 and Definition 3.4, P0, . . . ,Pn are
Laurent σ-essential iff there exist Miki

with 1 ≤ ki ≤ li s.t.
the symbolic support matrix of M0k0/M00, . . . ,Mnkn/Mn0

is of rank n. And the latter is equivalent to rk(MP) = n. 2

We will end this section by introducing a new notion,
namely super-essential systems. Let T ⊂ {0, 1, . . . , n}. We
denote by PT the Laurent σ-polynomial set consisting of
Pi (i ∈ T), and MPT its symbolic support matrix.

Definition 3.19 Let T ⊂ {0, 1, . . . , n}. Then we call T or
PT super-essential if card(T) − rk(MPT ) = 1 and for each
J ( T, card(J) = rk(MPJ ).

Note that super-essential systems are the difference ana-
logue of essential systems introduced in [27] and also that of
rank essential systems introduced in [21].

Theorem 3.20 If {P0, . . . ,Pn} is a Laurent σ-essential sys-
tem, then for any T ⊂ {0, 1, . . . , n}, card(T) − rk(MPT ) ≤ 1
and there exists a unique T which is super-essential. In this
case, the sparse σ-resultant of P0, . . . ,Pn involves only the
coefficients of Pi (i ∈ T).

Proof: By [22, Theorem 3.24], the theorem follows. 2

Using this property, one can determine which polynomial
is needed for computing the sparse σ-resultant, which will
eventually reduce the computation complexity.

Example 3.21 Continue from Example 3.9. It is easy to
show that P0,P1 constitute a super-essential system. Recall
that the sparse σ-resultant is free from the coefficients of P2.

4. BASIC PROPERTIES OF SPARSE
DIFFERENCE RESULTANT

In this section, we will prove some basic properties for the
sparse σ-resultant R(u0, . . . ,un).

4.1 Sparse difference resultant is
transformally homogeneous

We introduce the concept of σ-homogeneous polynomials.

Definition 4.1 A σ-polynomial f ∈ F{y0, . . . , yn} is called
transformally homogeneous if for a new σ-indeterminate λ,
there exists a σ-monomial M(λ)such that f(λy0, . . . , λyn) =
M(λ)f(y0, . . . , yn). And f is called σ-homogeneous of degree
m if deg(M(λ)) = m.

The difference analogue of Euler’s theorem related to ho-
mogeneous polynomials is valid.

Lemma 4.2 f ∈ F{y0, y1, . . . , yn} is σ-homogeneous if and
only if for each r ∈ N0, there exists mr ∈ N0 such that

n
∑

i=0

y
(r)
i

∂f(y0, . . . , yn)

∂y
(r)
i

= mrf.

Sparse σ-resultants have the following property.

Theorem 4.3 The sparse σ-resultant is σ-homogeneous in
each ui which is the coefficient set of Pi.

Proof: Suppose ord(R,ui) = hi ≥ 0. Follow the notations
used in Theorem 3.5. By Lemma 3.7, R(u; ζ0, . . . , ζn) =

0. Differentiating this identity w.r.t. u
(k)
ij (j = 1, . . . , li)

respectively, we have

∂R

∂u
(k)
ij

+
∂R

∂u
(k)
i0

(

−
Mij(η)

Mi0(η)

)(k)
= 0. (4)

In the above equations, ∂R

∂u
(k)
ij

= ∂R

∂u
(k)
ij

∣

∣

(u00,...,un0)=(ζ0,...,ζn)
.

Multiplying (4) by u
(k)
ij and for j from 1 to li, adding them

together, we get ∂R

∂u
(k)
i0

ζ
(k)
i +

∑li
j=1 u

(k)
ij

∂R

∂u
(k)
ij

= 0. Thus, fk =

∑li
j=0 u

(k)
ij

∂R

∂u
(k)
ij

vanishes at (ζ0, . . . , ζn). Since ord(fk, ui0) ≤

ord(R, ui0) and deg(fk) = deg(R), by Lemma 3.7, there
exists anmk ∈ Z such that fk = mkR. Thus, by Lemma 4.2,
R is σ-homogeneous in ui. 2

4.2 Order bound in terms of Jacobi number
In this section, we will give an order bound for the sparse

σ-resultant in terms of the Jacobi number of the given sys-
tem.

Consider a generic Laurent σ-essential system {P0, . . . ,Pn}
defined in (1) with ui being the coefficient vector of Pi.
Suppose R is the sparse σ-resultant of P0, . . . ,Pn. Denote
ord(R,ui) = maxkord(R, uik). If ui does not occur in R,
then set ord(R,ui) = −∞.

Lemma 4.4 For fixed i and s, if there exists a k0 such that

deg(R, u
(s)
ik0

) > 0, then for all k ∈ {0, . . . , li}, deg(R, u
(s)
ik ) >

0. In particular, ord(R, uik) = ord(R,ui) (k = 0, . . . , li).

Proof: By (4) and lemma 3.7, the lemma follows. 2

Let sij = ord(N(Pi), yj) and si = ord(N(Pi)). We call the
(n+1)×n matrix A = (sij) the order matrix of P0, . . . ,Pn.
By Aî, we mean the submatrix of A obtained by deleting
the (i + 1)-th row from A. We use P to denote the set
{N(P0), . . . ,N(Pn)} and by Pî, we mean the set P\{N(Pi)}.
For a matrix B = (aij)n×n, the Jacobi number is Jac(B) =
maxτ∈Sn{a1τ(1) + · · · + anτ(n)}, where Sn is the set of all
permutations of {1, . . . , n}. We call Ji = Jac(Aî) the Jacobi
number of the system Pî, also denoted by Jac(Pî).

The following theorem shows that Jacobi numbers are or-
der bounds for sparse σ-resultants.

Theorem 4.5 Let P be a Laurent σ-essential system and R
the sparse σ-resultant of P. Then

ord(R,ui) =

{

−∞ if Ji = −∞,
hi ≤ Ji if Ji ≥ 0.

Proof: For details, see [22, Theorem 4.14]. 2

Example 4.6 Let n = 2 and Pi have the form P0 = u00 +

u01y1y
(1)
1 , P1 = u10 + u11y1, P2 = u10 + u11y

(1)
2 . In this

example, J0 = 1, J1 = 2, J2 = −∞. And ord(R,u0) = 0 <
J0, ord(R,u1) = 1 < J1, ord(R,u2) = −∞.
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5. SINGLE EXPONENTIAL ALGORITHM
In this section, we give an algorithm to compute the sparse

σ-resultant for a Laurent σ-essential system with single ex-
ponential complexity. The idea is to estimate the degree
bounds for the resultant and then to use linear algebra to
find the coefficients of the resultant.

The following result gives an upper bound for the degree
of the sparse σ-resultant.

Theorem 5.1 Let P0, . . . ,Pn be a Laurent σ-essential sys-
tem of form (1) with ord(N(Pi)) = si and deg(N(Pi),Y)

= mi. Suppose N(Pi) =
∑li

k=0 uikNik and Ji = Jac(Pî).
Denote m = maxi{mi}. Let R be the sparse difference re-
sultant of Pi (i = 0, . . . , n). Suppose ord(R,ui) = hi for
each i. Then

1) deg(R) ≤
∏n

i=0(mi + 1)hi+1 ≤ (m+ 1)
∑n

i=0(Ji+1).

2) R has a representation

n
∏

i=0

n
∏

k=0

(N
(k)
i0 )deg(R) ·R =

n
∑

i=0

hi
∑

k=0

GikN(Pi)
(k) (5)

where Gik ∈ Q[u
[h0]
0 , . . . ,u

[hn]
n ,Y[h]] and h = max{hi+

ei} such that deg(GikN(Pi)
(k)) ≤ [m+ 1 +

∑n

i=0(hi +
1)deg(Ni0)]deg(R).

Proof: We sketch the proof here. In R, replace ui0 by
(

N(Pi) −
∑li

k=1 uikNik

)

/Ni0 for each i = 0, . . . , n and let
R be expanded as a σ-polynomial in N(Pi) and their trans-
forms. (5) follows from the fact that I ∩Q{u,Y} = {0}. To
obtain the degree bound ofR, we consider the algebraic ideal
J =

(

N(P0)
[h0], . . . ,N(Pn)

[hn]
)

: m[h]. By Bézout theorem,

deg(J ) ≤
∏n

i=0(mi+1)hi+1. Since J ∩Q[u
[h0]
0 , . . . ,u

[hn]
n ] =

(R), by [20, Theorem 2.1], deg(R) ≤ deg(J ) and 1) follows.

In order to estimate deg(GikN(Pi)
(k)) and aik, it suffices

to consider each monomial M in R and substitute ui0 by
(

N(Pi)−
∑li

k=1 uikNik

)

/Ni0 into M and then expand it. 2

With given order and degree bounds, we can give the algo-
rithm SDResultant to compute sparse σ-resultants based
on linear algebra techniques.

Theorem 5.2 Let P0, . . . ,Pn be a Laurent σ-essential sys-
tem of form (1). Denote P = {N(P0), . . . ,N(Pn)}, Ji =
Jac(Pî), J = maxiJi and m = maxn

i=0deg(Pi,Y). Algorithm
SDResultant computes sparse σ-resultant R of P0, . . . ,Pn

with the following complexities:

1) In terms of a given degree bound D of R, the algorithm

needs at most O(DO(lJ)(nJ)O(lJ)) Q-arithmetic operations,
where l =

∑n

i=0(li + 1) is the size of all Pi.

2) The algorithm needs at most O(mO(nlJ2)(nJ)O(lJ)) Q-
arithmetic operations.

Proof: In each loop of Step 3, the complexity is clearly domi-
nated by Step 3.1.2, where we need to solve a system of linear
equations P = 0 over Q in c0 and cij . P = 0 is a linear sys-

tem with N =
(

d+L−1
L−1

)

+
∑n

i=0(hi + 1)
(

d1−mi−1+L+n(h+1)
L+n(h+1)

)

variables and M =
(

d1+L+n(h+1)
L+n(h+1)

)

equations, where L =
∑n

i=0(hi + 1)(li + 1). So we need at most (max{M,N})ω

arithmetic operations over Q to solve it, where ω is the ma-
trix multiplication exponent and the currently best known
ω is 2.376.

Algorithm 1 — SDResultant(P0, . . . ,Pn)

Input: A generic Laurent σ-essential system P0, . . . , Pn.
Output: The sparse σ-resultant R of P0, . . . ,Pn.

1. Set N(Pi) =
∑li

k=0 uikNik with deg(Ni0) ≤ deg(Nik).
Set mi = deg(N(Pi)), mi0 = deg(Ni0), ui = coeff(Pi).
Set sij = ord(N(Pi), yj), A = (sij), Ji = Jac(Aî).

2. Set R = 0, o = 0, m = maxi{mi}.
3. While R = 0 do

3.1. For each (h0, . . . , hn) ∈ Nn+1
0 with

∑n

i=0 hi= o and
hi ≤ Ji do
3.1.1. U = ∪n

i=0u
[hi]
i , h = maxi{hi + ei}, d = 1.

3.1.2. While R = 0 and d ≤
∏n

i=0(mi + 1)hi+1 do
3.1.2.1. Set R0 to be a GHPol of degree d in U .
3.1.2.2. Set c0 = coeff(R0, U).

3.1.2.3. Set Hij to be GPols in Y[h], U of degree
[m+ 1 +

∑n

i=0(hi + 1)mi0]d−mi − 1.

3.1.2.4. Set cij = coeff(Hij ,Y
[h] ∪ U).

3.1.2.5. Set P to be the set of coefficients of
∏n

i=0

∏hi

k=0(N
(k)
i0 )dR0−

∑n

i=0

∑hi

j=0 Hij(N(Pi))
(j)

as a polynomial in Y[h], U .
3.1.2.6. Solve linear equations P(c0, cij) = 0.
3.1.2.7. If c0 has a nonzero solution c̄0, then

R = R0(c̄0) and goto 4., else R = 0.
3.1.2.8. d:=d+1.

3.2. o:=o+1.
4. Return R.

/*/ GPol(GHpol) stands for generic (homogenous) poly.

/*/ coeff(P, V ) returns coefficients of P in variables V .

The iteration in Step 3.1.2 may go through 1 to
∏n

i=0(mi+

1)hi+1, and the iteration in Step 3.1 at most will repeat
∏n

i=0(Ji + 1) times. And by Theorem 5.1, Step 3 may loop
from o = 0 to

∑n

i=0(Ji + 1). Thus, the complexity follows.
2

6. DIFFERENCE RESULTANT
In this section, we introduce the notion of σ-resultant and

prove its basic properties.

Definition 6.1 Let ms,r be the set of all σ-monomials in
Y of order ≤ s and degree ≤ r. Let u = {uM}M∈ms,r be a
set of σ-indeterminates over Q. Then, P =

∑

M∈ms,r
uMM

is called a generic σ-polynomial of order s and degree r.

Throughout this section, a generic σ-polynomial is as-
sumed to be of degree greater than zero. Let

Pi = ui0 +
∑

α ∈ Z
n(si+1)
≥0

1 ≤ |α| ≤ mi

uiα(Y
[si])α (i = 0, . . . , n) (6)

be generic σ-polynomials of order si, degree mi, and coef-
ficients ui respectively. Clearly, they form a super-essential
system. We define the sparse σ-resultant ResP0,...,Pn to be
the difference resultant of P0, . . . ,Pn. That is, The differ-
ence resultant of P0, . . . ,Pn is defined as the irreducible σ-
polynomial of minimal order in each ui which is contained
in [P0, . . . ,Pn] ∩ Q{u0, . . . ,un}.
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Difference resultants satisfy all the properties we have
proved for sparse σ-resultants in previous sections. Apart
from these, in the following, we will show σ-resultants pos-
sess other better properties. Firstly, we will give the precise
degree for the σ-resultant, which is of BKK-type [1, 6]. Here,
we need results about algebraic sparse resultants from [27].
For what needed here, please refer to [22, Sec. 6].

Theorem 6.2 Let R(u0, . . . ,un) be the σ-resultant of the
n + 1 generic σ-polynomials P0, . . . ,Pn in (6). Denote s =
∑n

i=0 si. Then ord(R,ui) = s−si and R(u0, . . . ,un) is also

the algebraic sparse resultant of P
[s−s0]
0 , . . . ,P

[s−sn]
n as poly-

nomials in Y[s]. In particular, for each i and k, deg(R,u
(k)
i )

is equal to the mixed volume of the Newton polytopes of
⋃n

j=0 P
[s−sj ]

j \{P
(k)
i }.

Proof: Regard P
(k)
i as polynomials in the n(s+ 1) variables

Y[s], and we denote its support by Bik. Since the coefficients

of P
(k)
i are algebraic indeterminates, P

(k)
i are generic sparse

polynomials with supports Bik respectively. We claim that:

C1) B = {Bik : 0 ≤ i ≤ n; 0 ≤ k ≤ s− si} is essential.

C2) B jointly spans the affine lattice Zn(s+1).

Note that |B| = n(s + 1) + 1. To prove C1), it suffices

to show that any n(s + 1) distinct P
(k)
i are algebraically

independent. Without loss of generality, we prove that for
a fixed l ∈ {0, . . . , s− s0},

Sl = {(P
[s−si]
i )1≤i≤n,P0, . . . ,P

(l−1)
0 ,P

(l+1)
0 , . . . , P

(s−s0)
0 }

is algebraically independent. Clearly, {y
(k)
j , . . . , y

(si+k)
j

∣

∣j =

1, . . . , n} is a subset of the support of P
(k)
i . Now we choose

a monomial from each P
(k)
i and denote it by m(P

(k)
i ). Let

m(P
(k)
0 ) =

{

y
(k)
1 0 ≤ k ≤ l − 1

y
(s0+k)
1 l + 1 ≤ k ≤ s− s0

and

m(P
(k)
1 ) =

{

y
(l+k)
1 0 ≤ k ≤ s0

y
(s1+k)
2 s0 + 1 ≤ k ≤ s− s1

.

For each i ∈ {2, . . . , n}, let

m(P
(k)
i ) =

{

y
(k)
i 0 ≤ k ≤

∑i−1
j=0 sj

y
(si+k)
i+1

∑i−1
j=0 sj + 1 ≤ k ≤ s− si

.

So m(Sl) is equal to {y
[s]
j : 1 ≤ j ≤ n}, which are alge-

braically independent over Q. Thus, by the algebraic version
of Lemma 2.1,the n(s + 1) members of Sl are algebraically
independent over Q and claim C1) is proved. Claim C2)

follows from the fact that 1 and Y[s] are contained in the
support of P

[s−s0]
0 .

By C1) and C2), the sparse resultant of (P
[s−si]
i )0≤i≤n

exists and we denote it by G. Then ord(G,ui) = s− si and
G ∈ [P0, . . . ,Pn]. By Lemma 3.7 and C1) again, R = c · G
for some c ∈ Q. Thus, R is equal to the algebraic sparse

resultant of P
[s−s0]
0 , . . . ,P

[s−sn]
n and the theorem follows. 2

As a direct consequence of the above theorem and the de-
terminant representation for algebraic sparse resultant given
by D’Andrea [7], we have the following result.

Corollary 6.3 The σ-resultant of Pi can be written as the
form det(M1)/det(M0) where M1 and M0 are matrices whose
elements are coefficients of Pi and their transforms up to the
order s− si and M0 is a minor of M1.

Based on the matrix representation given as above, the
single exponential algorithms given by Canny, Emiris, and
Pan [10, 11] can be used to compute σ-resultants.

Now, we proceed to give a Poisson-type product formu-
la for σ-resultant. Let ũ = ∪n

i=0ui \ {u00} and Q〈ũ〉 be
the σ-transcendental extension of Q in the usual sense. Let

Q0 = Q〈ũ〉(u00, . . . , u
(s−s0−1)
00 ). Here, Q0 is not necessarily

a σ-overfield of Q, for the transforms of u00 are not de-

fined. Consider R as an irreducible polynomial r(u
(s−s0)
00 )

in Q0[u
(s−s0)
00 ]. In a suitable algebraic extension field of Q0,

R(u0,u1, . . . ,un) = A
∏t0

τ=1(u
(s−s0)
00 − γτ ), where A ∈ Q0.

Let Iu = [P0, . . . ,Pn] ∩ Q{u0, . . . ,un}. Then by the defini-
tion of difference resultant, Iu is an essential reflexive prime
σ-ideal in the decomposition of {R} which is not held by
any σ-polynomial of order less than s − s0 in u00. Sup-
pose R,R1,R2, . . . is a basic sequence1 of R correspond-
ing to Iu. That is, Iu =

⋃

k≥0 asat(R,R1, . . . ,Rk). Let

(γτ , γτ1, . . . , γτk) be a generic zero of asat(R,R1, . . . ,Rk)
for each k. Let Gτ = Q0(γτ , γτ1, . . .). Then Gτ is isomorphic
to the quotient field of Q{u0, . . . ,un}/Iu, which is also a σ-
field. So we can introduce a transforming operator στ into
Gτ to make it a difference field such that the isomorphism
becomes a difference one. That is, στ |Q0 = σ|Q0 and

σk
τ (u00) =

{

u
(k)
00 0 ≤ k ≤ s− s0 − 1

γτ,k−s−s0 k ≥ s− s0

In this way, (Gτ , στ ) is a difference field.

Let F ∈ Q{u0, . . . ,un}. By saying F vanishes at u
(s−s0)
00 =

γτ , we mean F |
u
(s−s0+k)
00 =γτk,k≥0

= 0. The following lemma

is a direct consequence of the above discussion.

Lemma 6.4 F ∈ Iu iff F vanishes at u
(s−s0)
00 = γτ .

Proof: Since Iu =
⋃

k≥0 asat(R,R1, . . . ,Rk) and u
(s−s0+i)
00 =

γτi (0 ≤ i ≤ k) is a generic point of asat(R,R1, . . . ,Rk), the
lemma follows. 2

Difference resultants have a Poisson-type product formula
which is similar to their algebraic and differential analogues.

Theorem 6.5 Let R be the σ-resultant of P0, . . . ,Pn. Let

deg(R, u
(s−s0)
00 ) = t0. Then there exist ξτk (τ = 1, . . . , t0; k =

1, . . . , n) in overfields (Gτ , στ ) of (Q〈ũ〉, σ) such that

R = A

t0
∏

τ=1

P0(ξτ1, . . . , ξτn)
(s−s0), (7)

and the points ξτ = (ξτ1, . . . , ξτn) (τ = 1, . . . , t0) in (7) are
generic zeroes of the σ-ideal [P1, . . . , Pn] ⊂ Q〈u1, . . . ,un〉{Y}.
Note that (7) is formal and should be understood in the fol-

lowing precise meaning: P0(ξτ1, . . . , ξτn)
(s−s0) △

= σs−s0u00+

σs−s0
τ (

∑

α u0α(ξ
[s−s0]
τ )α).

1For the rigorous definition of basic sequence, please refer
to [4]. Here, we list its basic properties: i) For each k ≥ 0,
ord(Rk, u00) = s−s0+k and R,R1, . . . ,Rk is an irreducible
algebraic ascending chain, and ii)

⋃

k≥0 asat(R,R1, . . . ,Rk)
is a reflexive prime σ-ideal.

281



Proof: By Theorem 4.3, there exists m ∈ N s.t. u00
∂R
∂u00

+
∑

α u0α
∂R

∂u0α
= mR. Let ξτα = ( ∂R

∂u0α
/ ∂R
∂u00

)
∣

∣

u
(s−s0)
00 =γτ

.

Then u00 = −
∑

α u0αξτα with u
(s−s0)
00 = γτ . That is, γτ =

−σs−s0
τ (

∑

α u0αξτα) = −(
∑

α u0αξτα)
(s−s0). Thus, we have

R = A
∏t0

τ=1(u00 +
∑

α u0αξτα)
(s−s0). For j = 1, . . . , n, let

ξτj = ( ∂R
∂u0j0

/ ∂R
∂u00

)
∣

∣

u
(s−s0)
00 =γτ

, where u0j0 is the coefficient

of yj in P0. Let ξτ = (ξτ1, . . . , ξτn). Similar to the proof
of [13, Theorem 6.4] and by Lemma 6.4, we can show that

ξτα = (ξ
[s0]
τ )α. Thus, (7) follows. And by Lemma 6.4, it

is easy to show that ξτ are generic zeroes of the σ-ideal
[P1, . . . , Pn] ⊂ Q〈u1, . . . ,un〉{Y}. 2

7. CONCLUSION AND PROBLEM
In this paper, we first introduce the concept of Laurent σ-

essential systems and give a criterion for Laurent σ-essential
systems in terms of their supports. Then the sparse σ-
resultant for a Laurent σ-essential system is defined and its
basic properties are proved. In particular, order and degree
bounds are given. Based on these bounds, an algorithm to
compute the sparse σ-resultant is proposed, which is single
exponential in terms of the order, the number of variables,
and the size of the system. Besides these, the σ-resultant is
introduced and its precise order, degree, determinant repre-
sentation and the Poisson-type product formula are given.

Below, we propose several questions for further study.
It is useful to represent the sparse σ-resultant as the quo-

tient of two determinants, as done in [7, 10] in the alge-
braic case. In the difference case, Theorem 6.2 shows that
σ-resultant has such a matrix formula, but for sparse σ-
resultant, we do not have such a formula yet.

The degree of the algebraic sparse resultant is equal to
the mixed volume of the Newton polytopes of certain poly-
nomials [24] or [15, p.255]. A similar degree bound is given
[21, Theorem 1.3] for the differential resultant. And Theo-
rem 6.2 shows that the degree of σ-resultants is exactly of
such BKK-type. We conjecture that sparse σ-resultant has
such degree bounds.

There exist very efficient algorithms to compute algebraic
sparse resultants [9, 10, 11, 7] based on matrix representa-
tions. How to apply the principles behind these algorithms
to compute sparse σ-resultants is an important problem.
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