Generating Loop Invariants via Polynomial Interpolation

Marc Moreno Maza
Joint work with
Rong Xiao
University of Western Ontario, Canada
ASCM 2012 - Beijing
Key Laboratory of Mathematics Mechanization
October 27, 2012

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

Loop model under study

while C_{0} do
if C_{1}
then

$$
X:=A_{1}(X)
$$

elif C_{2}
then

$$
X:=A_{2}(X)
$$

elif C_{m}
then

$$
X:=A_{m}(X)
$$

end if
end while
(1) Loop variables: $X=x_{1}, \ldots, x_{s}$, rational value scalar
(2) Conditions: each C_{i} is a quantifier free formula in X over \mathbb{Q}.
(3) Assignments: $A_{i} \in \mathbb{Q}[X]$ inducing a polynomial map $M_{i}: \mathbb{R}^{s} \mapsto \mathbb{R}^{s}$
(9) Initial condition: X-values defined by a semi-algebraic system.

Basic notions

$x:=a ;$
$y:=b$;
while $x<10$ do
$x:=x+y^{5}$;
$y:=y+1 ;$
end do;

- x, y, a, b are loop variables since they are updated in the loop or used to update other loop variables.
- The set of the initial values of the loop is

$$
\left\{(x, y, a, b) \mid x=a, y=b,(a, b) \in \mathbb{R}^{2}\right\}
$$

- The loop trajectory of the above loop starting at $(x, y, a, b)=(1,0,1,0)$ is the sequence:

$$
(1,0,1,0),(1,1,1,0),(2,2,1,0),(34,3,1,0)
$$

- The reachable set $R(L)$ of a loop L consists of all tuples of all trajectories of L.
- If x_{1}, \ldots, x_{s} are the loop variables of L, then a polynomial $P \in \mathbb{Q}\left[x_{1}, \ldots, x_{s}\right]$ is a (plain) loop invariant of L whenever $R(L) \subseteq V(P)$ holds.

More notions

- The inductive reachable set $R_{\text {ind }}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true.
- The absolute reachable set $R_{\text {abs }}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true, ignoring the branch conditions and, at each iteration executing a branch action selected randomly.
- We clearly have

$$
R(L) \subseteq R_{\mathrm{ind}} \subseteq R_{\mathrm{abs}}
$$

More notions

- The inductive reachable set $R_{\text {ind }}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true.
- The absolute reachable set $R_{\text {abs }}(L)$ of a loop L is the reachable set of the loop obtained from L by replacing the guard condition with true, ignoring the branch conditions and, at each iteration executing a branch action selected randomly.
- We clearly have

$$
R(L) \subseteq R_{\mathrm{ind}} \subseteq R_{\mathrm{abs}}
$$

- If x_{1}, \ldots, x_{s} are the loop variables of L, then a polynomial
$P \in \mathbb{Q}\left[x_{1}, \ldots, x_{s}\right]$ is an inductive (resp. absolute) loop invariant of L whenever $R_{\text {ind }}(L) \subseteq V(P)$ (resp. $R_{\text {abs }}(L) \subseteq V(P)$) holds.
- We denote by $\mathcal{I}(L)\left(\right.$ resp. $\left.\mathcal{I}_{\text {ind }}(L), \mathcal{I}_{\text {abs }}(L)\right)$ the set of the polynomials that are plain (resp. inductive, absolute) loop invariants of L.
- These are radical ideals such that

$$
\mathcal{I}_{\mathrm{abs}}(L) \subseteq \mathcal{I}_{\text {ind }}(L) \subseteq \mathcal{I}(L)
$$

Absolute invariants might be trivial

$$
\begin{aligned}
& y_{1}:=0 ; \\
& y_{2}:=0 ; \\
& y_{3}:=x_{1} ; \\
& \text { while } y_{3} \neq 0 \text { do } \\
& \quad \text { if } y_{2}+1=x_{2} \\
& \text { then } \\
& \qquad \begin{array}{l}
y_{1}:=y_{1}+1 ; \\
y_{2}:=0 ; \\
y_{3}:=y_{3}-1 ;
\end{array} \\
& \quad \text { else } \\
& \quad y_{2}:=y_{2}+1 ; \\
& y_{3}:=y_{3}-1 ; \\
& \text { end if } \\
& \text { end do }
\end{aligned}
$$

- Consider $y_{1} x_{2}+y_{2}+y_{3}=x_{1}(E)$.
- If $x_{1}=0$ then the equation (E) holds initially and the loop is not entered.
- If $x_{1} \neq 0$ and $x_{2}=1$ then (E) and $y_{2}+1=x_{2}$ hold before each iteration.
- If $x_{1} \neq 0$ and $x_{2} \neq 1$ then the second action preserves (E).
- Therefore $y_{1} x_{2}+y_{2}+y_{3}-x_{1} \in \mathcal{I}(L)$ and $y_{1} x_{2}+y_{2}+y_{3}-x_{1} \in \mathcal{I}_{\text {ind }}(L)$ both hold.

Absolute invariants might be trivial

$$
\begin{aligned}
& y_{1}:=0 ; \\
& y_{2}:=0 ; \\
& y_{3}:=x_{1} ; \\
& \text { while } y_{3} \neq 0 \text { do } \\
& \quad \text { if } y_{2}+1=x_{2} \\
& \text { then } \\
& \qquad \begin{array}{l}
y_{1}:=y_{1}+1 ; \\
y_{2}:=0 ; \\
\\
\quad y_{3}:=y_{3}-1 ;
\end{array} \\
& \quad \text { else } \\
& \quad y_{2}:=y_{2}+1 ; \\
& \quad y_{3}:=y_{3}-1 ; \\
& \text { end if } \\
& \text { end do }
\end{aligned}
$$

- Consider $y_{1} x_{2}+y_{2}+y_{3}=x_{1}(E)$.
- If $x_{1}=0$ then the equation (E) holds initially and the loop is not entered.
- If $x_{1} \neq 0$ and $x_{2}=1$ then (E) and $y_{2}+1=x_{2}$ hold before each iteration.
- If $x_{1} \neq 0$ and $x_{2} \neq 1$ then the second action preserves (E).
- Therefore $y_{1} x_{2}+y_{2}+y_{3}-x_{1} \in \mathcal{I}(L)$ and $y_{1} x_{2}+y_{2}+y_{3}-x_{1} \in \mathcal{I}_{\text {ind }}(L)$ both hold.
- If conditions are ignored, $\left(x_{1}, x_{2}\right)=(0,1)$ and execute the first branch once, then we obtain

$$
y_{1} x_{2}=1 \text { and } y_{2}+y_{3}=x_{1} .
$$

- Then (E) is violated and we have

$$
\mathcal{I}_{\mathrm{abs}}(L)=\langle 0\rangle .
$$

Inductive invariants might not be plain invariants

- $x-1=0$ is an invariant but not an inductive of the following loop.
- Thus $\mathcal{I}_{\text {ind }}(L)$ is strictly smaller than $\mathcal{I}(L)$

Computing inductive invariants via elimination ideals

- Solving for (x, y) as a 2-variable recurrence

$$
\begin{gathered}
x(n+1)=y(n), y(n+1)= \\
x(n)+y(n), \text { with } x(0)=0, y(0)=1 .
\end{gathered}
$$

$y:=1 ;$
$x:=0$;
while true do

$$
\begin{aligned}
& z:=x ; \\
& x:=y \\
& y:=z+y
\end{aligned}
$$

end while

- We obtain

$$
\begin{aligned}
& \quad \begin{array}{l}
\left.x(n)=\frac{(\sqrt{5}+1}{2}\right)^{n} \\
\sqrt{5} \\
y(n)=\frac{\left(\frac{-\sqrt{5}+1}{2}\right)^{n}}{\sqrt{5}}, \\
\text { - Let } u=\left(\frac{\sqrt{5}+1}{2}\right)^{n}, v=\left(\frac{\left(\frac{\sqrt{5}+1}{2}\right)^{n}}{\sqrt{5}}-\frac{-\sqrt{5}+1}{2}\right)^{n}, a=\sqrt{5}
\end{array} . \begin{array}{l}
\left.\frac{(-\sqrt{5}+1}{2}\right)^{n} \\
\sqrt{5}
\end{array} .
\end{aligned}
$$

- Taking the dependencies $u^{2} v^{2}=1, a^{2}=5$ into account, we want

$$
\begin{gathered}
\left\langle x-\frac{a u}{5}+\frac{a v}{5}, y-a \frac{a+1}{2} \frac{u}{5}+a \frac{-a+1}{2} \frac{v}{5}, a^{2}-\right. \\
\left.5, u^{2} v^{2}-1\right\rangle \cap \mathbb{Q}[x, y],
\end{gathered}
$$

- which is

$$
\left\langle 1-y^{4}+2 x y^{3}+x^{2} y^{2}-2 x^{3} y-x^{4}\right\rangle .
$$

Summary and notes

- Computing $\mathcal{I}_{\text {ind }}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{\text {abs }}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell \& D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{\text {abs }}(L)$.

Summary and notes

- Computing $\mathcal{I}_{\text {ind }}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{\text {abs }}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell \& D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{\text {abs }}(L)$.
- In this talk, we target $\mathcal{I}_{\text {ind }}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang \& Zhenbing Zeng, 2011).

Summary and notes

- Computing $\mathcal{I}_{\text {ind }}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{\text {abs }}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell \& D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{\text {abs }}(L)$.
- In this talk, we target $\mathcal{I}_{\text {ind }}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang \& Zhenbing Zeng, 2011).
- We also want to avoid computing closed forms of loop variables, while
- not making any assumptions on the shape of the polynomial invariants,
- and avoiding an intensive use of expensive algebraic computations other than linear algebra, for which costs are predictable.

Summary and notes

- Computing $\mathcal{I}_{\text {ind }}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{\text {abs }}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell \& D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{\text {abs }}(L)$.
- In this talk, we target $\mathcal{I}_{\text {ind }}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang \& Zhenbing Zeng, 2011).
- We also want to avoid computing closed forms of loop variables, while
- not making any assumptions on the shape of the polynomial invariants,
- and avoiding an intensive use of expensive algebraic computations other than linear algebra, for which costs are predictable.
- In (Sankaranarayanan, Sipma \& Manna, SIGPLAN 2004) (Y. Chen, B. Xia, L. Yang, \& N. Zhan, FMHRTS 2007) (D. Kapur Deduction and Applications 2005) template polynomials are used. Moreover, the latter two use real QE.

Summary and notes

- Computing $\mathcal{I}_{\text {ind }}(L)$ is a better approximation of $\mathcal{I}(L)$ than $\mathcal{I}_{\text {abs }}(L)$.
- The loop invariant generation methods of (E. Rodriguez-Carbonell \& D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on $\mathcal{I}_{\text {abs }}(L)$.
- In this talk, we target $\mathcal{I}_{\text {ind }}(L)$ (easier to compute than $\mathcal{I}(L)$) and call it the Invariant Ideal of the loop L. Same goal as in (Bin Wu, Liyong Shen, Min Wu, Zhengfeng Yang \& Zhenbing Zeng, 2011).
- We also want to avoid computing closed forms of loop variables, while
- not making any assumptions on the shape of the polynomial invariants,
- and avoiding an intensive use of expensive algebraic computations other than linear algebra, for which costs are predictable.
- In (Sankaranarayanan, Sipma \& Manna, SIGPLAN 2004) (Y. Chen, B. Xia, L. Yang, \& N. Zhan, FMHRTS 2007) (D. Kapur Deduction and Applications 2005) template polynomials are used. Moreover, the latter two use real QE.
- The "abstract interpretation" method (E. Rodriguez-Carbonell \& D. Kapur, Science of Computer Programming 2007) does not use templates but uses of Gröbner bases heavily.

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

Poly-geometrical expression

Notations

Let $\alpha_{1}, \ldots, \alpha_{k}$ be k elements of $\overline{\mathbb{Q}}^{*} \backslash\{1\}$. Let n be a variable taking non-negative integer values. We regard $n, \alpha_{1}^{n}, \ldots, \alpha_{k}^{n}$ as independent variables and we call $\alpha_{1}^{n}, \ldots, \alpha_{k}^{n} n$-exponential variables.

Definition

Any $f \in \overline{\mathbb{Q}}\left[n, \alpha_{1}^{n}, \ldots, \alpha_{k}^{n}\right]$ is called a poly-geometrical expression in n over $\overline{\mathbb{Q}}$ w.r.t. $\alpha_{1}, \ldots, \alpha_{k}$. For such an f, we denote by $\left.f\right|_{n=i}$ the evaluation of f at i. For such f, g we write $f=g$ whenever $\left.f\right|_{n=i}=\left.g\right|_{n=i}$ holds for all i.

Examples of poly-geometrical expressions

Example

The closed form $f:=\frac{(n+1)^{2} n^{2}}{4}$ of $\sum_{i=0}^{n} i^{3}$ is a poly-geometrical expression in n over $\overline{\mathbb{Q}}$ without n-exponential variables.

Example

The expression $g:=n^{2} 2^{(n+1)}-n 2^{n} 3^{\frac{n}{2}}$ is a poly-geometrical in n over $\overline{\mathbb{Q}}$ w.r.t. $2, \sqrt{3}$.

Example

The sum $\sum_{i=1}^{n-1} i^{k}$ has $n-1$ terms while its closed form below

$$
\sum_{i=1}^{k}\left\{\begin{array}{c}
k \\
i
\end{array}\right\} \frac{n \underline{i+1}}{i+1},
$$

where $\left\{\begin{array}{c}k \\ i\end{array}\right\}$ the number of ways to partition k into i non-zero summands, has a fixed number of terms and thus is poly-geometrical in n over $\overline{\mathbb{Q}}$.

Multiplicative relation ideal: example

Definition

Let $A:=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be a sequence of k elements of $\overline{\mathbb{Q}}$. Assume w.l.o.g. that for some ℓ, with $1 \leq \ell \leq k$, we have $\alpha_{1} \neq 0, \ldots, \alpha_{\ell} \neq 0$, $\alpha_{\ell+1}=\cdots \alpha_{k}=0$. We associate each α_{i} with a "new" variable y_{i}. The binomial ideal $\operatorname{MRI}\left(A ; y_{1}, \ldots, y_{k}\right)$ of $\mathbb{Q}\left[y_{1}, y_{2}, \ldots, y_{k}\right]$ generated by

$$
\left\{\prod_{j \in\{1, \ldots, \ell\}, v_{j}>0} y_{j}^{v_{j}}-\prod_{i \in\{1, \ldots, \ell\}, v_{i}<0} y_{i}^{-v_{i}} \mid\left(v_{1}, \ldots, v_{\ell}\right) \in Z\right\}
$$

and $\left\{y_{\ell+1}, \ldots, y_{k}\right\}$, where Z is the multiplicative relation lattice.

Example

Consider $A=(1 / 2,1 / 3,-1 / 6,0)$. The multiplicative relation lattice of $(1 / 2,1 / 3,-1 / 6)$ is generated by $(2,2,-2)$. Thus the MRI of A associated with $y_{1}, y_{2}, y_{3}, y_{4}$ is

$$
\left\langle y_{1}^{2} y_{2}^{2}-y_{3}^{2}, y_{4}\right\rangle .
$$

Degree estimates for x satisfying $x(n+1)=\lambda x(n)+h(n)$

Lemma
Let $\alpha_{1}, \ldots, \alpha_{k} \in \overline{\mathbb{Q}} \backslash\{0,1\}$. Let $\lambda \in \overline{\mathbb{Q}} \backslash\{0\}$. Let $h(n) \in \overline{\mathbb{Q}}\left[n, \alpha_{1}^{n}, \ldots, \alpha_{k}^{n}\right]$.
Consider the following single-variable recurrence relation R :

$$
x(n+1)=\lambda x(n)+h(n) .
$$

Then, there exists $s(n) \in \overline{\mathbb{Q}}\left[n, \alpha_{1}^{n}, \ldots, \alpha_{k}^{n}\right]$ such that we have

$$
\operatorname{deg}\left(s(n), \alpha_{i}^{n}\right) \leq \operatorname{deg}\left(h(n), \alpha_{i}^{n}\right) \text { and } \quad \operatorname{deg}(s(n), n) \leq \operatorname{deg}(h(n), n)+1,
$$

and such that

- if $\lambda=1$ holds, then $s(n)$ solves R,
- if $\lambda \neq 1$ holds, then there exists a constant c depending on $x(0)$ (that is, the initial value of x) such that $c \lambda^{n}+s(n)$ solves R.

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

The multivariate case: setting

Let n_{1}, \ldots, n_{k} be positive integers and define $s:=n_{1}+\cdots+n_{k}$. Let M be a block-diagonal square matrix over \mathbb{Q} of order s, with shape:

$$
M:=\left(\begin{array}{cccc}
\mathbf{M}_{n_{1} \times n_{1}} & \mathbf{0}_{n_{1} \times n_{2}} & \ddots & \mathbf{0}_{n_{1} \times n_{k}} \\
\mathbf{0}_{n_{2} \times n_{1}} & \mathbf{M}_{n_{2} \times n_{2}} & \ddots & \mathbf{0}_{n_{2} \times n_{k}} \\
\ddots & \ddots & \ddots & \ddots \\
\mathbf{0}_{n_{k} \times n_{1}} & \mathbf{0}_{n_{k} \times n_{2}} & \ddots & \mathbf{M}_{n_{k} \times n_{k}}
\end{array}\right) .
$$

Consider an s-variable recurrence relation R in $x_{1}, x_{2}, \ldots, x_{s}$, with shape:

$$
\left(\begin{array}{c}
x_{1}(n+1) \\
x_{2}(n+1) \\
\vdots \\
x_{s}(n+1)
\end{array}\right)=M \times\left(\begin{array}{c}
x_{1}(n) \\
x_{2}(n) \\
\vdots \\
x_{s}(n)
\end{array}\right)+\left(\begin{array}{c}
\mathbf{f}_{1 n_{1} \times 1} \\
\mathbf{f}_{2 n_{2} \times 1} \\
\vdots \\
\mathbf{f}_{k n_{k} \times 1}
\end{array}\right),
$$

where \mathbf{f}_{1} is a vector of length n_{1} with coordinates in \mathbb{Q} and where \mathbf{f}_{i} is a tuple of length n_{i} with coordinates in the polynomial ring $\mathbb{Q}\left[x_{1}, \ldots, x_{n_{1}+\cdots+n_{i-1}}\right]$, for $i=2, \ldots, k$.

The multivariate case: definition

Setting (recall)

$$
\left(\begin{array}{c}
x_{1}(n+1) \\
x_{2}(n+1) \\
\vdots \\
x_{s}(n+1)
\end{array}\right)=M \times\left(\begin{array}{c}
x_{1}(n) \\
x_{2}(n) \\
\vdots \\
x_{s}(n)
\end{array}\right)+\left(\begin{array}{c}
\mathbf{f}_{1 n_{1} \times 1} \\
\mathbf{f}_{2 n_{2} \times 1} \\
\vdots \\
\mathbf{f}_{k n_{k} \times 1}
\end{array}\right)
$$

where \mathbf{f}_{1} is a vector over \mathbb{Q} of length n_{1} and where \mathbf{f}_{i} is a tuple of length n_{i} with coordinates in $\mathbb{Q}\left[x_{1}, \ldots, x_{n_{1}+\cdots+n_{i-1}}\right]$, for $i=2, \ldots, k$.

Definition

Then, the recurrence relation R is called P-solvable over \mathbb{Q} and the matrix M is called the coefficient matrix of R.

The notion of P-solvable recurrence is equivalent to that of solvable mapping in (E. Rodriguez-Carbonell \& D. Kapur, ISSAC04) or that of solvable loop (L. Kovocs TACAS08) in the respective contexts.

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

Degree estimates for solutions of P-solvable recurrences: theorem
Assume M is in a Jordan normal form. Assume the eigenvalues $\lambda_{1}, \ldots, \lambda_{s}$ of M (counted with multiplicities) are different from 0,1 , with λ_{i} being the i-th diagonal element of M. Assume for each block j the total degree of any polynomial in \mathbf{f}_{j} (for $i=2 \cdots k$) is upper bounded by d_{j}. For each i, we denote by $b(i)$ the block number of the index i, that is,

$$
\sum_{j=1}^{b(i)-1} n_{j}<i \leq \sum_{j=1}^{b(i)} n_{j}
$$

Let $D_{1}:=n_{1}$ and for all $j \in\{2, \ldots, k\}$ let $D_{j}:=d_{j} D_{j-1}+n_{j}$. Then, there exists a solution $\left(y_{1}, y_{2}, \ldots, y_{s}\right)$ for R of the following form:

$$
y_{i}:=c_{i} \lambda_{i}^{n}+g_{i}, \quad i=1 \cdots s \text { where }
$$

(a) c_{i} is a constant depending only on the initial value of the recurrence;
(b) g_{i} is a poly-geometrical expression in n w.r.t. $\lambda_{1}, \ldots, \lambda_{i-1}$, such that

$$
\operatorname{deg}\left(g_{i}\right) \leq D_{b(i)}
$$

Degree estimates for solutions of P-solvable recurrences: example

Consider the recurrence:

$$
\left(\begin{array}{l}
x(n+1) \\
y(n+1) \\
z(n+1)
\end{array}\right):=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right) \times\left(\begin{array}{l}
x(n) \\
y(n) \\
z(n)
\end{array}\right)+\left(\begin{array}{c}
0 \\
x(n)^{2} \\
x(n)^{3}
\end{array}\right)
$$

Viewing the recurrence as two blocks (x) and (y, z), the degree upper bounds are

$$
D_{1}:=n_{1}=1 \quad \text { and } \quad D_{2}:=d_{2} D_{1}+n_{2}=3 \times 1+2 .
$$

If we decouple the (y, z) block to the following two recurrences

$$
y(n+1)=3 y(n)+x(n)^{2} \text { and } z(n+1)=3 z(n)+x(n)^{3},
$$

then we deduce that the degree of the poly-geometrical expression for y and z are upper bounded by 2 and 3 respectively.

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

Degree estimates for the invariant ideal: theorem

- Let R be a P-solvable recurrence relation with variables $\left(x_{1}, x_{2}, \ldots, x_{s}\right)$.
- Suppose R has a k-block configuration as $\left(n_{1}, 1\right), \ldots,\left(n_{k}, d_{k}\right)$.
- Let $D_{1}:=n_{1}$; and for all $j \in\{2, \ldots, k\}$, let $D_{j}:=d_{j} D_{j-1}+n_{j}$.
- Let $A=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ be the eigenvalues (counted with multiplicities) of the coefficient matrix of R.
- Let \mathcal{M} be the multiplicative relation ideal of A associated with variables y_{1}, \ldots, y_{k}. Let $r:=\operatorname{dim}(\mathcal{M})$.
- Let $\mathcal{I} \subset \mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{s}\right]$ be the invariant ideal of R.

Then, we have

$$
\operatorname{deg}(\mathcal{I}) \leq \operatorname{deg}(\mathcal{M}) D_{k}^{r+1}
$$

Degree estimates for the invariant ideal: example

Consider again solving for (x, y) as a 2-variable recurrence

$$
x(n+1)=y(n), y(n+1)=x(n)+y(n), \text { with } x(0)=0, y(0)=1 .
$$

Recall that we obtained

$$
\begin{aligned}
& x(n)=\frac{\left(\frac{\sqrt{5}+1}{2}\right)^{n}}{\sqrt{5}}-\frac{\left(\frac{-\sqrt{5}+1}{2}\right)^{n}}{\sqrt{5}}, \\
& y(n)=\frac{\sqrt{5}+1}{2} \frac{\left(\frac{\sqrt{5}+1}{2}\right)^{n}}{\sqrt{5}}-\frac{-\sqrt{5}+1}{2} \frac{\left(\frac{-\sqrt{5}+1}{2}\right)^{n}}{\sqrt{5}} .
\end{aligned}
$$

Observe that $A:=\frac{-\sqrt{5}+1}{2}, \frac{\sqrt{5}+1}{2}$ is weakly multiplicatively independent. The multiplicative relation ideal of A associated with variables u, v is generated by $u^{2} v^{2}-1$ and thus has degree 4 and dimension 1 in $\mathbb{Q}[u, v]$. Therefore, the previous theorem implies that the degree of invariant ideal bounded by 4×1^{1}. This is sharp since this ideal is

$$
\left\langle 1-y^{4}+2 x y^{3}+x^{2} y^{2}-2 x^{3} y-x^{4}\right\rangle
$$

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

Dimension estimates for the invariant ideal: theorem

Theorem

Using the same notations as in the definition of P-solvable recurrences.

- Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ be the eigenvalues of M counted with multiplicities.
- Let \mathcal{M} be the multiplicative relation ideal of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$.
- Let r be the dimension of \mathcal{M}. Let \mathcal{I} be the invariant ideal of R.

Then, we have

$$
\operatorname{dim}(\mathcal{I}) \leq r+1
$$

Moreover, for generic initial values,
(1) we have $r \leq \operatorname{dim}(\mathcal{I})$,
(2) if 0 is not an eigenvalue of M and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ is weakly multiplicatively independent, then we have $r=\operatorname{dim}(\mathcal{I})$.

Corollaries
(1) If $r+1<s$ holds, then \mathcal{I} is not the zero ideal in $\mathbb{Q}\left[x_{1}, x_{2}, \ldots, x_{s}\right]$.
(2) Assume that $x_{1}(0):=a_{1}, \ldots, x_{s}(0):=a_{s}$ are independent indeterminates. If the eigenvalues of R are multiplicatively independent, then the inductive invariant ideal of the loop is the zero ideal in $\mathbb{Q}\left[a_{1}, \ldots, a_{s}, x_{1}, x_{2}, \ldots, x_{s}\right]$.

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

Loop model under study: recall

while C_{0} do
if C_{1}
then

$$
X:=A_{1}(X)
$$

elif C_{2}
then

$$
X:=A_{2}(X)
$$

elif C_{m}
then

$$
X:=A_{m}(X)
$$

end if
end while
(1) Loop variables: $X=x_{1}, \ldots, x_{s}$, rational value scalar
(2) Conditions: each C_{i} is a quantifier free formula in X over \mathbb{Q}.
(3) Assignments: $A_{i} \in \mathbb{Q}[X]$ inducing a polynomial map $M_{i}: \mathbb{R}^{s} \mapsto \mathbb{R}^{s}$
(9) Initial condition: X-values defined by a semi-algebraic system.

A direct approach

Input

(i) $M:=m_{1}, m_{2}, \ldots, m_{c}$ is a sequence of monomials in the loop variables X,
(ii) $S:=s_{1}, s_{2}, \ldots, s_{r}$ is a set of r points on the inductive trajectory of the loop,
(iii) E is a polynomial system defining the loop initial values,
(iv) B is the transitions $\left(C_{1}, A_{1}\right), \ldots,\left(C_{m}, A_{m}\right)$ of the loop.

Algorithm

(1) $L:=\operatorname{BuildLinSys}(M, S)$
(2) $N:=$ LinSolve(L) is full row rank and generates the null space of L .
(3) $F:=\emptyset$
(9) For each row vector $\mathbf{v} \in N$ do

$$
F:=F \cup\{\operatorname{GenPoly}(M, \mathbf{v})\}
$$

(6) If $Z(E) \nsubseteq Z(F)$ then return FAIL
(0) For each branch $\left(C_{i}, A_{i}\right) \in B$ do

$$
\text { if } A_{i}\left(Z(F) \cap Z\left(C_{i}\right)\right) \nsubseteq Z(F) \text { then return FAIL }
$$

(1) Return F, a list of polynomial equation invariants for the target loop.

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

A small-prime approach: algorithm

Algorithm

(1) $p:=$ MaxMachinePrime (); $L_{p}:=\operatorname{BuildLinSysModp}(M, S, p)$;
(2) $N_{p}:=\operatorname{LinSolveModp}\left(\mathrm{L}_{\mathrm{p}}, \mathrm{p}\right)$
(3) $d:=\operatorname{dim}\left(N_{p}\right) ; \mathbf{N}:=\left(N_{p}\right) ; \mathbf{P}:=(p)$;
(1) While $p>2$ do
(1) If $d=0$ then return FAIL
(2) $N:=\operatorname{RatRecon}(\mathbf{N}, \mathbf{P})$
(3) If $N \neq$ FAIL then break;
(1) $p:=\operatorname{PrevPrime}(p) ; L_{p}:=\operatorname{BuildLinSysModp}(M, S, p)$;
$N_{p}:=$ LinSolveModp $\left(L_{\mathrm{p}}, \mathrm{p}\right)$
(1) If $d>\operatorname{dim}\left(N_{p}\right)$ then $d:=\operatorname{dim}\left(N_{p}\right) ; \mathbf{N}:=\left(N_{p}\right) ; \mathbf{P}:=(p)$
(0) else $\mathbf{N}:=\operatorname{Append}\left(\mathbf{N}, N_{p}\right) ; \mathbf{P}:=\operatorname{Append}(\mathbf{P}, p)$
(6) If $p=2$ then return FAIL
(3) $F:=\emptyset$
(1) For each row vector $\mathbf{v} \in N$ do

$$
F:=F \cup\{\operatorname{GenPoly}(M, \mathbf{v})\}
$$

(8) If $Z(E) \nsubseteq Z(F)$ then return FAIL
(0) For each branch $\left(C_{i}, A_{i}\right) \in B$ do

$$
\text { if } A_{i}\left(Z(F) \cap Z\left(C_{i}\right)\right) \nsubseteq Z(F) \text { then return FAIL }
$$

(00) Return F, a list of polynomial equation invariants for the target loop.

A small-prime approach: complexity result

Proposition

Both algorithms run in singly exponential time w.r.t. number of loop variables.

Indeed

- the number of monomials of M is singly exponential w.r.t. number of loop variables.
- applying our criterion to certify the result can be reduced to an ideal membership problem, which is singly exponential w.r.t. number of loop variables.

A small-prime approach: example

Consider the following recurrence relation on (x, y, z) :

$$
\left(\begin{array}{l}
x(n+1) \\
y(n+1) \\
z(n+1)
\end{array}\right)=\left(\begin{array}{rrr}
0 & 0 & 1 \\
1 & 0 & -3 \\
0 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
x(n) \\
y(n) \\
z(n)
\end{array}\right)
$$

with initial value $(x(0), y(0), z(0))=(1,2,3)$.

- Note that the characteristic polynomial of the coefficient matrix has 1 as a triple root and the mult. rel. ideal of the eigenvalues is 0 -dimensional.
- So the invariant ideal of this recurrence has dimension either 0 or 1.
- On the other hand, we can show that for all $k \in \mathbb{N}$, we have $M^{k} \neq M$; so there are infinitely many points in the set $\{(x(k), y(k), z(k)) \mid k \in \mathbb{N}\}$, whenever $(x(0), y(0), z(0)) \neq(0,0,0)$.
- With our method, we compute the following invariant polynomials

$$
x+y+z-6, y^{2}+4 y z+4 z^{2}-6 y-24 z+20
$$

which generate a prime ideal of dimension 1 , thus the invariant ideal of this recurrence.

Plan

(1) Preliminaries

- Notions on loop invariants
- Poly-geometric summations
(2) Invariant ideal of P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- P-solvable recurrences
- Degree estimates for solutions of P-solvable recurrences
- Degree estimates for their invariant ideal
- Dimension estimates for their invariant ideal
(3) Loop invariant generation via polynomial interpolation
- A direct approach
- A modular method
- Maple Package: ProgramAnalysis

ProgramAnalysis: package architecture

Maple session: the input program in a file

```
wensley2:= proc(P,Q,E)
local }a,b,d,y\mathrm{ ;
    a:=0;
    b:= 1/2* Q;
    d:= 1;
    y:= 0;
    \# P R E : Q > P ~ a n d ~ P \geq 0 ~ a n d ~ E > 0
    while E\leqd do
        if P<a+b then
            b:=1/2*b;
        d:=1/2*d
        else
            a:=a+b;
            y:=y+1/2*d,
            b:= 1/2*b;
            d:= 1/2*d
        end if
        end do;
    #POST: P/ Q \geqy and }y>P/Q-
    return y
end proc
```


Maple session: the sample points

$$
\begin{aligned}
& {\left[\left[0, \frac{5}{2}, 1,0\right],\left[\frac{5}{2}, \frac{5}{4}, \frac{1}{2}, \frac{1}{2}\right],\left[\frac{5}{2}, \frac{5}{8}, \frac{1}{4}, \frac{1}{2}\right],\left[\frac{5}{2}, \frac{5}{16}, \frac{1}{8}, \frac{1}{2}\right],\left[\frac{45}{16}, \frac{5}{32}, \frac{1}{16}, \frac{9}{16}\right],\left[\frac{95}{32}, \frac{5}{64},\right.\right.} \\
& \left.\quad \frac{1}{32}, \frac{19}{32}\right],\left[\frac{95}{32}, \frac{5}{128}, \frac{1}{64}, \frac{19}{32}\right],\left[\frac{95}{32}, \frac{5}{256}, \frac{1}{128}, \frac{19}{32}\right],\left[\frac{765}{256}, \frac{5}{512}, \frac{1}{256}, \frac{153}{256}\right],\left[\frac{1535}{512},\right. \\
& \left.\quad \frac{5}{1024}, \frac{1}{512}, \frac{307}{512}\right],\left[\frac{1535}{512}, \frac{5}{2048}, \frac{1}{1024}, \frac{307}{512}\right],\left[\frac{1535}{512}, \frac{5}{4096}, \frac{1}{2048}, \frac{307}{512}\right],\left[\frac{12285}{4096}, \frac{5}{8192},\right. \\
& \left.\quad \frac{1}{4096}, \frac{2457}{4096}\right],\left[\frac{24575}{8192}, \frac{5}{16384}, \frac{1}{8192}, \frac{4915}{8192}\right],\left[\frac{24575}{8192}, \frac{5}{32768}, \frac{1}{16384}, \frac{4915}{8192}\right],\left[\frac{24575}{8192},\right. \\
& \left.\frac{5}{65536}, \frac{1}{32768}, \frac{4915}{8192}\right],\left[\frac{196605}{65536}, \frac{5}{131072}, \frac{1}{65536}, \frac{39321}{65536}\right],\left[\frac{393215}{131072}, \frac{5}{262144}, \frac{1}{131072},\right. \\
& \left.\frac{78643}{131072}\right],\left[\frac{393215}{131072}, \frac{5}{524288}, \frac{1}{262144}, \frac{78643}{131072}\right],\left[\frac{393215}{131072}, \frac{5}{1048576}, \frac{1}{524288}, \frac{78643}{131072}\right], \\
& \left.\left[\frac{3145725}{1048576}, \frac{5}{2097152}, \frac{1}{1048576}, \frac{629145}{1048576}\right],\left[\frac{6291455}{2097152}, \frac{5}{4194304}, \frac{1}{2097152}, \frac{1258291}{2097152}\right]\right]
\end{aligned}
$$

Maple session: verifying the program

```
\(>\) mplfile \(:=\) cat (getenv("MXHOME"),"/mx-2012/programs/wensley2.mpl"):
    precond \(:=[[Q>P, P>=0, \mathrm{E}>0]]\);
    postcond \(:=\left[\left[P>=Q^{*} Y, Q^{*} Y>P-Q * E\right.\right.\) ]];
    guard := [ [E<=d]];
    ineq_invs \(:=\left[P-Q^{*} d<Q^{*} y, Q^{*} y<=P, Y>=0\right]\);
        precond: \(=[[P<Q, 0 \leq P, 0<E]]\)
        postcond: \(=[[Q y \leq P, P-Q E<Q y]]\)
        guard \(:=[[E \leq d]]\)
        ineq_invs \(:=[-d Q+P<Q y, Q y \leq P, 0 \leq y]\)
> st := time():
    eq_invs := LoopEqInv (mplfile); \# compute equation invariants
    time()-st;
\[
e q_{-} i n v s:=[y Q-a, d Q-2 b,-2 b y+a d]
\]
\[
\begin{equation*}
0.210 \tag{2.3.2}
\end{equation*}
\]
\(>\) \# verify the specification of the program
st:=time () :
LoopVerify(precond, guard, [[op(eq_invs), op(ineq_invs)]], postcond); time()-st;

Xie Xie!```

