
A Symbolic Approach to the Projection Method

Nam Pham Mark Giesbrecht

University of Waterloo, Canada

The Tenth Asian Symposium on Computer Mathematics
Beijing 2012

(Pham & Giesbrecht) ASCM 2012 1 / 21



Outline

1 Introduction
Constrained mechanical system
The projection method
Problem definition

2 Our symbolic-numeric code-generating algorithm

3 Experimental results

(Pham & Giesbrecht) ASCM 2012 2 / 21



How to do a simulation of a physical mechanical system?

1 Create a model of the system
2 Generate equations to describe the dynamic of the model
3 Solve the equations to determine the system response

Slider Crank Mechanism and Parallel Robot

(Pham & Giesbrecht) ASCM 2012 3 / 21



Dynamics and kinematics of constrained mechanical system

Kinematic constraint equations

C(x , t) = 0, (1)

with m nonlinear algebraic equations of n generalized coordinates
x1, · · · , xn (m < n).

System dynamics
Mẍ + CT

J λ = F , (2)

where

CJ is the m × n Jacobian of the constraint matrix C
M is an n × n symmetric generalized mass matrix
λ is the (m × 1) Lagrange multiplier

Solving these DAEs for x(t) and λ(t) is computationally expensive

(Pham & Giesbrecht) ASCM 2012 4 / 21



Dynamics and kinematics of constrained mechanical system

Kinematic constraint equations

C(x , t) = 0, (1)

with m nonlinear algebraic equations of n generalized coordinates
x1, · · · , xn (m < n).
Symbolic computation: Allow parameters z1, . . . , z` ∈ R
System dynamics

Mẍ + CT
J λ = F , (2)

where

CJ is the m × n Jacobian of the constraint matrix C
M is an n × n symmetric generalized mass matrix
λ is the (m × 1) Lagrange multiplier

Solving these DAEs for x(t) and λ(t) is computationally expensive

Solving these systems with parameters is extremely expensive!

(Pham & Giesbrecht) ASCM 2012 4 / 21



The Projection Method

Blajer’s (1992) projection method: hide algebraic equations from the
dynamic equations:

Find a null space basis D, an n × r matrix, such that

CJD = 0 or DT CT
J = 0, (3)

Multiply both sides of Mẍ + CT
J λ = F by DT

DT Mẍ = DT F , (4)

Now we have ODEs in x and u, which can be easily solved to
determine the coordinates x , velocity u, and constraint reaction λ
during simulation

ẋ = Du, (5)

DT MDu̇ = DT (F −MḊu), (6)

λ = (CM−1CT )−1C(M−1F − Ḋu) (7)

(Pham & Giesbrecht) ASCM 2012 5 / 21



Numeric vs. Symbolic Modelling and Simulation

Numeric
• Numerical matrices are used

to describe the system at a
given instant in time.
• Values must be given for all

parameters, even if they
aren’t really known.
• The model must be rebuilt at

every time step during
simulation.

Symbolic
• All equations of motion are

formulated once instead of
every step during simulation
• Engineers can view the

governing equations in a
meaningful form
• Arbitrary substitutions for

unknown quantities are not
needed.

Computer Algebra in Industrial Simulation
MapleSim – symbolic physical modelling and simulation tool
Talk tomorrow: Symbolic Computation Techniques for Advanced
Mathematical Modelling by Junlin Xu

(Pham & Giesbrecht) ASCM 2012 6 / 21



Numeric vs. Symbolic Modelling and Simulation

Numeric
• Numerical matrices are used

to describe the system at a
given instant in time.
• Values must be given for all

parameters, even if they
aren’t really known.
• The model must be rebuilt at

every time step during
simulation.

Symbolic
• All equations of motion are

formulated once instead of
every step during simulation
• Engineers can view the

governing equations in a
meaningful form
• Arbitrary substitutions for

unknown quantities are not
needed.

Computer Algebra in Industrial Simulation
MapleSim – symbolic physical modelling and simulation tool
Talk tomorrow: Symbolic Computation Techniques for Advanced
Mathematical Modelling by Junlin Xu

(Pham & Giesbrecht) ASCM 2012 6 / 21



Numeric vs. Symbolic Modelling and Simulation

Numeric
• Numerical matrices are used

to describe the system at a
given instant in time.
• Values must be given for all

parameters, even if they
aren’t really known.
• The model must be rebuilt at

every time step during
simulation.

Symbolic
• All equations of motion are

formulated once instead of
every step during simulation
• Engineers can view the

governing equations in a
meaningful form
• Arbitrary substitutions for

unknown quantities are not
needed.

Computer Algebra in Industrial Simulation
MapleSim – symbolic physical modelling and simulation tool
Talk tomorrow: Symbolic Computation Techniques for Advanced
Mathematical Modelling by Junlin Xu

(Pham & Giesbrecht) ASCM 2012 6 / 21



Our problem: Code generation for symbolic null spaces

Formal definition
Input: A ∈ R(z1, z2, · · · , z`)m×n, with m ≤ n and rank r ,

Output: straight-line code which takes parameters α1, . . . , α` ∈ R and
evaluates a specific (consistent) basis of the null space of A:

w1(α1, . . . , α`),w2(α1, . . . , α`), . . . ,wn−r (α1, . . . , α`) ∈ Rn

Difficulties
A is condensed with complex multivariate function
Symbolic manipulation can lead to massive expression swell

(Pham & Giesbrecht) ASCM 2012 7 / 21



Our problem: Code generation for symbolic null spaces

Formal definition
Input: A ∈ R(z1, z2, · · · , z`)m×n, with m ≤ n and rank r ,

Output: straight-line code which takes parameters α1, . . . , α` ∈ R and
evaluates a specific (consistent) basis of the null space of A:

w1(α1, . . . , α`),w2(α1, . . . , α`), . . . ,wn−r (α1, . . . , α`) ∈ Rn

Difficulties
A is condensed with complex multivariate function
Symbolic manipulation can lead to massive expression swell

(Pham & Giesbrecht) ASCM 2012 7 / 21



Our problem: Code generation for symbolic null spaces

Formal definition
Input: A ∈ R(z1, z2, · · · , z`)m×n, with m ≤ n and rank r ,

Output: straight-line code which takes parameters α1, . . . , α` ∈ R and
evaluates a specific (consistent) basis of the null space of A:

w1(α1, . . . , α`),w2(α1, . . . , α`), . . . ,wn−r (α1, . . . , α`) ∈ Rn

Difficulties
A is condensed with complex multivariate function
Symbolic manipulation can lead to massive expression swell

Previous proposed solutions
Apply linear graph theory to reduce the number of equations
(McPhee 2004)
Fraction-free factoring to control the generation of large
expression (Zhou, 2004)

(Pham & Giesbrecht) ASCM 2012 7 / 21



Our problem: Code generation for symbolic null spaces

Formal definition
Input: A ∈ R(z1, z2, · · · , z`)m×n, with m ≤ n and rank r ,

Output: straight-line code which takes parameters α1, . . . , α` ∈ R and
evaluates a specific (consistent) basis of the null space of A:

w1(α1, . . . , α`),w2(α1, . . . , α`), . . . ,wn−r (α1, . . . , α`) ∈ Rn

Difficulties
A is condensed with complex multivariate function
Symbolic manipulation can lead to massive expression swell

Advantages of our approach
Very fast
Partial and incremental symbolic evaluation

(Pham & Giesbrecht) ASCM 2012 7 / 21



Example: Planar (2D) Slider Crank Mechanism
Planar Slider Crank Mechanism with 1 degree of freedom

C =

L1cosθ + L2sinβ − s
L1sinθ − L2cosβ − s

θ − f (t)

 = 0

CJ =
δ(C)

δ(θ, β)
=

−L1sinθ L2cosβ −1
L1cosθ L2sinβ 0

1 0 0


(Pham & Giesbrecht) ASCM 2012 8 / 21



Example: Spatial (3D) Slider Crank Mechanism
In a slightly more complicated Spatial (3D) Slider Crank Mechanism,
the second column is:

CJ [∗,2] =


−L2 cos (β)

−L2 sin (β) cos (α) cos (θ)− L2 sin (β) sin (α) sin (θ)

L2 sin (β) cos (α) sin (θ)− L2 sin (β) sin (α) cos (θ)


(Pham & Giesbrecht) ASCM 2012 9 / 21



Example: Spatial (3D) Slider Crank Mechanism

Substitute sin(α) = 2x
1+x2 , cos(α) = 1−x2

1+x2 where x = tan(α2 ):

J[∗;2] =


−L2 · 1−x3

2

1+x3
2

−2L2 ·
(1−x2

2)x3(1−x1
2)

(1+x2
2)(1+x3

2)(1+x1
2)
− 8L2 · x2x1x3

(1+x2
2)(1+x3

2)(1+x1
2)

4L2 ·
x2x3(1−x1

2)
(1+x2

2)(1+x3
2)(1+x1

2)
− 4L2 ·

(1−x2
2)x3x1

(1+x2
2)(1+x3

2)(1+x1
2)



(Pham & Giesbrecht) ASCM 2012 10 / 21



Our algorithm

Sketch of our approach
Computing the null space using LU decomposition in a hybrid
symbolic-numeric fashion

1 Choose the ordering of row and column interchanges using
“indicative” numerical values

2 Perform a symbolic LU decomposition of the “permuted” A without
pivoting

3 Generate straight-line code to evaluate a null space basis at any
setting of the parameters

(Pham & Giesbrecht) ASCM 2012 11 / 21



Algebraic static pivot selection

Strategy for pivot selection
1 Choose “random” values α1, . . . , α` of parameters z1, . . . , z` from

a finite subset S ⊆ C;
2 Return P,Q such that P · A(α1, . . . , α`) ·Q has an

LU-decomposition (without pivoting), using Gaussian Elimination
with complete row/column pivoting.
I.e., just record the row/column pivot selection.

Good news: the probability of success is high (Schwarz-Zippel
Lemma)
Bad news: Choosing random points might be be numerically
unstable...

(Pham & Giesbrecht) ASCM 2012 12 / 21



Numerical static pivot selection

Remember: Gaussian elimination is relatively stable with complete
pivoting, where we always choose the largest pivot

Strategy: Choose the "largest" pivot via random evaluations

We offer two heuristic approaches given for choosing pivot:
1 Evaluation at real values to assess the degree of the pivot function
2 Evaluations at random points off the unit circle to get an idea of

coefficient size

Overall heuristic:
Choose 4 random evaluations (2 real, 2 on unit circle)
Perform 4 simultaneous Gaussian Eliminations, same pivoting
choices

Choose a pivot which makes all evaluations large (or start over)

(Pham & Giesbrecht) ASCM 2012 13 / 21



Choosing pivots in the spatial slider crank example

We perform Gaussian elimination with complete row-column pivoting
simultaneously on 4 random evaluations of A(z1, z2, z3):

A(ω2
1, ω

2
2, ω

2
3) =

 0.0 7.7405e-12 − 1.4447e-1i 0.0 1.0
-5.1923e-1 + 3.7140e-10i 1.2421-8.6191e -10i 3.9562e-1 − 8.7185e-2 0.0
3.5456e-10 + 5.3896e-1i −8.5540e-10 − 1.19671i −1.4832e-1 − 4.6630e-1i 0.0



A(ω1
1, ω

3
2, ω

6
3) =

 0.0 4.8246e-11 − 1.3143i 0.0 1.0
4.7239+ 1.7945e-9i 5.0294+2.4527e-9, i −4.8475 + 8.7185e-2i 0.0

−1.7148e − 9 + 4.9033i −2.9437 + 4.8454i −1.4832e-1 − 4.9760i 0.0



A(2.0,3.0,4.0) =
 0.0 0.2647058824 0.0 1.0
−0.07411764706 −0.1355294118 0.2301176471 0
−0.2541176470 0.03952941175 0.2461176470 0.0



A(4.0,3.0,5.0) =
 0.0 0.2769230769 0.0 1.0

0.0423529411 −0.1140271494 0.1136470589 0
−0.2736651585 −0.01764705884 0.2656651585 0


Get the following two permutation matrices from the pivots

P =
 0 1 0

0 0 1
1 0 0

, Q =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


So PAQ has a strict LU decomposition, and it is numerically robust
(at least at these 4 points...but heuristically most of the time)

(Pham & Giesbrecht) ASCM 2012 14 / 21



Step 2: Generate straight-line code for the null-space

We have quickly determined permutation matrices P, Q such that

PAQ = LU where L ∈ R(z1, . . . , z`)m×m lower triangular, Lii = 1
U ∈ R(z1, . . . , z`)m×n upper triangular

A specific null-space basis determined by last n − r columns of
the computed U
Evaluated U at α1, . . . , α` to instantiate null-space basis
Completely straight-line code — no decisions to make
Procedure works with high probability: essentially when
Uii(α1, . . . , α`) 6= 0, which is “almost all the time”

use Schwarz-Zippel Lemma to be more precise

(Pham & Giesbrecht) ASCM 2012 15 / 21



Heuristic numerical performance

We have quickly determined permutation matrices P, Q such that

PAQ = LU where L ∈ R(z1, . . . , z`)m×m lower triangular, Lii = 1
U ∈ R(z1, . . . , z`)m×n upper triangular

Numerically good when Uii(α1, . . . , α`) “large enough”; these are
the pivots
When choosing the pivots, want the rational functions Uii to be
“large enough”
Idea: the size of random values reflects the size of the rational
function (coefficients and degree) with high probability
Support:

Numerical Schwartz-Zippel – similar to Kaltofen, Yang, Zhi (2007)
Real evaluation in floating point – estimate degree
Gaussian elimination with static pivoting: Li & Demmel (1998)

(Pham & Giesbrecht) ASCM 2012 16 / 21



Time efficiency with typical multibody models

Models CJ imensions No. of parameters
Planar Slider Crank 4× 3 3

Planar Seven Body Mechanism 7× 6 7
Quadski Turning 19× 11 16

Hydraulic Stewart Platform 24× 18 41

Multibody models from MapleSim

Models Maple Hybrid
Planar Slider Crank 0.046s 0.016s
Planar Seven Body Mechanism 0.078s 0.031s
Quadski Turning timeout (>200s) 0.56s
Hydraulic Stewart Platform timeout (>200s) 1.64s

Running time (in seconds)
Remember: we are only evaluating at one point (with C code)

(Pham & Giesbrecht) ASCM 2012 17 / 21



Running time with different numbers of parameters

Running time on Hydraulic Stewart Platform
with different numbers of parameters

Important advantage: we can easily instantiate more or fewer
parameters, and evaluate the same nullspace.

(Pham & Giesbrecht) ASCM 2012 18 / 21



Memory usage

Models CJ dimensions Size of straight-line code
Planar Slider Crank 3× 4 5671
Planar Seven Body 6× 7 75045
Quadski Turning 11× 19 41706824
Hydraulic Stewart Platform 18× 24 11849101

The final straight-line code can be greatly simplified by
Common expression identification
Trigonometric simplification

(Pham & Giesbrecht) ASCM 2012 19 / 21



Example of the straight-line code for Slider-Crank Mechanism

Straight-line code for Spatial Slider-Crank Mechanism

Optimized straight-line code using Maple’s CodeGeneration

(Pham & Giesbrecht) ASCM 2012 20 / 21



Summary
We have proposed a hybrid symbolic-numeric algorithm to
compute the null space basis of a multivariate matrix.
Our approach is significantly faster than computing null space
symbolically, making it applicable to use in symbolic modelling and
simulation.
By using static pivot selection, our straight-line code for generating
the null space is numerically robust at almost all parameters
settings.

Future Challenges
More robust numerical methods

Iterative refinement (from Li & Demmel 1998)
Wiser pivot selection

Better code generation
...

(Pham & Giesbrecht) ASCM 2012 21 / 21



The ultimate goal of this research

(Pham & Giesbrecht) ASCM 2012 22 / 21


	Introduction
	Constrained mechanical system
	The projection method
	Problem definition

	Our symbolic-numeric code-generating algorithm
	Experimental results
	Appendix

