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A constant-amplitude code is a code that reduces the
peak-to-average power ratio (PAPR) in multicode code-division
multiple access (MC-CDMA) systems to the favorable value 1.

Kai-Uwe Schmidt showed the conncetion between codes with
PAPR equal to 1 and functions from the binary m-tuples to Z4
having the bent property.

Kai-Uwe Schmidt proposed a technique to consturct generalized
bent functions using trace form over Galois rings.
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Boolean function
Let f : Fm

2 −→ F2 , then f is called a Boolean function with m variables.

f can be represented as a polynomial in
F2[x1, x2, · · · , xm]

/
(x2

1 + x1, x2
2 + x2, · · · , x2

m + xm).
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Walsh Transform
The Walsh transform of a Boolean function f at u is defined by

Wf (u) =
∑

x∈Fm
2

(−1)f (x)+x ·u

where x · u =
∑

1≤i≤m xiui for x = (x1, x2, · · · , xm),
u = (u1,u2, · · · ,um) ∈ Fm

2 .

Bent function

f : Fm
2 −→ F2 is called a Bent function if |Wf (u)| = 2m/2 for all

u = (u1,u2, · · · ,um) ∈ Fm
2 .

The number of variables m must be even.
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Generalized Boolean function
A generalized Boolean function is defined as a map f : Fm

2 −→ Z2h ,
where h is a positive integer.

Write k = (k1, k1, ..., km) for k ∈ {0,1}m, every such function can
be uniquely expressed in the polynomial form

f (x) = f (x1, ..., xm) =
∑

k∈{0,1}m

ck

m∏
j=1

xkj
j , ck ∈ Z2h

Xiaoming Zhang KLMM, AMSS, CAS
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Generalized Walsh Transform
For f : Fm

2 −→ Z2h , the generalized Walsh transform of f is given by
f̂ : Fm

2 −→ C with
f̂ (u) =

∑
x∈Fm

2

ωf (x)(−1)x ·u

where "·" denotes the scalar product in Fm
2 and ω is a primitive 2h-th

root of unity in C.
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Generalized Bent function
A function f : Fm

2 −→ Z2h is called a generalized Bent function if
|̂f (u)| = 2m/2 for all u ∈ Fm

2 .

The number of variables m can be even or odd.

Xiaoming Zhang KLMM, AMSS, CAS
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Notations:

Define
µ : Z2h −→ F2,∑h−1

i=0 ai2i 7−→ a0

µ : Z2h [x ] −→ F2[x ]∑m
i=0 bix i 7−→

∑m
i=0 µ(bi)x i

A polynomial p(x) ∈ Z2h [x ] is called monic basic irreducible if p(x)
is monic and its projection µ(p(x)) is irreducible over F2.

Xiaoming Zhang KLMM, AMSS, CAS
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Galois ring

The Galois ring Rh,m is defined by Rh,m
∼= Z2h [x ]/(p(x)), where p(x) is

a basic irreducible polynomial over Z2h of degree m.

Let ξ ∈ Rh,m be a root of p(x), then

Rh,m
∼= Z2h [x ]/(p(x)) ∼= Z2h [ξ].

The map µ can be extended to Rh,m.

Xiaoming Zhang KLMM, AMSS, CAS
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Teichemüler set
The set

Th,m := {0} ∪ T ∗h,m
is called the Teichmüller set of Rh,m, where T ∗h,m is the cyclic group
generated by ξ.

µ(ξ) is a primitive element of F2m , so µ(Th,m) = F2m .

Xiaoming Zhang KLMM, AMSS, CAS
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Every element z ∈ Rh,m can be uniquely expressed as:

Additive representation

z =
m−1∑
i=0

ziξ
i , zi ∈ Z2h

2-adic Representation

z =
h−1∑
i=0

zi2i , zi ∈ Th,m

Xiaoming Zhang KLMM, AMSS, CAS
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Frobenius automorphism

For any z =
∑h−1

i=0 zi2i , zi ∈ Th,m, the map σ : Rh,m −→ Rh,m defined by

σ(z) =
h−1∑
i=0

z2
i 2i

is called the Frobenius automorphism of Rh,m with respect to the
ground ring Z2h .

Xiaoming Zhang KLMM, AMSS, CAS
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Trace function
The trace function Tr : Rh,m −→ Z2h is defined to be

Tr(z) =
m−1∑
i=0

σi(z).

Tr(2r) = 2tr(µ(r)) for any r ∈ Rh,m, where "tr" is the trace function
over F2m .

Xiaoming Zhang KLMM, AMSS, CAS
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Schmidt’s construction

Theorem (K.-U. Schmidt)
Suppose m ≥ 3 and let f : T2,m −→ Z4 be given by

f (x) = ε+ Tr(ax + 2bx3), ε ∈ Z4,a ∈ R2,m,b ∈ T ∗2,m.

Then f (x) is a generalized Bent function if either of the following
conditions holds:

1 µ(a) = 0 and x3 + 1
µ(b) = 0 has no solution in F2m ;

2 µ(a) 6= 0 and x3 + x + µ(b)2

µ(a)6 = 0 has no solution in F2m .

Here, µ is the modulo 2 reduction map on R2,m.

Xiaoming Zhang KLMM, AMSS, CAS
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Question:
1 Can we generalize Schmidt’s construction?

2 Can we say something more about the conditions to be satisfied?

Xiaoming Zhang KLMM, AMSS, CAS
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Our construction

Theorem

Suppose m ≥ 5 and let f (x) = ε+ Tr(ax + 2bx1+2k
), where

ε ∈ Z4,a ∈ R2,m,b ∈ T ∗2,m. Then f (x) is a generalized Bent function if
either of the following conditions holds:

1 µ(a) = 0 and x22k−1 + 1
µ(b)2k−1

= 0 has no solution in F2m ;

2 µ(a) 6= 0 and µ(b)2k
x22k−1 + µ(a)2k+1

x2k−1 + µ(b) = 0
has no solution in F2m .

Schmidt’s construction is the special case k = 1 of ours.

Xiaoming Zhang KLMM, AMSS, CAS
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Remark
For any positive integer k , there always exist a ∈ R2,m and b ∈ T ∗2,m
such that the function we construct is a generalized Bent function.
Hence our construction greatly generalize Schmidt’s.

Proof: (sketch) Let γ be a primitive element of F2m , and let α = µ(a),
β = µ(b).

Condition (1) in the Theorem is equivalent to α = 0 and β 6∈ 〈γ
2(2k,m)−1
2(k,m)−1 〉;

Condition (2) in the Theorem is equivalent to⋃
β∈F∗

2m

h
(
〈γ2k−1〉

)
× {β} & F∗2m × F∗2m =

⋃
β∈F∗

2m

F∗2m × {β},

where h(x) = (β2k
x2k

+ β
x )

1
2k+1 . This holds since h(x) will never be a

permutation polynomial over F2m [5].

Xiaoming Zhang KLMM, AMSS, CAS
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A more general construction

Theorem

Let f (x) = ε+ Tr(ax + 2bxL(x)), where L(x) =
∑m−1

i=0 aix2i ∈ T2,m[x ],
ε ∈ Z4,a ∈ R2,m,b ∈ T ∗2,m. Let α = µ(a), β = µ(b), αi = µ(ai). Then
f (x) is a generalized Bent function if

m−1∑
i=0

(βαiz2i
+ (βαi)

2m−i
z2m−i

) + α2z

is a linearized permutation polynomial over F2m .

A polynomial over a finite field Fqn of the form B(x) =
∑n−1

i=0 bixqi

is called a linearized polynomial.

Xiaoming Zhang KLMM, AMSS, CAS
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About linearized permutation polynomials

Theorem (Dickson)

Let B(x) =
∑n−1

i=0 bixqi ∈ Fqn [x ] be a linearized polynomial. Then B(x)
is a permutation polynomial if and only if the matrix

b0 b1 · · · bn−1
bq

n−1 bq
0 · · · bq

n−2
· · · · · · · · · · · ·

bqn−1

1 bqn−1

2 · · · bqn−1

0


is nonsingular.

Xiaoming Zhang KLMM, AMSS, CAS
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About linearized permutation polynomials

Theorem (B.F. Wu, Z.J. Liu)

B(x) =
∑n−1

i=0 bixqi ∈ Fqn [x ] is a linearized permutation polynomial if
and only if

GCRD(
n−1∑
i=0

bix i , xn − 1) = 1,

where GCRD denotes the greatest common right divisor of two
polynomials in Fqn [x ;σ] (σ is the Frobenius automorphism of Fqn/Fq).

Fqn [x ;σ] is known as the skew-polynomial ring, consisting of
ordinary polynomials over Fqn but with a non-commutative
multiplication xc = σ(c)x for any c ∈ Fqn ;
For skew-polynomials over Fq, the GCRD degenerates to the
ordinary GCD in Fq[x ].

Xiaoming Zhang KLMM, AMSS, CAS
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Hence from an algorithmic perspective, to test whether an
L(x) ∈ T2,m[x ] will promise a generalized Bent function in our
construction, we need only to test singularity of certain matrix over
F2m , or to compute certain GCRD in F2m [x ;σ]. Both can be done in
polynomial time.

Example

Let f (x) = ε+ Tr(x + 2xL(x)), where L(x) =
∑m−1

i=0 aix2i ∈ T2,m[x ],
ε ∈ Z4, x ∈ T2,m and αi = µ(ai)∈ F2 for i = 0,1, · · · ,m − 1. Then f (x)
is a generalized Bent function if GCD(

∑m−1
i=0 βix i , xm − 1) = 1 where

β0 = 1, βi = αi + αm−i for i = 0,1, . . . ,m − 1.

Xiaoming Zhang KLMM, AMSS, CAS
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Thanks for your attention!

Xiaoming Zhang KLMM, AMSS, CAS


	Background
	Bent functions and generalized Bent functions
	Galois rings
	Constructions of generalized Bent functions

