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Preliminaries Notions on loop invariants

Loop model under study

while C0 do
if C1

then
X := A1(X);

elif C2

then
X := A2(X);

· · ·
elif Cm

then
X := Am(X);

end if
end while

1 Loop variables: X = x1, . . . , xs,
rational value scalar

2 Conditions: each Ci is a quantifier free
formula in X over Q.

3 Assignments: Ai ∈ Q[X] inducing a
polynomial map Mi : Rs 7→ Rs

4 Initial condition: X-values defined by a
semi-algebraic system.



Preliminaries Notions on loop invariants

Basic notions

x := a;
y := b;
while x < 10 do

x := x+ y5;
y := y + 1;

end do;

x, y, a, b are loop variables since they are
updated in the loop or used to update other
loop variables.

The set of the initial values of the loop is

{(x, y, a, b) | x = a, y = b, (a, b) ∈ R2}.

The loop trajectory of the above loop starting
at (x, y, a, b) = (1, 0, 1, 0) is the sequence:

(1, 0, 1, 0), (1, 1, 1, 0), (2, 2, 1, 0), (34, 3, 1, 0).

The reachable set R(L) of a loop L consists of all tuples of all
trajectories of L.

If x1, . . . , xs are the loop variables of L, then a polynomial
P ∈ Q[x1, . . . , xs] is a (plain) loop invariant of L whenever
R(L) ⊆ V (P ) holds.



Preliminaries Notions on loop invariants

More notions

The inductive reachable set Rind(L) of a loop L is the reachable set of
the loop obtained from L by replacing the guard condition with true.
The absolute reachable set Rabs(L) of a loop L is the reachable set of
the loop obtained from L by replacing the guard condition with true,
ignoring the branch conditions and, at each iteration executing a
branch action selected randomly.
We clearly have

R(L) ⊆ Rind ⊆ Rabs

If x1, . . . , xs are the loop variables of L, then a polynomial
P ∈ Q[x1, . . . , xs] is an inductive (resp. absolute) loop invariant of L
whenever Rind(L) ⊆ V (P ) (resp. Rabs(L) ⊆ V (P )) holds.
We denote by I(L) (resp. Iind(L), Iabs(L)) the set of the
polynomials that are plain (resp. inductive, absolute) loop invariants
of L.
These are radical ideals such that

Iabs(L) ⊆ Iind(L) ⊆ I(L)
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Preliminaries Notions on loop invariants

Absolute invariants might be trivial

y1 := 0;
y2 := 0;
y3 := x1;
while y3 6= 0 do

if y2 + 1 = x2
then

y1 := y1 + 1;
y2 := 0;
y3 := y3 − 1;

else
y2 := y2 + 1;
y3 := y3 − 1;

end if
end do

Consider y1x2 + y2 + y3 = x1 (E).

If x1 = 0 then the equation (E) holds initially
and the loop is not entered.

If x1 6= 0 and x2 = 1 then (E) and
y2 + 1 = x2 hold before each iteration.

If x1 6= 0 and x2 6= 1 then the second action
preserves (E).

Therefore y1x2 + y2 + y3 − x1 ∈ I(L) and
y1x2 + y2 + y3 − x1 ∈ Iind(L) both hold.

If conditions are ignored, (x1, x2) = (0, 1) and
execute the first branch once, then we obtain

y1x2 = 1 and y2 + y3 = x1.

Then (E) is violated and we have

Iabs(L) = 〈0〉.



Preliminaries Notions on loop invariants

Absolute invariants might be trivial

y1 := 0;
y2 := 0;
y3 := x1;
while y3 6= 0 do

if y2 + 1 = x2
then

y1 := y1 + 1;
y2 := 0;
y3 := y3 − 1;

else
y2 := y2 + 1;
y3 := y3 − 1;

end if
end do

Consider y1x2 + y2 + y3 = x1 (E).

If x1 = 0 then the equation (E) holds initially
and the loop is not entered.

If x1 6= 0 and x2 = 1 then (E) and
y2 + 1 = x2 hold before each iteration.

If x1 6= 0 and x2 6= 1 then the second action
preserves (E).

Therefore y1x2 + y2 + y3 − x1 ∈ I(L) and
y1x2 + y2 + y3 − x1 ∈ Iind(L) both hold.

If conditions are ignored, (x1, x2) = (0, 1) and
execute the first branch once, then we obtain

y1x2 = 1 and y2 + y3 = x1.

Then (E) is violated and we have

Iabs(L) = 〈0〉.



Preliminaries Notions on loop invariants

Inductive invariants might not be plain invariants

x := 1;
while x 6= 1 do

x := x+ 1;
end do

x− 1 = 0 is an invariant but not an inductive
of the following loop.

Thus Iind(L) is strictly smaller than I(L)
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Computing inductive invariants via elimination ideals

y := 1;
x := 0;
while true do

z := x;
x := y;
y := z + y;

end while

Solving for (x, y) as a 2-variable recurrence

x(n+ 1) = y(n), y(n+ 1) =
x(n) + y(n), with x(0) = 0, y(0) = 1.

We obtain

x(n) =
(
√
5+1
2

)n√
5
− (−

√
5+1
2

)n√
5

,

y(n) =
√
5+1
2

(
√
5+1
2

)n√
5
− −

√
5+1
2

(−
√
5+1
2

)n√
5

.

Let u = (
√
5+1
2 )n, v = (−

√
5+1
2 )n, a =

√
5

Taking the dependencies u2 v2 = 1, a2 = 5 into
account, we want

〈x− au
5 + av

5 , y − a
a+1
2

u
5 + a−a+1

2
v
5 , a

2 −
5, u2v2 − 1〉 ∩ Q[x, y],

which is

〈1− y4 + 2xy3 + x2y2 − 2x3y − x4〉.
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Summary and notes

Computing Iind(L) is a better approximation of I(L) than Iabs(L).
The loop invariant generation methods of (E. Rodriguez-Carbonell &
D. Kapur, ISSAC04) and (L. Kovács, TACAS08) focus on Iabs(L).

In this talk, we target Iind(L) (easier to compute than I(L)) and call
it the Invariant Ideal of the loop L. Same goal as in (Bin Wu, Liyong
Shen, Min Wu, Zhengfeng Yang & Zhenbing Zeng, 2011).
We also want to avoid computing closed forms of loop variables, while

• not making any assumptions on the shape of the polynomial invariants,
• and avoiding an intensive use of expensive algebraic computations

other than linear algebra, for which costs are predictable.

In (Sankaranarayanan, Sipma & Manna, SIGPLAN 2004) (Y. Chen,
B. Xia, L. Yang, & N. Zhan, FMHRTS 2007) (D. Kapur Deduction
and Applications 2005) template polynomials are used. Moreover, the
latter two use real QE.
The ”abstract interpretation” method (E. Rodriguez-Carbonell & D.
Kapur, Science of Computer Programming 2007) does not use
templates but uses of Gröbner bases heavily.
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Preliminaries Poly-geometric summations

Poly-geometrical expression

Notations

Let α1, . . . , αk be k elements of Q∗ \ {1}. Let n be a variable taking
non-negative integer values. We regard n, αn

1 , . . . , α
n
k as independent

variables and we call αn
1 , . . . , α

n
k n-exponential variables.

Definition

Any f ∈ Q[n, αn
1 , . . . , α

n
k ] is called a poly-geometrical expression in n over

Q w.r.t. α1, . . . , αk. For such an f , we denote by f |n=i the evaluation of
f at i. For such f, g we write f = g whenever f |n=i = g|n=i holds for all i.



Preliminaries Poly-geometric summations

Examples of poly-geometrical expressions

Example

The closed form f := (n+1)2 n2

4 of
∑n

i=0 i
3 is a poly-geometrical expression

in n over Q without n-exponential variables.

Example

The expression g := n2 2(n+1) − n 2n 3
n
2 is a poly-geometrical in n over Q

w.r.t. 2,
√

3.

Example

The sum
∑n−1

i=1 i
k has n− 1 terms while its closed form below∑k

i=1

{
k
i

}
ni+1

i+1 ,

where
{
k
i

}
the number of ways to partition k into i non-zero summands,

has a fixed number of terms and thus is poly-geometrical in n over Q.



Preliminaries Poly-geometric summations

Multiplicative relation ideal: example

Definition

Let A := (α1, . . . , αk) be a sequence of k elements of Q. Assume w.l.o.g.
that for some `, with 1 ≤ ` ≤ k, we have α1 6= 0, . . . , α` 6= 0,
α`+1 = · · · αk = 0. We associate each αi with a “new” variable yi. The
binomial ideal MRI(A; y1, . . . , yk) of Q[y1, y2, . . . , yk] generated by

{
∏

j∈{1,...,`}, vj>0

y
vj
j −

∏
i∈{1,...,`}, vi<0

y−vii | (v1, . . . , v`) ∈ Z},

and {y`+1, . . . , yk}, where Z is the multiplicative relation lattice.

Example

Consider A = (1/2, 1/3,−1/6, 0). The multiplicative relation lattice of
(1/2, 1/3,−1/6) is generated by (2, 2,−2). Thus the MRI of A associated
with y1, y2, y3, y4 is

〈y21y22 − y23, y4〉.



Preliminaries Poly-geometric summations

Degree estimates for x satisfying x(n+ 1) = λx(n) + h(n)

Lemma

Let α1, . . . , αk ∈ Q \ {0, 1}. Let λ ∈ Q \ {0}. Let h(n) ∈ Q[n, αn
1 , . . . , α

n
k ].

Consider the following single-variable recurrence relation R:

x(n+ 1) = λx(n) + h(n).

Then, there exists s(n) ∈ Q[n, αn
1 , . . . , α

n
k ] such that we have

deg(s(n), αn
i ) ≤ deg(h(n), αn

i ) and deg(s(n), n) ≤ deg(h(n), n) + 1,

and such that

if λ = 1 holds, then s(n) solves R,
if λ 6= 1 holds, then there exists a constant c depending on x(0) (that is,
the initial value of x) such that c λn + s(n) solves R.
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Invariant ideal of P -solvable recurrences P -solvable recurrences

The multivariate case: setting

Let n1, . . . , nk be positive integers and define s := n1 + · · ·+ nk. Let M
be a block-diagonal square matrix over Q of order s, with shape:

M :=


Mn1×n1 0n1×n2

. . . 0n1×nk

0n2×n1 Mn2×n2

. . . 0n2×nk

. . .
. . .

. . .
. . .

0nk×n1 0nk×n2

. . . Mnk×nk

 .

Consider an s-variable recurrence relation R in x1, x2, . . . , xs, with shape:
x1(n+ 1)
x2(n+ 1)

...
xs(n+ 1)

 = M ×


x1(n)
x2(n)

...
xs(n)

+


f1n1×1
f2n2×1

...
fknk×1

 ,

where f1 is a vector of length n1 with coordinates in Q and where fi is a
tuple of length ni with coordinates in the polynomial ring
Q[x1, . . . , xn1+···+ni−1 ], for i = 2, . . . , k.



Invariant ideal of P -solvable recurrences P -solvable recurrences

The multivariate case: definition

Setting (recall)
x1(n+ 1)
x2(n+ 1)

...
xs(n+ 1)

 = M ×


x1(n)
x2(n)

...
xs(n)

+


f1n1×1
f2n2×1

...
fknk×1

 ,

where f1 is a vector over Q of length n1 and where fi is a tuple of length
ni with coordinates in Q[x1, . . . , xn1+···+ni−1 ], for i = 2, . . . , k.

Definition

Then, the recurrence relation R is called P -solvable over Q and the matrix
M is called the coefficient matrix of R.

The notion of P -solvable recurrence is equivalent to that of solvable
mapping in (E. Rodriguez-Carbonell & D. Kapur, ISSAC04) or that of
solvable loop (L. Kovocs TACAS08) in the respective contexts.
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recurrences

Degree estimates for solutions of P -solvable recurrences: theorem

Assume M is in a Jordan normal form. Assume the eigenvalues λ1, . . . , λs
of M (counted with multiplicities) are different from 0, 1, with λi being
the i-th diagonal element of M . Assume for each block j the total degree
of any polynomial in fj (for i = 2 · · · k) is upper bounded by dj . For each
i, we denote by b(i) the block number of the index i, that is,∑b(i)−1

j=1 nj < i ≤
∑b(i)

j=1 nj .

Let D1 := n1 and for all j ∈ {2, . . . , k} let Dj := dj Dj−1 + nj . Then,

there exists a solution (y1, y2, . . . , ys) for R of the following form:

yi := ciλ
n
i + gi, i = 1 · · · s where

(a) ci is a constant depending only on the initial value of the recurrence;

(b) gi is a poly-geometrical expression in n w.r.t. λ1, . . . , λi−1, such that

deg(gi) ≤ Db(i).
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recurrences

Degree estimates for solutions of P -solvable recurrences: example

Consider the recurrence: x(n+ 1)
y(n+ 1)
z(n+ 1)

 :=

 2 0 0
0 3 0
0 0 3

 ×
 x(n)

y(n)
z(n)

 +

 0
x(n)2

x(n)3


Viewing the recurrence as two blocks (x) and (y, z), the degree upper
bounds are

D1 := n1 = 1 and D2 := d2D1 + n2 = 3× 1 + 2.

If we decouple the (y, z) block to the following two recurrences

y(n+ 1) = 3 y(n) + x(n)2 and z(n+ 1) = 3 z(n) + x(n)3,

then we deduce that the degree of the poly-geometrical expression for y
and z are upper bounded by 2 and 3 respectively.
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Degree estimates for the invariant ideal: theorem

Let R be a P -solvable recurrence relation with variables
(x1, x2, . . . , xs).

Suppose R has a k-block configuration as (n1, 1), . . . , (nk, dk).

Let D1 := n1; and for all j ∈ {2, . . . , k}, let Dj := dj Dj−1 + nj .

Let A = λ1, λ2, . . . , λs be the eigenvalues (counted with
multiplicities) of the coefficient matrix of R.

Let M be the multiplicative relation ideal of A associated with
variables y1, . . . , yk. Let r := dim(M).

Let I ⊂ Q[x1, x2, . . . , xs] be the invariant ideal of R.

Then, we have

deg(I) ≤ deg(M)Dr+1
k .
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Degree estimates for the invariant ideal: example

Consider again solving for (x, y) as a 2-variable recurrence

x(n+ 1) = y(n), y(n+ 1) = x(n) + y(n), with x(0) = 0, y(0) = 1.

Recall that we obtained

x(n) =
(
√
5+1
2

)n√
5
− (−

√
5+1
2

)n√
5

,

y(n) =
√
5+1
2

(
√
5+1
2

)n√
5
− −

√
5+1
2

(−
√
5+1
2

)n√
5

.

Observe that A := −
√
5+1
2 ,

√
5+1
2 is weakly multiplicatively independent.

The multiplicative relation ideal of A associated with variables u, v is
generated by u2v2 − 1 and thus has degree 4 and dimension 1 in Q[u, v].
Therefore, the previous theorem implies that the degree of invariant ideal
bounded by 4× 11. This is sharp since this ideal is

〈1− y4 + 2xy3 + x2y2 − 2x3y − x4〉.
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Dimension estimates for the invariant ideal: theorem

Theorem

Using the same notations as in the definition of P -solvable recurrences.

Let λ1, λ2, . . . , λs be the eigenvalues of M counted with multiplicities.
Let M be the multiplicative relation ideal of λ1, λ2, . . . , λs.
Let r be the dimension of M. Let I be the invariant ideal of R.

Then, we have

dim(I) ≤ r + 1.

Moreover, for generic initial values,

1 we have r ≤ dim(I),
2 if 0 is not an eigenvalue of M and λ1, λ2, . . . , λs is weakly multiplicatively

independent, then we have r = dim(I).

Corollaries

1 If r + 1 < s holds, then I is not the zero ideal in Q[x1, x2, . . . , xs].
2 Assume that x1(0) := a1, . . . , xs(0) := as are independent indeterminates. If

the eigenvalues of R are multiplicatively independent, then the inductive
invariant ideal of the loop is the zero ideal in Q[a1, . . . , as, x1, x2, . . . , xs].
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Loop model under study: recall

while C0 do
if C1

then
X := A1(X);

elif C2

then
X := A2(X);

· · ·
elif Cm

then
X := Am(X);

end if
end while

1 Loop variables: X = x1, . . . , xs,
rational value scalar

2 Conditions: each Ci is a quantifier free
formula in X over Q.

3 Assignments: Ai ∈ Q[X] inducing a
polynomial map Mi : Rs 7→ Rs

4 Initial condition: X-values defined by a
semi-algebraic system.
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A direct approach

Input

(i) M := m1,m2, . . . ,mc is a sequence of monomials in the loop variables
X,

(ii) S := s1, s2, . . . , sr is a set of r points on the inductive trajectory of the
loop,

(iii) E is a polynomial system defining the loop initial values,
(iv) B is the transitions (C1, A1), . . . , (Cm, Am) of the loop.

Algorithm

1 L := BuildLinSys(M,S)
2 N := LinSolve(L) is full row rank and generates the null space of L.
3 F := ∅
4 For each row vector v ∈ N do

F := F ∪ {GenPoly(M,v)}
5 If Z(E) 6⊆ Z(F ) then return FAIL
6 For each branch (Ci, Ai) ∈ B do

if Ai(Z(F ) ∩ Z(Ci)) 6⊆ Z(F ) then return FAIL
7 Return F , a list of polynomial equation invariants for the target loop.
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A small-prime approach: algorithm

Algorithm

1 p := MaxMachinePrime(); Lp := BuildLinSysModp(M,S, p);
2 Np := LinSolveModp(Lp, p)
3 d := dim(Np); N := (Np); P := (p);
4 While p > 2 do

1 If d = 0 then return FAIL
2 N := RatRecon(N,P)
3 If N 6= FAIL then break;
4 p := PrevPrime(p); Lp := BuildLinSysModp(M,S, p);
Np := LinSolveModp(Lp, p)

5 If d > dim(Np) then d := dim(Np); N := (Np); P := (p)
6 else N := Append(N, Np); P := Append(P, p)

5 If p = 2 then return FAIL
6 F := ∅
7 For each row vector v ∈ N do

F := F ∪ {GenPoly(M,v)}
8 If Z(E) 6⊆ Z(F ) then return FAIL
9 For each branch (Ci, Ai) ∈ B do

if Ai(Z(F ) ∩ Z(Ci)) 6⊆ Z(F ) then return FAIL
10 Return F , a list of polynomial equation invariants for the target loop.
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A small-prime approach: complexity result

Proposition

Both algorithms run in singly exponential time w.r.t. number of loop
variables.

Indeed

the number of monomials of M is singly exponential w.r.t. number of
loop variables.

applying our criterion to certify the result can be reduced to an ideal
membership problem, which is singly exponential w.r.t. number of
loop variables.
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A small-prime approach: example

Consider the following recurrence relation on (x, y, z): x(n+ 1)
y(n+ 1)
z(n+ 1)

 =

 0 0 1
1 0 −3
0 1 3

  x(n)
y(n)
z(n)


with initial value (x(0), y(0), z(0)) = (1, 2, 3).

Note that the characteristic polynomial of the coefficient matrix has 1 as
a triple root and the mult. rel. ideal of the eigenvalues is 0-dimensional.
So the invariant ideal of this recurrence has dimension either 0 or 1.
On the other hand, we can show that for all k ∈ N, we have Mk 6= M ; so
there are infinitely many points in the set {(x(k), y(k), z(k)) | k ∈ N},
whenever (x(0), y(0), z(0)) 6= (0, 0, 0).
With our method, we compute the following invariant polynomials

x+ y + z − 6, y2 + 4yz + 4z2 − 6y − 24z + 20,

which generate a prime ideal of dimension 1, thus the invariant ideal of
this recurrence.
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ProgramAnalysis: package architecture
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Maple session: the input program in a file
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Maple session: the sample points
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Maple session: verifying the program
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Xie Xie!
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