Towards Guaranteed Accuracy Computations in Control

Masaaki Kanno

Niigata University

Asian Symposium on Computer Mathematics 2012
Organized Session: On The Latest Progress In Verified Computation
27 OCTOBER 2012

Outline

- Control Theory
- Design Approach
- Guaranteed Accuracy Polynomial Spectral Factorization
- Concluding Remarks

Outline

- Control Theory
- Design Approach
- Guaranteed Accuracy Polynomial Spectral Factorization
- Concluding Remarks

Feedback Control Systems

Feedback Loop

- P: Plant System to be controlled dynamical system
- K: Controller Control strategy

Aims

- Stabilization
- Disturbance attenuation
- Robustness strong against uncertainty

(Post-)Modern Control Theory

Classical Control

- Qualitative
- Graphical approach
- (Simple) Algebraic computation

(Post-)Modern Control

For superior design....

- Mathematically oriented approach
- Extensive computation get along with computers
- Mathematical modelling
- Mathematical formulation
- Quantitatively
- Optimization problems

Outline

- Control Theory
- Design Approach
- Guaranteed Accuracy Polynomial Spectral Factorization
- 4 Concluding Remarks

Sketch (1)

Dynamical system description

High-order (linear) differential equation

E.g.,
$$\ddot{y}(t) + 3\dot{y}(t) + 5y(t) = \dot{u}(t) + 2u(t)$$

Laplace Transform

Transfer function

$$Y(s) = \mathcal{L}[y(t)]$$
 $U(s) = \mathcal{L}[u(t)]$
 $P(s) = \text{(rational function in } s)$
 $= \frac{Y(s)}{U(s)}$
 $s + 2$

Set of 1st order differential eqns

- State-space representation
 - introduction of state x(t)

$$P: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

$$\begin{cases} \dot{x}(t) = \underbrace{\begin{bmatrix} -3 & -5 \\ 1 & 0 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{B} u(t) \\ y(t) = \underbrace{\begin{bmatrix} 1 & 2 \end{bmatrix}}_{A} x(t) \end{cases}$$

Sketch (2)

Laplace Transformation

Polynomial Spectral Factorization

$$f(s) \triangleq Y(s)Y(-s) + U(s)U(-s) = g(s)g(-s)$$

Calculating the Controller Set of linear equations

! In either approach, Step 1 is the harder.

Set of 1st order differential eqns

Algebraic Riccati equation

$$XA + A^{T}X$$

$$- XBB^{T}X + C^{T}C = 0$$
 $YA^{T} + AY$

$$- YC^{T}CY + BB^{T} = 0$$

Calculating the Controller
 Straightforward
 matrix computation

$$\mathcal{K}: \left\{ egin{aligned} \dot{x}_{\mathcal{K}}(t) &= (\mathcal{A} - \mathbf{Y} \mathbf{C}^{\mathrm{T}} \mathbf{C} - \mathcal{B} \mathcal{B}^{\mathrm{T}} \mathbf{X}) x_{\mathcal{K}}(t) \\ &+ \mathbf{Y} \mathbf{C}^{\mathrm{T}} \mathbf{y}(t) \\ u(t) &= -\mathcal{B}^{\mathrm{T}} \mathbf{X} x_{\mathcal{K}}(t) \end{aligned}
ight.$$

Normalized LQG Control Problem

Problem Formulation

LQG = Linear Quadratic Gaussian

$$\min_{K \text{ stabilizing}} ||T_{zw}(P,K)||_2$$

Given P, find a controller K that minimizes the \mathcal{H}_2 -norm of the transfer function matrix T_{zw} from $w = (d_1 \ d_2)^T$ to $z = (y_1 \ y_2)^T$.

\mathcal{H}_2 -norm

$$\|G(s)\|_{2} \triangleq \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{tr} \left\{G^{*}(i\omega)G(i\omega)\right\} d\omega\right)^{\frac{1}{2}}$$

 $||G(s)||_{2}^{2}$: Energy of the system output to an impulse input signal

Outline

- Control Theory
- Design Approach
- 3 Guaranteed Accuracy Polynomial Spectral Factorization
- 4 Concluding Remarks

What is Polynomial Spectral Factorization?

- Given: $f(s) = f(-s) = -s^6 + 9s^4 4s^2 + 36$; Self-reciprocal polynomial
- Task : Decompose f(s) as a product of a stable polynomial and an anti-stable polynomial ('mirror image')

$$f(s) = \underbrace{(s^3 + 5s^2 + 8s + 6)}_{g(s)} \underbrace{(-s^3 + 5s^2 - 8s + 6)}_{g(-s)}$$

Self-reciprocal — stable and unstable roots symmetrically

What is Polynomial Spectral Factorization?

- Given: $f(s) = f(-s) = -s^6 + 9s^4 4s^2 + 36$; Self-reciprocal polynomial
- Task : Decompose f(s) as a product of a stable polynomial and an anti-stable polynomial ('mirror image')

$$f(s) = \underbrace{(s^3 + 5s^2 + 8s + 6)}_{g(s)} \underbrace{(-s^3 + 5s^2 - 8s + 6)}_{g(-s)}$$

Self-reciprocal — stable and unstable roots symmetrically

What is Polynomial Spectral Factorization?

- Given: $f(s) = f(-s) = -s^6 + 9s^4 4s^2 + 36$; Self-reciprocal polynomial
- Task : Decompose f(s) as a product of a stable polynomial and an anti-stable polynomial ('mirror image')

$$f(s) = \underbrace{(s^3 + 5s^2 + 8s + 6)}_{g(s)} \underbrace{(-s^3 + 5s^2 - 8s + 6)}_{g(-s)}$$

Self-reciprocal — stable and unstable roots symmetrically

'Full' Guaranteed Approach

By Means of Verified Polynomial Root Computation

- Each Root in the left half plane is found as an interval on the real axis / a box in the complex plane.
- Express the spectral factor as a product of linear factors and expand it to get bounds for coefficients

$$g(s) = (s - p_1)(s - p_2)(s - p_3)$$

= $s^3 - (p_1 + p_2 + p_3)s^2 + (p_1p_2 + p_2p_3 + p_3p_1)s - p_1p_2p_3$

'Full' Guaranteed Approach

By Means of Verified Polynomial Root Computation

- Each Root in the left half plane is found as an interval on the real axis / a box in the complex plane.
- Express the spectral factor as a product of linear factors and expand it to get bounds for coefficients

$$g(s) = (s - p_1)(s - p_2)(s - p_3)$$

= $s^3 - (p_1 + p_2 + p_3)s^2 + (p_1p_2 + p_2p_3 + p_3p_1)s - p_1p_2p_3$

'Full' Guaranteed Approach

By Means of Verified Polynomial Root Computation

- Each Root in the left half plane is found as an interval on the real axis / a box in the complex plane.
- Express the spectral factor as a product of linear factors and expand it to get bounds for coefficients

$$g(s) = (s - p_1)(s - p_2)(s - p_3)$$

= $s^3 - (p_1 + p_2 + p_3)s^2 + (p_1p_2 + p_2p_3 + p_3p_1)s - p_1p_2p_3$

Hybrid Approach

- 'Full' Guaranteed Approach always works
- Eventually want to get bounds for coefficients of the spectral factor
- To get tighter bounds for coefficients, the Krawczyk method can be employed.

Suggested Approach

- Compute coefficients of the spectral factor
 using an ordinary (unverified) numerical method
- ② Give (heuristically) bounds for coefficients, and check whether a solution is included in the bounds
 - Use 'Full' Guaranteed Approach as a backup

Polynomial Spectral Factorization

Problem Formulation

• Given: an even polynomial in s (polynomial in s^2)

$$f(s) = (-1)^n s^{2n} + a_{2n-2} s^{2n-2} + a_{2n-4} s^{2n-4} + \dots + a_0$$

Task : Find a polynomial

$$g(s) = s^{n} + b_{n-1}s^{n-1} + b_{n-2}s^{n-2} + \dots + b_{0}$$

such that
$$f(s) = (-1)^n g(s) g(-s)$$

and g(s) has roots in the open left half plane only.

By comparing the coefficients of the both sides of

$$|f(s) = (-1)^n g(s)g(-s)|,$$

a set of algebraic equations in b_i is obtained.

Krawczyk method easy to apply

Catch

The set of algebraic equations to be solved has multiple solutions.
 Need to make sure that we will get the right solution

• E.g.,
$$-s^6 - 3s^4 + 2s^2 + 9$$

= $(s^3 + s^2 + 2s + 3)(-s^3 + s^2 - 2s + 3)$
Roots: -1.2757 , $0.13784 \pm 1.5273i$

What we have got :
 A set of polynomials whose coefficients are bounded by intervals

- An infinite number of polynomials
- How can we guarantee the stability of the enclosed solution?

Catch

The set of algebraic equations to be solved has multiple solutions.
 Need to make sure that we will get the right solution

• E.g.,
$$-s^6 - 3s^4 + 2s^2 + 9$$

= $(s^3 + s^2 + 2s + 3)(-s^3 + s^2 - 2s + 3)$
Roots: -1.2757 , $0.13784 \pm 1.5273i$

What we have got :
 A set of polynomials whose coefficients are bounded by intervals

- An infinite number of polynomials
- How can we guarantee the stability of the enclosed solution?

Catch

The set of algebraic equations to be solved has multiple solutions.
 Need to make sure that we will get the right solution

• E.g.,
$$-s^6 - 3s^4 + 2s^2 + 9$$

= $(s^3 + s^2 + 2s + 3)(-s^3 + s^2 - 2s + 3)$
Roots: -1.2757 , $0.13784 \pm 1.5273i$

What we have got :
 A set of polynomials whose coefficients are bounded by intervals

- An infinite number of polynomials
- How can we guarantee the stability of the enclosed solution?

Robust Stability Condition for 'Interval' Polynomials

Kharitonov's Theorem

All the polynomials in

$$\left\{ p(s, \mathbf{a}) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_2 s^2 + a_1 s + a_0 \mid \mathbf{a} = (a_i), \ a_i \in [a_i^-, a_i^+] \right\}, \ a_n^- > 0$$

are stable iff the following four polynomials are stable:

$$p^{++}(s) = a_n^{\bullet} s^n + \dots + a_4^+ s^4 + a_3^- s^3 + a_2^- s^2 + a_1^+ s + a_0^+$$

$$p^{-+}(s) = a_n^{\bullet} s^n + \dots + a_4^+ s^4 + a_3^+ s^3 + a_2^- s^2 + a_1^- s + a_0^+$$

$$p^{--}(s) = a_n^{\bullet} s^n + \dots + a_4^- s^4 + a_3^+ s^3 + a_2^+ s^2 + a_1^- s + a_0^-$$

$$p^{+-}(s) = a_n^{\bullet} s^n + \dots + a_4^- s^4 + a_3^- s^3 + a_2^+ s^2 + a_1^+ s + a_0^-$$

Stability Guarantee

Stability of each of the four polynomials can be examined by

- Algebraic method Routh-Hurwitz test
 Check positivity of principal minors of the 'Hurwitz' matrix
- Guaranteed accuracy root computation

All the polynomials in the obtained set are stable.

 \Longrightarrow The enclosed solution yields a stable polynomial.

Suggested Approach

- Compute coefficients of the spectral factor using an ordinary (unverified) numerical method
- Que (heuristically) bounds for coefficients, and check whether a solution is included in the bounds
- Examine that the enclosed solution yields a stable spectral factor
 - Use 'Full' Guaranteed Approach as a backup

Example

 \mathcal{H}_2 Tracking Problem: Optimal Cost J_c^* for Plant

$$P_{x}(s) = \frac{s - x}{s(s - 1)}$$
$$(x > 0)$$

$$J_{c}^{\star} = \frac{\sqrt{2(x+1)}(x^{2}+6x+1)+5x^{2}+10x+1}{x(x-1)^{2}}$$

Guaranteed Accuracy Algorithm returns correct answers.

Outline

- Control Theory
- Design Approach
- Guaranteed Accuracy Polynomial Spectral Factorization
- Concluding Remarks

Concluding Remarks

What Has Been Achieved...

- Guaranteed accuracy polynomial spectral factorization
- Reliable control systems design

Future Work

- Effective implementation
-