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In the last few decades, the homotopy continuation method has been established
in the U.S. for finding the full set of isolated solutions to a polynomial system nu-
merically. The method involves first solving a trivial system, and then deforming
these solutions along smooth paths to the solutions of the system of interest. The
method has been successfully implemented and proved to be very powerful in many
occasions.

While the nature setting for studying polynomial systems is the product of com-
plex (or projective) spaces, in practice polynomial systems are almost always ap-
peared with real coefficients, and, most importantly, only real zeros of the systems
are in the wish list. One may, of course, find all solutions in the complex setting in
the first place followed by filtering out all the real solutions. However, to deal with
those systems in real spaces directly would certainly be more preferable numerically.
In this talk, we will pay a special attention in solving real polynomial systems by
real homotopies.
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Quantier Elimination and Cylindrical Algebraic

Decomposition based on Regular Chains
Changbo Chen

Chongging Key Laboratory of Automated Reasoning and Cognition Center, Chongging
Institute of Green and Intelligent Technology, Chinese Academy of Sciences
changbo.chen@hotmail.com

In this paper, we review the recent work on the study of quanti_er elimination
(QE) and cylindrical algebraic decomposition (CAD) based on the theory of triangular
decompositions and regular chains. The implementation of them in the RegularChains
library is explained through simple examples as well as a non-trivial application.
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In these notes we recast and flesh out some results from [2|. In this latter paper the
authors study the following related problems. Let & be a field of characterisitic zero and
let k[z](E) be the ring of linear difference operators where Ez = (2 + 1)E. Let R €
k[z](E) be of the form

R=r,E™+---4+rg, wherer; €klz] and r,,r9 # 0. (1)

Problem 1 (Desingularization). Let R € k[z|(E) be a nonzero linear difference operator
of the form (1) with ro having at least one root a. Decide whether there exists a nonzero
operator L € k(z)(E) of the form

L=0,E"+ -+, wherel; € k(z) and ¢, # 0, (2)
such that T = LR € k[z](E) and its trailing coefficient is oy where A is the multi-
plicity of o as a root of ry.

Problem 2 (Extension of sequential solutions). Let R be as above. Assume that we
have a sequence sq41 = (S(a + 1), s(a +2),...) that satisfies

m

R(Sa+1) Znoz%—l—l—n s(la+14+n+i)=0 foralln>0.
=0

When can we extend so41 to a sequence s, = (s(a), s(a+1),...) that satisfies R(s,) = 07

The key to the proofs in [2] is the analysis of a certain matrix described in Section 2
of that paper. We have replaced the consideration of this matrix with manipulations of
linear difference operators in the ring k[z|(E).



1 Desingularization

In [2], the authors present an algorithm that solves Problem 1 when « is the largest
integer root of r9. On p. 125 of [1], the authors note that they have “ ..implemented an
algorithm that remowes all singularities that can be remowved, ... "7, that is, an algorithm
to solve problem 1. for any «. In this section, we also show how this can be done using
our methods. We also note that Abromov, Barkatou and van Hoeij present in [1] an
algorithm to decide if one can give a complete desingularization of an operator (i.e.,
make the trailing coefficient constant) using methods different from those of [2] .

For any a € k we call the set {a« + i | i € Z} the Z-orbit at «, denoted by [a]. Let
S : k — k denote the forward shift a — a + 1. For oy, € [a], we define a3 > ay
if oy = S"ay for some n > 0. For p € k[z] and a € k, we denote by [a], the set {5 €
k| p(B) =0 and B € [a]}. Note that the set [a], is a finite set. The set of all roots of p
in k£ can be decomposed as U;[a;],, where the ;s are in different Z-orbits.

Definition 1. We say that R is desingularizable at « if there exists L € k(z)(E) such
that T'= LR € k[z](F) and its trailing coefficient does not have o as a root.

Proposition 1 allows one to decide if we can desingularize at . We do not assume
that « is a maximal element of [a],,. We begin with the following lemma which gives a
slight improvement of Lemmas 4 and 5 of [2].

Lemma 1. Let o be a root of ro of multiplicity . Let d € N be such that rp,(a+d) =0
and rmA(oz +d+1i) # 0 for any positive i € Z. If R is desingularizable at «, then there
exists L € k(z)(E) such that

(i) T = LR € k[z](E),
(ii) ord(L) < d,

(iii) the trailing coefficient of T' is (Z_T—fl)A

In the above Lemma, we were able to bound the order of a possible L but not the
degrees of the coefficients because we could not bound u. The next result shows that
once we know the order of L is at most d, we can furthermore bound the degrees of the
coefficients. We could have combined these proofs but feel separating them may help in
understanding the basic ideas involved.

Before we can state the main result we define some notation. For 5 € [a],,, let A\g = the
multiplicity of 8 as a root of rq and let

p = max{\z | (€ [a],, and § > a}

A= A

Note that if « is the maximum element of [a],, then p = 0. The following allows us to
decide if we can desingularize R at «.



Proposition 1. Let a be a root of v and A and p as above. Let d € N be such
that r(a+d) = 0 and ry,(+d+1i) # 0 for any positive i € Z. If R is desingularizable
at a, then there exists L € k(z)(E) such that

(i) T = LR € k[2](E),
(i) ord(L) < d,
(iii) the coefficients l; of L are of the form
g mzx)
Tz = )M
n; € k[z],deg,(n;(2)) < A +dp— 1.
(iv) the trailing coefficient of T is —Lo.

o)

2 Extension of sequential solutions

For any 8 € k, let sg denote the right-sided sequence
{s(B8),s(B+1),s(8+2),...}, where s(8+1) € k for all i € N. (3)

If sp is a right-sided sequence and ¢ € N, we denote by sgi; the right-sided sequence
(s(B+1i),s(B+i+1),...). Wesay s, is an extension of sz if sg = s,4; for some
i€ N. For P=Y0 pE' €k[2](E), we say that sg is a sequential solution of a linear
recurrence P(Y') =0 if

d
sz'(ﬁ +n)s(B+n+i)=0 foralln>0.

1=0

We will use the notation P(sz) = 0 to denote that sz is a sequential solution of P(Y') = 0.

Let sg be a sequential solution of a linear recurrence P(Y) = 0, P = Z?:o pE €
k[z](E). We wish to give criteria which will allow one to extend sg to a sequential
solution s, of P(Y) = 0 where a = § — n for some n € N. We start with the following
technical lemma.

Lemma 2. Let o, 8 € k such that § — o € Nt and let j be a positive integer, 0 < j <
b — .
1. Let Uy, ...,U; be elements of k[z](E) such that for eachi,i=1,...,7, u;o(B—1) #
0 where u;q is the coefficient of E® in U;. Let U € k[z](E). Then there exist
polynomials a, ay, . .., aj—1 € k[z] with a(f — j7) # 0 such that

7j—1
aU =Y aE'Uj; = anEY + .. + i
=0

for some u; € k[z].



2. Let

R = r,E"+...4+1ryand
Vo= U E™T v B € k[2(E)

where n > 0 and r,,rg # 0. Assume that ro(5 + i) # 0 for all i € N. Then there
exist b, by, ...b,_; € k[z] with b(f — j) # 0 such that

n—j
BV =Y BEVR = Gy BT By BN
=0

for some v; € k[z].

We can now prove the following (corresponding to Theorem 2 of [2]).

Proposition 2. Let R, T1,...,Ts € k[z](E),ord(R) =m > 0. Let ro,t10,...,ts0 be the
coefficients of E° in R,T,,..., T, respectively and let a, 3 € k such that 3 — o € NT.
Assume that

(i) For each i € N,0 < i < 8 — a, at least one of the values of ro(8 — ©),t10(8 —
i),...,ts0(B —1) is not 0.

(i7) For all i € N each of the values ro(5 + i) is not zero.
(iti) Each Tj is right divisible by R.

If s is a sequential solution of R(Y) = T1(Y) = ... = T4(Y) = 0, then sg can be
extended uniquely to a sequential solution s, of the same equations.
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EFFICIENTLY COUNTING AFFINE ROOTS OF MIXED
TRIGONOMETRIC POLYNOMIAL SYSTEMS

BO DONG , BO YU , AND YAN YU

Abstract. Estimating the root count, which is the total number of geometrically isolated
solutions, of a polynomial system is not only a fundamental study theme in algebraic geometry but
also an important subproblem of homotopy continuation methods for solving polynomial systems. For
the mixed trigonometric polynomial systems, which are more general than polynomial systems and
rather frequently occur in many applications, the classical Bézout number and the multihomogeneous
Bézout number are the best known upper bounds on the root count. However, for the deficient mixed
trigonometric polynomial systems arising in practice, all these upper bounds are far greater than the
actual root count. The BKK bound is known as the most accurate upper bound on the root count
of polynomial systems. However, the extension of the definition of the BKK bound allowing it
to treat mixed trigonometric polynomial systems is very difficult due to the existence of sine and
cosine functions. In this paper, two new upper bounds on the root count of a mixed trigonometric
polynomial system are defined and the corresponding efficient algorithms for calculating them are
also presented. Numerical tests are also given to show the accuracy of these two definitions, and
numerically prove they can provide tighter upper bounds on the root count of a mixed trigonometric
polynomial system than the existent upper bounds, and also we compare the computational time for
calculating these two upper bounds.
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SPECULAR SURFACE MEASUREMENT USING B-SPLINE

CURVED SURFACE FOR IMAGING SIMULATION

FU Shengpeng* ZHAO Jibin# XIA Renbo# LIU Weijun#
*University of Chinese Academy of Science, Beijing 100049, China
E-mail : fushpeng@gmail.com
#Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China

E-mail : jbzhao@sia.cn; xiarb@sia.cn; wjliu@sia.cn

Our work focuses on the smooth and continuous convex specular surfaces measurement using a camera and a
LCD display. We firstly analyze the geometric characteristics of a specular surface and prove that the 3D shape of
the specular surface can be measured by one camera. A uniform bicubic B-spline surface is used to simulate the
imaging process in the measurement due to its similarity of geometric characteristics from a specular surface. We
obtain the 3D shape of the specular object by minimizing sum of the errors between the real points on the display
and the intersecting points which produced by backward ray-tracing reflection rays. A 3-step phase-shifting
method is applied to encode the display for corresponding the pixels on the display and image plane. Our
experiments on real specular surface show that the method is simple and obtain high accuracy measurement result.



On the “normal” error formula for bivariate ideal
interpolation

Yihe Gong Xue Jiang Shugong Zhang
Institute of Mathematics, Key Lab. of Symbolic Computation and Knowledge
Engineering (Ministry of Education), Jilin University, Changchun, 180012, China

Abstract. In this paper we investigate an error formula for bivariate ideal
interpolation. We shall call it the “normal” error formula which derives from
the “good” error formula raised by Carl de Boor. We prove that a lexicographic
order reduced Grobner basis admits such an error formula. In 2010, Boris
Shekhtman proves the ideal projector P, defined by kerP, = (2? — y, zy,y?)
does not have a “good” error formula. As an example, we will show such a P,
has a “normal” error formula.



The Breadth-one D-invariant Polynomial
Subspace

Xue Jiang  Shugong Zhang
Institute of Mathematics, Key Lab. of Symbolic Computation and Knowledge
Engineering (Ministry of Education), Jilin University, Changchun, 180012, China

Abstract. We demonstrate the equivalence of two classes of D-invariant poly-
nomial subspaces introduced in [8] and [9], i.e., these two classes of subspaces
are different representations of the breadth-one D-invariant subspace. More-
over, we solve the discrete approximation problem in ideal interpolation for the
breadth-one D-invariant subspace. Namely, we find the points, such that the
limiting space of the evaluation functionals at these points is the functional s-
pace induced by the given D-invariant subspace, as the evaluation points all
coalesce at one point.



POLYNOMIAL HOMOTOPY METHOD FOR SOLVING SPARSE INTERPOLATION
PROBLEM

LIBIN JIAO, BO DONG, BO YU
School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, 116024, China.

In this paper, the solutions of the polynomial system arising from sparse interpolation
problems are studied. Exploiting the special structure of the polynomial system, it is
proved that: for generic data, all its solutions belong to one equivalence class if the
sampling are equally spaced. For some special unequally spaced sampling, we give
the upper-bound on the number of solutions of the corresponding polynomial system.
Based on the coefficient parameter homotopy method, an efficient algorithm is
proposed. Unlike some existing algorithms, the proposed algorithm does not require
the assumption of equally spaced sampling or positive weighted coefficients, and it is
globally convergent. Preliminary numerical tests show that the new method is
promising.



On the Equivalence of Multivariate Polynomial
Matrices

Dongmei Li  Jinwang Liu licui Zheng

College of Mathematics and Computations, Hunan Science and Technology University

The equivalence of system is an important concept in multidimensional
(nD) system, which is closely related to equivalence of multivariate polynomial
matrices. This paper mainly investigates the equivalence of some nD polyno-
mial matrices, and obtains several new results on the reduction by equivalence
of some given nD polynomial matrices to simpler forms:
Theorem 1. Let F(2) € R™*![2] with detF(2) = [TF_, (21— fi(22, - -, 20) ) %.
If det F(z) and all (I — 1) x (I — 1) minors of F'(z) have no common zeros (F'(z)
has property DM), then F(z) is equivalent to

V(2) P11 (2)U11(2) -+ Prg, (2)Urg, (2) Par(2)Uar (2) - - - Pag, (2)Usg, (2) =+ Prgy, (2)Ukg, (2)

=0 )

Or0-1 21 — fi(za, -+, 2n)

V(2),U;;,(2) € SLi(R[2]),ji = 1,2, ,q;,i = 1,2, - k.
Theorem 2. Let F(z) € R*?[z] with detF(z) = (21 — f(z2, -+, 20))% If
F(2) has the property DM, then F'(z) is equivalent to the matrix

=g o )

Theorem 3. Let F(z) € R™[z] with detF(z) = (21 — f(22, -+, 20))"
F(z) has the property DM if and only if F(z) is equivalent to a matrix Q(z)

with
N Or—11
Q=) = ( 01 (21— flz2,+, 20))1 )

where



Efficient Slicing of Face-vertex Triangle Mesh for Addictive
Manufacturing

LI Lun®, ZHAO Jibin® HAN Wenchao®

? Shenyang Institute of Automation, Chinese Academic of Sciences, Shenyang 110016

Abstract

This paper present an efficient slicing procedure of face-vertex triangle mesh for addictive manufacturing.
The proposed algorithm introduces the use of connectivity representation of face-vertex triangle mesh,
including incidence, adjacency, and ordering, in the slicing of triangle mesh. Secondly, based on the triangle
mesh interval tree data structure, efficient intersection query method of triangle mesh and slicing plane is

established, and the method can find all the triangles in a large scale triangle mesh that intersect the given

slicing plane in O(logn+k) time, where k is the number of retrieved triangles. Finally, an efficient slicing

algorithm for addictive manufacturing, which is based on the connectivity representation of face-vertex
triangle mesh and triangle-plane intersection query method, is proposed. The intersection calculation of plane
and triangle mesh is discussed in four different situations. Thanks to the use of triangle mesh connectivity
representation, the triangle mesh slicing algorithm proves to be very efficient. Several experimental results

are studied to verify the robustness and performance of the proposed algorithm.

Keywords: Addictive manufacturing; Triangle mesh; Machining path




The generalized Serre Problem over K-Hermite
Rings

Jinwang Liu Dongmei Li Mingsheng Wang

A commutative ring R is called K-Hermite if, for any rectangular matrix
B € Mpxn(R)(m < n), there exists Q) € GL,(R) such that BQ is lower trian-
gular. This paper investigates the completion and the zero prime factorization
for matrices over a K-Hermite ring. We have generalized Kaplansky’s related
results, solved similar Lin-Bose problem and generalized Serre problem over a
K-Hermite ring.

Theorem 1 Let R be a d*-Hermite ring, F' € Mjy,,(R) (I < m < d+2)
be any ZLP matrix. Then F' can be completed to a square m x m invertible
matrix A over R.

Theorem 2 Let R be a K-Hermite ring. For a row vector (aq, as, . .., a,) of
R, and any maximal common divisor d of ay,as,...,a,. Then (aj,as,..., a,)
can be completed to a square matrix

Ay, dz, -+, 0n
N

whose determinant is d. Furthermore, the (n —1) x n matrix N may be chosen
to be itself completed to a matrix in GL,(R).

Theorem 3 Let R be a K-Hermite ring, A € M;y,(R)(l < n) be full row
rank. Then for any maximal common divisor d of all [ x [ minors of A, we
have A = D - Ay, where D € M (R), A1 € Mjx,(R),det D = d, A is ZLP.

Theorem 4 Let R be a K-Hermite ring, A € My,(R), with [ < n. Then A
can be completed to a square matrix ]13 whose determinant is a maximal
common divisor of all [ x [ minors of A. Furthermore, the (n —[) x n matrix
N may be completed to a matrix in GL,(R).

Theorem 5 Let R be a Bézout ring in which every zero-divisor lies in
Rad(R), A € M;x,(R)(I < n), and d be any maximal common divisor of all
[ x [ minors of A. Then, A can be completed to a square matrix ]13 whose
determinant is d. Furthermore, the (n — 1) x n matrix N can be completed to
a matrix in GL,(R).



An Improved Laplace Decomposition Method For

Solving Nonlinear Differential System
TN

AR T K

In this paper, a flaw of the Laplace decomposition method is investigated.
Based on it a modified Laplace decomposition method is presented, the new
algorithm can be applied to a wider range of partial differential equations. We
further compare advantages and disadvantages of these two methods. It can
be seen that they have different strong points for different kinds of partial
differential equations, while they will be reduced to the same algorithm for
ordinary differential equations.
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Verified error bounds for minimum 2-norm solutions of nonlinear

systems

LI Zhe? SANG Hai feng?

1.School of Science, University of Science and Technology, Changchun, 130012;
2. Automated Reasoning and Cognition Key Laboratory of Chongqing, Chongqing, 400714;
3. College of Mathematics and Statistics, Bethua University, Jilin, 132013

Abstract: In this paper, we define the minimum 2-norm solution of underdetermined nonlinear system as the minimum
point of the 2-norm of solution vectors, and the minimum 2-norm solution of overdetermined nonlinear system as the
minimum point of the 2-norm of residual vectors. Combining with the verification for the simple solution of square
system and the verification for symmetric positive definite matrix, we present an algorithm for verifying the minimum
2-norm solution of underdetermined and overdetermined nonlinear systems with full rank Jacobian matrix. Given an
approximate solution of a nonlinear system, if this algorithm successfully outputs an interval vector, then there exists a

minimum 2-norm solution in the interval vector.

Key words: Underdetermined system, Overdetermined system, Minimum 2-norm solution, Verification.
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A Symbolic Computation Approach to Designing
Parametric Controller for Hopf Bifurcation System

Jinbo Lu and Xiaorong Hou Hongyan Wang
School of Energy Science and Engineering School of Mechatronics Engineering
University of Electronic Science and Technology of China  University of Electronic Science and Technology of China
Chengdu, Sichuan Province, 677130, China Chengdu, Sichuan Province, China

houxr@uestc.edu.cn
Abstract - In this paper, we use the Lorenz system as an illustrative example to present a method for Hopf bifurcation

control of nonlinear dynamical systems. The parametric controller designed by this method has a generic explicit formula and it
is derived for controlling bifurcations using nonlinear state feedback. The controller under which the equilibria of the original
system remain unchanged is consisted of vector field of the polynomial system. Symbolic computation is applied to obtain the
stable constraints, for the system added parametric controller. This approach employs Cylindrical Algebraic Decomposition
(CAD) to find stability parameter space of the controller from the inequities of stable constraints. The simulation results are
presented to confirm the analytical predictions.



Multi-boundary Shape Retrieval Based on
a New Class of Moment Functions

Ruixia Song?, Xiaochun Wang?, Yena Wang* and Dongxu Qi!

1(College of Sciences, North China University of Technology, Beijing, China, 100144)
%(College of Sciences, Beijing Forestry University, Beijing, China, 100083)

Abstract  Based on a class of complete orthogonal function system, V-system, this paper proposes
a new kind of moment functions (called V-moment functions), and applies them to the shape retrieval.
The V-moments are orthogonal, and involve only simple linear operations. The V-moments can be used
to extract image features accurately, and the original image can be reconstructed with only a small
amount of them. The V-moments have advantage in extracting features of image with complex boundaries
since the V-system contains a great deal of discontinuous basis functions. Therefore, feature extraction
of multi-boundary image using V-moments is very promising. This paper performs image retrieval based
on their shape features. The results of retrieval experiment, conducted on benchmark database MPEG-
7-shape-CE2, show that the algorithm proposed in this paper outperforms some classical moments
including Zernike moments, Hu invariant moments, orthogonal Fourier-Mellin moments, Legendre
moments and the geometric central moments in retrieval efficiency according to several evaluation
indexes.

Keywords  Content based image retrieval; Multi-boundary shape retrieval; Orthogonal moment functions;
V-system; V-moment

This work was supported by National Natural Science Foundation of China under Grant No. 61272026, National
Key Basic Research Project of China under Grant No. 2011CB302400, and Beijing Natural Science Foundation
Program and Scientific Research Key Program of Beijing Municipal Commission of Education under Grant
N0.KZ201210009011.



Structural index reduction algorithms for
differential algebraic equations via fixed-point
iteration”

Juan Tang! Wenyuan Wu?  Xiaolin Qin ¥  Yong Feng 1

Abstract

Differential algebraic equations (DAEs) arise naturally in dynami-
cal system modeling, such as electric circuits, mechanical systems and
spacecraft dynamics. Generally, these DAEs are large scale nonlinear
systems with block structures and high indices which require index
reductions for numerical solving. In this paper, motivated by Pryce’s
structural index reduction method for DAEs, we show the complexity
of the fixed-point iteration algorithm and propose a fixed-point itera-
tion method with parameters. It leads to a block fixed-point iteration
method which can be applied to large-scale DAEs with block upper
triangular structure. Moreover, its complexity analysis is also given
in this paper.

Keywords: differential algebraic equations, structural analysis, index
reduction, linear programming, fixed-point iteration, block triangular
forms.

MSC(2010): 34A09, 65L80, 65F50, 90C05, 90C27, 90CO06.

*The paper had been submitted to SCIENCE CHINA Mathematics.

fSpeaker. Chengdu Institute of Computer Applications, Chinese Academy of Sciences;
Email: tj-123123@163.com

fAutomated Reasoning and Cognition Key Lab of Chongqing, CIGIT, CAS; Email:
wuwenyuan@cigit.ac.cn.

§Chengdu Institute of Computer Applications, Chinese Academy of Sciences; Email:
qinxl@casit.ac.cn

YCorresponding author. Automated Reasoning and Cognition Key Lab of Chongqing,
CIGIT, CAS; Email: yongfengQcigit.ac.cn.



A Classcial Hardness Result of R-LWE

Han Wang
Zhuojun Liu
Mingsheng Wang

Abstract

lattice-based cryptography has been developing rapidly, some cryptosystems are
based on computational problems of lattices. There are close connections between
these computational problems and LWE. Using ring-LWE, we can design more ef-
ficient, and more secure cryptosystems. Therefore, it is necessary to further in-
vestigate the hardness of the R-LWE problem. Using the conclusions of Gaussian
distributions, we give a classical reduction from the most basic computational ideal
lattice problem GAPSVP to R-LWE with polynomial modulus.



Computing the Rational Univariate Representations
for Zero-dimensional Systems Involving Interval
Representation®

Xiao Shuijing & Zeng Guangxing
Department of Mathematics, Nanchang University, Nanchang 330047, Chimafr

Abstract

The purpose of this paper is to investigate the rational univariate representations of
zero-dimensional systems involving the interval representation. Let F' be a computable
ordered field with real closed extension R. As a representation of algebraic elements over
F', the following definition is important for the symbolic computation in real algebra.

Definition 1. Let u(t) € F[t] be a non-zero univariate polynomial, and a, b € F with
a < b. If u(t) has exactly one root © in R such that © €]a, b[g, where |a,b[gp:={z € R |
a < z < b} is the open interval with endpoints a, b in R, then the only real root © of
u(t) in Ja,blg is represented in the form (u(t),a,b). Such a triple (u(t),a,b) is called a
real (algebraic) element in its Interval Representation over F'.

Definition 1 is a slight generalization of the Interval Representation for real algebraic
numbers (i.e. real algebraic elements over the field Q of rational numbers). For the details
of the Interval Representation for real algebraic numbers, refer to §8.5 in [9].

The purpose of this paper is to investigate the rational univariate representations of
zero-dimensional systems involving the interval representation. Explicitly speaking, we
shall solve the problem as follows:

Problem. Let (F, <) be a computable ordered field with real closed extension
R, let © := (u(t),a,b) be a real algebraic element in its Interval Represen-
tation over F, and let fi, ..., fs € F[t,z1,...,x,] be polynomials over F' in
n + 1 variables t, xq, ..., =, such that the polynomials f(©,xq,...,z,), ...,
fs(©, 21, ...,x,) constitute a zero-dimensional system in F'(©)[xy,...,z,] (i.e.
the system of equations f;(©,x1,...,z,) = 0,7 =1, ..., s, has only a finite num-
ber of solutions in the algebraic closed field R(y/—1)). Devise an algorithm

*This work is partially supported by the National Natural Science Foundation of China (Grant No.
11161034).
TE-mail: xiaoshjing@163.com; zenggx@ncu.edu.cn

1



for computing a family of rational univariate representations of the system

{fi(©,21,....,x,) | i =1, ..., s}.

A family of rational univariate representations of the system {fi(©,x1,...,x,) | i =
1, ..., s} may be formulated in the following definition.

Definition 2. Let the notation be as in the problem above, and y a new variable. A
finite subset {[w;(t, x), i (t, X), -, Pin(t, X)) | # = 1,..., 8} of F[t, x] x F(t,x)" is called a
family of rational univariate representations of the system {f;(0,z1,....,z,) | i =1, ..., s}
(in short, an RUR family of {fi(©,z1,...,x,) | ¢ = 1, ..., s}), if the following conditions
are satisfied for any extension E of F' containing R:

(1) For every i € {1,...,s}, deg(w;(O,x)) > 0, L;(©) # 0 where L;(t) is the leading
coefficient of w;(t, x) as a polynomial over F'[t] in one variable x, and the denominator of
¢i;(©, x) does not vanish at each root of w;(©,x) in E, j =1, ..., n.

(2) If v is a root of wi (O, x) in E for k € {1, ..., s}, then (¢x1(0, @), ..., drn (O, @) is
a zero of the system {f;(©,xy,...,2z,) | i =1, ..., s} in E™.

(3) If (B, ..., Bn) is a zero of the system {f;(©,x1,...,2,) | i = 1, ..., s} in E™, then
there exist a k € {1, ..., s} and a root « of ux(0, x) in F (S, ..., B,) such that (51, ..., B,) =
(¢k1(@a a)? ) ¢kn(@a a))

In this case, we also say that {[u;(¢, x), ¢a(t, X), -, Pin(t,X)] | i = 1,..., s} is an RUR
family of P modulo © ( or modulo (u(t),a,b) ) where P := {fi(t,z1,...,x,) | 1 =1, ..., s}.

To solve the system {f;(©,x1,...,x,) | © = 1, ..., s}, a natural way is to investigate
the extended system {u(t), fi, -, fs} in F[t,xq,...,x,]. However, the two possible cases
could happen in practice. Firstly, {u(t), f1,-- -, fs} need not be zero-dimensional if u(t) is
reducible in F[t]. For example, let © = ((t2 —2)(t — 1), £, 2)(= V2), fi = (t—1)xy + (t -
1)xe, and f2 = (t — 1)x; — (t — 1)x, Obviously, the system {f1(0,x1,x2), f2(O, x1,x2)}
is zero-dimensional, but { (> —1)(t — 1), f1(t, z1, x2), f2(t, 21, x9)} is not zero-dimensional.
Secondly, even if the rational univariate representation of the extended system is obtained,
not only this representation is more complicated, but the specified value ¢ = © must be
considered in a further discussion.

In this paper, an effective method is presented for deciding whether or not a system
in F(O©)[zy, ..., z,] is zero-dimensional. As a main result in this paper, we give an algo-
rithm for computing the rational univariate representations of zero-dimensional systems
in F(O)[zy, ..., x,]. The technique in this paper is to compute triangular decompositions
of polynomial systems. Hence, our algorithm does not involve the Grobner bases calcu-
lation. With the aid of the computer algebraic system Maple, a general program has
been made to compute rational univariate representations of zero-dimensional systems in
F(©)[x1, ..., x,]) when F = Q, the field of rational numbers. It should be pointed out that
the algorithm in this paper does not preserve the multiplicities of solutions as in [6,13].
It is a repayment that our rational univariate representations are simpler.

In the final section of this paper, several examples are given to illustrate the efficiency
of our algorithm.
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Linear Invariant Generation for Safety Verification of
Nonlinear Systems Using Conservative Approximation

Xia Zeng®, Wang Lin® and Zhengfeng Yang®
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October 16, 2014

As one of most important research issues in formal analysis of dynamical systems, safety
verification aims to decide if there exists a trajectory starting from the initial set that reaches
some unsafe region in the state space. In this paper, we will apply the invariant generation
method to verify safety of nonlinear systems. Rather than studying the complex nonlinear
systems directly, we first present a linear approximation method to transform the general
nonlinear systems into the associated linear ones, then suggest a symbolic method to obtain
linear invariants, which guarantee the safety property of the resulting linear systems. Some
experiments are provided to illustrate the efficiency of our method.



ON THE LINEAR INDEPENDENCE AND PARTITION
OF UNITY OF ARBITRARY DEGREE
ANALYSIS-SUITABLE T-SPLINES*

JINGJING ZHANG - XIN LI

Abstract Analysis-suitable T-splines are a topological restricted subset of T-splines, which are opti-
mized to meet the needs for design and analysis. The paper independently derives a class of bi-degree
(d1,d2) T-splines for which no perpendicular T-junction extensions intersect, and provides a new proof
for the linearly independence of the blending functions. We also prove that the sum of the basis

functions is one for an AS T-spline if the T-mesh is admissible based on a recursive relation.

Keywords T-splines, analysis-suitable T-splines, linear independence, partition of unity, isogeometric

analysis.



Conformal Parameterization Based Tool-path
Planning for Meshes

Zhao Jibin®", Zou Qiang®®, Li lun?, Longyu®

Shenyang Institute of Automation, Chinese Academy of Sciences, Liaoning, 110016, China.

PUniversity of Chinese Academy of Sciences, Beijing, 100049, China;

The similar property of conformal parameterization makes it able to locally preserve the shapes between surface
and its parameter domain, as opposed to common parameterization methods. A parametric tool-path planning
method is proposed in this paper through such parameterization of triangular meshes which is furthermore based on
the geodesic on meshes. The parameterization has the properties of local similarity and free boundary which are
exploited to simplify the formulas for computing path's parameters, which play a fundamentally important role in
tool-path planning, and keep the path boundary-conformed and smooth. Experimental results are given to illustrate

the effectiveness of the proposed methods, as well as the error analysis.
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NURBS CURVE INTERPOLATION ALGORITHM BASED
ON S-CURVE ACC/DEC CONTROL METHOD

ZHOU Bo *2, ZHAO Jibin !

1Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China;
2Graduate University of the Chinese Academy of Sciences, Beijing, China

This paper proposes a look-ahead interpolation scheme for short line segments. The proposed
interpolation method consists of two modules: NURBS fitting and S-curve acceleration/deceleration
(ACC/DEC) feedrate-planning modules. Depending on the length and the CSB criterion, these
linearized segments can be regarded as noise, continuous short blocks (CSBs), or GO1 blocks. The
junctions are located where the curvature beyond the NURBS setting value or undergoing violent
changes and the ending points of the long straight segments(non-CSB). The NURBS fitting module
first looks ahead several CSBs and converts them into parametric curves in real-time machining. It can
ensure that the position, slope, and curvature at the junctions of the parametric curves, and unfitted line
segments are all continuous; Then the acc/dec feedrate-planning module proposes a new algorithm to
determine the feedrate at the junction of the fitting curve and unfitted short segments, and the corner
feedrate within the fitting curve. Simulations and experiments show that the implemented NURBS
cutting can significantly improve machining accuracy and reduce cutting time to satisfy the
requirements of today’s high-speed and —accuracy machining.



Weighted-average alternating minimization algorithm and its
application to magnetic resonance image reconstruction

based on compressive sensing

Yonggui Zhu, Hao Li and Xiang Bi

Abstract

The problem of compressive-sensing (CS) L2-L1-TV reconstruction of magnetic
resonance (MR) scans from undersampled k-space data has been addressed in
numerous studies. However, the regularization parameters in models of CS L2-L1-TV
reconstruction are rarely studied. Once the regularization parameters are given, the
solution for an MR reconstruction model is fixed and is less effective in the case of
strong noise. To overcome this shortcoming, we present a new alternating formulation
to replace the standard L2-L1-TV reconstruction model. We prove that this new
formulation is equivalent to the standard one in some conditions. A weighted-average
alternating minimization method is proposed based on this new formulation and
a convergence analysis of the method is carried out. The advantages of and the
motivation for the proposed alternating formulation are explained. Experimental
results demonstrate that the proposed formulation yields better reconstruction
results in the case of strong noise and can improve image reconstruction via flexible

parameter selection.

Keywords: Compressive sensing; alternating minimization method; weighted

average; magnetic resonance image reconstruction.
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