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Abstract

In this paper, the time optimal feedrate planning problem under confined feedrate, axis
velocity, axis acceleration, axis jerk, and axis tracking error for a high order CNC servo
system is studied. The problem is useful in that the full ability of the CNC machine is used
to enhance the machining productivity while keeping the machining precision under a given
level. However, the problem is computationally challenging. The main contribution of this
paper is to approximate the problem nicely by a finite state convex optimization problem
which can be solved efficiently. The method consists of two key ingredients. First, a rela-
tionship between the tracking error and the input signal in a high-order CNC servo system
is established. As a consequence, the tracking error constraint is reduced to a constraint
about kinematic quantities. Second, a novel method is introduced to relax the nonlinear con-
straints about kinematic quantities to linear ones. Experimental results are used to validate
the proposed method.

Keywords: Time optimal feedrate planning; tracking error; jerk; high order CNC servo
system; convex optimization.

1. Introduction

The problem of time-optimal feedrate planning along a given parametric tool path has
received a significant amount of attention in the CNC machining literature due to its ability
to increase productivity of CNC machining by using the full ability of the machines [2, 3, 8,
9, 10, 17, 20, 21, 23, 24, 25, 26, 27]. The feedrate planning problem is usually formulated
as a time-minimum optimal control problem under kinematic constraints such as confined
feedrate, axis acceleration, jerk, even jounce, and efficient algorithms have been proposed
to solve the problem. The acceleration bounds are introduced to reduce inertia and prevent
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mechanical shocks. The jerk and jounce bounds are used to generate smooth feedrate profiles
aiming at improving machining quality.

Due to various reasons such as the inertia of the CNC axes and inaccurate modeling of
the CNC dynamic system, the tracking error is not guarantied to reach the desired level
even if the acceleration and jerk are bounded. A common method to reduce tracking errors
is to use a closed-loop controller which calculates the difference between the desired signal
and the feedback signal in real-time and generates a control signal to minimize the dynamic
error. Many algorithms along this line were developed, such as the cross-coupled control
strategy [14, 15], the model-referenced adaptive control [5], the predictive control [19], and
the learning control [1]. In order to use these closed-loop methods, the users need to access
the control system, which demands more from the end-users.

An alternative approach is to combine the “open-loop” feedrate planning with dynamic
precision control by adding a tracking error bound as a new constraint in the feedrate
planning phase. An advantage of this approach is that accessing the control system is not
required and hence is more convenient for the end-users. Dong and Stori [6, 7] considered
the dynamic error information in the feedrate planning phase by approximating the tracking
error with the linear part of its Taylor expansion. Ernesto and Farouki [9] solved the problem
of compensating for inertia and damping of the machine axes by a priori modifying the
commanded tool path. In [18, 22], Lin, Tsai, et al used the critical point approaches to
generate feedrate with confined contouring errors. In [12], a linear programming method
is proposed to solve the feedrate planning problem under confined tracking error for CNC
systems based on PD controllers.

In this paper, the time-minimum feedrate planning problem under confined feedrate,
axis velocity, axis acceleration, axis jerk, and axis tracking error is studied. To be practical,
the dynamic system with PID controllers are considered, where the tracking error satis-
fies a third order differential equation. The time-minimum feedrate planning problem in
this situation is strongly nonlinear, and there exist no efficient algorithms for solving it be-
fore. The main contribution of this paper is to reduce the time-minimum feedrate planning
problem into a finite state convex optimization problem whose global optimal solution can
be computed efficiently. The work consists of two key ingredients. Firstly, a relationship
between the tracking error and the input signal in high-order CNC servo systems is estab-
lished. As a consequence, the tracking error constraint can be reduced to a constraint about
a linear combination of kinematic quantities such as accelerations and jerks. Secondly, a
novel method is introduced to relax the nonlinear constraints involving the jerk to linear
constraints. Experimental results show that the new convex optimization problem gives nice
approximation to the original problem and can be solved efficiently.

Comparing to the work [6, 9, 12], high-order CNC servo systems are considered which
allows the usage of PID controllers, while the work [6, 9, 12] only considered second order
systems for P or PD controllers. Furthermore, the relaxation of the tracking error in this
paper is theoretically guaranteed to be valid, while the one given in [6] is an approximation.
Also, our approach reduces the optimal feedrate planning problem into a convex program-
ming problem which can be solved efficiently. The method proposed in [24], although more
general than ours, is less efficient. Comparing to [18] and [22], our approach generates an
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Figure 1: DC servo system

approximate time minimum feedrate, while the feedrate generated with methods in [18] and
[22] is not time minimum. Comparing to [23] which initiates the powerful convex optimiza-
tion approach, we consider a much more general and non-convex problem which is reduced
to a convex optimization problem, while the problem considered in [23] is itself convex.

The paper is organized as follows. Section 2 describes the high-order dynamic models and
shows how to simplify the tracking error constraint. Section 3 presents an efficient method to
solve the time-minimum feedrate planning problem by converting it to a convex optimization
problem. In Section 4, experimental results are used to demonstrate the effectiveness of the
approach. In Section 5, concluding remarks are given.

2. Tracking Error Simplification for High-order CNC Servo System

In this section, we will show that the tracking error constraint can be replaced by a
constraint about kinematic quantities such as accelerations and jerks.

2.1. Tracking Error of High-order CNC Servo System

Suppose that the CNC machine is controlled by M axes and the subscript τ ∈ {1, . . . , M}
will represent these axes. Each axis is powered by a DC motor satisfying an nth-order linear
system whose transfer function is [11, p. 70]

Hτ (s) =
xτ (s)

Xτ (s)
=

bmsm + bm−1s
m−1 + · · ·+ b1s + b0

ansn + an−1sn−1 + · · ·+ a1s + a0

where Xτ and xτ are the commanded axis location and the actual axis location, respectively.
Using the closed form position control shown in Fig. 1, we can calculate the transfer

function between the tracking error eτ = Xτ − xτ and the input signal Xτ :

G(s) =
eτ (s)

Xτ (s)

=
(ans

n + an−1s
n−1 + · · ·+ a1s + a0)− (bmsm + bm−1s

m−1 + · · ·+ b1s + b0)

ansn + an−1sn−1 + · · ·+ a1s + a0

=
cls

l + cl−1s
l−1 + · · ·+ c1s + c0

ansn + an−1sn−1 + · · ·+ a1s + a0

,
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where l ≤ max(m,n). Using the inverse Laplace transformation to the above equation, if
the initial values of eτ (t) and its derivatives are zero, then the tracking error eτ (t) satisfies
the following differential equation:

an
dneτ

dtn
+an−1

dn−1eτ

dtn−1
+ · · ·+a1

deτ

dt
+a0eτ = cl

dlXτ

dtl
+cl−1

dl−1Xτ

dtl−1
+ · · ·+c1

dXτ

dt
+c0Xτ (2.1)

where t represents time. In order for the above system in eτ to be stable, the real parts of
the eigenvalues of the linear system in the left hand side of (2.1) are assumed to be negative
[11, p. 76]. More precisely, the roots of the following the character equation of system (2.1)

anλ
n + an−1λ

n−1 + · · ·+ a1λ + a0 = 0 (2.2)

are assumed to have negative real parts.
Now, the problem of optimal trajectory planning along a given tool-path can be for-

mulated as the following time minimum control problem under kinematic constraints and
tracking error constraints:

min T s.t.

∣∣∣∣
dXτ

dt

∣∣∣∣ ≤ X1
max,

∣∣∣∣
d2Xτ

dt2

∣∣∣∣ ≤ X2
max, · · · ,

∣∣∣∣
dmXτ

dtm

∣∣∣∣ ≤ Xm
max, |eτ | ≤ Emax (2.3)

where τ ∈ {1, . . . , M} represents the axes, m is a positive integer to be given by the user,
Xj

max are postive real numbers, eτ (t) satisfies equation (2.1).
Note that the number m determines the smoothness of the velocity functions to be

obtained. For instance, if m = 2, then the acceleration is bounded and the velocity function
is continuous; if m = 3, then the acceleration and the jerk are bounded and the velocity
function is differentiable; and if m = 4, then the acceleration, jerk, and jounce are bounded
and the acceleration function is differentiable. Generally speaking, the more smooth the
velocity function is, the less vibration occurs, as shown in [10].

2.2. Simplification of the Tracking Error Constraint

The last constraint of (2.3) is difficult to deal with since it will lead to complicated
equations when solving the optimization problem via discrete methods. In this section,
we will show that the tracking error constraint can be replaced with a constraint about
kinematic quantities. More precisely, we have

Theorem 2.1 Let eτ be the tracking error for the τ axis, which satisfies (2.1) and has the
initial values eτ (0) = deτ

dt
(0) = · · · = dn−1eτ

dtn−1 (0) = 0. Then

∣∣∣∣cl
dlXτ

dtl
+ cl−1

dl−1Xτ

dtl−1
+ · · ·+ c1

dXτ

dt
+ c0Xτ

∣∣∣∣ ≤ δEmax (2.4)

implies |eτ | ≤ Emax. The constant δ in (2.4) is a0 in (2.1) if the roots of equation (2.2) are
real numbers and is computed with (2.7) otherwise.
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The above theorem will be proved in the rest of this section. Two cases will be considered
according to whether the roots of equation (2.2) are real numbers. Firstly, we deal with the
easier case given in the following theorem.

Theorem 2.2 Let y(t) be a function in time t, which satisfies the following nth-order ODE

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = g(t), (2.5)

where ai are constants and g(t) is a nonlinear function in t. Furthermore, assume y(0) =

· · · = dn−1y
dtn−1 (0) = 0 and the roots of equation (2.2) are negative real numbers. Then for a

constant M , |g(t)| ≤ |a0|M implies |y(t)| ≤ M .

In order to prove the above theorem, the following lemma is needed, which is from [12].

Lemma 2.3 Let y(t) be a differentiable function in the time domain t ∈ [0,∞) such that
y(0) = 0, and M and r positive real numbers. If y satisfies

∣∣r dy
dt

+ y
∣∣ ≤ M , then |y| ≤ M .

Proof of Theorem 2.2: By the assumption of the theorem, the roots of the character
equation (2.2) are negative real numbers, which are denoted by − 1

di
, i = 1, . . . , n, di > 0.

Then, the character equation (2.2) of the left hand side of the system (2.5) can be expressed
as:

f(λ)/a0 = (d1λ + 1)(d2λ + 1) · · · (dnλ + 1) = 0

Define 



z1 = d1
dy
dt

+ y,
z2 = d2

dz1

dt
+ z1,

· · ·
zn = dn

dzn−1

dt
+ zn−1.

It is easy to verify that the left hand side of (2.5) becomes:

(an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y)/a0 = zn = dnżn−1 + zn−1 = g(t)/a0.

Thus by Lemma 2.3, from |g(t)/a0| ≤ M , we have |zn−1| ≤ M . Since zn−1 = dn−1żn−2 +zn−2

and dn−1 > 0, using Lemma 2.3 again, we have |zn−2| ≤ M . Repeatedly, we have |y| ≤ M ,
which proves the theorem.

The second case, where equation (2.2) has complex roots, is more involved. Before giving
the result, some notations and lemmas are needed.

Let R be the set of real numbers, x ∈ Rn, and A ∈ Rn×n. Then it is well known that the
following vector 1-norm and matrix 1-norm

‖x‖1 =
n∑

j=1

|xj|, ‖A‖1 = max
1≤j≤n

n∑
i=1

|aij|
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satisfy the following compatible condition

‖Ax‖1 ≤ ‖A‖1 ‖x‖1 .

Besides, the following lemma is needed.

Lemma 2.4 Let x = (x1(t), . . . , xn(t)) and xi(t) integrable functions from R to R. Then

∥∥∥∥
∫ b

a

x(τ)dτ

∥∥∥∥
1

≤
∫ b

a

‖x(τ)‖1 dτ .

Proof.
∥∥∥
∫ b

a
x(τ)dτ

∥∥∥
1

=
n∑

j=1

∣∣∣
∫ b

a
xj(τ)dτ

∣∣∣ ≤
n∑

j=1

∫ b

a
|xj(τ)| dτ =

∫ b

a
{

n∑
j=1

|xj(τ)|}dτ =
∫ b

a
‖x(τ)‖1 dτ .

The following theorem simplifies the tracking error in the second case.

Theorem 2.5 Let y(t) be a function in time t, which satisfies the following nth-order ODE

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = g(t), (2.6)

where ai are constants and g(t) is a nonlinear function in t. Furthermore, assume y(0) =

· · · = dn−1y
dtn−1 (0) = 0. Then for a constant M , |g(t)| ≤ δM implies |y| ≤ M , where the

constant δ is calculated using:

δ =
1∫∞

0
‖eτA‖1dτ

(2.7)

for A =




0 1 0 · · ·
· · · · · · · · · 0
0 · · · 0 1
− a0

an
− a1

an
· · · −an−1

an




n×n

.

Proof. We rewrite the ODE (2.6) in matrix form:

dy

dt
= Ay + g(t), (2.8)

where y = (y, y1, . . . yn−1)
T , g(t) = (0, 0, . . . , 0, g(t))T , and matrix A is given in the theorem

to be proved. Obviously,

|λI − A| = det




λ −1 0 · · ·
· · · · · · · · · 0
0 · · · λ −1
a0

an

a1

an
· · · λ + an−1

an




n×n

.

Expand this determinant along the last column:
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|λI − A| = (λ +
an−1

an

)λn−1 +
an−2

an

λn−2 + · · ·+ a1

an

λ +
a0

an

,

which is the character equation of (2.6). Hence the eigenvalues of A are the same as the
roots of equation (2.2).

According to the theory of differential equations, the solution of (2.8) can be calculated
as:

y(t) = e(t)Ay(0) +

∫ t

0

e(t−τ)Ag(τ)dτ,

where y(0) is the initial value. Since y(0) = 0, according to the definition of vector norm
and Lemma 2.4, we have

‖y(t)‖1 =

∥∥∥∥
∫ t

0

e(t−τ)Ag(τ)dτ

∥∥∥∥
1

=

∥∥∥∥
∫ t

0

eτAg(t− τ)dτ

∥∥∥∥
1

≤
∫ t

0

∥∥eτA
∥∥

1
‖g(t− τ)‖1dτ.

Thus

|y| ≤ ‖y(t)‖1 ≤ δM

∫ ∞

0

∥∥eτA
∥∥

1
dτ ≤ M.

Since the roots of (2.2) have negative real parts,
∫∞

0

∥∥eτA
∥∥

1
dτ exists and the theorem is

proved.

2.3. PID Controller and Third Order System

In most cases, error-based feedback controllers are based on PID controllers whose control
parameters are the proportional, integral, derivative gains kP , kI , and kD, respectively. An
illustration is given in Fig. 2, where eτ = Xτ−xτ is the tracking error. The other parameters
are explained below. The current amplifier ka converts the actuating signal u into the current
i to control the motor, which produces a torque T through the motor torque gain kt. The
torque T determines the angular speed through the system inertia J and damping B. The
motor shaft angle θ, obtained by integration of the motor shaft angle speed w, determines
the axis linear position x through the transmission ratio g. Besides, set K = kaktg, since
these three parameters often occur in this product form. Then, the tracking error and the
input signal satisfy the following dynamic equation:

J
d3eτ

d3t
+ (B + KkD)

d2eτ

d2t
+ KkP

deτ

dt
+ KkIeτ = J

d3Xτ

d3t
+ B

d2Xτ

d2t
= Jjτ + Baτ , (2.9)

where aτ and jτ are the acceleration and the jerk of the τ -axis.
Notice that a third-order system with real coefficients either has one real eigenvalue or

three real eigenvalues, and explicit criteria can be given for these cases. Thus, we have the
following simplification criterion for system (2.9).
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Figure 2: The PID Controller

Theorem 2.6 Let the tracking error eτ (t) satisfy the initial values eτ (0) = deτ

dt
(0) = d2eτ

d2t
(0) =

0. Then the tracking error constraint |eτ | ≤ Emax can be replaced by
∣∣∣∣

J

KkI

jτ +
B

KkI

aτ

∣∣∣∣ ≤ δEmax (2.10)

where δ is determined as follows. Let

d = 4((B + KkD)2 − 3JKkP )3 − (2(B + KkD)3 − 9J(B + kkD)Kk2
P + 27KkIJ

2).

Then if d > 0, we can set δ = 1. If d < 0, δ is calculated with (2.7).

Proof. We need to know when the following cubic equation

Jλ3 + (B + KkD)λ2 + KkP λ + KkI = 0 (2.11)

has real or complex roots. A cubic equation has either one or three real roots. Following
the criterion given on [13, p. 299], if d > 0, then equation (2.11) has three distinct real roots
and δ = 1 by Theorem 2.2; if d < 0, then equation (2.11) has one real root and two distinct
complex roots and the theorem follows from Theorem 2.5.

3. Time Minimum Feedrate Planning for CNC System with PID Controller

In this section, we will show how to convert the time optimal feedrate planning problem
for CNC systems with PID controllers into a finite state convex optimization problem.

3.1. The Problem

We consider a CNC system with three translational axes x, y, z and assume that these
axes have the same dynamic parameters. Also assume that the PID controller is used for
each axis. Thus the tracking error satisfies equation (2.9). The tool-path of the three-axis
CNC machine is given by a set of parametric functions with at least C3 continuity:

r(u) = (x(u), y(u), z(u)), u ∈ [0, 1].

The tool-path r(u) could be NURBS, B-splines, or other parametric equations. We will

see in Section 3.3 that only the evaluations of r(u), dr(u)
du

, d2r(u)
d2u

at certain given parametric
values are needed in the feedrate planning.

In order to obtain smooth velocity functions, bounds of axis velocity, acceleration, and
jerk are introduced. Furthermore, high precision machining can be achieved by bounding the
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axis tracking error. Therefore, the problem is to design a parametric velocity u̇ = du
dt

such
that the tool-path can be traversed with minimal time under the kinematic and precision
constraints mentioned above:

min
u̇

∫ 1

0

1

u̇
du (3.1)

s.t. |vf | ≤ Vf max, |vτ | ≤ Vmax, |aτ | ≤ Amax, |jτ | ≤ Jmax, |eτ | ≤ Emax

where τ ∈ {x, y, z} is the axis, vf is the tangential feedrate, vτ is the axis velocity, aτ

is the axis acceleration, jτ is the axis jerk, eτ is the axis dynamic error satisfying (2.9),
and Vf max, Vmax, Amax, Jmax, Emax are the corresponding bounds, respectively. The following
initial values are assumed u̇(0) = u̇(1) = ü(0) = ü(1) = 0.

Note that instead of the contour error, the tracking error is considered here for two
reasons: the model based on tracking error is simpler and can be solved efficiently as shown
by this paper and limited tracking errors lead to limited contour errors.

By Theorem 2.6, the tracking error constraint can be simplified and the optimal control
problem (3.1) can be relaxed into the following problem whose constraints involves kinematic
quantities only.

min
u̇

∫ 1

0

1

u̇
du (3.2)

s.t.





|vf | ≤ Vf max

|vτ | ≤ Vmax

|aτ | ≤ Amax

|jτ | ≤ Jmax∣∣∣ J
KkI

jτ + B
KkI

aτ

∣∣∣ ≤ δEmax

(3.3)

where δ is given in Theorem 2.6 and u̇(0) = u̇(1) = ü(0) = ü(1) = 0.
In the rest of this section, we will rewrite problem (3.2) into a form which is more

convenient for numerical solution. Denote “′” to be “ d
du

” and “˙” to be “ d
dt

”. Introduce
three new functions a(u), b(u), and c(u) in u:

a(u) = u̇(u)2,

b(u) = ü =
du̇

dt
=

1

2

(
u̇2

)′
=

1

2
a′(u), (3.4)

c(u) = b′(u).

Then the kinematic quantities can be written as functions in a, b, and c:

vτ = τ ′u̇ = τ ′
√

a(u),

aτ = τ ′′u̇2 + τ̇ ü = τ ′′a(u) + τ ′b(u), (3.5)

jτ = τ ′′′u̇3 + 2τ ′′u̇ü + τ ′ =
√

a(u)(τ ′′′a(u) + τ ′′b(u) + τ ′c(u)),

vf = σ
√

a(u),
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where σ =
√

x′2 + y′2 + z′2 and τ ∈ {x, y, z}.
Treat c(u) as the control variable and b, c as the state variables. Then problem (3.2)

becomes a classic optimal control problem:

min
c(u)

∫ 1

0

1√
a(u)

du (3.6)

s.t.





σ2a(u) ≤ V 2
f max

(τ
′
)2a(u) ≤ V 2

max∣∣τ ′′a(u) + τ
′
b(u)

∣∣ ≤ Amax∣∣∣
√

a(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u))

∣∣∣ ≤ Jmax∣∣∣∣
J
√

a(u)(τ
′′′

a(u)+τ
′′

b(u)+τ
′
c(u))+B(τ

′′
a(u)+τ

′
b(u))

KkI

∣∣∣∣ ≤ δEmax

(3.7)

where τ ∈ {x, y, z} represents the axis. From (3.4), the initial values are a(0) = a(1) =
b(0) = b(1) = 0.

3.2. Simplification of the Optimal Control Problem

Numerical solution to problem (3.6) is challenging due to the strong nonlinear part in
the jerk and tracking error constraints, as shown in Section 4.2. In this section, we will show
that problem (3.6) can be relaxed to a convex optimal control problem whose constraints
are linear in the control and state variables.

Two ideas are used in the relaxation. Firstly, the unique optimal solution of the following
time-minimum feedrate planning problem under confined acceleration

min
u̇

∫ 1

0

1√
u̇

du s.t. |vf | ≤ Vf max, |vτ | ≤ Vmax, |aτ | ≤ Amax (3.8)

is generated and used to simplify the last two constraints in (3.7). Secondly, new conditions
about the dynamic parameters will be introduced to further simplify the last constraint in
(3.7).

The following important property for problem (3.8) is proved in [3, 6]:

Lemma 3.1 The optimal solution of problem (3.8) achieves the maximum values among all
feasible solutions at any parameter value.

We now reduce problem (3.6) to a new form, where the constraints are linear in the
control and state variables a, b, c.

Theorem 3.2 Let a∗(u) = u̇(u)2 be the optimal solution of problem (3.8) and assume that
the parameters satisfy the following condition

EmaxKkI −BAmax > 0. (3.9)
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Then problem (3.6) can be relaxed to the following optimal control problem

min
c(u)

∫ 1

0

1√
a(u)

du (3.10)

s.t.





σ2a(u) ≤ V 2
f max

(τ
′
)2a(u) ≤ V 2

max∣∣τ ′′a(u) + τ
′
b(u)

∣∣ ≤ Amax∣∣∣
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u))

∣∣∣ ≤ Jmax∣∣∣∣
J
√

a∗(u)(τ
′′′

a(u)+τ
′′

b(u)+τ
′
c(u))+B(τ

′′
a(u)+τ

′
b(u))

KkI

∣∣∣∣ ≤ Emax

(3.11)

with initial values a(0) = a(1) = b(0) = b(1) = 0. More precisely, if a, b, c satisfy constraints
(3.11), then they must satisfy constraints (3.7).

Proof. Since the first three constrains in (3.7) and (3.11) are the same, we just need to show
that the fourth and fifth constraints of (3.11) imply the fourth and fifth constraints of (3.7).

Let a(u), b(u), c(u) be feasible solutions to problem (3.10). Since the first three con-
straints of (3.11) are the same as that of (3.8), a(u) is also a feasible solution to problem
(3.8). Then by Lemma 3.1, a(u) ≤ a∗(u) for u ∈ [0, 1]. We thus have

∣∣∣
√

a(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u))

∣∣∣ =
∣∣∣
√

a(u)
∣∣∣
∣∣∣(τ ′′′a(u) + τ

′′
b(u) + τ

′
c(u))

∣∣∣
≤

∣∣∣
√

a∗(u)
∣∣∣
∣∣∣(τ ′′′a(u) + τ

′′
b(u) + τ

′
c(u))

∣∣∣ .

and hence, the fourth constraint in (3.11) implies the fourth constraint in (3.7).
For the fifth constraint, two cases are considered. In the first case, the fifth constraint

in (3.11) is assumed to be bang-bang, that is

∣∣∣∣∣
J
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) + B(τ

′′
a(u) + τ

′
b(u))

KkI

∣∣∣∣∣ = Emax,

which means either

J
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) + B(τ

′′
a(u) + τ

′
b(u)) = EmaxKkI , (3.12)

or

J
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) + B(τ

′′
a(u) + τ

′
b(u)) = −EmaxKkI . (3.13)

Suppose (3.12) is valid. Due to condition (3.9),

J
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) = EmaxKkI −B(τ

′′
a(u) + τ

′
b(u))

= EmaxKkI −Baτ ≥ EmaxKkI −B |aτ | ≥ EmaxKkI −BAmax ≥ 0.
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Hence, (τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) ≥ 0 and

J
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) ≥ J

√
a(u)(τ

′′′
a(u) + τ

′′
b(u) + τ

′
c(u)).

Therefore, the fifth constraint in (3.11) implies the fifth constraint in (3.7). Likewise, if
(3.13) is valid,

J
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) = −EmaxKkI −B(τ

′′
a(u) + τ

′
b(u))

= −EmaxKkI −Baτ ≤ −EmaxKkI + BAmax ≤ −(EmaxKkI −BAmax) ≤ 0.

Then, in this case,

J
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) ≤ J

√
a(u)(τ

′′′
a(u) + τ

′′
b(u) + τ

′
c(u)).

Thus, in the first case, a solution of (3.10) is also a feasible solution of (3.6).
Now consider the second case, that is, the fifth constraint in (3.11) is not bang-bang:

∣∣∣∣∣
J
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) + B(τ

′′
a(u) + τ

′
b(u))

KkI

∣∣∣∣∣ < Emax. (3.14)

We will show that the fifth constraint in (3.7) is also valid. Suppose the contrary, that is,

∣∣∣∣∣
J
√

a(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) + B(τ

′′
a(u) + τ

′
b(u))

KkI

∣∣∣∣∣ > Emax.

Consider one case as an example:

J
√

a(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) + B(τ

′′
a(u) + τ

′
b(u))

KkI

> Emax. (3.15)

From (3.9) and (3.15), we have

J
√

a(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) > KkIEmax −B(τ

′′
a(u) + τ

′
b(u)) > 0.

Hence, (τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) > 0 and

J
√

a∗(u)(τ
′′′
a(u) + τ

′′
b(u) + τ

′
c(u)) ≥ J

√
a(u)(τ

′′′
a(u) + τ

′′
b(u) + τ

′
c(u))

≥ KkIEmax −B(τ
′′
a(u) + τ

′
b(u))

which contradicts (3.14). The theorem is proved.
Note that the constraints in (3.11) are linear in the control and state variables and the

objective function is a convex function [23]. Then, problem (3.10) is a convex optimal control
problem.

12



3.3. Convert the Problem to a Convex Optimization Problem

In this section, the direct transcription method is used to solve problem (3.10). It is
shown that problem (3.10) can be reduced to a finite state convex optimization problem
which admits efficient numerical solution.

To convert the infinite state optimization problem into a finite state optimization prob-
lem, the parametric interval [0, 1] is divided into N equal parts with knots ui = i

N
, i =

0, 1, . . . , N . The length of each sub-interval is ∆ = 1
N

. Since ∆ is very small, the constraints
can be approximately transformed into discrete inequalities at points ui.

Problem (3.10) is solved in two steps.
Firstly, efficient numerical methods from [27] or [23] are used to compute a discrete

optimal solution a∗i = a(ui), i = 0, . . . , N for problem (3.8).
Secondly, to solve problem (3.10), we use ci = c(ui), i = 0, . . . , N as the control variables

and the state variables ai = a(ui), i = 0, . . . , N and bi = b(ui), i = 0, . . . , N can be calculated
with finite differences due to (3.4):

bi ≈ ai+1 − ai

2∆
, ci ≈ bi+1 − bi

∆
, i = 0, 1, . . . , N − 1.

Since a(0) = b(0) = a(1) = b(1) = 0, we have a0 = a1 = b0 = aN = bN = 0 and

bi+1 = ∆
i∑

k=0

ck + b0 = ∆
i∑

k=0

ck, i = 0, . . . , N − 1. (3.16)

ai+1 = 2∆
i∑

k=0

bk = 2∆2

i−1∑

l=0

(i− l)cl, i = 1, . . . , N − 1. (3.17)

Following the two steps described above, problem (3.10) can be approximated by the
following finite state nonlinear programming problem:

min
ci

N−1∑
j=2

1√
aj

s.t.





σ2
i
ai ≤ V 2

f max

(τi
′
)2ai ≤ V 2

max∣∣τi
′′
ai + τi

′
bi

∣∣ ≤ Amax∣∣√a∗i (τi
′′′
ai + τi

′′
bi + τi

′
ci)

∣∣ ≤ Jmax∣∣∣∣
J(
√

a∗i (τi
′′′

ai+τi
′′

bi+τi
′
ci))+B(τi

′′
ai+τi

′
bi)

KkI

∣∣∣∣ ≤ Emax

Ξ ∈ Ω,

(3.18)

where τ ∈ {x, y, z}, i = 0, . . . , N , τi
′

= τ
′
(ui), τi

′′
= τ

′′
(ui), a∗i are the solution of (3.8)

obtained in the first step, ai and bi can be derived from (3.17) and (3.16), Ξ is the set of
mechanism and bound parameters, Ω is the parameter domain determined by (3.9). Also,
the initial values aN = bN = 0 lead to the following constraints on ci

N−1∑
i=0

ci = 0 and
N−2∑
i=0

(N − 1− i)ci = 0.
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The constraints of problem (3.18) are linear in variables ci and the objective function
is a convex function in ci [23]. As a consequence, problem (3.18) is a convex optimization
problem which has the nice property that a local optimal solution of the problem is its
unique global optimal solution. This allows us to use any gradient based method to solve
problem (3.18).

In this paper, the Sequential Quadratic Programming (SQP) method [4] is used to solve
problem (3.18). The SQP method reduces the problem to a sequence of optimization sub-
problems, each of which optimizes a quadratic model of the objective function to a lineariza-
tion of the constraints. Since the constraints of problem (3.18) are already linear, the SQP
method particularly suits for it.

In order to use the SQP method to solve problem (3.18), the number N of discretiza-
tion need to be given. The selection of N is closely related with the lengths ∆si =
||r(ui) − r(ui−1)|| of the line segments r(ui)r(ui−1). According to the theory of finite el-
ement method [20], these lengths need to satisfy ∆si ≤ 0.1mm in order to achieve high
accurate computation for most CNC machining. So, a lower bound Nl for N is the least
integer such that ∆si ≤ 0.1mm for i = 1, . . . , N . Furthermore, N should be large enough
for the tool-path to be sufficiently subdivided. Combine these two factors, an experimental
lower bound for N is max{100, Nl}.

4. Experimental Result

In this section, the proposed method is tested in a CNC tool to validate its effectiveness.

4.1. Experiment Setup

−25 −20 −15 −10 −5 0 5 10 15 20 25
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Figure 3: Star Curve
Figure 4: Fadal machine
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Parameters X-axis Y-axis
ka [A/V] 6.5723 6.2274

kt [Nm/A] 0.4769 0.4769
rg [mm/rad] 1.5915 1.5915

J [kgm2] 0.0070028 0.0081904
B [kgm2/s] 0.023569 0.043009

Table 1: Parameters used in the experiment

The plane curve “star” shown in Fig. 3 is used as the experimental tool-path whose
parametric equation is

{
x = (15 + 5 · cos(10πu)) · cos(2πu + 0.5π)
y = (15 + 5 · cos(10πu)) · sin(2πu + 0.5π), u ∈ [0, 1].

Moreover, the curve will be initialized from the original point (0, 0) in order to satisfy the
inverse Laplace transformation.

A Fadal CNC machine tool shown Fig. 4 is used for the experiment. The kinematic
limits are set to be Vf max = 150 mm/s, Vmax = (250, 250) mm/s, Amax = (1500, 1500)
mm/s2, Jmax = (18000, 18000) mm/s3, which are for the tangent velocity, axis velocity, axis
acceleration, and axis jerk, respectively. The initial and terminal axis velocities and axis
accelerations are all zero. The number N of discretization is set to be 120. The sampling
period is 1 ms. The drive parameters for x and y axes are listed in Table 1. The actual
positions on x axes and y axes are obtained from their encoders mounted on the CNC
machine tool.

4.2. Experimental Result

Two tests are conducted to illustrate the real and complex eigenvalue cases.
Test 1: Real eigenvalue case.

The proportional, integral, derivative gains of the PID controller are chosen as kP = 30
V/mm, kI = 650 V/(mm·s), and kD = 0.4 V/(mm/s) for both axes. It is easy to show that,
the eigenvalues of equation (2.11) are negative real numbers.

We first run the test without considering the tracking error constraints, that is, problem
(3.18) is solved without the last constraint. Fig. 5-Fig. 8 illustrate the feedrate, acceleration,
pseudo jerk, and the real-time tracking error obtained from the encoder mounted on the
CNC machine tool. By the pseudo-jerk, we mean j∗ =

√
a∗i (τi

′′′
ai + τi

′′
bi + τi

′
ci) which is

an approximation of the real jerk (See (3.18)). Obviously, the pseudo-jerk is in bang-bang
structure, that is, one of the constraints reaches its bound for any parametric value. From
Fig. 8, the tracking error is fluctuating between −0.044mm to 0.044mm for both x and y
axes.

To make a comparison, nominal bounds Emax = (0.022mm, 0.022mm) on the tracking
error are added and the method proposed in this paper is used to compute the optimal
feedrate. Results are shown in Fig. 9-Fig. 13. In Fig. 12, the pseudo tracking error is the
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Figure 5: Velocity without tracking error con-
straint
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Figure 6: Acceleration without tracking error
constraint
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Figure 7: Pseudo jerk without tracking error con-
straint
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Figure 8: Real time tracking error without track-
ing error constraint

expression | J
KkI

jτ + B
KkI

aτ | in (3.3), which is used to approximate the tracking error. It can
be seen from Fig. 13 that the real time tracking error is confined with the desired bound
0.022mm. The fact that the real-time tracking error bound is approximately the same as
the theoretical bound shows that the simplification method proposed in this paper performs
nicely. The machining time of the test in Fig. 13 is increased to 3.7s from 2.7s which is
the machining time of the test in Fig. 8. This is a reasonable price to pay for reducing the
tracking error by half.

Comparing with the test without tracking error bounds, the control is still bang-bang.
However, in this case, the pseudo tracking error constraints are bang-bang in most places,
as shown by Fig. 12. The reason for that is obvious. From Fig. 8, it can be seen that the
tracking errors exceed the bound 0.022mm in most places. After adding the tracking error
bound, the pseudo tracking error bound will be the control variable in these places, and
the velocity and acceleration have to coordinate themselves to satisfy the tracking error
constraints.

Finally, a set of data is used to show the computational scalability of problem (3.18). N
is set to be different values and the executing times are listed in Table 2. The computation
times are taken for 50 iterations of the algorithm, where the algorithm reaches about 99%
of the optimum value. The computation times are collected from Matlab on a PC with a
3.0GHz CPU. On the other hand, the direct solution to the discrete form of problem (3.6)
using the same parameters fails for all N .
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N 100 150 200 300 500
Time 22.34s 57.24s 98.68s 275.15s 421.64s

Table 2: Times to solve problem (3.18) for different N
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Figure 9: Velocity with tracking error constraint
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Figure 10: Acceleration with tracking error con-
straint
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Figure 11: Pseudo jerk with tracking error con-
straint
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Figure 12: Pseudo tracking error with Emax =
(0.022mm, 0.022mm)
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Figure 13: Real-time tracking error Emax = (0.022mm, 0.022mm)

Test 2: Complex eigenvalue case.
The proportional, integral, derivative gains of the PID controller are chosen as kP = 10

V/mm, kI = 480V/(mm·s), and kD = 0.4 V/(mm/s) for both axes. It can be easily verified
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that equation (2.11) has two conjugate complex eigenvalues. For reason of simplicity, δ is
set to be 1.
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Figure 14: Real-time tracking error without
tracking error constraint
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Figure 15: Real-time tracking error with Emax =
0.035mm

Similar to Test 1, two experiments are carried out. Firstly, we run the test without
considering tracking error constraints, and the result is shown in Fig. 14. In this situation,
the maximum tracking error is 0.085mm. Then, nominal bounds on the tracking error
Emax = (0.035mm, 0.035mm) are added. The corresponding results are shown in Fig. 15,
from which we can see that the maximum tracking error is about 0.04mm. The bounds
Emax are violated slightly, which is due to the omission of the coefficient δ in problem (3.6).

5. Conclusion

How to use the full ability of the CNC machine to increase machining productivity and
at the same time to achieve high machining precision is a basic research problem in CNC
machining. The problem is usually formulated as a time optimal feedrate planning problem
under various constraints. To generate smooth feedrate is an important way to improve
machining quality, so bounds for acceleration and jerk are usually used as constraints. On
the other hand, the machine dynamic may also lead to large tracking errors. In this paper,
bounds of these dynamic errors are also added as constraints in the feedrate planning problem
to increase the machining quality. So the minimum-time feedrate planning problem under
confined velocity, acceleration, jerk, and tracking error is considered. To be practical, PID
controllers are considered, which leads to a third order dynamic system.

The minimum-time feedrate planning problem in this situation is quite involved, and
there exist no efficient algorithms for solving it before. The main contribution of this paper
is to reduce the above minimum-time feedrate planning problem into a finite state convex
optimization problem which can be solved efficiently. The work consists of two key ingre-
dients. First, it is proved that the tracking error constraint can be reduced to a constraint
about the linear combination of the acceleration and the jerk. Second, a novel method is
introduced to relax the nonlinear constraints involving jerk into linear ones. Experimental
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results show that the new convex optimization problem gives nice approximation to the
original problem and can be solved efficiently.

It is clear that the machining time is also limited by other factors, such as the cutting
force and the quality of the tool-path. It is an interesting problem to consider the time
optimal feedrate planning problem under these new constraints.
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