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Abstract

A precise formulation for the relations among certain variables under a set of polynomial
equations and a set of polynomial inequations (to exclude certain special cases which cannot
be excluded by the selection of parameters alone) is given. Several methods are presented to
find such relations. The methods have been implemented and used to find geometry formulas,
to discover geometry theorems, and to find geometry locus equations. About 120 non-trivial
problems have been solved using the methods.
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1. Introduction

In [10], a method for finding geometry formulas was given. The method was used to find several
formulas in geometry difficult for humans to derive [10]. However, the method is incomplete, and in
many occasions it can lead to some spurious relations (formulas) irrelevant to the original geometry
problem. Furthermore, some relations cannot be found by this method. For example, the relation
among the variables x1 and u determined by {x2

2 = 0, x3x2 +x1−u = 0} is x1−u = 0, but it cannot
be derived by the method in [10]. In [2], another method for formula derivation in geometry was
given, but it is also not complete in general cases. In this paper, we give a precise formulation for
the relations among certain variables under a set of polynomial equations and a set of polynomial
inequations (to exclude certain special cases which cannot be excluded by the selection of parameters
alone). Three methods for deriving such relations are given. The first two are based on the Gröbner
basis method. The other is based on Ritt-Wu’s characteristic method.

Our methods can be used to find geometry formulas and geometry locus equations. About 120
non-trivial problems have been solved by the methods.

2. The Formulation of the Problem

First we use two examples to give the motivation of our formulation of the problem.

Example 2.1. Find the formula for the area of a triangle ABC in terms of its three sides (Heron’s
Formula, Fig. 1).

Let a, b, and c be the three sides of the triangle, B = (0, 0), C = (a, 0), and A = (x1, x2). Then
the geometry conditions can be expressed by the following set of polynomial equations HS:

∗The work reported here was supported in part by the NSF Grant CCR-8702108.
†On leave from Institute of Systems Science, Academia Sinica, Beijing.

1



h1 = x2
2 + x2

1 − 2ax1 − b2 + a2 = 0 b = AC
h2 = x2

2 + x2
1 − c2 = 0 c = AB

h3 = ax2 − 2k = 0 k = the area of ABC.

Here the variables a, b, and c can be considered parameters in the sense that they can generally
take any values. Once they are fixed, the values of other variables are determined by the polynomial
equations h1 = 0, h2 = 0, and h3 = 0. Our task is to express the area k in terms of the parameters a, b,
and c, i.e., to find a polynomial equation expressing the relationship among a, b, c, and k which can be
derived from the above set of polynomial equations. For this example, non-degenerate (exceptional)
conditions can be determined solely by the selection of parameters. This is usually the case, especially
for geometry theorem proving. Almost all 512 theorems proved in [3] belong to such case (for a
theoretical discussion see [6]). But we have also encountered several problems in geometry formula
derivation for which some exceptional conditions need to be excluded by inequations. Following is
such an example.

A
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C
Q

R

T

S

Figure 1: The area of a triangle Figure 2: Ratios in a parallelogram

Example 2.2. Let l be a line passing through the vertex of M of a parallelogram MNPQ and
intersecting the lines NP , PQ, and NQ in points R, S, and T . Find the relation among MT/MR
and MT/MS if there is one ( Fig. 2).

Let M = (0, 0), N = (u1, 0), P = (u2, u3), Q = (x1, u3), S = (x2, u3), R = (x3, x4), and
T = (x5, x6). The geometry conditions can be expressed by the following set of polynomial equations
HS:

h1 = u3x1 + (−u2 + u1)u3 = 0 MQ is parallel to NP
h2 = (x1 − u1)x6 − u3x5 + u1u3 = 0 T is on QN
h3 = (u2 − u1)x4 − u3x3 + u1u3 = 0 R is on NP
h4 = x2x6 − u3x5 = 0 T is on MS
h5 = x2x4 − u3x3 = 0 M is on RS
h6 = x5 − r1x3 = 0 r1 = MT/MR
h7 = x5 − r2x2 = 0 r2 = MT/MS.

However, in specifying r1 = MT/MR and r2 = MT/MS, we usually have to add the following set
of polynomial inequations DS = {x2 6= 0∧x3 6= 0} to exclude certain special cases which sometimes
cannot be excluded by the selection of parameters alone. We want to find a relation between MT/MR
and MT/MS (if there is one), i.e., between r1 and r2. Usually, the above algebraic conditions HS
and DS do not imply a polynomial equation between r1 and r2 because the dimension (the number
of parameters) of the problem is 4. We can select u1, u2, u3 and r1 as the parameters. Then HS
and DS imply (as in this problem) a polynomial equation among u1, u2, u3, r1 and r2. If this
equation contains r1 and r2 only, then problem has a solution. Otherwise, the problem does not
have a solution or is not correctly proposed.

Remark. Without DS = {x2 6= 0, x3 6= 0}, HS alone does not satisfy Criteria 2.3 below, if we
consider u1, u2, u3 and r1 the parameters. Thus it cannot lead to the result desired. Let A = (x1, y1),
B = (x2, y2), C = (x3, y3), and D = (x4, y4) be four points with lines AB and CD being the same
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or parallel. Then AB/CD = (x2 − x1)/(x4 − x3) if x4 − x3 6= 0. In general, we have to add an
inequation x4 − x3 6= 0 to exclude that special case which sometimes cannot be excluded by the
selection of parameters alone.

We will solve these two problems using the methods presented in Section 4. But we first formulate
precisely the problem we want to solve. Let K be a computable field with characteristic zero (in
practice, K = Q). Unless stated otherwise, all polynomials mentioned in this paper are over K.
Suppose for a geometric problem, after adopting an appropriate coordinate system, the corresponding
geometric configuration can be expressed by a set of polynomial equations

HS = {h1(u1, ..., uq, x1, ..., xp) = 0 ∧ · · · ∧ hs(u1, ..., uq, x1, ..., xp) = 0}

together with a set of polynomial inequations

DS = {d1(u1, ..., uq, x1, ..., xp) 6= 0 ∧ · · · ∧ dl(u1, ..., uq, x1, ..., xp) 6= 0}.

Here we use DS to exclude some special cases in which the problem or specification of the
problem becomes invalid. For most cases, DS consists of those inequations that were mentioned in
the remark after Example 2.2. Of course, DS can include other non-degenerate conditions which
can be excluded by the selection of parameters (for the use of parameters to exclude non-degenerate
conditions see [6]). This flexibility can be used to speed up Method 4.6 (see Remark 4.7). Here we
divide the variables occurring in HS and DS into two groups: u1, ..., uq and x1, ..., xp in the sense
that in the problem the u can generally take any value and the x can be determined as some functions
of the u. We call the u and the x the parameters and the dependent variables of the corresponding
geometric problem, respectively. For a given geometric problem, the selection of parameters is not
unique, but is determined by the geometric problem itself. Depending on the context, HS and DS
sometimes also denote the polynomial sets {h1, ..., hs} and {d1, ..., dl}, respectively. Let

HD = {h1, ..., hs, z1d1 − 1, ..., zldl − 1},

where z1, ..., zl are distinct new variables. A necessary algebraic criteria for u1, ..., uq to be a set of
parameters is:

Criteria 2.3. (1) The u are algebraically independent wrpt HD, i.e., there is no non-zero polynomial
containing the u only in the ideal generated by HD. (2) Each xi is algebraically dependent on the
u wrpt HD, i.e., there is a polynomial containing the u and xi only in the ideal generated by HD.

Thus we can formulate our problem as follows:

The Formulation of the Problem 2.4. Let HS, DS, the u and the x be the same as before.
Furthermore, suppose that the u satisfy Criteria 2.3. Let xi0 be a fixed dependent variable. The
relation set among the u and xi0 is a set of polynomial equations r1(u, xi0) = 0, ....,rk(u, xi0) = 0,
all containing xi0 , but not other dependent variables such that: (1) All ri(u, xi0) are irreducible;
(2) There is a non-zero polynomial U containing the u only (We will call such a polynomial a u–
polynomial.) such that U · r1(u, xi0) · · · rk(u, xi0) is in the radical ideal generated by HD; (3) The
set {r1, ..., rk} is minimal to satisfy (1) and (2), i.e., it is impossible to delete any of its elements
while still keeping (1) and (2) valid.

3. The Properties of Relation Sets

We now first prove that the relation set {r1(u, xi0),...,rk(u, xi0)} exists and is unique, assuming
that the parameters u satisfy Criteria 2.3. Let M be the set of all polynomials in K[u1, ..., uq, xi0 ]∩
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Ideal(HD) with positive degrees in xi0 . Since the u satisfy Criteria 2.3, M is non-empty. A
polynomial P in M with minimal deg(P, xi0) is called a minimal polynomial in xi0 . The following
simple lemma is crucial for our further development.

Lemma 3.1. Let the notations and the conditions be the same as in the previous paragraph, P be
a minimal polynomial in xi0 , and Q be another polynomial in M . Then there is a u–polynomial U ′

such that P divides U ′Q.

Proof. Pseudo dividing Q by P in variable xi0 , we have

U ′Q = AP + D

where U ′ is a power of the leading coefficient of P in the variable xi0 , thus is a u–polynomial; D
is the pseudo remainder with deg(D, xi0) < deg(P, xi0). Since D ∈ Ideal(HD), by the minimal
property of deg(P, xi0), deg(D, xi0) = 0. Thus D contains only the u and has to be zero by (1) of
2.3. This proves the lemma.

The Existence and Uniqueness Theorem 3.2. Let the notations be the same as before. Suppose
the parameters u1, ..., uq satisfy Criteria 2.3. Then the set of the relations {r1, ..., rk} defined in 2.4
exists and is unique.

Proof. Let P be a minimal polynomial in xi0 and

P = U · rs1
1 (u, xi0) · · · rsk

k (u, xi0)

where U is a u–polynomial, deg(ri, xi0) ≥ 1 and si ≥ 1 for all i = 1, ..., k, and the ri are distinct
irreducible polynomials. Then R = {r1(u, xi0), ..., rk(u, xi0)} is a set of polynomials satisfying con-
ditions (1)–(2) in 2.4. From Lemma 3.1, it is clear that R is minimal to satisfy (1)–(2) of 2.4, i.e.,
it is impossible to delete any of its elements while still making it to satisfy (1) and (2) of 2.4. Thus,
R is the relation set among the u and xi0 .

Let R′ = {r′1(u, xi0),...,r
′
k′(u, xi0)} be another relation set satisfying (1)–(3) of 2.4. We want to

show R = R′. By Lemma 3.1 and (1)–(2) of 2.4, it is clear that R is a subset of R′. By the minimal
property (3) of 2.4 for R′, R′ cannot contain other elements not in R, thus R = R′. This proves the
uniqueness property of the relation set specified in 2.4.

Proposition 3.3. Let the notations and conditions be the same as before and F be an extension
of the field K. we have

∀xu ∈ F [(HS ∧DS ∧ U 6= 0) → (r1 = 0 ∨ · · · ∨ rk = 0)], (3.3.1)

where U is the u–polynomial in (2) of 2.4.

Proof. From (2) of 2.4 we have

∀xuz ∈ F [(HS ∧ d1z1 − 1 = 0 ∧ · · · ∧ dlzl − 1 = 0 ∧ U 6= 0) → (r1 · · · rk = 0)]. (3.3.2)

Because the z is free in r1 · · · rk, the above formula is equivalent to

∀xu ∈ F [∃z ∈ F (HS ∧ d1z1 − 1 = 0 ∧ · · · ∧ dlzl − 1 = 0 ∧ U 6= 0) → (r1 · · · rk = 0)].

Since ∃zi(dizi − 1 = 0) are equivalent to di 6= 0, (3.3.1) is equivalent to (3.3.2). This proves the
proposition.

The condition U 6= 0 is usually connected with nondegeneracy. Or we can say r1 · · · rk = 0 is
generally true under HS and DS (for a more detailed discussion of the notion of “generally true”,
see [6]).
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Proposition 3.4. Let F be an algebraically closed field containing K and r(u, xi0) be a polynomial
containing the parameters u and xi0 only. If there is a u–polynomial U such that

∀xu ∈ F [(HS ∧DS ∧ U 6= 0) → r = 0], (3.4.1)

then r1 · · · rk divides r.

Proof. As we see from the proof of Proposition 3.3, Formula (3.4.1) is equivalent to

∀xuz ∈ F [(HS ∧ d1z1 − 1 = 0 ∧ · · · ∧ dlzl − 1 = 0 ∧ U 6= 0) → r = 0].

Since F is algebraically closed, it is equivalent to Ur ∈ Radical(HD) by Hilbert Nullstellensatz, i.e.,
there is some positive integer n, (Ur)n ∈ Ideal(HD). Thus the proposition is clear from Lemma 3.1
and Theorem 3.2.

In the following sections we will give several methods for obtaining such relation set {r1, ...rk}.
The methods have been successfully used in solving many geometry problems. Especially, the method
based on Ritt–Wu’s decomposition (Method 4.6) has solved about 120 geometry problems (see the
Collection [5]).

4. Methods for Finding Relation Sets

For simplicity, let xi0 = x1 and we want to find the relation set among the u and x1 given HS
and DS. According to Theorem 3.2, it is enough to find a minimal polynomial in x1.

Theorem 4.1. Let the notations be the same as before and GB be a Gröbner basis of HD 1 in the
polynomial ring K[u1, ..., uq, x1, ..., xp, z1, ..., zl] in a compatible ordering u < x, x1 < xi for 1 < i,
and x1 < z. Then

(1) The u are algebraically independent wrpt HD iff GB does not contain any u–polynomial.

(2) GB contains a minimal polynomial in x1 iff x1 is algebraically dependent on the parameters
u under HD.

(3) HD with u algebraically independent satisfies (2) of Criteria 2.3 iff for each v ∈ {x1, .., xp,
z1, ..., zl}, GB contains a polynomial whose leading monomial is some positive power of v multiplied
by a u–monomial.

Proof. Because of the ordering u < x and u < z, GB contains a u–polynomial iff the ideal
generated by HD contains a u–polynomial. This proves (1). Also because the ordering x1 < xi for
i 6= 1 and x1 < z, GB contains a polynomial containing the u and x1 only with a positive degree in
x1 iff x1 is algebraically dependent on the u. Let P be such a polynomial in GB with with deg(P, x1)
minimal. Since each minimal polynomial in x1 can be reduced to zero by GB, P must be a minimal
polynomial in x1. This proves (2).

Suppose the u are algebraically independent wrpt HD. By the well known result (Method 6.9 in
[1]) the condition in (3) is equivalent to that HD has finitely many solutions for the x and z over
K(u), which is in turn equivalent to condition (2) of 2.3.

This theorem immediately gives the following method.

Method 4.2 For Finding the Relation Set R.

Step 1. Compute the Gröbner basis GB as stated in Theorem 4.1.

Step 2. If GB contains a u–polynomial, then give the answer: “the parameters u are not alge-
braically independent.”

1In this paper we assume the reader is already familiar with the Gröbner basis method. The paper [1] is an excellent
review of the subject.
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Step 3. Suppose GB does not contain a u–polynomial. If it also does not contain a polynomial
containing the u and x1 only, then give the answer: “x1 is not algebraically dependent on the
parameters u”.

Step 4. Otherwise, let P (u, x1) be one in GB with deg(P, x1) minimal, then P is a minimal
polynomial in x1. Thus, according to theorem 3.2, the set of distinct irreducible factors of P
containing x1 is a relation set among u and x1.

Step 5. We can use (3) of theorem 4.1 to check whether Criteria 2.3 is fully satisfied, i.e., whether
variables xi other than x1 are all dependent on the parameters u.

This method, though simple in theory, is inefficient in practice. The reason is that to compute
the corresponding Gröbner bases is slow, and for many problems in practice, the computation is
often beyond reasonable time and space limits.

If we work on the polynomial ring K(u1, ..., uq)[x1, ..., xp, z1, .., zl] instead of K[u, x, z], we gener-
ally can benefit from the following two facts: (1) The corresponding Gröbner bases generally have
fewer elements; (2) Common factors of u–polynomials can be removed, thus polynomials in the
computation have less sizes.

Theorem 4.3. Let notations be the same as above and GB the reduced Gröbner basis of HD in
the polynomial ring K(u1, ..., uq)[x1, ..., xp, z1, .., zl] in a compatible ordering x1 < xi for 1 < i and
x1 < z Then

(1) The u are algebraically independent wrpt HD iff GB does not contain 1, i.e., HD does not
generate the unit ideal in K(u)[x, z].

(2) The variable x1 is algebraically dependent on the u iff GB contains a polynomial containing
x1 (and the u) only. Let P be such one with deg(P, xi) minimal, then U ·P is a minimal polynomial
in x1 for some u–polynomial U .

(3) HD with u as parameters satisfies (2) of Criteria 2.3 iff for each v ∈ {x1, .., xp, z1, ..., zl}, GB
contains a polynomial whose leading monomial is some positive power of v.

Proof. Let I and Iu be the ideal generated by HD in K[u, x, z] and K(u)[x, z] respectively. We
have the following simple fact:

(4.3.1) A polynomial P is in Iu iff there is a u–polynomial U such that UP ∈ I.

As a particular case, 1 ∈ Iu iff there is a u–polynomial U such that U · 1 ∈ I, i.e., I contains a
u–polynomial. This proves (1).

(2) Let P ′ be a minimal polynomial in x1. Then deg(P ′, x1) ≥ deg(P, x1) because P reduces P ′

to zero. On the other hand, there is a u–polynomial U such that UP is in the ideal of K[u, x, z]
generated by HD. Thus, deg(P, x1) = deg(UP, x1) ≤ deg(P ′, x1). Hence deg(UP, x1) = deg(P ′, x1)
and UP is a minimal polynomial in x1.

(3) The proof is similar to that of (3) of Theorem 4.1.

Theorem 4.3 gives the following method.

Method 4.4 For Finding the Relation Set R.

Step 1. Compute the Gröbner basis GB as stated in Theorem 4.3.

Step 2. If GB contains 1, then give the answer: “the parameters u are not algebraically indepen-
dent.”

Step 3. Suppose GB does not contain 1. If it also does not contain a polynomial containing the
u and x1 only, then give the answer: “x1 is not algebraically dependent on the parameters u”.
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Step 4. Otherwise, let P (u, x1) be the one in GB with deg(P, x1) minimal. Thus, according to
theorems 3.2 and 4.3, the set of irreducible factors of P in K[u, x1] containing x1 is a relation set
among u and x1.

Step 5. We can use (3) of theorem 4.3 to check whether Criteria 2.3 is fully satisfied, i.e., whether
variables xi other than x1 are all dependent on the parameters u.

For most of our problems, Method 4.4 is much faster than Method 4.2. However, We have also
encountered some problems which could not be solved by Method 4.4 within reasonable time and
space limits. One reason for this is that for some problems (see Examples 5.2 and 5.6), there are
more than one relations in the relation set {r1, ..., rk}, i.e., k > 1. Methods 4.2 and 4.4 work on some
product of powers of all r1,...,rk, which could result in very big polynomials in the intermediate steps.
The following method based on Ritt–Wu’s decomposition works with each relation ri separately, thus
can solve some problems which were beyond space and time limits of methods 4.2 and 4.4.

According to Ritt–Wu’s decomposition algorithm2 we have the following decomposition in the
variable ordering u < x1 < x2 < · · · < xp:

Zero(HS/DS) = ∪a
i=1Zero(PD(ASC∗

i )/DS)
⋃
∪b

i=1Zero(PD(ASCi)/DS), (4.5.1)

where all ascending chains ASC∗
i and ASCj are irreducible such that (1) All ASC∗

i does not contain
any u–polynomials and all ASCi contains at least one u–polynomial; (2) prem(dk, ASC∗

i ) 6= 0 and
prem(dk, ASCj) 6= 0 for all dk ∈ DS, i and j. Here we use PD(ASC) to denote

PD(ASC) = {g | prem(g;ASC) = 0}.

The zeros in Zero(HS/DS) = Zero(HS)−Zero(DS) are taken from an algebraically closed exten-
sion F of K.

Theorem 4.5. Let the notations be the same as in the previous paragraph. Then

(1) The parameters u are algebraically independent wrpt HD iff a > 0.

(2) In that case, each xi appears as a leading variable in each ASC∗
j , iff each xi is algebraically

dependent on the u.

(3) Assume that HD and the u satisfy Criteria 2.3. Let ri(u, x1) (i = 1, ..., k) be distinct
polynomials appearing as the first elements in all ASC∗

j . Then {r1(u, x1), ..., rk(u, x1)} is the relation
set defined by HS and DS.

Proof. First we state the following repeatedly used fact:

For a polynomial P in the u and x, Zero(HD) ⊂ Zero(P ) iff Zero(HS/DS) ⊂ Zero(P ). This
can be seen from the proof of 3.3.

(1) Suppose a = 0, then according to decomposition (4.5.1), there is a u–polynomial U such that
Zero(HS/DS) ⊂ Zero(U). Thus Zero(HD) ⊂ Zero(U). Therefore, U is in Rad(HD); hence for
some k, Uk, which is also a u–polynomial, is in Ideal(HD). The u are algebraically dependent. Now
suppose that the u is algebraically dependent, i.e., Ideal(HD) contains a u–polynomial U . Then
Zero(HD) ⊂ Zero(U), which is equivalent to Zero(HS/DS) ⊂ Zero(U). Since Zero(U) does not
contain each Zero(PD(ASC∗

i )/DS), a must be zero.

(2) Each xi appears as a leading variable in each ASC∗
j iff Zero(HS/DS) has only finitely many

solutions in K(u). This is equivalent to that Zero(HD) has only finitely solutions. This proves (2).
2In this paper we assume the reader is already familiar with Ritt-Wu’s method. The reader can find the details

of the method in [10, 3]. Zero(PS) denotes the common zeros of a polynomial set PS and prem(g, ASC) denotes the
succesive pseudo remainder of g by the ascending chain ASC.
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(3) From decomposition (4.5.1), there is a u–polynomial U such that Zero(HS/DS) ⊂ Zero(U ·
r1 · · · rk). Thus Zero(HD) ⊂ Zero(U · r1 · · · rk). By Hilbert Nullstellensatz, U · r1 · · · rk is in
Rad(HD). If we remove any of r1, ..., rk, say, rk, then Zero(HS/DS), hence Zero(HD) is not
contained in Zero(U · r1 · · · rk−1) for any u–polynomial U . Thus U · r1 · · · rk−1 is not in Rad(HD)
for any u–polynomial U . Thus {r1, ..., rk} is minimal to satisfy (1)–(2) of 2.4, hence is the relation
set of HD in the u and x1.

Method 4.6 For Finding the Relation Set R.

Step 1. Use Ritt-Wu’s method to decompose Zero(HS/DS) as stated in the paragraph preceding
Theorem 4.5.

Step 2. If a = 0, then give the answer: “the parameters u are not algebraically independent.”

Step 3. Suppose a > 0. If the first element of one ASC∗
i does not contain the u and x1 only, then

give the answer “x1 is not algebraically dependent on the parameters u”.

Step 4. Suppose a > 0 and the first elements of each ASC∗
i (i = 1, ..., a) contain the u and x1

only. Then we can use (3) of Theorem 4.5 to obtain the relation set among the u and x1.

Step 5. We can use (2) of Theorem 4.5 to check whether Criteria 2.3 is fully satisfied, i.e., whether
each xi is algebraically dependent on the u.

Remark 4.7. In the real implementation, we do not have to compute degenerate part

∪b
i=1Zero(PD(ASCi)/DS)

explicitly. During the decomposition process, whenever a u–polynomial appears in a polynomial set,
we can delete that polynomial set, adding that u–polynomial as a factor of the polynomial U in
formulation 2.4. Also adding more degenerate conditions to DS can prevent the growth of number
of branches in the decomposition. This leads to the speedup of the process. For Methods 4.2 and
4.4 based on the Gröbner basis method, adding more degenerate conditions to DS generally slow
down the process or even lead to exceeding reasonable time limits (see Example 5.7 below).

Remark 4.8. In certain sense, Step 5 of Methods 4.2, 4.4 and 4.6 is not necessary as far as
we are only concerned with the relation set among the u and x1, which is unique even if for some
i > 1, u1, ..., uq and xi are algebraically independent. In that case, one might add xi (renaming it
to uq+1) to the parameter set u1, .., uq. Because of the Uniqueness Theorem 3.2, the relation set
among u1, ..., uq+1 and x1 will be the same. Since Criteria 2.3 should be satisfied if we understand
the geometric problem and specify the parameters correctly, Step 5 serves at least as a warning to
the user of a possible misunderstanding or incorrect algebraic specification of the geometric problem.

5. Applications

We have implemented Methods 4.2, 4.4 and 4.6. The methods have been used in deriving formula,
finding theorems and locus equations. Below we give several examples to show how various geometric
problems can be solved by our methods.

5.1. Deriving Formulas

Example 5.1. The solution to Example 2.1 (Heron’s Formula).

HS is the same as in Example 2.1, DS is empty. Considering a, b and c as the parameters, we
want to find the relation set among a, b, c and k.

Using Method 4.2, GB of HS in Q[a, b, c, k, x1, x2] is

16k2 + c4 + (−2b2 − 2a2)c2 + b4 − 2a2b2 + a4
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2ax1 − c2 + b2 − a2

ax2 − 2k
(c2 − b2)x2 − 4kx1 + 2ak
8kx2 + (2c2 − 2b2)x1 − 3ac2 − ab2 + a3

x2
2 + x2

1 − c2.

The first polynomial gives the relations we want, i.e., k = ±√
s(s− a)(s− b)(s− c) where s =

(a + b + c)/2 (Heron’s formula).

Using Method 4.4, we find GB of HS in Q(a, b, c)[k, x1, x2] is

16k2 + c4 + (−2b2 − 2a2)c2 + b4 − 2a2b2 + a4

2ax1 − c2 + b2 − a2

ax2 − 2k,

which gives the same result.

Using method 4.6 (in the ordering k < x1 < x2), we have found one non-degenerate component
of HS with the corresponding ascending chain:

16k2 + c4 + (−2b2 − 2a2)c2 + b4 − 2a2b2 + a4

2ax1 − c2 + b2 − a2

ax2 − 2k,

which gives the same result.

B

C

D

A

I

B C

A

I 1

D

Figure 3: Brahmagupta’s Formula Figure 4: Cross Ratio in a triangle

The following problem is beyond a reasonable time limit using Methods 4.2 or 4.4.

Example 5.2. (Brahmagupta’s Formula) ABCD is a cyclic quadrilateral. Determine the signed
area of oriented quadrilateral ABCD in terms of its four sides (Fig. 3).

Let A = (0, 0), B = (u1, 0), C = (x1, x2), and D = (x3, x4). Then the geometry conditions can
be expressed by the following set of polynomial equations HS with DS empty:

h1 = x2
2 + x2

1 − 2u1x1 − u2
2 + u2

1 = 0 u2 = BC
h2 = x2

4 − 2x2x4 + x2
3 − 2x1x3 + x2

2 + x2
1 − u2

3 = 0 u3 = CD
h3 = x2

4 + x2
3 − u2

4 = 0 u4 = DA
h4 = u1x2x

2
4 + (−u1x

2
2 − u1x

2
1 + u2

1x1)x4 + u1x2x
2
3 − u2

1x2x3 = 0 A,B, C, D are cocyclic
h5 = x1x4 − x2x3 + u1x2 − 2k = 0 k is the sum of the signed areas of ABC and ACD.

Selecting u1, u2, u3, and u4 to be parameters, we want to find relations among u1, u2, u3, u4, and
k. Using method 4.6 (in the ordering k < x1 < x2 < x3 < x4), we have found two non-degenerate
components of HS with the corresponding ascending chains:
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ASC∗
1 =

r1 = 16k2 + u4
4 + (−2u2

3 − 2u2
2 − 2u2

1)u
2
4 − 8u1u2u3u4 + u4

3 + (−2u2
2 − 2u2

1)u
2
3 + u4

2 − 2u2
1u

2
2 + u4

1

ax1 + b
(u2

4 + u2
3 − u2

2 − u2
1)x2 − 4kx1 + 4u1k

(2x2
2 + 2x2

1)x3 + (−x1 − 2u1)x2
2 + 4kx2 − x3

1 + (−u2
4 + u2

3)x1

x1x4 − x2x3 + u1x2 − 2k.

ASC∗
2 =

r2 = 16k2 + u4
4 + (−2u2

3 − 2u2
2 − 2u2

1)u
2
4 + 8u1u2u3u4 + u4

3 + (−2u2
2 − 2u2

1)u
2
3 + u4

2 − 2u2
1u

2
2 + u4

1

ax1 + b
(u2

4 + u2
3 − u2

2 − u2
1)x2 − 4kx1 + 4u1k

(2x2
2 + 2x2

1)x3 + (−x1 − 2u1)x2
2 + 4kx2 − x3

1 + (−u2
4 + u2

3)x1

x1x4 − x2x3 + u1x2 − 2k.

In the above polynomials, a and b are some polynomials in the variables u1, u2, u3, u4, and k.
Thus the relation set is {r1, r2}.

The area k satisfies r1 = 0 or r2 = 0. To decide which one is the real case is generally beyond
the scope of our methods. This is typical in the original method developed by Wu for unordered
geometry. Actually, we even don’t know whether u1, u2, u3, and u4 are positive or negative. However,
for this simple case, we can use a special example to solve the problem. Taking ABCD to be a unit
square and assuming all u1, u2, u3 and u4 are positive, we find that r1 leads to k2 − 1 = 0, while r2

leads to k2 = 0. Thus r1 is the real relation we want. It is the well-known Brahmagupta’s formula:
k = ±√

(s− u1)(s− u2)(s− u3)(s− u4) where s = (u1 +u2 +u3 +u4)/2. The second relation r2 = 0
leads to k = ±√

s(s− u1 − u3)(s− u1 − u2)(s− u1 − u4) which is a “reflection image” of the first
one: when the number of positive variables among the u are even, then r1 leads to the real result;
when the number of positive variables among the u are odd, then r2 leads to the real result. In
either case, the formula is not only valid for the case that ABCD is convex, but also for the cases as
shown in Fig. 4 and Fig. 5. In Fig. 4, k is the sum of the signed areas of oriented triangles 4ABO
and 4CDO. In Fig. 5, k is the sum of the signed areas of oriented triangles 4BCO and 4DAO.

5.2. Discovering Theorems

One may guess by intuition that there is some relation or property among certain quantities
(denoted by variables) for a given geometric problem. If we know the exact relation, we can use
theorem provers (based on, e.g., Wu’s method or the Gröbner basis method) to prove it. However,
if the exact relation is unknown, we might use the methods developed in this paper to derive it.

Example 5.3. Solution to Example 2.2.

Selecting u1, u2, u3, and r1 to be parameters, we want to find the relation set among u1, u2,
u3, r1 and r2. Using Method 4.6 (in the ordering r2 < x1 < x2 < x3 < x4 < x5 < x6), we have
found Zero(HS/DS) has only one non-degenerate component with the corresponding ascending
chain ASC∗

1 =

r2 + r1 − 1
u3x1 + (−u2 + u1)u3

r2x2 − r2x1 + u1r2 − u1

r1x3 − r2x2

(u2 − u1)x4 − u3x3 + u1u3

x5 − r1x3

(x1 − u1)x6 − u3x5 + u1u3.
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Thus, r2 + r1 − 1 = 0 is the relation among r1 and r2 (and u1, u2, u3).

Example 5.4. Let I and I1 be the two tritangent centers of triangle ABC, D be the intersection
of AI with BC. Find the cross-ratio (AD, II1) (Fig. 4).

Let B = (0, 0), C = (u1, 0), A = (u2, u3), I = (x4, x5), D = (x6, 0), and I1 = (x7, x8). Then
the geometry conditions can be expressed by the following set of polynomial equations HS with DS
empty:

h1 = u2
3x

2
5 + 2u2u3x4x5 − u2

3x
2
4 = 0 6 CBI = 6 IBA

h2 = u2
3x

2
5 + (((2u2 − 2u1)u3)x4 + (−2u1u2 + 2u2

1)u3)x5 − u2
3x

2
4+

2u1u
2
3x4 − u2

1u
2
3 = 0 6 ABI = 6 IBC

h3 = (x5 − u3)x6 − u2x5 + u3x4 = 0 D is on AI
h4 = (x4 − u2)x8 + (−x5 + u3)x7 + u2x5 − u3x4 = 0 I1 is on AI
h5 = x5x8 + x4x7 = 0 BI ⊥ BI1

h6 = (rx6 + (−r + 1)x4 − u2)x7 + (−x4 − u2r + u2)x6 + u2rx4 = 0 r = (AD, II1).

Selecting u1, u2 and u3 to be parameters, we want to find relations among u1, u2, u3, and r. Using
Method 4.6 (in the ordering r < x4 < x5 < x6 < x7 < x8) we have found only one non-degenerate
component of Zero(HS) with the corresponding ascending chain ASC∗

1 =

r + 1
4x4

4 − 8u1x
3
4 + (−4u2

3 − 4u2
2 + 4u1u2 + 4u2

1)x
2
4 + (4u1u

2
3 + 4u1u

2
2 − 4u2

1u2)x4 − u2
1u

2
3

(2x4 + 2u2 − 2u1)x5 − 2u3x4 + u1u3

(x5 − u3)x6 − u2x5 + u3x4

(rx6 + (−r + 1)x4 − u2)x7 + (−x4 − u2r + u2)x6 + u2rx4

(x4 − u2)x8 + (−x5 + u3)x7 + u2x5 − u3x4.

The relation r+1 = 0 tells us that the two tritangent centers divide the bisector they are located
harmonically.

A B

C

D

A1

D1

C1

B1

I

B C

A

D
O

E

Figure 5: Menellaus’ Theorem Figure 6: Incenter and circumcenter

Example 5.5. (Menelaus’ Theorem for Quadrilaterals) If the sides AB,BC, CD, DA of a quadri-
lateral ABCD are cut by a transversal in the points A1, B1, C1D1 respectively, Find the relation
among the ratios AA1/A1B,BB1/B1C,CC1/C1D, and DD1/D1A (Fig. 5).

Let A = (0, 0), B = (u1, 0), C = (u2, u3), D = (u4, x2), A1 = (x3, 0), B1 = (x4, x5), C1 = (x6, x7),
and D1 = (x8, x9). Then the geometry conditions can be expressed by the following set of polynomial
equations HS with DS empty:

h1 = u4x9 − x2x8 = 0 D1 is onAD
h2 = (u2 − u1)x5 − u3x4 + u1u3 = 0 B1 is on BC
h3 = (u4 − u2)x7 + (−x2 + u3)x6 + u2x2 − u3u4 = 0 C1 is on CD
h4 = (x4 − x3)x7 − x5x6 + x3x5 = 0 A1 is on B1C1

h5 = (x4 − x3)x9 − x5x8 + x3x5 = 0 A1 is on B1D1

h6 = (r1 + 1)x3 − u1r1 = 0 r1 = AA1/A1B
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h7 = (r2 + 1)x4 − u2r2 − u1 = 0 r2 = BB1/B1C
h8 = (r3 + 1)x6 − u4r3 − u2 = 0 r3 = CC1/C1D
h9 = (r4 + 1)x8 − u4 = 0 r4 = DD1/D1A.

Selecting u1, u2, u3, u4, r1, r2, and r3 to be parameters set, we want to find relations among
the parameters and r4. Using Method 4.6 (in the ordering r4 < x2 < x3 < x4 < x5 < x6 < x7 <
x8 < x9), we have found only one non-degenerate component of Zero(HS) with the corresponding
ascending chain ASC∗

1 =

r1r2r3r4 − 1
(((u2 − u1)r1 + u2)r2 + u1)x2 + u1u3r1r2r4 + ((−u3u4 + u1u3)r1 − u3u4)r2

(r1 + 1)x3 − u1r1

(r2 + 1)x4 − u2r2 − u1

(u2 − u1)x5 − u3x4 + u1u3

(r3 + 1)x6 − u4r3 − u2

(u4 − u2)x7 + (−x2 + u3)x6 + u2x2 − u3u4

(r4 + 1)x8 − u4

u4x9 − x2x8.

The relation r1r2r3r4 − 1 = 0 is a well-known result. Using Method 4.4, we have found the
Gröbner basis of HS = {h1, h2, h3, h4, h5, h6, h7, h8, h9} in Q(u1, ..., u4, r1, r2, r3)[r4, x2, ..., x9]:

r1r2r3r4 − 1
(((u2 − u1)r1 + u2)r2 + u1)r3x2 + ((−u3u4 + u1u3)r1 − u3u4)r2r3 + u1u3

(r1 + 1)x3 − u1r1

(r2 + 1)x4 − u2r2 − u1

(r2 + 1)x5 − u3r2

(r3 + 1)x6 − u4r3 − u2

((((u2 − u1)r1 + u2)r2 + u1)r3 + ((u2 − u1)r1 + u2)r2 + u1)x7

+(((−u3u4 + u1u3)r1 − u3u4)r2)r3 + (((−u2 + u1)u3)r1 − u2u3)r2

(r1r2r3 + 1)x8 − u4r1r2r3

((((u2 − u1)r2
1 + u2r1)r2

2 + u1r1r2)r3 + ((u2 − u1)r1 + u2)r2 + u1)x9

+(((−u3u4 + u1u3)r2
1 − u3u4r1)r2

2)r3 + u1u3r1r2,

which gives the same result.

Example 5.6. Let D be the intersection of one of the bisectors of 6 A of triangle ABC with the
side BC, E be the intersection of AD with the circumcircle of ABC. Find the relation among
AB,AC, AD, and AE (Fig. 6).

Let A = (0, 0), C = (x1, x2), F = (x1, x3), B = (x4, x5), D = (u1, 0), and E = (u2, 0). Then the
geometry conditions can be expressed by the following polynomial equations HS:

h1 = x3 + x2 = 0 F and C are symmetric w.r.t the x-axis
h2 = x1x5 − x3x4 = 0 F is on AB
h3 = (x1 − u1)x5 − x2x4 + u1x2 = 0 D is on BC
h4 = u2x2x

2
5 + (−u2x

2
2 − u2x

2
1 + u2

2x1)x5 + u2x2x
2
4 − u2

2x2x4 = 0 A,B, E,C are cyclic
h5 = x2

5 + x2
4 − u2

3 = 0 u3 = AB
h6 = x2

2 + x2
1 − u2

4 = 0 u4 = AC,

together with the following set of polynomial inequations DS:

d1 = x1 6= 0 C is not on AB
d2 = x2 6= 0 C is not on AB.

Selecting u1, u2, and u3 to be a parameters of the problem, we want to find relations among u1,
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u2, u3 and u4. Using Method 4.6 (in the ordering u4 < x1 < x2 < x3 < x4 < x5), we have found two
non-degenerate components of Zero(HS/DS) with the corresponding ascending chains ASC∗

1 =

r1 = u3u4 − u1u2

2u2x1 − u2
4 − u3u4

x2
2 + x2

1 − u2
4

x3 + x2

u4x4 − u3x1

x1x5 − x3x4,

and ASC∗
2 =

r2 = u3u4 + u1u2

2u2x1 − u2
4 + u3u4

x2
2 + x2

1 − u2
4

x3 + x2

u4x4 + u3x1

x1x5 − x3x4.

Thus we have the relation set {r1, r2}. As in Example 5.2, r2 is a “reflection image” of r1. Assume
all u1, u2, u3 and u4 to be positive, r2 6= 0, thus the real relation should be r1 = 0.

5.3. Locus Problems

The algorithms described in this paper can also be used to find geometry loci. A locus of a point
is actually the relation between the coordinates of this point and some other quantities (coordinates,
lengths, etc) which are given (and fixed) in the problem. So if we take one of the coordinate of the
locus point and the given quantities as parameters, then the relation set among the parameters and
the other coordinate of the locus point found by the methods in Section 3 are the locus equations
for that point.

FE

D

A

C

B

A

B C

C1

B1

A1

O

Figure 7: Peaucellier’s Linkage Figure 8: Paterson’s problem

Example 5.7. (Peaucellier’s Linkage) Links AD, AB, DC and BC have equal length, as do links
EA and EC. The length of FD equals the distance from E to F . The locations of joints E and F
are fixed points on the plane, but the linkage is allowed to rotate about these points. As it does,
what is the traces of the joint B? (Fig. 7)

Let F = (0, 0), E = (r, 0), C = (x2, y2), D = (x1, y1), and B = (x, y). Then the geometry
conditions can be expressed by the following set of polynomial equations HS

h1 = y2
1 + x2

1 − r2 = 0 r = FD
h2 = y2

2 − 2y1y2 + x2
2 − 2x1x2 + y2

1 + x2
1 − n2 −m2 = 0 CD = n2 + m2

h3 = y2
2 − 2yy2 + x2

2 − 2xx2 + x2 + y2 − n2 −m2 = 0 CB = n2 + m2
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h4 = y2
2 + x2

2 − 2rx2 − n2 − 4rn−m2 − 3r2 = 0 EC = (n + 2r)2 + m2

h5 = (x− r)y1 − yx1 + ry = 0 E is on DB,

together with the following set of polynomial inequations DS:3 For this example, if we use {BD =
(x1 − x)2 + (y1 − y)2 6= 0} as the set DS, the problem is beyond the time limit using Methods
4.2 and 4.4. But Method 4.6 based on Ritt-Wu’s decomposition does not have a similar problem.
Actually, the more polynomials in DS, the less (degenerate) components will be in the Ritt–Wu’s
decomposition process. Hence the less time it takes generally. Thus we can add some non-degenerate
conditions, which, though can be excluded by the selection of parameters, are geometrically reason-
able, to DS to speed up Method 4.6.

d1 = x1 − x 6= 0 B 6= D.

Selecting m, n, r, and y to be the parameters of the problem, we want to find the relation among
m, n, r, y and x. Using Method 4.6 (in the ordering x < x1 < y1 < x2 < y2), we have found
Zero(HS/DS) has only one non-degenerate component with the corresponding ascending chain
ASC∗

1 =

x + 2n + r
(x2 − 2rx + y2 + r2)x1 + rx2 − 2r2x− ry2 + r3

(x− r)y1 − yx1 + ry
(4x2 − 8rx + 4y2 + 4r2)x2

2 + (−4x3 + 4rx2 + (−4y2 − 16rn− 12r2)x− 4ry2 + 16r2n + 12r3)x2 +
x4 + (2y2 + 8rn + 6r2)x2 + y4 + (−4n2 − 8rn− 4m2 − 6r2)y2 + 16r2n2 + 24r3n + 9r4

2yy2 + (2x− 2r)x2 − x2 − y2 − 4rn− 3r2.

The relation x = −2n− r tells us that the locus is a line parallel to the y-axis.

Example 5.8. (M. Paterson’s Problem). Three similar isoceles triangles, A1BC, AB1C, and ABC1

are erected on the three respective sides, BC, CA, AB, of a triangle ABC, then AA1, BB1, and
CC1 are concurrent. Find the locus of the points of concurrency as the areas of the three similar
triangles are varied between 0 and infinity (Fig. 8).

Let A = (0, 0), B = (u1, 0), C = (u2, u3), O = (x, y), C1 = (x2, x1), B1 = (x4, x3), and
A1 = (x6, x5). We will find the locus of the intersection points of CC1 and BB1. The geometry
conditions can be expressed by the following set of polynomial equations HS with DS empty:

h1 = (x− u2)x1 + (−y + u3)x2 + u2y − u3x = 0 C1 is on OC
h2 = 2x2 − u1 = 0 C1A ≡ C1B
h3 = (x− u1)x3 − yx4 + u1y = 0 B1 is on line OB
h4 = 2u3x3 + 2u2x4 − u2

3 − u2
2 = 0 B1A ≡ B1C

h5 = (u1u3x1 − u1u2x2)x3 + (u1u2x1 + u1u3x2)x4 + (−u1u
2
3 − u1u

2
2)x1 = 0

tan(BAC1) = tan(ACB1).

Selecting u1, u2, u3, and x to be parameters of the problem, we want to find the relation among
u1, u2, u3, x, and y. Using Method 4.6 (in the ordering y < x2 < x1 < x4 < x3), we have found one
non-degenerate component of Zero(HS) with the corresponding ascending chain: ASC∗

1 =

((2u2 − u1)u3)y2 + ((−2u2
3 + 2u2

2 − 2u1u2 + 2u2
1)x + u1u

2
3 − u1u

2
2 − u2

1u2)y + ((−2u2 + u1)u3)x2 +
((2u1u2 − u2

1)u3)x
2x2 − u1

(x− u2)x1 + (−y + u3)x2 + u2y − u3x
(2u3y + 2u2x− 2u1u2)x4 − 2u1u3y + (−u2

3 − u2
2)x + u1u

2
3 + u1u

2
2

2u3x3 + 2u2x4 − u2
3 − u2

2.

3The Gröbner bases method is sensitive with the choice of the set DS.
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The locus is a hyperbola.

6. Experimental Results

We have used Methods 4.2, 4.4, and 4.6 to solve the eight problems in Section 5. The timing is
shown in the following table.

Examples Method 4.2 Method 4.4 Method 4.6
5.1 1.450 0.733 3.417
5.2 > 3600 > 3600 **
5.3 34.550 5.517 11.833
5.4 > 3600 > 3600 27.267
5.5 > 3600 17.217 13.517
5.6 > 3600 > 3600 28.217
5.7 > 3600 25.183 45.100
5.8 91.900 6.017 5.583

The time is specified in seconds (on a SUN–3/280). For examples 5.1, 5.3, 5.4, 5.5, 5.7 and
5.8, the three methods gave the same results. Examples 5.2, 5.4, and 5.6 were beyond the time
limit using Methods 4.2 and 4.4. With some human interactions, we have solved Example 5.2 using
Method 4.6.

We have used Method 4.6 to solve about 120 problems [5], among which four have been solved
with certain human interactions; the remaining have been solved automatically by the program. 14
among the 120 problems were beyond the time limit using Method 4.4. Method 4.24 is much slower
and could solve less problems than Method 4.4. The reader can find more detailed information in
the collection [5].
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computation can possibly be speeded up.

15



[8] Ritt, J.F., Differential algebra, Amer. Math. Sco., (1950).

[9] Wu Wen-tsün, Basic Principles of Mechanical Theorem Proving in Elementary Geometries, J.
Sys. Sci. & Math. Scis., 4(1984), 207 –235; Re-published in J. Automated Reasoning, 1986.

[10] Wu Wen-tsün, A Mechanization Method of Geometry and Its Applications, I. Distances, Areas
and Volumes, J. Sys. Sci. & Math. Sci. 6(3) (1986), 204-216.

16


