Resultant-free computation of indefinite hyperexponential integrals

Xiaoli Wu
The School of Science, Hangzhou Dianzi University, Hangzhou, China

October 26, 2012

Problem

For a hyperexponential function $h(x)$, find $\int h d x$, if h is hyperexponential integrable.

1. h is said to be hyperexponential over $k(x)$ if h^{\prime} / h is in $k(x)$.

Analytically, a hyperexp. function h looks like

$$
\exp \left(\int f d x\right)
$$

2. h is hyperexponential integrable if there exists hyperexp. g s.t. $h=g^{\prime}$.

Like $\exp \left(x^{2}\right)$ is not, but $x \exp \left(x^{2}\right)$ is.

The Almkvist-Zeilberger algorithm 1

- Given $f \in k(x)$, if
$f=\frac{p^{\prime}}{p}+\frac{q}{r}, \quad$ where $\operatorname{gcd}\left(r, q-i r^{\prime}\right)=1$ for all integer $i \geq 0$,
then $(p, q, r) \in k[x]^{3}$ is a differential Gosper form.
$f=u / v \in k(x)$ such that $u, v \in k[x]$ and $\operatorname{gcd}(u, v)=1$.

1. Start $p:=1, q:=u$ and $r:=v$;
2. Find integer root of $R:=\operatorname{resultant}_{x}\left(v, u-z v^{\prime}\right) \in k[z]$;
3. $w:=\operatorname{gcd}\left(v, u-j v^{\prime}\right)$;
4. $p \leftarrow p w^{j}, \quad r \leftarrow r / w, \quad q \leftarrow \frac{q-j w^{\prime}(r / w)}{w}$.

Remark

The algorithm before for computing differential Gosper form contains

- Resultant computation:

$$
R:=\operatorname{resultant}_{x}\left(v, u-z v^{\prime}\right) .
$$

- Find integer roots of R.

The Almkvist-Zeilberger algorithm 2

For a hyperexponential h, we want to decide whether $h=g^{\prime}$ for some hyperexp. g.

- Find differential Gosper form of h

$$
\frac{h^{\prime}}{h}=\frac{p^{\prime}}{p}+\frac{q}{r} ;
$$

- $g=\frac{r}{p} y h$, where $y \in k[x]$;
- Estimate its degree, then use undetermined coefficients method compute a polynomial solution of

$$
y^{\prime} r+y\left(q+r^{\prime}\right)=p
$$

Ingredients in our algorithm

Given

$$
h=\exp \left(\int \frac{u}{v} d x\right)
$$

compute

$$
\frac{u}{v}=\frac{p^{\prime}}{p}+\frac{q}{r} .
$$

Lemma. The factors of p are the multiplicity-one factors of v. Proof. Use an elementary divisibility argument.

Revised algorithm to compute differential Gosper forms

1. Compute the product v_{1} of multiplicity-one factors of v;
2. Factor $v_{1}=p_{1} \cdots p_{n}$ into irreducible factors.
3. Set $p:=1$. For i from 1 to n, test whether there exists $\lambda_{i} \in \mathbb{N}$ such that

$$
p_{i} \mid\left(u-\lambda_{i} p_{i}^{\prime}\left(v / p_{i}\right)\right)
$$

If such a nonnegative integer λ_{i} exists, then update $p:=p_{i}^{\lambda_{i}} p$.
4. Set $q / r:=f-p^{\prime} / p$, and return (p, q, r).

Remark

- Irreducible factorization is not that terrible in practice;
- We avoid the resultant computation and integer-root finding.

Universal denominators

For a linear differential equation with rational-function coefficients in x, a polynomial $U \in k[x]$ is a universal denominator for rational solutions of this equations if the denominator of any rational solution divides U.

$$
\text { rational solutions } \rightsquigarrow \text { polynomial solutions }
$$

Given h. Then $f=\frac{h^{\prime}}{h}$. Find g s.t. $g^{\prime}=h$ is equivalent to find the rational solutions of

$$
y^{\prime}+f y=1
$$

If we have the universal denominator, then it suffices to compute a polynomial solution of the above equation.

A key observation

Consider the differential equation

$$
y^{\prime}+f y=1, \quad \text { where } f=\frac{u}{v} \in k(x)
$$

Lemma. If $a / b \in k(x)$ is a rational solution, then all factors of b are multiplicity-one factors of v.

Proof.

- One way is to use divisibility;
- The other is order estimation, based on the fact

Let $p \in k[x]$ irreducible, $p^{m}\left|b \quad \Rightarrow \quad p^{m+1}\right| \operatorname{den}\left((a / b)^{\prime}\right)$.

Algorithm for universal denominators

1. Compute the product v_{1} of multiplicity-one factors of v;
2. Factor $v_{1}=p_{1} \cdots p_{n}$ into irreducible factors.
3. Set $b:=1$. For i from 1 to n, test whether there exists $\lambda_{i} \in \mathbb{N}$ such that

$$
p_{i} \mid\left(u-\lambda_{i} p_{i}^{\prime}\left(v / p_{i}\right)\right)
$$

If such a nonnegative integer λ_{i} exists, then update $b:=p_{i}^{\lambda_{i}} b$.
4. Return b.

An example

Given $h=(1+2 x) \exp (x) /(2 \sqrt{x})$.

$$
\frac{h^{\prime}}{h}=\frac{4 x^{2}+4 x-1}{2 x(2 x+1)}
$$

so $u=4 x^{2}+4 x-1$ and $v=2 x(2 x+1)$.
The irreducible and multiplicity-one factors of v are x and $2 x+1$. Then

$$
\operatorname{rem}\left(4 x^{2}+4 x-1-4 \lambda x, 2 x+1\right)=0
$$

yields $\lambda=1$ while

$$
\operatorname{rem}\left(4 x^{2}+4 x-1-2 \lambda(2 x+1), x\right)=0
$$

yields $\lambda=1 / 2$. So the universal denominator b is $2 x+1$.

An example (continue)

It suffices to calclulate the polynomial solution of

$$
\left(4 x^{2}-1\right) a+2\left(2 x^{2}+x\right) a^{\prime}=2 x\left(4 x^{2}+4 x+1\right)
$$

The upper bound is $\operatorname{deg}(v)+\operatorname{deg}(b)-\operatorname{deg}(u)=1$, because $\operatorname{deg}(u)=2>\operatorname{deg}(v)-1=1$. Using the method of undetermined coefficients we get $a=2 x$. Hence h is hyperexponential integrable and

$$
g=\sqrt{x} \exp (x)
$$

Summary

- Compute differential Gosper form without resultant computation and integer-root finding.
- A new way to find universal denominator.

Summary

- Compute differential Gosper form without resultant computation and integer-root finding.
- A new way to find universal denominator.

Thank you!

