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In this paper, we study unirational differential curves and the cor-
responding differential rational parametrizations. We first investi-
gate basic properties of proper differential rational parametriza-
tions for unirational differential curves. Then we show that the 
implicitization problem of proper linear differential rational para-
metric equations can be solved by means of differential resultants. 
Furthermore, for linear differential curves, we give an algorithm to 
determine whether an implicitly given linear differential curve is 
unirational, and in the affirmative case, to compute a proper dif-
ferential rational parametrization for the differential curve.
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1. Introduction

The study of unirational varieties and the corresponding rational parametrizations is a basic topic 
in computational algebraic geometry. The central problem in this field is to determine whether an 
algebraic variety is rationally parametrizable, and, for unirational varieties, to give efficient algorithms 
to transform between the implicit representations and parametric representations. These problems 
have been fully explored for algebraic curves by Sendra et al. (2007) using symbolic computation 
methods. They are also well-understood for algebraic surfaces (Hartshorne, 1977; Schicho, 1998).

The differential implicitization and rational parametrization problems for differential varieties 
are basic problems in differential algebraic geometry. Differential varieties with differential rational 
parametrizations are called unirational. The differential parametrization problem is to decide whether 
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an implicitly given differential variety is unirational, and to find a differential rational parametrization 
in the affirmative case. The study of this problem plays an important role in the classification problem 
of differential varieties up to differentially birational equivalence and also has potential applications 
in other fields. For instance, assessing differential flatness of control systems is closely related to 
the parametrization problem (Fliess and Glad, 1993; Fliess et al., 1995). The differential implicitiza-
tion of differential rational parametric equations was first studied via the differential characteristic 
set method by Gao (2003). In the special case when given linear differential polynomial parametric 
equations, it was treated via linear complete differential resultants (Rueda and Sendra, 2007; Rueda, 
2011).

However, as far as we know, there are still no general results on the differential parametrization 
problem. The work of Feng and Gao (2006), on finding rational general solutions for a univariate 
algebraic ODE f (y) = 0, is the first step in solving the rational parametrization problem for differ-
ential varieties. Their work gives necessary and sufficient conditions for an ODE to have a rational 
general solution, and a polynomial algorithm to compute the rational general solution of a first or-
der autonomous ODE if it exists. Then the subsequent work by Winkler and his coauthors extended 
the method to study rational general solutions for non-autonomous parametrizable first-order ODEs 
(Ngô and Winkler, 2010, 2011), higher order ODEs (Huang et al., 2013) and even partial differential 
equations (Grasegger et al., 2018). While these are important contributions on the parametrization 
of zero-dimensional differential varieties in the one-dimensional space A1 (Winkler, 2019), it seems 
that the rational parametrization problem for differential varieties of positive differential dimension 
has not been studied.

In this paper, we study unirational ordinary differential curves and the corresponding differential 
rational parametrizations. A (plane) irreducible differential curve C is a one-dimensional irreducible 
differential variety in A2. The differential characteristic set method guarantees the unique existence 
of an irreducible differential polynomial A(x, y) ∈ F {x, y} such that C is the general component 
of A(x, y) = 0, thus this differential curve is often represented by (C, A). If (C, A) has a generic 
point of the form P(u) ∈ F 〈u〉2 with u a differential parameter, it is called a unirational differen-
tial curve and P(u) is called a differential rational parametrization of C. P(u) is called proper if 
it defines a differential birational map between A1 and C. The differential Lüroth theorem guaran-
tees that unirational differential curves always have proper differential rational parametrizations (Gao, 
2003).

For unirational differential curves, we first explore basic properties of proper differential rational 
parametrizations. In particular, Theorem 15 gives the order property of properness and Theorem 18
shows that proper parametrizations are unique up to Möbius transformations. These results extend 
similar properties of proper parametrizations of algebraic curves to their differential counterparts. For 
proper linear differential rational parametrizations, we give further properties and show differential 
resultants can be used to compute the corresponding implicit equations of proper linear differential 
rational parametric equations. This could be considered a generalization of Rueda-Sendra’s work on 
implicitization of linear differential polynomial parametric equations via linear complete differential 
resultants (Rueda and Sendra, 2007).

Concerning the rational parametrizability problem, it is well known that an algebraic curve is uni-
rational if and only if its genus is equal to 0 (Sendra et al., 2007, Theorem 4.63), so the determination 
of unirationality of algebraic curves can be reduced to the computation of the genus of the curve. 
Compared with the algebraic case, the rational parametrizability problem of differential curves is 
much more complicated to deal with. More precisely, the problem can be stated as follows: given an 
irreducible differential polynomial A(x, y), decide whether the differential curve (C, A) is unirational, 
and if it is unirational, give efficient algorithms to compute a parametrization. In this paper, we start 
from the simplest nontrivial case by considering linear differential curves. And for linear differential 
curves, we give an algorithm to determine whether the implicitly given differential curve is unira-
tional, and, in the affirmative case, to compute a proper linear differential polynomial parametrization 
for the unirational linear differential curve.

This paper is organized as follows. In Section 2, we introduce some notions and preliminary results 
in differential algebra. In Section 3, we explore the basic properties of proper differential rational 
parametrizations for unirational differential curves. In Section 4, further properties of proper linear 
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differential rational parametrizations are given, and in particular, the corresponding implicit equations 
can be computed via the method of differential resultants. In Section 5, we deal with the problem 
of algorithmically deciding whether an implicitly given linear differential curve is unirational and 
computing a proper rational parametrization in the affirmative case. In Section 6, we propose several 
problems for further study.

2. Preliminaries

2.1. Differential polynomial algebra and characteristic sets

In this section, we will introduce the basic notions and notation to be used in this paper. For more 
details about differential algebra, please refer to (Ritt, 1950; Kolchin, 1973; Buium and Cassidy, 1998; 
Sit, 2002).

Let F be an ordinary differential field of characteristic 0 with derivation δ. For example, F =Q(t)
with δ = d

dt . An element c ∈ F such that δ(c) = 0 is called a constant of F . The set of all constants of 
F constitutes a differential subfield of F , called the field of constants of F and denoted by CF . For 
an element a in F , we use a′, a′′, a(k) to indicate the derivatives δ(a), δ2(a), δk(a) (k ≥ 3).

Let G be a differential extension field of F . A family � ⊂ G is said to be differentially algebraically 
dependent over F if the family �(�) := {δk(a) : a ∈ �, k ∈ N} is algebraically dependent over F . 
Otherwise, � is said to be differentially algebraically independent over F , or a family of differential 
indeterminates over F . An element α ∈G that is differentially algebraically dependent over F is called 
differentially algebraic over F (otherwise, differentially transcendental over F ). A maximal subset � of 
G that is differentially algebraically independent over F is said to be a differential transcendence ba-
sis of G over F . The cardinality of � is the differential transcendence degree of G over F , denoted 
by d.tr.degG/F . The transcendence degree of G over F is denoted by tr.degG/F . Given S ⊂ G, we 
denote respectively by F {S} = F [�(S)] and F 〈S〉 = F (

�(S)
)

the smallest differential subring and 
differential subfield of G containing F and S .

Let E be a fixed universal differential extension field of F (Kolchin, 1973, p. 134). Let 
x, y, y1, . . . , yn be a set of differential indeterminates over E. Consider the differential polynomial 
ring F {y1, . . . , yn} = F [y(k)

j : j = 1, . . . , n; k ∈ N]. If n = 2, we usually use the notation F {x, y} in-
stead. A differential ideal in F {y1, . . . , yn} is an ordinary algebraic ideal closed under δ. A prime 
differential ideal is a differential ideal which is prime as an ordinary ideal. For � ⊂ F {y1, . . . , yn}, the 
differential ideal in F {y1, . . . , yn} generated by � is denoted by [�]. Let f ∈ F {y1, . . . , yn}. For each 
y j , the order of f w.r.t. y j is defined to be the largest number k such that y(k)

j appears effectively in 
f , denoted by ordy j f , and in case y j and its derivatives do not appear in f , we set ordy j f = −∞. 
The order of f is defined to be maxn

j=1{ordy j f }, denoted by ord( f ).
Let An(E) denote the n-dimensional differential affine space over E. Let � be a subset of differential 

polynomials in F {y1, . . . , yn}. A point η = (η1, . . . , ηn) ∈ An(E) is called a differential zero of � if 
f (η) = 0 for any f ∈ �. The set of differential zeros of � is denoted by V (�), which is called a 
differential variety defined over F . For a differential variety V , we denote I(V ) to be the set of all 
differential polynomials in F {y1, . . . , yn} that vanish at every point of V . Clearly, I(V ) is a radical 
differential ideal in F {y1, . . . , yn}. Similarly as in algebraic geometry, V (I(V )) = V . A differential 
variety V is said to be irreducible if it is not the union of two proper differential subvarieties, or 
equivalently, I(V ) is a prime differential ideal. A point η ∈An(E) is called a generic point of a prime 
differential ideal P (or V (P )) if I(η) = P . It is well-known that a non-unit differential ideal is prime 
if and only if it has a generic point (Ritt, 1950, p. 27).

A ranking R of F {y1, . . . , yn} is a total ordering < on the set of derivatives �(y) � {y(k)
j : j =

1, . . . , n; k ∈ N} that is compatible with the derivation: 1) w < δw and 2) w < v ⇒ δw < δv for all 
w, v ∈ �(y). A ranking R is called an elimination ranking if yi < y j implies that δk yi < δl y j for all 
k, l ≥ 0. Let g be a differential polynomial in F {y1, . . . , yn} not in F and R be a ranking endowed 
on it. The highest derivative w.r.t. R which appears effectively in g is called the leader of g and is 
denoted by ld(g). Let d be the degree of g in ld(g). We may rewrite g as a univariate polynomial in 
ld(g). Then
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g = Idld(g)d + Id−1ld(g)d−1 + · · · + I0. (1)

The leading coefficient Id is called the initial of g and is denoted by Ig . The partial derivative ∂ g
∂ ld(g)

is called the separant of g and is denoted by Sg . The pair (ld(g), d) is called the rank of g and is 
denoted by rk(g). Let f and g be two differential polynomials and rk(g) = (ld(g), d). We say f is 
partially reduced w.r.t. g if no proper derivative of ld(g) appears in f , and f is reduced w.r.t. g if f is 
partially reduced w.r.t. g and degld(g) f < d. Let A be a set of differential polynomials not intersecting 
F . A is said to be an autoreduced set if each element of A is reduced w.r.t. every other one. Every 
autoreduced set is finite.

Let A = {A1, A2, . . . , At} be an autoreduced set, and f be a differential polynomial. There exists a 
reduction algorithm (Kolchin, 1973, p. 79, Proposition 1), called Ritt-Kolchin’s Remainder Algorithm, 
which reduces f to a differential polynomial r such that r is reduced w.r.t. A. More precisely, there 
exist di, ei ∈N such that

t∏
i=1

Sdi
Ai

Iei
Ai

· f ≡ r,mod [A]. (2)

This r is called the Ritt-Kolchin remainder of f w.r.t. A. Denote HA = ∏t
i=1 SAi IAi . The saturation ideal

of A is defined as

sat(A) = [A] : H∞
A = { f ∈ F {x, y} | ∃m ∈N, such that Hm

A f ∈ [A]}. (3)

Let S ⊆ F {y1, . . . , yn} \ F . An autoreduced set A contained in S is said to be a characteristic set of 
S if S does not contain any nonzero element reduced w.r.t. A. A characteristic set A of a proper 
differential ideal I reduces to zero all elements of I. If additionally I is prime, A reduces to zero 
only the elements of I and I = sat(A) (Kolchin, 1973, p. 167, Lemma 2).

Suppose A = {A1, . . . , At} is an autoreduced set with ld(A1) < · · · < ld(At). We call A irreducible
if for each i, there cannot exist any relation of the form Ti Ai ≡ Bi Ci mod (A1, . . . , Ai−1), where Bi , 
Ci and Ti are differential polynomials reduced w.r.t. A1, . . . , Ai−1 with ld(Bi) = ld(Ci) = ld(Ai) and 
ld(Ti) < ld(Ai). Obviously, if rk(Ai) = (ld(Ai), 1) for each i, then A is an irreducible autoreduced set. 
Irreducible autoreduced sets can characterize prime differential ideals.

Lemma 1. ((Ritt, 1950, p. 89 and p. 107), (Wu, 1989)) Let A be an autoreduced set. Then a necessary and 
sufficient condition for A to be a characteristic set of a prime differential ideal is that A is irreducible. In the 
case A is irreducible, sat(A) is prime with a characteristic set A.

Definition 2. ((Kolchin, 1947), (Gao et al., 2013, Section 2.3)) Let P be a prime differential ideal in 
F {y1, . . . , yn} with a generic point η = (η1, . . . , ηn).

• The differential dimension of P or V (P ) is defined as the differential transcendence degree of 
F 〈η〉 over F .

• A parametric set of P is a subset {yi | i ∈ I} ⊂ {y1, . . . , yn} such that {ηi | i ∈ I} is a differential 
transcendence basis of F 〈η〉 over F .

• The relative order of P with respect to a parametric set U = {yi | i ∈ I}, denoted by ordU P , is 
defined as

ordU P = tr.degF 〈η〉/F 〈ηi : i ∈ I〉.
If A = {A1, . . . , A	} is a characteristic set of P under an elimination ranking with ld(Ai) = y(oi)

ci
, 

then U = {y1, . . . , yn} \ {yc1 , . . . , yc	
} is a parametric set of P and ordU P = ∑	

i=1 oi .

Prime differential ideals whose characteristic sets consist of a single differential polynomial are of 
particular interest to us. The following result on Ritt’s general component theorem will often be used 
in this paper.
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Lemma 3. (Ritt, 1950, p. 30 and p. 45) Let A ∈ F {y1, . . . , yn} \ F be an irreducible differential polynomial 
and SA be the separant of A under some ranking. Then we have

(1) sat(A) = [A] : S∞
A is a prime differential ideal of differential dimension n − 1 and {A} is a characteristic 

set of sat(A) under any ranking. In particular, if B ∈ sat(A) and ord(B) ≤ ord(A), then B is divisible by 
A. We call sat(A) the general component of A.

(2) Conversely, any prime differential ideal in F {y1, . . . , yn} of differential dimension n − 1 is the general 
component of an irreducible differential polynomial.

2.2. Pure differential transcendental extension and differential Lüroth’s theorem

In this section, we suppose u ∈ E is differentially transcendental over F and consider the pure 
differential transcendental extension field F 〈u〉. Let P , Q ∈ F {u} be nonzero. The fraction P/Q is 
called in reduced form if gcd(P (u), Q (u)) = 1. Given R(u) ∈ F 〈u〉 with R(u) = P (u)

Q (u)
in reduced form, 

the order of R(u) is defined to be max{ordu P , ordu Q }, denoted by ordu(R(u)) or simply by ord(R(u)). 
Clearly, it is well-defined. Throughout this paper, P (u)

Q (u)
∈ F 〈u〉 is always assumed to be in reduced 

form.
Concerning the differential field extension F � G ⊆ F 〈u〉, it is well-known that the algebraic the-

orem of Lüroth has a differential analog, called Differential Lüroth’s theorem, which states that G is 
always a simple extension of F (Kolchin, 1944).

Theorem 4 (Differential Lüroth’s theorem). Let F be an ordinary differential field of characteristic 0 with u a 
differential indeterminate over F and let G be a differential field such that F � G ⊆ F 〈u〉. Then there exists 
an element ω ∈G such that G = F 〈ω〉.

Such an element ω in Theorem 4 is called a Lüroth generator of G/F . Following Kolchin’s proof 
in (Kolchin, 1947) (the proof was first given in (Kolchin, 1944) and corrected in (Kolchin, 1947)), if 
A(y) ∈G{y} is the minimal differential polynomial of u over G (i.e., with lowest order and degree in 
G{z} such that A(u) = 0), then for any pair (a, b) ∈ F 2 of coefficients of A satisfying that a/b /∈ F , 
this a/b can serve as a Lüroth generator. Based on Kolchin’s idea and Wu-Ritt’s zero decomposition 
theorem, Gao and Xu (2002) gave an algorithmic process to compute a Lüroth generator (also see 
(Gao, 2003)).

Remark 5. We describe the algorithmic process to compute a Lüroth generator in the case G =
F

〈
P1(u)
Q 1(u)

,
P2(u)
Q 2(u)

〉
for the sake of later use in section 4. Consider f1 = Q 1(u)x − P1(u), f2 = Q 2(u)y −

P2(u) ∈ F {u, x, y} and the prime differential ideal P = [ f1, f2] : (Q 1 Q 2)
∞ ⊂ F {u, x, y}. Then { f1, f2}

is a characteristic set of P w.r.t. the elimination ranking u < x < y. Compute a characteristic set 
B1(x, y), B2(x, y, u) of P w.r.t. the elimination ranking x < y < u with Wu-Ritt’s zero decomposition 
theorem (Wu, 1989). Rewrite B2(x, y, u) = ∑

i gi(x, y)θi(u) as a differential polynomial in u, and let 
B̄(z) = B2(P1(u)/Q 1(u), P2(u)/Q 2(u), z) ∈G{z}.

1) By the proof of (Gao, 2003, Theorem 6.2), B̄(z) is the minimal differential polynomial of u over G
and if ζ = gi1 (P1(u)/Q 1(u),P2(u)/Q 2(u))

gi2 (P1(u)/Q 1(u),P2(u)/Q 2(u))
/∈ F for some indices i1, i2, then G = F 〈ζ 〉.

2) By (Gao, 2003, Theorem 6.1), G = F 〈u〉 if and only if B2 = g(x, y)u + h(x, y) for some g, h ∈
F {x, y} \ {0}.

In the following, we prove some technical results for later use.

Lemma 6. Let P (u), Q (u) ∈ F {u} with gcd(P , Q ) = 1 and m = ord(
P (u)
Q (u)

) ≥ 0. Then we have

(1) For each s ∈ N>0 , (P/Q )(s) = Ps
Q s+1 , where P s is a differential polynomial of order m + s and linear in 

u(m+s);
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(2) tr.degF 〈 P (u)
Q (u)

〉F 〈u〉 = ord(
P (u)
Q (u)

).

Proof. (1) The proof is by induction on s. For s = 1, (P/Q )′ = P ′ Q −P Q ′
Q 2 and P1 = P ′ Q − P Q ′ = SP Q ·

u(ord(P )+1) − SQ P · u(ord(Q )+1) + T with ord(T ) ≤ m. If ord(P ) �= ord(Q ), clearly, rk(P1) = (u(m+1), 1). 
Otherwise, since gcd(P , Q ) = 1, SP Q − SQ P �= 0 and rk(P1) = (u(m+1), 1) follows. Suppose it holds 
for s − 1. Then (P/Q )(s) = ( Ps−1

Q s

)′ = P ′
s−1 Q −sPs−1 Q ′

Q s+1 . Let P s = P ′
s−1 Q − sP s−1 Q ′ . By the induction 

hypothesis, rk(P s) = (u(m+s), 1).
(2) It is trivial for the case m = 0. Consider the case when m ≥ 1. Since u, u′, . . . , u(m) are al-

gebraically dependent over F 〈 P (u)
Q (u)

〉, tr.degF 〈 P (u)
Q (u)

〉F 〈u〉 = tr.degF 〈 P (u)
Q (u)

〉F 〈 P (u)
Q (u)

〉(u, u′, . . . , u(m−1)). If 

u, u′, . . . , u(m−1) are algebraically dependent over F 〈 P (u)
Q (u)

〉, there exists s ∈ N such that u, u′, . . ., 

u(m−1) are algebraically dependent over F
(

P (u)
Q (u)

, ( P (u)
Q (u)

)′, . . . , ( P (u)
Q (u)

)(s)
)

. Thus

tr.degF
(

u, u′, . . . , u(m−1),
P (u)

Q (u)
, (

P (u)

Q (u)
)′, . . . , ( P (u)

Q (u)
)(s)

)/
F

= tr.degF
( P (u)

Q (u)
, (

P (u)

Q (u)
)′, . . . , ( P (u)

Q (u)
)(s)

)/
F+

tr.degF
( P (u)

Q (u)
, (

P (u)

Q (u)
)′, . . . , ( P (u)

Q (u)
)(s)

)(
u, u′, . . . , u(m−1)

)/
F

( P (u)

Q (u)
, (

P (u)

Q (u)
)′, . . . , ( P (u)

Q (u)
)(s)

)

≤ s + m.

So tr.degF (u, u′, . . . , u(m−1))(
P (u)
Q (u)

, ( P (u)
Q (u)

)′, . . . , ( P (u)
Q (u)

)(s))
/
F (u, u′, . . . , u(m−1)) ≤ s, contradicting the 

fact that P (u)
Q (u)

, ( P (u)
Q (u)

)′, . . . , ( P (u)
Q (u)

)(s) are algebraically independent over F (u, u′, . . . , u(m−1)). Thus, 
tr.degF 〈 P (u)

Q (u)
〉F 〈u〉 = m. �

By the additivity property of transcendence degrees, Lemma 6 (2) implies that the order is additive 
with respect to the composition of differential rational functions.

Corollary 7. Let R1, R2 ∈ F 〈u〉 \F . Then ordu
(

R2(R1(u))
) = ordu R1 + ordu R2 .

Proof. This follows by considering F 〈R2(R1(u))〉 ⊂ F 〈R1(u)〉 ⊂ F 〈u〉 and Lemma 6 (2). �
The following result is an exercise from (Kolchin, 1973, p. 159, Ex. 9) which will be used in Sec-

tion 3.

Lemma 8. Let t, u ∈ E be differentially transcendental elements over F and F 〈t〉 = F 〈u〉. Then there exist 
a, b, c, d ∈ F with ad − bc �= 0 such that u = (at + b)/(ct + d).

Proof. Write u = P (t)
Q (t) with P , Q ∈ F {y} and gcd(P , Q ) = 1. Observe that P (y) −u Q (y) is irreducible 

in F 〈u〉{y}. Let J = sat(P − u Q ) ⊂ F 〈u〉{y}. Fix a generic zero s of J , then we have Q (s) �= 0. 
Indeed, if Q (s) = 0, then Q (y) is divisible by P (y) − u Q (y) by Lemma 3, a contradiction. Thus, 
u is differentially algebraic over F 〈s〉. Therefore, s is differentially transcendental over F . So there 
exists a differential isomorphism φ : F 〈s〉 ∼= F 〈t〉 with φ(s) = t . Since φ(u) = u, φ is a differential 
isomorphism over F 〈u〉. Thus, t is a generic zero of J . Since t is also a generic zero of sat(y − t) ⊂
F 〈u〉{y}, J = sat(y − t). By Lemma 3, y − t is divisible by P − u Q over F 〈u〉. So P (y), Q (y) ∈ F [y]
are both of degree at most 1. Thus, there exist a, b, c, d ∈ F such that P (y) = ay +b and Q (y) = cy +d
with ad − bc �= 0. �
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3. Unirational differential curves and proper differential rational parametrizations

In this section, we introduce the notions of unirational differential curves and proper differen-
tial rational parametrizations, and investigate the basic properties for proper differential rational 
parametrizations.

Definition 9. A differential curve (over F ) is a differential variety C ⊂ An(E) (over F ) which has 
differential dimension 1. If additionally C is irreducible, C is called an irreducible differential curve. A 
differential curve C ⊂A2 is called a plane differential curve.

Throughout the paper, we focus on the study of plane differential curves over the base differential 
field F , and so we always omit “plane” and “over F ” for convenience.

If C ⊂A2 is an irreducible differential curve, then I(C) is a prime differential ideal in F {x, y} with 
differential dimension 1. So by Lemma 3, there exists a unique irreducible differential polynomial 
A ∈ F {x, y} (up to an element in F ) such that C is the general component of A. We call C the 
differential curve defined by A, and denote it by (C, A) for simplicity.

Definition 10. (Unirational differential curves) Let (C, A) be an irreducible differential curve. We call 
C a unirational differential curve if C has a generic point of the form

P(u) =
( P1(u)

Q 1(u)
,

P2(u)

Q 2(u)

)
, (4)

where u ∈ E is differentially transcendental over F 〈x, y〉, Pi, Q i ∈ F {u}1 and gcd(Pi, Q i) = 1 for i =
1, 2. And we call (4) a differential rational parametrization of C or A.

We now give an alternative characterization of unirational differential curves in terms of the theory 
of differential fields in Proposition 11, which is similar to the algebraic case (Sendra et al., 2007, 
Theorem 4.9) and also can be seen as the geometric version of the differential Lüroth’s theorem.

Proposition 11. An irreducible differential curve C is unirational if and only if the differential function field of 
C, F 〈C〉 = Frac(F {x, y}/I(C)), is differentially isomorphic to F 〈u〉 over F .

Proof. Let C be a unirational differential curve with a differential rational parametrization P(u). By 
Theorem 4, there exists R(u) ∈ F 〈u〉 \ F s.t. F 〈P(u)〉 = F 〈R(u)〉. Then it is easy to verify that the 
parametrization P(u) defines a differential isomorphism

ϕ : F 〈C〉 −→ F 〈R(u)〉
f (x, y) �−→ f (P(u)).

(5)

Since R(u) is differentially transcendental over F , F 〈R(u)〉 is differentially isomorphic to F 〈u〉. There-
fore, F 〈C〉 is differentially isomorphic to F 〈u〉. Conversely, let ϕ : F 〈C〉 → F 〈u〉 be a differential 
isomorphism. Let P(u) = (ϕ(x), ϕ(y)). Then P(u) /∈ F 2 and I(P(u)) = I(C). Thus, C is unirational 
with a differential rational parametrization P(u). �

For ease of notation, in this paper when we speak of a differential parametrization P(u) =
( P1

Q 1
, P2

Q 2
) ∈ F 〈u〉2, we always assume each Pi/Q i is in reduced form, that is, Pi, Q i ∈ F {u} and 

gcd(Pi, Q i) = 1. And we define the order of P(u) to be max{ordu( P1
Q 1

), ordu( P2
Q 2

)}, denoted by ord(P). 
The following result shows that differential parametrizations of a unirational differential curve satisfy 
certain order property.

1 Here we automatically have at least one Pi/Q i ∈ F 〈u〉 \F .
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Proposition 12. Let (C, A) be a unirational differential curve with ordx A ≥ 0 and ordy A ≥ 0. Suppose P(u) =
(P1/Q 1, P2/Q 2) ∈ F 〈u〉2 is a differential rational parametrization of C. Then

ordx A + ordu(P1/Q 1) = ordy A + ordu(P2/Q 2).

In particular, ordx A ≤ ordu(P2/Q 2) and ordy A ≤ ordu(P1/Q 1).

Proof. Denote mi = ordu(Pi/Q i) for i = 1, 2. Then mi ≥ 0. Let s1 = ordx A and s2 = ordy A. The fact 
I(P(u)) = sat(A) ⊂ F {x, y} implies that s1 and s2 are respectively the minimal indices 	1, 	2 such 
that

P1/Q 1, (P1/Q 1)
′, . . . , (P1/Q 1)

(	1), P2/Q 2, (P2/Q 2)
′, . . . , (P2/Q 2)

(	2) (6)

are algebraically dependent over F , or equivalently, in the module (�F 〈u〉/F , d) of Kähler differen-
tials, d(P1/Q 1), d(P1/Q 1)

′ , . . . , d(P1/Q 1)
(	1), d(P2/Q 2), d(P2/Q 2)

′, . . . , d(P2/Q 2)
(	2) are linearly de-

pendent over F 〈u〉 (Johnson, 1969, p. 94). By Lemma 6, each (Pi/Q i)
(k) is of order mi + k, so 

d(Pi/Q i)
(k) is linear in d(u(mi+k)) for k ≥ 0. Thus, m1 + s1 = m2 + s2 follows. Note that when 	1 = m2

and 	2 = m1, the m1 + m2 + 2 elements in (6) are contained in F (u, u′, . . . , u(m1+m2)), and thus are 
algebraically dependent over F . So ordx A ≤ m2 and ordy A ≤ m1. �

Below we give some examples and non-examples for unirational differential curves.

Example 13.

(1) Let A = x′ 2 − 4xy2 ∈ Q(t){x, y} with δ = d
dt . Then (C, A) is a unirational differential curve 

with a differential rational parametrization P1 = (u2, u′). Note that P2 = (
(u′)2, u′′) is another 

parametrization of (C, A) and ord(P1) < ord(P2).
(2) Let A = y′ − x′ ∈ Q(t){x, y}. Then (C, A) is not unirational. If we suppose the contrary, then 

(C, A) would have a parametrization (R1(u), R2(u)) ∈ (Q(t)〈u〉)2. However, a = R2(u) − R1(u) ∈
CQ(t)〈u〉 =Q and consequently y − x − a ∈ sat(A), a contradiction.
Actually, if A = B(k) for some B ∈ F {x, y} \F and k > 0, then (C, A) is not unirational. Otherwise, 
there exists P(u) ∈ F 〈u〉2 such that I(P(u)) = sat(A), which implies that b = B(P(u)) ∈ F 〈u〉 is 
differentially algebraic over F and consequently, b ∈ F . Thus, B(x, y) − b ∈ sat(A). By Lemma 3, 
B(x, y) − b is divisible by A, a contradiction to A = B(k) .

From the above examples, we learn that not all differential curves are unirational and for a uni-
rational differential curve, its differential rational parametrizations are not unique. In fact, if P1(u) is 
a differential rational parametrization of (C, A), then for any R(u) ∈ F 〈u〉 \ F , P2 = P1

(
R(u)

)
is also 

a differential rational parametrization of (C, A), and thus C has infinitely many differential rational 
parametrizations. These facts lead to the following two natural problems:

Problem 1. Given A ∈ F {x, y}, decide whether the differential curve (C, A) is unirational or not.

Problem 2. If (C, A) is unirational, find “optimal” differential rational parametrizations for it w.r.t. 
some criteria, for instance, having minimal order and degree.

We first study Problem 2 in this section by introducing the notion of proper differential rational 
parametrizations and giving the main basic properties, while leaving Problem 1 to be considered in 
Section 5.

Definition 14. Let C be a unirational differential curve with a differential rational parametrization 
P(u) =

(
P1(u)
Q (u)

,
P2(u)
Q (u)

)
. The parametrization P(u) is said to be proper if F 〈 P1(u)

Q (u)
, P2(u)

Q (u)
〉 = F 〈u〉.
1 2 1 2
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Equivalently, the notion of properness can be stated by means of differentially birational maps 
between C and A1. More precisely, let (C, A) be a unirational differential curve with a differential 
rational parametrization P(u) ∈ F 〈u〉2. This P(u) induces the differentially rational map

P : A1 ��� C⊂ A2

u �−→ P(u).

Then the differential parametrization P(u) is proper if and only if the map P is differentially bira-
tional, that is, P has an inverse differential rational map

U : C ��� A1

(x, y) �−→ U (x, y),

where U (x, y) ∈ F 〈x, y〉 and the denominator of U does not vanish identically on C. This U is called 
the inversion of the proper differential rational parametrization P(u).

Gao defined properness for differential rational parametric equations (DRPEs) in (Gao, 2003) and 
under his definition, 

(
P1(u)
Q 1(u)

,
P2(u)
Q 2(u)

)
is called proper if for a generic zero (a1, a2) of C, there exists 

a unique τ ∈ E such that ai = Pi(τ )/Q i(τ ). By (Gao, 2003, Theorem 6.1), the equivalence of these 
definitions can be easily seen.

In (Gao, 2003, Theorem 6.2), Gao gave a method to compute a proper reparametrization for any 
improper DRPEs based on a constructive proof of Theorem 4. Given an arbitrary rational parametriza-
tion P(u) of a unirational differential curve C, Gao’s method produces an algorithm to compute a 
proper differential rational parametrization for C from P(u), which in particular shows that each 
unirational differential curve has a proper rational parametrization.

In the following we show that proper differential rational parametrizations possess essential prop-
erties of the unirational differential curves. We first give the order property of proper differential 
rational parametrizations. Recall that the order of a reduced differential rational function is equal to 
the maximum of the orders of its denominator and numerator.

Theorem 15. Let (C, A) be a unirational differential curve and 
( P1(u)

Q 1(u)
, P2(u)

Q 2(u)

)
be a proper differential rational 

parametrization of C. Then we have

ord
( P1(u)

Q 1(u)

)
= ordy A, ord

( P2(u)

Q 2(u)

)
= ordx A. (7)

Proof. For the special cases that either P1(u)
Q 1(u)

= a1 ∈ F or P2(u)
Q 2(u)

= a2 ∈ F , by Lemma 8 we have 
either 1) A = x − a1 and P(u) = (a1, α1u+β1

γ1u+ξ1
), or 2) A = y − a2 and P(u) = (

α2u+β2
γ2u+ξ2

, a2), for some 
αi, βi, γi, ξi ∈ F with αiξi − βiγi �= 0, where (7) holds.

So it suffices to consider the case that mi = ord(
Pi(u)
Q i(u)

) ≥ 0 for i = 1, 2. In this case, both {x} and 
{y} are parametric sets of sat(A). By Definition 2, the relative order of sat(A) w.r.t. the parametric set 
{x} is

ord{x}sat(A) = tr.degF 〈 P1(u)

Q 1(u)
〉F 〈 P1(u)

Q 1(u)
,

P2(u)

Q 2(u)
〉 = tr.degF 〈 P1(u)

Q 1(u)
〉F 〈u〉.

By Lemma 6, tr.degF 〈 P1(u)

Q 1(u)
〉F 〈u〉 = m1. Since A is a characteristic set of sat(A) w.r.t. the elimination 

ranking: x < y, again by Definition 2, ordy A = ord{x}sat(A) = m1. By Proposition 12, ordx A − ordy A =
m2 − m1, and thus ordx A = m2, ordy A = m1. �
Remark 16. In the algebraic case, properness of a rational parametrization can be characterized 
via the degree of the implicit equation of a unirational curve (Sendra et al., 2007, Theorem 4.21). 
That is, a parametrization P (t) of a unirational curve V( f ) is proper if and only if deg(P (t)) =
max{degx f , degy f }. However, in the differential case, we do not have such a characterization of 
properness via the orders of differential curves and the converse of Theorem 15 is not valid. For a 
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non-example, let A = y′ − xy ∈ F {x, y}. Clearly, P(u) = ( 2u′
u , u2) is a parametrization of (C, A) which 

satisfies (7). But F 〈P(u)〉 = F 〈u2〉 �= F 〈u〉, so P(u) is not proper.

As a direct consequence of Theorem 15, we can show that an algebraic curve is unirational in the 
algebraic sense if and only if it is unirational in the differential sense.

Corollary 17. Let (F , δ) be a differential field which is algebraically closed. Let A ∈ F [x, y] be an irreducible 
polynomial. Then the differential curve (C, A) is unirational if and only if the genus of the algebraic curve 
defined by A = 0 is 0.

Proof. By (Sendra et al., 2007, Theorem 4.63), an algebraic curve is rational if and only if its genus is 
0. So it suffices to show that if the differential curve (C, A) is unirational, then the algebraic curve de-
fined by A = 0 is rational in the algebraic sense. Indeed, if (C, A) is unirational with a proper differen-
tial rational parametrization ( P1(u)

Q 1(u)
, P2(u)

Q 2(u)
), by Theorem 15, max{ord(

P1(u)
Q 1(u)

), ord(
P2(u)
Q 2(u)

)} = ord(A) = 0, 
so the algebraic curve A = 0 is rational. �

In the algebraic case, it was shown in (Sendra et al., 2007, Lemma 4.17) that proper rational 
parametrizations of a rational algebraic curve enjoy some “uniqueness” property up to the Möbius 
transformations. We now show this property can be extended to the differential case.

Theorem 18. If P1(u), P2(u) are two proper differential rational parametrizations of (C, A), then there exist 
a, b, c, d ∈ F , s.t. P2(u) = P1(

au+b
cu+d ). Conversely, given any proper parametrization P(u) of (C, A), P( au+b

cu+d )

is also a proper parametrization of (C, A) for ad − bc �= 0.

Proof. Assume P1(u) = ( P1(u)
Q 1(u)

, P2(u)
Q 2(u)

)
, P2(u) = ( P3(u)

Q 3(u)
, P4(u)

Q 4(u)

)
. Since F 〈 P1(u)

Q 1(u)
, P2(u)

Q 2(u)
〉 = F 〈u〉, there 

exist M(x, y), N(x, y) ∈ F {x, y} s.t. u = M(P1(u))
N(P1(u))

. Then,

Pi
( M(P1(u))

N(P1(u))

)
Q i

( M(P1(u))
N(P1(u))

) = Pi(u)

Q i(u)
, i = 1,2.

Let r(u) = M(P2(u))
N(P2(u))

. Since I
(

P1(u)
Q 1(u)

,
P2(u)
Q 2(u)

)
= I

(
P3(u)
Q 3(u)

,
P4(u)
Q 4(u)

)
, we obtain P3(u)

Q 3(u)
= P1(r(u))

Q 1(r(u))
, P4(u)

Q 4(u)
=

P2(r(u))
Q 2(r(u))

. Then F 〈u〉 = F 〈 P3(u)
Q 3(u)

, P4(u)
Q 4(u)

〉 ⊂ F 〈r(u)〉, which implies F 〈u〉 = F 〈r(u)〉. By Lemma 8, r(u) =
au+b
cu+d for some a, b, c, d ∈ F with ad − bc �= 0. The converse part is easy to check. �
Remark 19. Let (C, A) be a unirational differential curve. Theorem 18 and its proof imply the follow-
ing two facts about proper differential rational parametrizations.

1) Proper differential rational parametrizations of (C, A) are of the smallest order among all its 
rational parametrizations. Indeed, let P(u) be any differential rational parametrization of (C, A)

and P1(u) be a proper one, then by the proof of Theorem 18, there exists r(u) ∈ F 〈u〉 such that 
P(u) = P1(r(u)). Therefore, by Corollary 7, ord(P1(u)) ≤ ord(P(u)). And ord(P(u)) = ord(P1(u))

if and only if ord(r(u)) = 0.
2) Although the orders of proper differential rational parametrizations of (C, A) are the same, their 

degrees could be distinct when ord(A) > 0. Take A = y′′ − x for a simple example. Clearly, P(u) =
(u′′, u) is a proper rational parametrization of (C, A) of degree 1 and P(1/u) = (

−uu′′+2(u′)2

u3 , 1u )

is another proper parametrization of degree 3. It is interesting to estimate the lowest degree of 
proper parametrizations in terms of the numerical data of A.

We illustrate Theorem 15 and Theorem 18 by giving the following examples.
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Example 20.

(1) Let A = y′′x + (y′)2 y − y′x′ ∈Q{x, y}. Then P(u) = (uu′′, u′) is a proper parametrization of (C, A). 
Note that ord(uu′′) = 2 = ordy A and ord(u′) = 1 = ordx A.

(2) Let A = y′ − x′ − x ∈Q{x, y}. Then P1 = (u′, u + u′), P2 = (−u′
u2 , u−u′

u2 ) are two proper parametriza-

tions of (C, A). Here, P2(u) =P1(
1
u ). Note that ord(Pi) = ord(A) and deg(P2) > deg(P1).

4. Proper linear differential rational parametrizations and the implicitization problem

In this section, we shall first explore further properties for proper linear differential rational 
parametrizations and then study the implicitization problem using differential resultants.

Definition 21. We call P(u) = ( P1(u)
Q 1(u)

, P2(u)
Q 2(u)

) ∈ F 〈u〉2 \F 2 a linear differential rational parametrization
(LDRP) if for i = 1, 2, Pi, Q i ∈ F {u} are of degree at most 1 and gcd(Pi, Q i) = 1.

Although the converse of Theorem 15 is not valid in general as explained in Remark 16, when 
restricted to linear differential rational parametrizations, the next theorem shows that properness can 
be characterized via the orders of implicit equations of unirational differential curves.

Theorem 22. Let (C, A) be a unirational differential curve which has a linear differential rational parametriza-
tion P(u) = ( P1(u)

Q 1(u)
, P2(u)

Q 2(u)

)
. Then, P(u) is proper if and only if

ord
( P1(u)

Q 1(u)

) = ordy A, ord
( P2(u)

Q 2(u)

) = ordx A.

Proof. Suppose ord
( P1(u)

Q 1(u)

) = ordy A, ord
( P2(u)

Q 2(u)

) = ordx A. We need to show that P(u) is proper. Let 
J = [Q 1(u)x − P1(u), Q 2(u)y − P2(u)] : (Q 1 Q 2)

∞ . Then J is a prime differential ideal in F {x, y, u}, 
and {Q 1(u)x − P1(u), Q 2(u)y − P2(u)} is its characteristic set w.r.t. the elimination ranking u < x < y
(Ritt, 1950, p. 107). Now we compute a characteristic set B1(x, y), B2(x, y, u) of J w.r.t. the elimi-
nation ranking x < y < u. Since Pi, Q i are of degree at most 1, by the zero-decomposition theorem, 
B2(x, y, u) is a linear differential polynomial in u.

Let s := ordu B2. Rewrite B2 in the form B2(x, y, u) = Is(x, y)u(s) + · · · + I0(x, y)u + I(x, y), where 

Ii(x, y), I(x, y) ∈ F {x, y}. Let B̄(z) = B2(
P1(u)

Q 1(u)
,

P2(u)

Q 2(u)
,z)

Is(
P1(u)

Q 1(u)
,

P2(u)

Q 2(u)
)

∈ F 〈 P1(u)
Q 1(u)

, P2(u)
Q 2(u)

〉{z}. By Remark 5, B̄(z) is the 

minimal polynomial of u over F 〈P(u)〉 with ordz(B̄) = s. Suppose the contrary that P(u) is not 
proper. Then by Remark 5 2), s ≥ 1 and consequently there exists a coefficient v of B̄(z) such 
that ordu v = s ≥ 1. So v /∈ F and by Remark 5 1), F 〈 P1(u)

Q 1(u)
, P2(u)

Q 2(u)
〉 = F 〈v〉 follows. Thus, there ex-

ist P3, Q 3, P4, Q 4 ∈ F {z} such that P1(u)
Q 1(u)

= P3(v)
Q 3(v)

, P2(u)
Q 2(u)

= P4(v)
Q 4(v)

. Let P1(u) := (
P3(u)
Q 3(u)

, P4(u)
Q 4(u)

). Since 
F 〈P1(u)〉 = F 〈u〉, P1(u) is a proper parametrization of (C, A) with ord(

P3(u)
Q 3(u)

) = ord(
P1(u)
Q 1(u)

) − s <
ordy A, ord(

P4(u)
Q 4(u)

) = ord(
P2(u)
Q 2(u)

) − s < ordx A by Corollary 7, which contradicts Theorem 15. Thus, 
P(u) should be proper. Combined with Theorem 15, P(u) is proper if and only if ord

( P1(u)
Q 1(u)

) =
ordy A, ord

( P2(u)
Q 2(u)

) = ordx A. �

Remark 23. By the proof of Theorem 22, if P(u) = ( P1(u)
Q 1(u)

, P2(u)
Q 2(u)

)
is a non-proper linear differential 

rational parametrization of (C, A), then the Lüroth generator of F 〈P(u)〉/F is of order s ≥ 1 and 
ord

( P1(u)
Q (u)

) = ordy A + s, ord
( P2(u)

Q (u)

) = ordx A + s.

1 2
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4.1. Implicitization of proper LDRPs by differential resultants

In the algebraic case, it was shown in (Sendra et al., 2007, Theorem 4.41) that resultants can be 
used to solve the implicitization problem for rational parametrizations. For the differential case, the 
implicitization problem for linear differential polynomial parametric equations was studied by Rueda 
and Sendra (2007) via linear complete differential resultants. In the following, we present results on 
implicitization for linear differential rational parametrizations with the method of differential resul-
tants. Before that, we need a technical result.

Recall that the wronskian determinant of ξ1, . . . , ξn is

wr(ξ1, . . . , ξn) =

∣∣∣∣∣∣∣∣

ξ1 δ(ξ1) · · · δn−1(ξ1)

ξ2 δ(ξ2) · · · δn−1(ξ2)

· · · · · · · · · · · ·
ξn δ(ξn) · · · δn−1(ξn)

∣∣∣∣∣∣∣∣
.

It is well-known that wr(ξ1, . . . , ξn) = 0 gives a necessary and sufficient condition that ξ1, . . . , ξn are 
linearly dependent over constants.

Lemma 24. Let L = δn + an−1δ
n−1 + · · · + a0 ∈ F [δ]. Suppose L1 = δn1 + bn1−1δ

n1−1 + · · · + b0 ∈ G[δ] is 
a right divisor of L over some differential extension field G of F . Then all the bi belong to a finite differential 
algebraic extension field of F . In particular, tr.degF 〈b0, . . . , bn1−1〉/F < ∞.

Proof. Sol(L) = {y ∈ E | L(y) = 0} is a linear space of dimension n over CE , the field of constants of 
E. Let ξ1, . . . , ξn be a basis of Sol(L). Then the an−1, . . . , a1, a0 satisfy the following linear equations

δn(ξi) + an−1δ
n−1(ξi) + · · · + a0ξi = 0, (i = 1, . . . ,n).

So we have
⎛
⎜⎜⎝

ξ1 δ(ξ1) · · · δn−1(ξ1)

ξ2 δ(ξ2) · · · δn−1(ξ2)

· · · · · · · · · · · ·
ξn δ(ξn) · · · δn−1(ξn)

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

a0
a1
...

an−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−δn(ξ1)

−δn(ξ2)
...

−δn(ξn)

⎞
⎟⎟⎟⎠ .

Since ξ1, . . . , ξn are linearly independent over CE , the wronskian determinant wr(ξ1, . . . , ξn) is 
nonzero. Thus, ai = wri(ξ1,...,ξn)

wr(ξ1,...,ξn)
∈ F , where wri(ξ1, . . . , ξn) is obtained from wr(ξ1, . . . , ξn) by replacing 

its (i + 1)-th column by (−δn(ξ1) − δn(ξ2) · · · − δn(ξn))T.
Since L1 is a right divisor of L, the solution space Sol(L1) (⊂ Sol(L)) of L1 in E is of dimension n1

and there exist ci j ∈ CE (i = 1, . . . , n1; j = 1, . . . , n) such that

ηi = ci1ξ1 + ci2ξ2 + · · · + cinξn, i = 1, . . . ,n1

is a basis of Sol(L1). Similarly, we can recover the coefficients b j of L1 from the ηi ’s following the 
above steps. Thus, b j ∈ F (ci j)〈ξ1, . . . , ξn〉, which is a finitely generated differential algebraic extension 
field of F . �

Differential resultant for two univariate differential polynomials was first introduced by Ritt (1932). 
Carrà-Ferro then proposed to use algebraic Macaulay resultants to compute differential resultants for 
n + 1 differential polynomials in n differential variables (Carrà-Ferro, 1997a,b), which is incomplete in 
that under her method, even the differential resultant of two generic nonlinear univariate differential 
polynomials is identically zero. The first rigorous definition of the differential resultant for n + 1
differential polynomials in n differential variables was given by Gao et al. (2013). Although Ferro’s 
matrix formulae do not work for the general case, these definitions for the differential resultant of two 
linear univariate differential polynomials are equivalent. Now we recall the definition of differential 
resultants for two linear univariate differential polynomials via the matrix formulae.
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Definition 25. Let f1, f2 ∈ D{u} be linear differential polynomials of order m1, m2 ≥ 0 over a differ-
ential domain D. Let P S = {

f (m2)
1 , f (m2−1)

1 , . . . , f1, f
(m1)
2 , f (m1−1)

2 , . . . , f2
}

and L = m1 + m2 + 2. Let 
M be the L × L matrix whose k-th row is the coefficient vector of the k-th polynomial in P S w.r.t. 
u(m1+m2) > u(m1+m2−1) > · · · > u > 1 (i.e., the resultant matrix of P S w.r.t. u( j), j ≤ m1 + m2). This 
M is called the differential resultant matrix of f1 and f2 w.r.t. u, and det(M) is defined to be the
differential resultant of f1, f2, denoted by δ-Resu( f1, f2), or simply by δ-Res( f1, f2).

The following result shows that the differential resultant can be applied to compute the implicit 
equation for proper linear differential rational parametric equations.

Theorem 26. Let P(u) = (
P1(u)
Q 1(u)

, P2(u)
Q 2(u)

) be a linear differential rational parametrization with mi = ord(
Pi
Q i

) ≥
0 for i = 1, 2. If P(u) is proper, then the differential resultant

R(x, y) := δ-Resu
(
xQ 1(u) − P1(u), y Q 2(u) − P2(u)

) �= 0.

Furthermore, ordx R = m2, ordy R = m1 and R is linear in x(m2) and y(m1) .

Proof. Let f1 = xQ 1(u) − P1(u), f2 = y Q 2(u) − P2(u) ∈ F {u, x, y}. Denote m = m1 + m2 + 2. Let M ∈
F {x, y}m×m be the differential resultant matrix of f1, f2 w.r.t. u. Then R := δ-Resu( f1, f2) = det(M) ∈
F {x, y}. To show R �= 0, it suffices to prove that coeff(det(M), x(m2)) �= 0.

Note the fact that only f (m2) effectively involves x(m2) and f (m2) is linear in x(m2) with coef-
ficient Q 1(u). So coeff(det(M), x(m2)) = det(M1), where M1 ∈ F {x, y}m×m be the resultant matrix 
of Q 1, f

(m2−1)
1 , . . . , f ′

1, f1, f
(m1)
2 , . . ., f ′

2, f2 w.r.t. the variables u(m1+m2), u(m1+m2−1), . . . , u′, u. For 
j = 1, . . . , m − 1, multiply the j-th column of M1 by u(m−1− j) and add it to the last column, then 
compute det(M1) by the last column. So there exist ai, b j, a ∈ F {x, y} such that

det(M1) = a(x, y)Q 1(u) +
m2−1∑

i=0

ai(x, y) f (i)
1 +

m1∑
j=0

b j(x, y) f ( j)
2 . (8)

Clearly, a(x, y) = p(y) ·det(M2) · (−1)m1+1, where p(y) = coeff( f2, u(m2)) �= 0 and M2 is the submatrix 
obtained from M1 by removing the 1-st, the (m2 + 2)-th rows, and the 1-st, the m-th columns. We 
claim that det(M2) �= 0.

If mi = 0 for some i, then det(M2) = (coeff( f i, u))m−2 �= 0. Now suppose m1, m2 > 0. Assume 
P(u) = (

L11(u)+a11
L12(u)+a12

, L21(u)+a21
L22(u)+a22

) where Li j ∈ F [δ], and for each i, Li1 and Li2 are not both equal to 
zero. Clearly,

det(M2) = δ-Resh(xL12(u) − L11(u), yL22(u) − L21(u)).

By (Chardin, 1991, Theorem 2), δ-Resh(xL12(u) − L11(u), yL22(u) − L21(u)) �= 0 if and only if 
gcrd(xL12 − L11, yL22 − L21) = 1 (over F 〈x, y〉). We now show gcrd(xL12 − L11, yL22 − L21) = 1. Sup-
pose the contrary, that is, gcrd(xL12 − L11, yL22 − L21) = D(δ) which is monic of degree greater than 
0. By Lemma 24, D(δ) can not effectively involve x or y. For if not, suppose D(δ) effectively involves 
x, which contradicts the fact that the coefficients of a monic right divisor of yL22 − L21 have finite 
transcendence degree over F 〈y〉 (x is differentially transcendental over F 〈y〉). So D(δ) ∈ F [δ]. As 
a consequence, F 〈P(u)〉 ⊆ F 〈D(u)〉 � F 〈u〉, contradicting the hypothesis that P(u) is proper. Thus, 
gcrd(xL12 − L11, yL22 − L21) = 1 and det(M2) �= 0 follows.

Since det(M2) �= 0, a(x, y) = (−1)m1+1 p(y) · det(M2) �= 0. Let A(x, y) ∈ F {x, y} be an irreducible 
differential polynomial such that I

(
P(u)

)
is the general component of A. Since P(u) is proper, by 

Theorem 15, ordx A = m2 and ordy A = m1. The fact ordxdet(M2) < m2 implies that ordxa(x, y) < m2. 
So a(P(u)) �= 0. By (8), det(M1)

∣∣
(x,y)=P(u)

�= 0 and thus coeff(R(x, y), x(m2)) = det(M1) �= 0. So R �= 0, 
ordx R = m2 and R is linear in x(m2) . Since R ∈ [ f1, f2]∩F {x, y} ⊂ I(P(u)) = sat(A), ordy R ≥ ordy A =
m1. Since ordy R ≤ m1, ordy R = m1 and R is linear in y(m1) . This completes the proof. �
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By Theorem 26, the implicitization of a proper linear differential rational parametrization can be 
reduced to the computation of the corresponding differential resultant.

Corollary 27. Let (C, A) be a unirational differential curve with a linear differential rational parametrization 
P(u) = ( P1(u)

Q 1(u)
, P2(u)

Q 2(u)

)
with mi = ord(

Pi
Q i

) ≥ 0 for i = 1, 2. Suppose P(u) is proper. Then A is the main irre-

ducible factor of R = δ-Res
(
xQ 1(u) − P1(u), y Q 2(u) − P2(u)

)
. That is, if R = AB, then ord(B) < ord(R). In 

particular,

degx(m2) A = 1 and degy(m1) A = 1.

Another direct consequence of Theorem 26 gives a necessary condition for a unirational differential 
curve to possess a proper linear differential rational parametrization.

Corollary 28. Suppose A ∈ F {x, y} defines a unirational differential curve. A necessary condition such that 
(C, A) has a proper linear differential rational parametrization is that A is quasi-linear under any ranking.

We give the following examples to illustrate Theorem 26 and Corollary 27.

Example 29.

(1) Let P(u) = ( u′
u , u). Then P(u) is proper. Furthermore, the differential resultant δ-Res

(
ux − u′, y −

u
) = xy − y′ , which is exactly the implicit equation of P(u).

(2) Let F = (Q(t), d
dt ) and P(u) = ( u′′

tu+1 , u′). Clearly, F 〈 u′′
tu+1 , u′〉 = F 〈u〉, so P(u) is proper. The 

differential resultant of (tu + 1)x − u′′ and y − u′ w.r.t. u is R(x, y) = −txy′′ + tx′ y′ + y′x +
t2 yx2 − x2, which is irreducible. By Corollary 27, R is the implicit equation of P(u).

Remark 30. In the algebraic case, given a rational parametrization P(u) = ( P1(u)
Q 1(u)

, P2(u)
Q 2(u)

)
, it was shown 

in (Sendra et al., 2007, Section 4.5) that the resultant of xQ 1(u) − P1(u) and y Q 2(u) − P2(u) is 
equal to a power of the implicit equation of P(u), and in particular, if P(u) is proper, then the 
resultant is irreducible and is exactly the implicit equation. But in the differential case, even for 
linear differential rational parametrizations, the situation may become more complicated. First, given 
a proper linear differential rational parametrization, although Theorem 26 shows the corresponding 
differential resultant is nonzero and quasi-linear, we do not know whether it is irreducible. Second, if 
the given parametrization is not proper, either case may happen: (C1) The differential resultant is zero. 
For instance, given a nonproper parametrization P1(u) = ( u′

u , u
u′ ), we have δ-Resu

(
xu − u′, yu′ − u

) =
0; or (C2) The differential resultant is nonzero. For a simple example, let P2(u) = ( u′′+1

u , u
′′+1
u ), which 

is obviously not proper. The differential resultant δ-Resu
(
xu − u′′ −1, yu − u′′ −1

) = (y − x)3 �= 0. Note 
that y − x is the implicit equation of P2(u). In case the differential resultant is nonzero, we expect 
its square-free part could serve as the implicit equation as in the algebraic case, but it has not been 
proved yet.

4.2. Properness of LDRPs by differential resultants

Given a linear differential rational parametrization P(u), Corollary 27 shows the implicitization 
problem can be solved by computing the corresponding differential resultant provided that P(u) is 
proper. To make this idea algorithmic, we first need to give a method to decide whether a given 
linear differential rational parametrization is proper. Rueda and Sendra proved that a linear differential 
polynomial parametrization (P (u), Q (u)) ∈ F {u}2 is proper if and only if the differential resultant 
δ-Res(x − P (u), y − Q (u)) �= 0 (Rueda and Sendra, 2007, Theorem 30). However, this result is not 
valid for linear differential rational parametrizations as it is shown in Remark 30.
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In this section, we shall give a characterization of properness for linear differential rational 
parametrizations with the use of differential resultant combined with the order property. Before that, 
we need some preparations by studying a particular differential remainder sequence.

Given a linear differential rational parametrization P(u) = ( P1(u)
Q 1(u)

, P2(u)
Q 2(u)

)
with gcd(Pi, Q i) = 1 and 

mi = ord(
Pi(u)
Q i(u)

) ≥ 0 for i = 1, 2. Without loss of generality, suppose m1 ≥ m2. Denote

f1(x, y, u) = P1(u) − xQ 1(u), f2(x, y, u) = P2(u) − y Q 2(u). (9)

Fix the elimination ranking R : x < y < u. Let f3(x, y, u) = δ-prem( f1, f2) be the Ritt-Kolchin remain-
der of f1 with respect to f2 under R . Since f1 /∈ sat( f2), f3 �= 0, ordu f3 < m2 and ordy f3 ≤ m1 − m2. 
And Q 1 /∈ sat( f2) implies ordx f3 = 0. If ordu f3 ≥ 0, let f4(x, y, u) = δ-prem( f2, f3). Then, we have

ordu f4 < ordu f3, ordx f4 ≤ m2 − ordu f3. (10)

If ordu f4 ≥ 0, then let f5 = δ-prem( f3, f4). Continue the differential reduction process when 
ordu fl−1 ≥ 0 until we get fl = δ-prem( fl−2, fl−1) ∈ F {x, y} for some l ∈ N . Then, we obtain a se-
quence of differential remainders

f1(x, y, u), f2(x, y, u), f3(x, y, u), . . . , fl−1(x, y, u), fl(x, y). (11)

Lemma 31. The obtained sequence (11) satisfies the following properties:

1) For 2 ≤ i ≤ l − 1, ordu fi + ordx f i+1 ≤ m2 and ordu fi + ordy f i+1 ≤ m1 .
2) For each i ≥ 2, f i has the following representation form

fi+1 =
m2−ordu fi∑

k=0

Ai,k(x, y) f (k)
1 +

m1−ordu fi∑
j=0

Bi, j(x, y) f ( j)
2 (12)

where Ai,k, Bi, j ∈ F {x, y}, and Bi,m1−ordu fi �= 0, Ai,m2−ordu fi �= 0 are products of separants of fk (k ≤ i).

Proof. We shall show 1) and 2) by induction on i. First note that ordu f2 + ordx f3 = m2 and ordu f2 +
ordy f3 ≤ m1. By the differential reduction formula for f3 = δ-prem( f1, f2), there exist a ∈ N and 
Ck∈ F {x, y} such that f3 = (S f2)

a f1 −(S f2 )
a−1S f1 f (m1−m2)

2 −∑m1−m2−1
k=0 Ck f (k)

2 . So both 1) and 2) holds 
for i = 2.

Now suppose 1) and 2) holds for i ≤ j (≥ 2). We consider the case for i = j + 1. Since both f1 and 
f2 are linear differential polynomials in u, all the f i (i ≤ l − 1) are linear in u and its derivatives and 
thus ordu fi < ordu fi−1. By the induction hypothesis, ordu f j + ordx f j+1 ≤ m2, and f j+1 has a repre-
sentation form as (12) with B j,m1−ordu f j �= 0 , A j,m2−ordu f j �= 0. Since f j+2 = δ-prem( f j, f j+1), f j+2 is 
a linear combination of f j and f j+1, f ′

j+1, . . . , f
(s)
j+1 with coefficients in F {x, y} and in particular the 

nonzero coefficient for f (s)
j+1 is a product of separants of f j, f j+1 where s = ordu f j − ordu f j+1. Thus, 

f j+2 has a representation form as (12) with B j+1,m1−ordu f j+1 �= 0 , A j+1,m2−ordu f j+1 �= 0 being products 
of the separants of fk (k ≤ j + 1). And

ordx f j+2 ≤ max{ordx f j+1 + ordu f j − ordu f j+1,ordx f j}
≤ max{m2 − ordu f j + ordu f j − ordu f j+1,m2 − ordu f j−1}
≤ m2 − ordu f j+1.

So ordu f j+1 + ordx f j+2 ≤ m2. Similarly, ordu f j+1 + ordy f j+2 ≤ m1 can be shown. Thus, 1) and 2) are 
proved by induction. �

Now, we are ready to propose the main theorem.
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Theorem 32. Let P(u)=(
P1(u)
Q 1(u)

, P2(u)
Q 2(u)

) be a linear differential rational parametrization with mi=ord(
Pi(u)
Q i(u)

) ≥
0 (i = 1, 2). Then P(u) is proper if and only if

R := δ-Res
(
xQ 1(u) − P1(u), y Q 2(u) − P2(u)

) �= 0 and ordx R = m2,ordy R = m1. (13)

Proof. “⇒”: It follows from Theorem 26.
“⇐”: Suppose we have (13). Without loss of generality, assume m1 ≥ m2. If m2 = 0, then F 〈 P2(u)

Q 2(u)
〉 =

F 〈u〉 and thus P(u) is proper. So it suffices to consider the case when m2 ≥ 1.
Let f1 = xQ 1(u) − P1(u), f2 = y Q 2(u) − P2(u) ∈ F {u, x, y}. Fix the elimination ranking R : x <

y < u. Do the differential reduction process as in Lemma 31 under R and we consider the obtained 
sequence

f1(x, y, u), f2(x, y, u), f3(x, y, u), . . . , fl−1(x, y, u), fl(x, y).

By Lemma 31, there exist a, ai, b j ∈ F {x, y} with a �= 0 ,bm2−ordu fl−1 �= 0 such that

fl(x, y) = a(x, y) f
(m1−ordu fl−1)

2 +
m1−ordu fl−1−1∑

i=0

ai(x, y) f (i)
2 +

m2−ordu fl−1∑
j=0

b j(x, y) f ( j)
1 . (14)

Claim A. fl and fl−1 satisfy the following properties:

1) fl(x, y) �= 0, ordx fl = m2 and ordy fl = m1 .
2) fl−1(x, y, u) = g(x, y)u + h(x, y), where g, h ∈F {x, y} \ {0}.

We now proceed to prove Claim A. We first show that fl �= 0 and ordu fl−1 = 0. Suppose the 
contrary that fl = 0. Then by (14), f1, f ′

1, . . ., f
(m2−ordu fl−1)

1 , f2, f ′
2, . . . , f

(m1−ordu fl−1)

2 are linearly de-

pendent over F 〈x, y〉. As a consequence, f1, f ′
1, . . . , f

(m2)
1 , f2, f ′

2, . . . , f
(m1)
2 are linearly dependent 

over F 〈x, y〉, which contradicts the fact that δ-Res( f1, f2) �= 0. Thus fl(x, y) �= 0. And by (14), 1 can 
be written as a linear combination of f1, f ′

1, . . ., f
(m2−ordu fl−1)

1 , f2, f ′
2, . . . , f

(m1−ordu fl−1)

2 over F 〈x, y〉
with a nonzero coefficient for f

(m1−ordu fl−1)

2 , that is,

1 = a(x, y)

fl(x, y)
f
(m1−ordu fl−1)

2 +
m1−ordu fl−1−1∑

i=0

ai(x, y)

fl(x, y)
f (i)
2 +

m2−ordu fl−1∑
j=0

b j(x, y)

fl(x, y
f ( j)
1 . (15)

If ordu fl−1 > 0, then by differentiating both sides of (15), we obtain that f1, f ′
1, . . . , f

(m2)
1 , f2, f ′

2, . . ., 
f (m1)
2 are linearly dependent over F 〈x, y〉, which leads to a contradiction. So ordu fl−1 = 0 and fl−1 =

g(x, y)u + h(x, y) for some g, h ∈ F {x, y} with g �= 0.
It remains to show that ordx fl = m2, ordy fl = m1 and h �= 0. Denote m = m1 + m2 + 2. Let 

M ∈ F 〈x, y〉m×m be the resultant matrix of f (m2)
1 , . . . , f ′

1, f1, f
(m1)
2 , . . . , f ′

2, f2 w.r.t. the variables 
u(m1+m2), u(m1+m2−1) , . . . , u′, u. We perform row operations on M using the ai and b j in (14) as 
follows. For all the i �= m2 + 2, add a multiple ci of the i-th row to the (m2 + 2)-th row of M suc-
cessively and denote the obtained matrix by M1, where for i = 1, . . . , m2 + 1, ci = bm2+1−i/a; and for 
i ≥ m2 + 3, ci = am1+m2+2−i/a. By (14), the (m2 + 2)-th row of M1 becomes (0 0 · · · 0 fl/a). Thus,

δ-Res( f1, f2) = det(M) = det(M1) = (−1)m1 c · fl/a · det(M2), (16)

where c �= 0 is the coefficient of f (m2)
1 in u(m1+m2) , and M2 is the matrix obtained by deleting the 1-st 

row, the (m2 +2)-th row, the 1-st column and the last column. Obviously, ordxc ≤ 0 < m2 and ordyc =
−∞. Since M2 is free of coefficients of f (m2)

1 and f (m1)
2 , ordxdet(M2) < m2 and ordydet(M2) < m1. 

By Lemma 31, a(x, y) = Bl−1,m1−ordu( fl−1) is a product of separants of fk (k ≤ l − 1), and for such 



JID:YJSCO AID:2059 /FLA [m1G; v1.294] P.17 (1-24)

L. Fu, W. Li / Journal of Symbolic Computation ••• (••••) •••–••• 17
fk , ordx fk < m2 and ordy fk < m1. So ordxa(x, y) < m2 and ordya(x, y) < m1. Meanwhile, (13) as-
sumes that ordxδ-Res( f1, f2) = m2 and ordyδ-Res( f1, f2) = m1. So by (16), we have ordx fl = m2 and 
ordy fl = m1. We finish the proof of Claim A by showing h �= 0. If h = 0, then fl = gk fl−2(x, y, 0) for 
some k ∈ N and thus ordx fl ≤ max{ordx g, ordx fl−2} < m2 by Lemma 31, a contradiction. Thus h �= 0
and Claim A is proved.

Since det(M) is linear in x(m2) and ordx fl = m2, by (16), fl is linear in x(m2) . Recall that ordx fl−1 <

m2 and fl−1 = g(x, y)u +h(x, y) is linear in u. Thus, A = { fl(x, y), fl−1(x, y, u)} is an autoreduced set 
w.r.t. the elimination ranking R1 : y < x < u. Since rk( fl) = (x(m2), 1) and rk( fl) = (u, 1), by Lemma 1
and the paragraph above it, A is irreducible and P = sat(A) is a prime differential ideal with A being 
a characteristic set of it under R1. We shall show [ f1, f2] : (Q 1 Q 2)

∞ ⊂P by proving i) f1, f2 ∈P and 
ii) Q 1, Q 2 /∈P.

To show i), by Lemma 31, for each 1 ≤ i ≤ l − 1, ordx f i < m2 and thus the separant S f i /∈ P. By 
the reduction process, for each 1 ≤ i ≤ l − 2, there exists ki ∈ N such that Ski

f i+1
f i ≡ f i+2 mod [ f i+1]. 

Therefore, fl−2 ∈P and consequently f2, f1 ∈P.
To show ii), let M3 ∈ F {x, y}m×m be the resultant matrix of Q 1, f (m2−1)

1 , . . . , f ′
1, f1, f (m1)

2 , . . ., 
f ′
2, f2 w.r.t. u(m1+m2), . . . , u′, u. Then det(M3) = coeff(R, x(m2)) �= 0, for R is linear in x(m2) . Therefore, 

Q 1, f
(m2−1)
1 , . . . , f ′

1, f1, f
(m1)
2 , . . . , f ′

2, f2 are linearly independent over F (x[m2−1], y[m1]), and

SpanF (x[m2−1],y[m1])(Q 1, f (m2−1)
1 , . . . , f ′

1, f1, f (m1)
2 , . . . , f ′

2, f2)

= SpanF (x[m2−1],y[m1])(1, u, . . . , u(m1+m2)).

The representation of 1 in terms of Q 1, f
(m2−1)
1 , . . . , f2 yields a nonzero differential polynomial 

G ∈ [Q 1, f1, f2] ∩ F {x, y} with ordxG < m2. If Q 1 ∈ P, then G ∈ P ∩ F {x, y} = sat( fl), which is 
impossible. Thus, Q 1 /∈ P. Note that ∂2 R

∂x(m2)∂ y(m1) = det(M4) = 0, where M4 is the resultant ma-

trix of Q 1, f
(m2−1)
1 , . . . , f ′

1, f1, Q 2, f
(m1−1)
2 . . ., f ′

2, f2 w.r.t. u(m1+m2), . . . , u′, u. So by (16), if B is 
the irreducible factor of fl effectively involving x(m2) , then ordy B = m1 and B is linear in y(m1) . 
Thus, P ∩ F {x, y} = sat( fl) = sat(B) and B is a characteristic set of sat( fl) w.r.t. any ranking. Since 
coeff(R, y(m1)) �= 0, repeating the above procedures, we obtain some H ∈ [Q 2, f1, f2] ∩ F {x, y} with 
ordy H < m1, and consequently Q 2 /∈P. Thus, 

([ f1, f2] : (Q 1 Q 2)
∞) ⊂P.

Suppose P(u) is a differential rational parametrization of A(x, y) ∈ F {x, y}. Then A ∈ ([ f1, f2] :
(Q 1 Q 2)

∞)∩F {x, y} ⊂ P ∩ F {x, y} = sat( fl). Since ordx A ≤ m2 by Proposition 12, ordx A = m2 and 
ordy A = m1 − m2 + ordx A = m1 follows. By Theorem 22, P(u) is proper. �

We conclude this section by giving two algorithmic consequences of Theorem 32 and its proof. 
First, we get back to the implicitization problem, and devise an algorithm based on Theorem 32 and 
Corollary 27 to decide whether a given linear differential rational parametrization is proper, and in 
the affirmative case, to compute its implicit equation.

Algorithm Proper-Implicitization:
Input: A linear differential rational parametrization P(u) = (

P1(u)
Q 1(u)

, P2(u)
Q 2(u)

) with ord(
Pi
Q i

) ≥ 0.
Output: The implicit equation of P(u), if it is proper, otherwise, return “P(u) is not proper”.

1. Compute the differential resultant R = δ-Res(Q 1(u)x − P1(u), Q 2(u)y − P2(u)) w.r.t. u.
2. If R = 0, then return “P(u) is not proper”.
3. If ordx R = ord(

P2(u)
Q 2(u)

) and ordy R = ord(
P1(u)
Q 1(u)

), return the main factor of R as the implicit equa-
tion; else, return “P(u) is not proper”.

Remark 33. Concerning the complexity of the algorithm, note that the main step is the computation 
of the differential resultant R , for which we just need to compute the determinant of a matrix of size 
m1 + m2 + 2 with mi = ord(

Pi
Q i

). So the complexity of the computation of the differential resultant is 
(m1 +m2 + 2)ω , where ω is the exponent of matrix multiplication. Recall that the implicit equation is 
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irreducible. If the given parametrization is proper, we need to factor R to obtain the implicit equation 
A, so the complexity of the multivariate polynomial factorization problem will be involved in order to 
analyze the computing complexity of the whole algorithm. There are polynomial-time algorithms for 
multivariate polynomial factorization and irreducibility testing over Q, R, C and algebraic number 
fields (Kaltofen, 2003), but as F is an arbitrary field, we can not give a general complexity analysis 
for this step. Since the implicitization algorithm based on the method of characteristic sets is not 
factorization-free and sat(R) = sat(A), this algorithm in general is more efficient. However, when the 
given parametrization is not proper, the current method via differential resultants may fail to compute 
the implicit equation (see Remark 30), while the characteristic set method in (Gao, 2003) and the 
elimination method given in (Ovchinnikov et al., 2018) can provide general techniques to solve the 
implicitization problem.

The second application of Theorem 32 is to compute inversion maps of proper linear differential 
rational parametrizations. Recall that in the algebraic case, Sendra et al. proposed a method to com-
pute the inversion maps of a proper rational parametrization via gcd computations (Sendra et al., 
2007, Section 4.4). For differential rational parametric equations (DRPEs), Gao gave a general method 
based on the Wu-Ritt characteristic set method to decide whether a set of DRPEs is proper and in the 
affirmative case, to compute the inversion maps (Gao, 2003, Theorem 6.1). For proper linear differ-
ential rational parametrizations, we show the sequence of differential remainders constructed in the 
proof of Theorem 32 could be used to compute the inversion maps.

Corollary 34. Let (C, A) be a unirational differential curve with a proper linear differential rational 
parametrization P(u) = (

P1(u)
Q 1(u)

, P2(u)
Q 2(u)

). Suppose mi = ord(
Pi
Q i

) ≥ 1 for i = 1, 2. Perform the differential re-
duction process under the elimination ranking x < y < u for f1 = xQ 1 − P1, f2 = y Q 2 − P2 and suppose 
the obtained sequence is f1(x, y, u), f2(x, y, u), . . . , fl−1(x, y, u), fl(x, y). Then fl−1 = g(x, y)u + h(x, y)

for some g, h ∈ F {x, y} \ {0} and

U : C ��� A1

(x, y) �−→ U (x, y),

given by U (x, y) = − h(x,y)
g(x,y)

is the inversion map of P(u). Moreover, ordxU < m2, ordy U < m1 .

Proof. By the proof of Theorem 32, fl−1 is linear in u with ordx fl−1 < m2 and ordy fl−1 < m1. Thus, 
u ∈ F ( P1

Q 1
, ( P1

Q 1
)′, . . . , ( P1

Q 1
)(m2−1), P2

Q 2
, ( P2

Q 2
)′, . . . , ( P2

Q 2
)(m1−1)

)
. �

Remark 35. We are interested in proper linear differential rational parametrizations in this section. 
However, it may happen that even if a unirational differential curve has a linear differential rational 
parametrization, it does not have a proper linear differential rational parametrization. For example, 
let A = (x′x + x3 − 2x2 − x)y′ + (xy + y2)x′′ + 3y2x′x + y2x3 − 2yx′ 2 + 6yx′x + 3yx′ + 4yx3 + 3yx2 −
2xy − y + 5x3 + 2x2. Then P(u) = ( u′′

u′+u′′′ , u
′+2u′′
u(4) ) is a linear differential rational parametrization of 

(C, A) and Q(u) = ( u
u′+u2+1

, 2u+1
u′′+3uu′+u3

)
is a proper differential rational parametrization of (C, A). By 

Theorem 18, any proper differential rational parametrization of (C, A) is of degree greater than 1.

5. Rational parametrization for linear differential curves

We now deal with the parametrization problem for differential curves, which asks for criteria 
to decide algorithmically whether an implicitly given differential curve is unirational or not, and in 
the affirmative case, to return a differential rational parametrization. In general, it is a very difficult 
problem. In this section, we start from the simplest nontrivial case by considering the unirationality 
problem of linear differential curves.

Definition 36. Let (C, A(x, y)) be an irreducible differential curve. We call C a linear differential curve 
if A is a linear differential polynomial in F {x, y}.
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In the algebraic case, by Gaussian elimination, we know each linear variety is unirational and has 
a polynomial parametric representation. However, in the differential case, even a linear differential 
curve might not be unirational as shown in Example 13 (2).

Every linear differential polynomial A(x, y) ∈ F {x, y} is of the form

A = L1(x) + L2(y) + a

for some linear differential operators L1, L2 ∈ F [δ] where at least one Li is nonzero and a ∈ F . We 
shall show in Theorem 39 that a necessary and sufficient condition for A(x, y) to be unirational is 
that the greatest common left divisor of L1, L2 is 1. Before that, we recall the extended left Euclidean 
algorithm given by Bronstein and Petkovs̆ek (1996).

In general, F [δ] is a non-commutative domain and there exist the left and the right Euclidean 
divisions in F [δ]. Given L1, L2 ∈ F [δ] with L2 �= 0, by the left Euclidean division, we obtain Q , R ∈
F [δ] with deg(R) < deg(L2) satisfying L1 = L2 Q + R , where Q and R are called respectively the left-
quotient and the left-remainder of L1 w.r.t. L2, denoted by lquo(L1, L2) and lrem(L1, L2). If R = 0, then 
L2 is called a left divisor of L1, and correspondingly, L1 is called a right multiple of L2. A common 
left divisor of L1 and L2 with the highest degree is called a greatest common left divisor of L1 and 
L2. There exists a unique, monic (i.e., reduced in Ore’s sense), greatest common left divisor, denoted 
by gcld(L1, L2). A common right multiple of L1, L2 of minimal degree is called a least common right 
multiple. And we have analogous notions for right Euclidean divisions. Below, we restate the extended 
left Euclidean algorithm ELE(L1, L2) for later use and list its basic properties in Proposition 37, which 
were given in (Bronstein and Petkovs̆ek, 1996, pp. 14-15).

Left Euclidean Algorithm: ELE(L1, L2)

Input: L1, L2 ∈ F [δ].
Output: The tuple (Rn−1, An, Bn, An−1, Bn−1) ∈ F [δ]5.

1. R0 := L1, A0 := 1, B0 := 0;
R1 := L2, A1 := 0, B1 := 1;
i := 1.

2. While Ri �= 0 do
i := i + 1;
Q i−1 := lquo(Ri−2, Ri−1);
Ri := lrem(Ri−2, Ri−1);
Ai := Ai−2 − Ai−1 Q i−1;
Bi := Bi−2 − Bi−1 Q i−1.

3. n := i, and return (Rn−1, An, Bn, An−1, Bn−1).

Proposition 37. Let L1, L2 ∈ F [δ]. The algorithm ELE(L1, L2) can be used to compute a greatest common left 
divisor and a least common right multiple of L1, L2 and the obtained sequences Ai, Bi, Ri satisfy the following 
properties:

(1). Rn−1 is a greatest common left divisor of L1, L2;
(2). L1 An = −L2 Bn is a least common right multiple of L1, L2;
(3). Ri = L1 Ai + L2 Bi for 0 ≤ i ≤ n;
(4). deg(Ai) = deg(L2) − deg(Ri−1), deg(Bi) = deg(L1) − deg(Ri−1) for 2 ≤ i ≤ n.

The following result given in (Rueda and Sendra, 2007) will be used to derive Theorem 39.

Lemma 38. (Rueda and Sendra, 2007, Theorem 30) Let L1, L2 ∈ F [δ]. Then F 〈L1(u), L2(u)〉 = F 〈u〉 if and 
only if gcrd(L1, L2) = 1 (i.e., a greatest common right divisor of L1, L2 belongs to F \ {0}).
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Theorem 39. Let F = L1(x) + L2(y) + a ∈ F {x, y} \F with L1, L2 ∈ F [δ]. Then,

(C, F ) is unirational if and only if gcld(L1, L2) = 1.

Furthermore, each unirational linear differential curve has a proper linear differential polynomial parametriza-
tion.

Proof. For the necessity, suppose (C, F ) is unirational. If gcld(L1, L2) �= 1, then there exist L ∈ F [δ] \
F and L3, L4 ∈ F [δ] such that L1 = LL3, L2 = LL4. Then F = L(L3(x) + L4(y)) + a with ord(L3(x) +
L4(y)) < ord(F ). Since there exists P(u) ∈ F 〈u〉2 such that sat(F ) = I(P(u)), we have F (P(u)) = 0, 
which implies that L3(P(u)) + L4(P(u)) ∈ F . Thus, A := L3(x) + L4(y) − b ∈ sat(F ) for some b ∈ F . 
Since ord(A) < ord(F ), this leads to a contradiction. So gcld(L1, L2) = 1.

To show the sufficiency, suppose gcld(L1, L2) = 1. By performing the algorithm ELE(L1, L2), we 
obtain Ai, Bi, Ri ∈ F [δ] satisfying the properties given in Proposition 37. In particular, L1 An = −L2 Bn

is a least common right multiple of L1 and L2. The fact that gcld(L1, L2) = 1 yields c := Rn−1 ∈ F \{0}, 
and consequently deg(An) = deg(L2), deg(Bn) = deg(L1). Let

P(u) =
(

An(u) + An−1(−a/c), Bn(u) + Bn−1(−a/c)
)

∈ F {u}2.

We shall show that P(u) is a proper linear differential polynomial parametrization of (C, F ).
We first prove F 〈P(u)〉 = F 〈u〉. Since F 〈P(u)〉 = F 〈An(u), Bn(u)〉, by Lemma 38, it suffices 

to prove that gcrd(An, Bn) = 1. If gcrd(An, Bn) �= 1, there exists C(δ) ∈ F [δ] \ F such that An =
C1(δ)C(δ), Bn = C2(δ)C(δ) for some C1, C2 ∈ F [δ]. Since L1 An = −L2 Bn , we obtain L1C1 = −L2C2
is also a common right multiple of L1, L2, which contradicts the fact that L1 An is a least common 
right multiple of A, B . Therefore, F 〈P(u)〉 = F 〈u〉.

By Theorem 15, there exists an irreducible differential polynomial G(x, y) ∈ F {x, y} with ordxG =
deg(L1), ordy G = deg(L2) such that I(P(u)) = sat(G). Since L1 An−1 + L2 Bn−1 = c, by acting this op-
erator on −a/c, we have L1(An−1(

−a
c )) + L2(Bn−1(

−a
c )) = −a. So F (P(u)) = L1(An(u)) + L2(Bn(u)) =

(L1 An + L2 Bn)(u) = 0 and F ∈ sat(G) follows. Since ord(G) = ord(F ) and F is linear, F = eG for some 
e ∈ F and I(P(u)) = [F ]. Thus, P(u) is a proper linear differential polynomial parametrization of F
and (C, F ) is unirational. The later assertion follows directly from the above proof. �

By the proof of Theorem 39, we can devise an algorithm to determine whether an implicitly given 
linear differential curve is unirational or not, and in the affirmative case, to construct a proper linear 
differential polynomial parametrization for it.

Algorithm Linear-Differential-Curve-Parametrization: LDCP(F )

Input: F = L1(x) + L2(y) + a ∈ F {x, y} \F with L1, L2 ∈ F [δ].
Output: A proper linear differential polynomial parametrization P(u) of (C, F ), if it is unirational; No, 
in the contrary case.

1. Perform ELE(L1, L2) = (Rn−1, An, Bn, An−1, Bn−1);
2. If Rn−1 /∈ F , then return No;

3. Return P(u) =
(

An(u) + An−1(−a/Rn−1), Bn(u) + Bn−1(−a/Rn−1)
)

.

Below, we give examples to illustrate Theorem 39.

Example 40.

(1) Let A = x′′ − y′ ∈Q{x, y}, then L1 = δ2, L2 = δ and (C, A) is not unirational.
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(2) Let A = y′ − x′ − x ∈ Q{x, y}, then L1 = −δ − 1, L2 = δ, (C, A) is unirational with a proper 
parametrization (u′, u + u′).

(3) Let A = x′ + x + ty′ + (t +1)y ∈Q(t){x, y} with δ = d
dt . For this example, L1 = δ+1, L2 = tδ+ t +1. 

Since gcld(L1, L2) = δ + 1, (C, A) is not unirational.
(4) Let A = tx′ + tx + y′ + y ∈ Q(t){x, y} with δ = d

dt . Then (C, A) is unirational with a proper 
parametrization (u′ + u, −tu′ + (1 − t)u). Here L1 = tδ + t, L2 = δ + 1. Note that gcld(L1, L2) = 1
but gcrd(L1, L2) = δ + 1.

Given two differential polynomials A, B ∈ F {x, y}, we have shown in Example 13 (2) that if A is 
a proper derivative of B , then (C, A) is not differentially unirational. If additionally both A and B are 
linear, we have a stronger result as follows.

Proposition 41. Let A, B be two linear differential polynomials in F {x, y} \F .

1). If A ∈ [B] with ord(A) > ord(B), then (C, A) is not differentially unirational.
2). Suppose A is differentially unirational. If [A] ⊆ [B], then [A] = [B].

Proof. Without loss of generality, suppose ord(A) = ordx A and set s = ordx A − ordx B . Suppose A ∈
[B]. Since A, B are linear, there exists ai ∈ F with as �= 0 such that

A = a0 · B + a1 · B ′ + · · · + as · B(s).

Clearly, the result 2) is a direct consequence of 1), so it suffices to show 1). If ord(A) > ord(B), then 
s > 0 and a0 +a1δ+· · ·+asδ

s is a common left divisor of L1, L2, where A = L1(x) + L2(y) +b ∈ F {x, y}. 
By Theorem 39, A is not differentially unirational. �
Remark 42. Proposition 41 shows that given two linear differential curves C2 ⊆ C1, if C1 is unira-
tional, then C1 = C2. However, in general, the inclusion of unirational differential curves does not 
imply the equality. For example, let A = y′x − x′ y + xy2 and B = y, then (C2, B) � (C1, A). Note that 
(C1, A) and (C2, B) are unirational with parametrizations (u′, u′

u ) and (u, 0) respectively.

Now consider the implicitization of linear differential curves with given linear differential poly-
nomial parametrization equations. In (Rueda and Sendra, 2007, Sec. 8.1., Algorithm 2), an algorithm 
was devised to compute the implicit equation of the linear differential curve using differential re-
sultants. We give an alternative method based on the differential remainder sequence introduced in 
(11).

Proposition 43. Let P(u) = (P1(u), P2(u)) ∈ (F {u} \ F )2 be a linear differential polynomial parametriza-
tion. Let f1 = x − P1(u), f2 = y − P2(u) ∈ F {u, x, y}. Suppose

f1(x, y, u), f2(x, y, u), . . . , fl−1(x, y, u), fl(x, y)

is the differential remainder sequence under the elimination ranking R : x < y < u obtained by the differential 
reduction process as in Lemma 31. Then P(u) parametrizes (C, fl(x, y))

Proof. Let A(x, y) = 0 be the implicit equation of x = P1(u), y = P2(u). That is, A is linear with 
I(P(u)) = [A(x, y)]. Since f i−2 ≡ f i mod [ f i−1] for i = 3, . . . , l, each f i ∈ [ f1, f2] and f1, f2 ∈ [ fl, fl−1]. 
We first show that fl(x, y) �= 0. Suppose the contrary, then f2, f1 ∈ [ fl−1]. Since fl−1 ∈ [ f1, f2], we 
have ordx fl−1 ≥ 0 or ordy fl−1 ≥ 0, which contradicts the fact that f2, f1 ∈ [ fl−1]. So fl(x, y) �= 0. 
Without loss of generality, suppose ord(P1) ≥ ord(P2). Two cases are considered:
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• Case 1) l = 3. Here, f3(x, y) ∈ I(P(u)) = [A]. Since ordx f3 = 0 and ordx A ≥ 0, f3 = c A for some 
c ∈ F and I(P(u)) = [ f3] follows.

• Case 2) l ≥ 4. Since ordy f i = ordu f1 −ordu fi−1 for i ≥ 3, ordy f i−1 < ordy f i for 4 ≤ i ≤ l. Thus, A :
fl(x, y), fl−1(x, y, u) is a characteristic set of the prime differential ideal [ fl, fl−1] under R . Since 
f2, f1 ∈ [ fl, fl−1], A(x, y) ∈ [ f1, f2] ⊆ [ fl, fl−1]. Therefore, ordy fl ≤ ordy A. Since fl ∈ I(P(u)) =
[A], fl = c A for some c ∈ F and I(P(u)) = [ fl].

Thus, P(u) is a differential parametrization of the differential curve (C, fl). �
Remark 44. Example 40 (1) shows that the linear differential curve C = V (x′′ − y′) ⊂ A2 is not uni-
rational. However, if we allow differential rational parametrizations involving arbitrary constants as 
in (Gao, 2003, Example 1.2.), then C has a parametrization of the form x = u and y = u′ + c where 
c is an arbitrary constant. It is also an interesting topic to study generalized “unirational” differential 
curves with rational parametrizations involving arbitrary constants.

Remark 45. Theorem 39 shows that a unirational linear differential curve always admits proper linear 
differential polynomial parametrizations. For a general problem, one may ask which kinds of unira-
tional differential curves can possess polynomial parametrizations or proper polynomial parametriza-
tions. For algebraic curves, it was shown in (Sendra et al., 2007, Theorem 6.11) that a curve has 
polynomial parametrizations if and only if it has proper polynomial parametrizations, and such a 
curve is called a polynomial curve. In (Sendra et al., 2007, Section 6.2), Sendra et al. solved the poly-
nomiality problem positively by proposing an algorithm to decide whether a plane curve represented 
by a rational parametrization is polynomial, and in the affirmative case, to compute a proper polyno-
mial parametrization. The key result leading to the algorithm is a simple criterion for polynomiality 
in (Sendra et al., 2007, Corollary 6.14) by just comparing the square-free parts of the denominators of 
the two components of a given proper rational parametrization.

In the differential case, the polynomiality problem is more complicated to solve. First, it may 
happen that a unirational differential curve admits polynomial parametrizations but does not have 
proper polynomial parametrizations. For example, (C, x′ 2 − 4xy) is a unirational differential curve 
with a nonproper polynomial parametrization P1(u) = (u2, u′ 2) and a proper rational parametrization 
P2(u) = (u, u

′ 2

4u ). Since P2

(
au+b
cu+d

)
is not a polynomial parametrization for ad − bc �= 0, it follows by 

Theorem 18 that C does not admit a proper polynomial parametrization. Second, given a differential 
rational parametrization, even if we can use the reparametrization algorithm given in (Gao, 2003) to 
compute a proper rational parametrization, it is still hard to derive a criterion for polynomiality from 
a proper differential rational parametrization.

6. Problems for further study

There are several problems for further study. Given a linear differential rational parametrization 
P(u) = (

P1(u)
Q 1(u)

, P2(u)
Q 2(u)

), Theorem 32 provides an algorithm to decide whether a given linear differential 
rational parametrization is proper or not, and in the affirmative case, to compute the implicit equa-
tion. It is interesting to see whether in general the differential resultant can be used to compute the 
implicit equations of proper differential rational parametric equations.

In the algebraic case, Sendra and Winkler (2001) introduced the notion of tracing index for rational 
parametrizations and gave an algorithmic approach based on greatest common divisors for computing 
the tracing index of a given rational parametrization and deciding whether it is proper. It is interesting 
to define a similar notion of tracing index for differential rational parametrizations and devise an 
efficient algorithm to decide properness of differential rational parametrizations.

The most important and unsolved problem is to give general methods to determine the rational 
parametrizability of nonlinear differential curves and if so, to develop efficient algorithms to com-
pute proper differential rational parametrizations. Motivated by the results for algebraic curves, the 
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determination problem may amount to define new differential invariants such as differential genus 
for differential curves as proposed in (Feng and Gao, 2006) and (Gao, 2003).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

Acknowledgements

We are grateful to Franz Winkler, Xiao-Shan Gao, James Freitag, Ru-Yong Feng, Gleb Pogudin and 
Alexey Ovchinnikov for helpful discussions, suggestions and also encouragement when we work on 
unirational differential curves. This work is partially supported by NSFC Grants (11971029, 11688101, 
11671014). We would like to thank the referees for their helpful comments and suggestions on a 
previous version of this manuscript.

References

Bronstein, M., Petkovs̆ek, M., 1996. An introduction to pseudo-linear algebra. Theor. Comput. Sci. 157 (1), 3–33.
Buium, A., Cassidy, P.J., 1998. Differential algebraic geometry and differential algebraic groups. In: Bass, H., et al. (Eds.), Selected 

Works of Ellis Kolchin, with Commentary. American Mathematical Society, Providence, RI, pp. 567–636.
Carrà-Ferro, G., 1997a. A resultant theory for the systems of two ordinary algebraic differential equations. Appl. Algebra Eng. 

Commun. Comput. 8, 539–560.
Carrà-Ferro, G., 1997b. A Resultant Theory for Ordinary Algebraic Differential Equations. Lecture Notes in Computer Science, 

vol. 1255. Springer, pp. 55–65.
Chardin, M., 1991. Differential resultants and subresultants. In: Proc. FCT’91. In: Lecture Notes in Computer Science, vol. 529. 

Springer-Verlag.
Feng, R.Y., Gao, X.S., 2006. A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs. J. 

Symb. Comput. 41 (7), 739–762.
Fliess, M., Glad, S.T., 1993. An Algebraic Approach to Linear and Nonlinear Control. Essays on Control: Perspectives in the Theory 

and Its Applications, vol. 14. Birkhäuser, Boston, pp. 223–265.
Fliess, M., Lévine, J., Martin, P., Rouchon, P., 1995. Flatness and defect of non-linear systems: introductory theory and examples. 

Int. J. Control 61 (6), 1327–1361.
Gao, X.S., Xu, T., 2002. Lüroth’s theorem in differential fields. J. Syst. Sci. Complex. 15 (4), 376–383.
Gao, X.S., 2003. Implicitization of differential rational parametric equations. J. Symb. Comput. 36 (5), 811–824.
Gao, X.S., Li, W., Yuan, C.M., 2013. Intersection theory in differential algebraic geometry: generic intersections and the differential 

Chow form. Trans. Am. Math. Soc. 365 (9), 4575–4632.
Grasegger, G., Lastra, A., Sendra, J.R., Winkler, F., 2018. Rational general solutions of systems of first-order algebraic partial 

differential equations. J. Comput. Appl. Math. 331, 88–103.
Hartshorne, R., 1977. Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer-Verlag, New York.
Huang, Y., Ngô, L.X.C., Winkler, F., 2013. Rational general solutions of higher order algebraic ODEs. J. Syst. Sci. Complex. 26 (2), 

261–280.
Johnson, J., 1969. Kähler differentials and differential algebra. Ann. Math. 89 (1), 92–98.
Kaltofen, E., 2003. Polynomial factorization: a success story. In: Proc. ISSAC 2003. ACM Press, New York, pp. 3–4.
Kolchin, E.R., 1944. Extensions of differential fields, II. Ann. Math. 45, 358–361.
Kolchin, E.R., 1947. Extensions of differential fields, III. Bull. Am. Math. Soc. 53, 397–401.
Kolchin, E.R., 1973. Differential Algebra and Algebraic Groups. Academic Press, New York and London.
Ngô, L.X.C., Winkler, F., 2010. Rational general solutions of first order non-autonomous parametrizable ODEs. J. Symb. Comput. 45 

(12), 1426–1441.
Ngô, L.X.C., Winkler, F., 2011. Rational general solutions of planar rational systems of autonomous ODEs. J. Symb. Comput. 46 

(10), 1173–1186.
Ovchinnikov, A., Pogudin, G., Vo, N.T., 2018. Bounds for elimination of unknowns in systems of differential-algebraic equations. 

arXiv:1610 .04022v6.
Ritt, J.F., 1932. Differential Equations from the Algebraic Standpoint. Amer. Math. Soc., New York.
Ritt, J.F., 1950. Differential Algebra. Amer. Math. Soc., New York.
Rueda, S.L., Sendra, J.R., 2007. Linear complete differential resultants and the implicitization of linear DPPEs. J. Symb. Comput. 45 

(3), 324–341.
Rueda, S.L., 2011. A perturbed differential resultant based implicitization algorithm for linear DPPEs. J. Symb. Comput. 46, 

977–996.
Schicho, J., 1998. Rational parametrization of surfaces. J. Symb. Comput. 26, 1–29.
Sendra, J.R., Winkler, F., 2001. Tracing index of rational curve parametrizations. Comput. Aided Geom. Des. 18 (8), 771–795.

http://refhub.elsevier.com/S0747-7171(20)30090-0/bib53BC5EA4CD2914606473E4BFDD5B8CBDs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibF85B7B377112C272BC87F3E73F10508Ds1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibF85B7B377112C272BC87F3E73F10508Ds1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibF8EDFAE7564C40F809737508D151CF77s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibF8EDFAE7564C40F809737508D151CF77s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibD5866B992DF75F4BE248F054F9F483A4s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibD5866B992DF75F4BE248F054F9F483A4s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib4F517BEE8383E57054234203BFCC2844s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib4F517BEE8383E57054234203BFCC2844s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib9E91ECAA63EEC39AEB0F61C320C8174Fs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib9E91ECAA63EEC39AEB0F61C320C8174Fs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibFE1BBD030DC846D9809020AF830FFD3Cs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibFE1BBD030DC846D9809020AF830FFD3Cs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib9C3137362723172770A2126732BB7DB7s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib9C3137362723172770A2126732BB7DB7s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib3F0E4E98775BCCF855599967C2DC1719s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibF28AAB42FA7DB88A606333C0F8009480s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib0620898F11D435BB9D715D87C172467Fs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib0620898F11D435BB9D715D87C172467Fs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib82414AAD8EBA866FC2A00C875D0E7253s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib82414AAD8EBA866FC2A00C875D0E7253s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibDD7FE789FD85B84A8C6913D9A4E3E75Es1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib5E851DA37EDE757E4A5A8E63ED965930s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib5E851DA37EDE757E4A5A8E63ED965930s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib1C44352497E44478F35DE96671C94DC4s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibD2340093872A1F6DE968FB5E0A51A32Ds1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib226293D7EB3AC6800F12CD6BF19ECD8Es1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib06647173F400068734404A4061174BC5s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibBBE2EBBEDE1E35B5DACEDCB1AFF7897Bs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibBD753F3A173D44654A283897E732B7BEs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibBD753F3A173D44654A283897E732B7BEs1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibE6044E398719792F16108B6E5E0FD218s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibE6044E398719792F16108B6E5E0FD218s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibBA9BB01E68F7FF3E8C7E9AF92E40E39Ds1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibBA9BB01E68F7FF3E8C7E9AF92E40E39Ds1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib751050EAE65367CEE53C14A70CC085A8s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib6CE3AFFDBC99034D10608313E988D2D0s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib86CFD112B980938F71AEB02E0F3B6846s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib86CFD112B980938F71AEB02E0F3B6846s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibBFE42E50338A2546D42519088CAEFD9Es1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibBFE42E50338A2546D42519088CAEFD9Es1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib270219A733BE2DC94221A1E789F80377s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibE69917C9A90895F53D68E1D0009C2D93s1


JID:YJSCO AID:2059 /FLA [m1G; v1.294] P.24 (1-24)

24 L. Fu, W. Li / Journal of Symbolic Computation ••• (••••) •••–•••
Sendra, J.R., Winkler, F., Pérez-Díaz, S., 2007. Rational Algebraic Curves: A Computer Algebra Approach. Springer Publishing 
Company, Incorporated.

Sit, W.Y., 2002. The Ritt-Kolchin theory for differential polynomials. In: Differential Algebra and Related Topics. World Scientific, 
pp. 1–70.

Winkler, F., 2019. The algebro-geometric method for solving algebraic differential equations — a survey. J. Syst. Sci. Complex. 32 
(1), 256–270.

Wu, W.T., 1989. On the foundation of algebraic differential polynomial geometry. Syst. Sci. Math. Sci. 2 (4), 289–312.

http://refhub.elsevier.com/S0747-7171(20)30090-0/bib45761FD6C33A1A997B0078DEDA076CB5s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib45761FD6C33A1A997B0078DEDA076CB5s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibAC4409584A8BBE43CCA53297048C62E4s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bibAC4409584A8BBE43CCA53297048C62E4s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib1FADAC12CDE18BACFEB215B1ADA9AC14s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib1FADAC12CDE18BACFEB215B1ADA9AC14s1
http://refhub.elsevier.com/S0747-7171(20)30090-0/bib974F8E3414A1248E71D6FC7B6A6551C5s1

	Unirational differential curves and differential rational parametrizations
	1 Introduction
	2 Preliminaries
	2.1 Differential polynomial algebra and characteristic sets
	2.2 Pure differential transcendental extension and differential Lüroth’s theorem

	3 Unirational differential curves and proper differential rational parametrizations
	4 Proper linear differential rational parametrizations and the implicitization problem
	4.1 Implicitization of proper LDRPs by differential resultants
	4.2 Properness of LDRPs by differential resultants

	5 Rational parametrization for linear differential curves
	6 Problems for further study
	Declaration of competing interest
	Acknowledgements
	References


