# Towards Guaranteed Accuracy Computations in Control 

Masaaki Kanno

Niigata University

Asian Symposium on Computer Mathematics 2012
Organized Session: On The Latest Progress In Verified Computation
27 October 2012

## Outline

## (1) Control Theory

(2) Design Approach
(3) Guaranteed Accuracy Polynomial Spectral Factorization

4 Concluding Remarks

## Outline

## (9) Control Theory

## (2) Design Approach

(3) Guaranteed Accuracy Polynomial Spectral Factorization

4 Concluding Remarks

## Feedback Control Systems



## Feedback Loop



- P : Plant - System to be controlled dynamical system
- K : Controller - Control strategy


## Aims

- Stabilization
- Disturbance attenuation
- Robustness - strong against uncertainty


## (Post-)Modern Control Theory

## Classical Control

- Qualitative
- Graphical approach
- (Simple) Algebraic computation


## (Post-)Modern Control

For superior design....

- Mathematically oriented approach
- Extensive computation - get along with computers
- Mathematical modelling
- Mathematical formulation
- Quantitatively
- Optimization problems


## Outline

## (1) Control Theory

## (2) Design Approach

## (3) Guaranteed Accuracy Polynomial Spectral Factorization

## 4 Concluding Remarks

## Sketch (1)

## Dynamical system description

High-order (linear) differential equation

$$
\text { E.g., } \ddot{y}(t)+3 \dot{y}(t)+5 y(t)=\dot{u}(t)+2 u(t)
$$

## Laplace Transform

- Transfer function

$$
\begin{aligned}
& Y(s)=\mathcal{L}[y(t)] \\
& U(s)=\mathcal{L}[u(t)]
\end{aligned}
$$

$P(s)=$ (rational function in $s$ )

$$
\begin{aligned}
& =\frac{Y(s)}{U(s)} \\
& =\frac{s+2}{s^{2}+3 s+5}
\end{aligned}
$$

## Set of 1 st order differential eqns

- State-space representation
- introduction of state $x(t)$

$$
\begin{gathered}
P:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)
\end{array}\right. \\
\left\{\begin{array}{l}
\dot{x}(t)=\underbrace{\left[\begin{array}{cc}
-3 & -5 \\
1 & 0
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{B} u(t) \\
y(t)=\underbrace{\left[\begin{array}{ll}
1 & 2
\end{array}\right]}_{C} x(t)
\end{array}\right.
\end{gathered}
$$

## Sketch (2)

## Laplace Transformation

(1) Polynomial

Spectral Factorization

$$
\begin{aligned}
& f(s) \triangleq \\
& \quad Y(s) Y(-s)+U(s) U(-s) \\
& \\
& \quad=g(s) g(-s)
\end{aligned}
$$

(2) Calculating the Controller Set of linear equations
! In either approach, Step 1 is the harder.

## Set of 1st order differential eqns

(1) Algebraic Riccati equation

$$
\begin{aligned}
& X A+A^{\mathrm{T}} X \\
& \quad-X B B^{\mathrm{T}} X+C^{\mathrm{T}} C=0 \\
& Y A^{\mathrm{T}}+A Y \\
& \quad-Y C^{\mathrm{T}} C Y+B B^{\mathrm{T}}=0
\end{aligned}
$$

(2) Calculating the Controller Straightforward matrix computation

$$
K:\left\{\begin{array}{r}
\dot{x}_{K}(t)=\left(A-Y C^{\mathrm{T}} C-B B^{\mathrm{T}} X\right) x_{K}(t) \\
\\
\quad+Y(t)=-B^{\mathrm{T}} X_{x_{K}(t)}(t)
\end{array}\right.
$$

## Normalized LQG Control Problem

## Problem Formulation

LQG = Linear Quadratic Gaussian


$$
\min _{K \text { stailizizg }}\left\|T_{z w}(P, K)\right\|_{2}
$$

Given $P$, find a controller $K$
that minimizes the $\mathcal{H}_{2}$-norm of the transfer function matrix $T_{z w}$

$$
\text { from } w=\left(d_{1} d_{2}\right)^{T} \text { to } z=\left(y_{1} y_{2}\right)^{T} \text {. }
$$

## $\mathcal{H}_{2}$-norm

$$
\|G(s)\|_{2} \triangleq\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{tr}\left\{G^{*}(i \omega) G(i \omega)\right\} d \omega\right)^{\frac{1}{2}}
$$

$\|G(s)\|_{2}^{2}$ : Energy of the system output to an impulse input signal

## Outline

## (1) Control Theory

## (2) Design Approach

(3) Guaranteed Accuracy Polynomial Spectral Factorization

## 4 Concluding Remarks

## What is Polynomial Spectral Factorization?

- Given : $f(s)=f(-s)=-s^{6}+9 s^{4}-4 s^{2}+36$;

Self-reciprocal polynomial

- Task : Decompose $f(s)$ as a product of a stable polynomial and an anti-stable polynomial ('mirror image')

$$
f(s)=\underbrace{\left(s^{3}+5 s^{2}+8 s+6\right)}_{g(s)} \underbrace{\left(-s^{3}+5 s^{2}-8 s+6\right)}_{g(-s)}
$$

- Self-reciprocal - stable and unstable roots symmetrically


Self-reciprocal : $f(s)$
Stable

Mirror image

## What is Polynomial Spectral Factorization?

- Given : $f(s)=f(-s)=-s^{6}+9 s^{4}-4 s^{2}+36$;

Self-reciprocal polynomial

- Task : Decompose $f(s)$ as a product of a stable polynomial and an anti-stable polynomial ('mirror image')

$$
f(s)=\underbrace{\left(s^{3}+5 s^{2}+8 s+6\right)}_{g(s)} \underbrace{\left(-s^{3}+5 s^{2}-8 s+6\right)}_{g(-s)}
$$

- Self-reciprocal - stable and unstable roots symmetrically

Stable: all the roots in the left half plane

Self-reciprocal : $f(s)$
Stable : $g(s)$

- spectral factor

Mirror image

## What is Polynomial Spectral Factorization?

- Given : $f(s)=f(-s)=-s^{6}+9 s^{4}-4 s^{2}+36$;

Self-reciprocal polynomial

- Task : Decompose $f(s)$ as a product of a stable polynomial and an anti-stable polynomial ('mirror image')

$$
f(s)=\underbrace{\left(s^{3}+5 s^{2}+8 s+6\right)}_{g(s)} \underbrace{\left(-s^{3}+5 s^{2}-8 s+6\right)}_{g(-s)}
$$

- Self-reciprocal - stable and unstable roots symmetrically

Stable: all the roots in the left half plane

Re
Self-reciprocal : $f(s)$
Stable : $g(s)$

- spectral factor

Mirror image : $g(-s)$

## 'Full' Guaranteed Approach

## By Means of Verified Polynomial Root Computation

- Each Root in the left half plane is found as an interval on the real axis / a box in the complex plane.
- Express the spectral factor as a product of linear factors and expand it to get bounds for coefficients

$$
\begin{aligned}
g(s) & =\left(s-p_{1}\right)\left(s-p_{2}\right)\left(s-p_{3}\right) \\
& =s^{3}-\left(p_{1}+p_{2}+p_{3}\right) s^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right) s-p_{1} p_{2} p_{3}
\end{aligned}
$$



## 'Full' Guaranteed Approach

## By Means of Verified Polynomial Root Computation

- Each Root in the left half plane is found as an interval on the real axis / a box in the complex plane.
- Express the spectral factor as a product of linear factors and expand it to get bounds for coefficients

$$
\begin{aligned}
g(s) & =\left(s-p_{1}\right)\left(s-p_{2}\right)\left(s-p_{3}\right) \\
& =s^{3}-\left(p_{1}+p_{2}+p_{3}\right) s^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right) s-p_{1} p_{2} p_{3}
\end{aligned}
$$



## 'Full' Guaranteed Approach

## By Means of Verified Polynomial Root Computation

- Each Root in the left half plane is found as an interval on the real axis / a box in the complex plane.
- Express the spectral factor as a product of linear factors and expand it to get bounds for coefficients

$$
\begin{aligned}
g(s) & =\left(s-p_{1}\right)\left(s-p_{2}\right)\left(s-p_{3}\right) \\
& =s^{3}-\left(p_{1}+p_{2}+p_{3}\right) s^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right) s-p_{1} p_{2} p_{3}
\end{aligned}
$$



## Hybrid Approach

- 'Full' Guaranteed Approach - always works
- Eventually want to get bounds for coefficients of the spectral factor
- To get tighter bounds for coefficients, the Krawczyk method can be employed.


## Suggested Approach

(1) Compute coefficients of the spectral factor
using an ordinary (unverified) numerical method
(2) Give (heuristically) bounds for coefficients, and check whether a solution is included in the bounds

- Use 'Full' Guaranteed Approach as a backup


## Polynomial Spectral Factorization

## Problem Formulation

- Given : an even polynomial in $s$ (polynomial in $s^{2}$ )

$$
f(s)=(-1)^{n} s^{2 n}+a_{2 n-2} s^{2 n-2}+a_{2 n-4} s^{2 n-4}+\cdots+a_{0}
$$

- Task : Find a polynomial

$$
g(s)=s^{n}+b_{n-1} s^{n-1}+b_{n-2} s^{n-2}+\cdots+b_{0}
$$

such that

$$
f(s)=(-1)^{n} g(s) g(-s)
$$

and $g(s)$ has roots in the open left half plane only.

- By comparing the coefficients of the both sides of

$$
f(s)=(-1)^{n} g(s) g(-s)
$$

a set of algebraic equations in $b_{j}$ is obtained.

- Krawczyk method easy to apply


## Catch

- The set of algebraic equations to be solved has multiple solutions.
$\Longrightarrow$ Need to make sure that we will get the right solution
- E.g., $-s^{6}-3 s^{4}+2 s^{2}+9$

$$
=\underbrace{\left(s^{3}+s^{2}+2 s+3\right)}_{\text {Roots: }-1.2757,0.13784 \pm 1.5273 i}\left(-s^{3}+s^{2}-2 s+3\right)
$$

- What we have got :

A set of polynomials whose coefficients are bounded by intervals


- An infinite number of polynomials
- How can we guarantee the stability of the enclosed solution?


## Catch

- The set of algebraic equations to be solved has multiple solutions.
$\Longrightarrow$ Need to make sure that we will get the right solution
- E.g., $-s^{6}-3 s^{4}+2 s^{2}+9$

$$
=\underbrace{\left(s^{3}+s^{2}+2 s+3\right)}_{\text {Roots: }-1.2757,0.13784 \pm 1.5273 i}\left(-s^{3}+s^{2}-2 s+3\right)
$$

- What we have got :

A set of polynomials whose coefficients are bounded by intervals


- An infinite number of polynomials
- How can we guarantee the stability of the enclosed solution?


## Catch

- The set of algebraic equations to be solved has multiple solutions.
$\Longrightarrow$ Need to make sure that we will get the right solution
- E.g., $-s^{6}-3 s^{4}+2 s^{2}+9$

$$
=\underbrace{\left(s^{3}+s^{2}+2 s+3\right)}_{\text {Roots: }-1.2757,0.13784 \pm 1.5273 i}\left(-s^{3}+s^{2}-2 s+3\right)
$$

- What we have got :

A set of polynomials whose coefficients are bounded by intervals


- An infinite number of polynomials
- How can we guarantee the stability of the enclosed solution?


## Robust Stability Condition for 'Interval' Polynomials

## Kharitonov's Theorem

All the polynomials in

$$
\begin{aligned}
\left\{p(s, \mathbf{a})=a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots\right. & +a_{2} s^{2}+a_{1} s+a_{0} \mid \\
& \left.\mathbf{a}=\left(a_{i}\right), a_{i} \in\left[a_{i}^{-}, a_{i}^{+}\right]\right\}, a_{n}^{-}>0
\end{aligned}
$$

are stable iff the following four polynomials are stable:

$$
\begin{aligned}
& p^{++}(s)=a_{n}^{\bullet} s^{n}+\cdots+a_{4}^{+} s^{4}+a_{3}^{-} s^{3}+a_{2}^{-} s^{2}+a_{1}^{+} s+a_{0}^{+} \\
& p^{-+}(s)=a_{n}^{0} s^{n}+\cdots+a_{4}^{+} s^{4}+a_{3}^{+} s^{3}+a_{2}^{-} s^{2}+a_{1}^{-} s+a_{0}^{+} \\
& p^{--}(s)=a_{n}^{\bullet} s^{n}+\cdots+a_{4}^{-} s^{4}+a_{3}^{+} s^{3}+a_{2}^{+} s^{2}+a_{1}^{-} s+a_{0}^{-} \\
& p^{+-}(s)=a_{n}^{0} s^{n}+\cdots+a_{4}^{-} s^{4}+a_{3}^{-} s^{3}+a_{2}^{+} s^{2}+a_{1}^{+} s+a_{0}^{-}
\end{aligned}
$$

## Stability Guarantee

Stability of each of the four polynomials can be examined by

- Algebraic method - Routh-Hurwitz test

Check positivity of principal minors of the 'Hurwitz' matrix

- Guaranteed accuracy root computation

All the polynomials in the obtained set are stable.
$\Longrightarrow$ The enclosed solution yields a stable polynomial.

## Suggested Approach

(1) Compute coefficients of the spectral factor using an ordinary (unverified) numerical method
(2) Give (heuristically) bounds for coefficients, and check whether a solution is included in the bounds
(3) Examine that the enclosed solution yields a stable spectral factor

- Use 'Full' Guaranteed Approach as a backup


## Example



Guaranteed Accuracy Algorithm returns correct answers.

## Outline

## (1) Control Theory

## (2) Design Approach

(3) Guaranteed Accuracy Polynomial Spectral Factorization

4 Concluding Remarks

## Concluding Remarks

## What Has Been Achieved...

- Guaranteed accuracy polynomial spectral factorization
- Reliable control systems design


## Future Work

- Effective implementation
- ...

