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A determined algorithm for irreducible decomposition of algebraic
varieties and primary decomposition of zero-dimensional ideal.
This is a joint work with Dingkang Wang and Fusheng Leng.

Let F be a polynomial set in Q[x,,...,x, ], we can decompose F into a series of
ascending chain {4 } given by polynomials irreducible over Q first. Then to get
irreducible decomposition, we must decompose every 4, into irreducible ascending
chains. Let 4={R,...,P,} be an ascending chain with y, be the leading variable of
P, the other variables will be denoted by u,...,u, , so stn=m. Let
K =0(u,,...,u)), then A is zero-dimensional ascending chain over K. Let d be the
number of solutions of A. Substitute y, =y+a,y,+...a,y, into A. We prove that
among cH! integral vectors (ay,...,a,) in (n-1)-cube
[b,,b,+C; —11x[b,,b, + C; —1]x...x[b

b, +C;—1] with b, integer, there must be

n’=n

1



one (a,,...,a,) such that all ascending chains with polynomials irreducible over Q

for the order y <y, <...<y, are either with length <n or in the forms

0, (7, Y155 ¥,)

0,(»,»,)
0,(»)

O, (7, 3,) = a, (V) + &)™ .. QY5 ¥ s ¥) = @ (V) + &:(0)”
These new ascending chains give irreducible decomposition of A.

Besides, we can use only (n —1)C; +1 also some special (a,,...,a,)’s to arrive at

the same aim. Our algorithm is used also to give primary decomposition of
zero-dimensional ideal.

Computation of Mesh Surfaces with Planar Faces

I shall discuss the problem of representing a free-form shape by a mesh surface with planar
quadrilateral or hexagonal faces. This problem is motivated by the need in architecture for tiling
free-form building surfaces with planar glass panels. Several effective modeling methods will be
presented based on some novel concepts from discrete differential geometry, including conical
meshes and Dupin duality. I shall also discuss the computation of offset and curvature of these
discrete surfaces, and their connections to shape modeling of discrete constant mean curvature

surfaces.

Joint Work with Yang Liu, Helmut Pottmann, Johannes Wallner and Alexander Bobenko
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Bo Yu And Bo Dong

Department of Applied Mathematics, Dalian University of Technology, Dalian, Liaoning 116024,
China. (yubo@dlut.edu.cn).

Department of Applied Mathematics, Dalian University of Technology, Dalian, Liaoning 116024,
China. (dongbodlut@gmail.com).

A Symmetric Homotopy And Hybrid Method For Solving Mixed Trigonometric

Polynomial Systems

Polynomial systems coming from mixed trigonometric polynomial systems have a special
structure: the last m equations are x2 n+i + x2 n+m~+i j 1 =0,;i=1; : : : ;m. And the m additional
quadratic equations have an inherent symmetry. In this paper, exploiting the special structure and
the symmetry, a symmetric homotopy is constructed and, combining homotopy method,
decomposition and elimination techniques, an e+cient hybrid method for solving this class of
polynomial systems is presented. Using the new hybrid method, some problems from the literature
and a challenging practical problem are solved. Numerical results show that our method is much

excient.

Key words. polynomial system, mixed trigonometric polynomial system, homotopy method,

hybrid algorithm.

Liu Jinwang, li dongmei, Fu xiaoling

(College of Mathematics and Computation, Hunan Science and Technology University, Xiangtan,
Hunan, 411201, China e-mail: Jwliu@hnust.edu.cn)

The term orderings which are Homogeneouly Compatible with Composition
Let K[x1,..., xn] be the polynomial ring over a field K in variablesxl,... , xn. Let

®=(6,,---,0,) be a list of n homogeneous polynomials in K[x1,... ,xn]. Polynomial

composition by ® is the operation of replacing xi of a polynomial by &,. We say that


mailto:Jwliu@hnust.edu.cn

composition by ® is homogeneously compatible with the term ordering > if for all terms p and
q,p > q deg p = deg q implies that p o [t(®) > g o [t(®). How to test it is very difficult, in this

paper, we shall obtain a decision procedure for testing it; and obtain some important properties:
Proposition 1 Followings are equivalent

() Vp,Vq,degp=degq;, p>q = polp(®)>qolp(®);

(i) VyeZ",y ishomogeneous,y-A4> 0=y-T-4> 0.
Proposition 2 Followings are equivalent

(i) VyeZ",y ishomogeneous, y- 4> 0=y-T-4> 0;

() VyeZ",y-M-A> 0=>y-M-T-4> 0.
Proposition 3 Followings are equivalent

(i) VweZ",y-M-A> 0=>y-M-T-4>, 0,

() VyeZ",y-B-M-A>0=y-B-M-T-4>,0.
Proposition 4 Following are equivalent

(1) V9eZ"3-D-M-A> 0=5-D-M-T-4>,0;

(2) the standard form S = (P:Q) of (M -A:M -T - A)is a binary step matrix.
Proposition 5 The following are equivalent

(1) Vp,Vq,degp=degq, p>q = polp(®)>qolp(®);

(2) the standard form S = (P:Q) of (M -A:M -T - A)is a binary step matrix.

Chen Yufu
Graduate University of Chinese Academy of Sciences
Border Bases for Positive Dimensional Polynomial Systems

For the resolutions of zero dimensional polynomial systems, eigenvalue and eigenvector
methods are effective. There border bases are needed and an efficiency algorithm to compute a
border basis is important. In this talk we discuss how to generalize the border basis for the positive
dimensional polynomial systems. We present the concept and give an efficiency algorithm to
compute a border basis for a given polynomial system. The border bases can give more
information on polynomial ideal, such as, dimension, maximum independent set, Hilbert
polynomial, etc. But in this talk we present only an eigenvalue method to find some components
of positive dimensional polynomial systems, which is based on the border bases.
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Chunming Yuan
Key Lab of Mathematics Mechanization
Chinese Academy of Sciences
Characteristic Set Method for Differential-Difference Polynomial Systems

In this paper, we present a characteristic set method for mixed differential and difference
polynomial systems. We introduce the concepts of coherent, regular, proper irreducible, and
strongly irreducible ascending chains and study their properties. We give an algorithm which can
be used to decompose the zero set for a finitely generated differential and difference polynomial
set into the union of the zero sets of regular and consistent ascending chains. As a consequence,
we solve the perfect ideal membership problem for differential and difference polynomials.

Multiple limit cycles for three-dimensional Lotka-Volterra systems

It is well known that a two-dimensional Lotka-Volterra system cannot admit isolated
periodic orbit; that is, if the system has periodic orbits, then these orbits are nonisolated. For
dimension greater than or equal to three, in competition case, Coste et al. (1979) and Schuster et al.
(1979) proved the existence of an isolated periodic orbit (limit cycle). Two limit cycles for a
competition system were constructed by Hofbauer-So (1994) based on Hirsch's monotone flow
theorem, the center manifold theorem, and the Hopf bifucation theorem. In their cases, the local
stable positive equilibrium is surrounded by two limit cycles, in which one is from the Hopf
bifurcation theorem and the other is guaranteed by the Poincare-Bendixson theorem. Multiple
limit cycles were also constructed in three-dimensional Lotka-Volterra systems with various types
of interactions formed by mutualism, competition and prey-predator by Lu-Luo (2002), Luo-Lu
(2002) and Gyllenberg-Yan-Wang (2006).

In this talk, we classify the three-dimensional Lotka-Volterra systems into ten classes and
show that besides the known results for classes 2, 4, 6 and 9, in each class of the remaining six
ones, a system can be constructed to have at least two limit cycles based on the center manifold
theorem and the Hopf bifurcation theorem.
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CAGD

CAGD/CAD

Guoliang Xu, Dan Liu, Qin Zhang

Sixth Order Geometric Partial Differential Equations and Their Applications in
Surface Modeling

Physics and geometry based variational techniques for surface construction have been
shown to be advanced and efficient methods for designing high quality surfaces in the fields of
CAD and CAGD. In this paper we derive a general sixth order geometric partial differential
equation from minimizing a curvature integral functional. The obtained equation is used to solve
several surface modeling problems such as free-form surface design, surface blending and N-side
hole filling, with $G"2$ boundary constraints. We solve the equation numerically using a
generalized divided difference method, where a quadratic fitting scheme is adopted to discretize
several used geometric differential operators consistently. In computer aided geometric design and
computer graphics, high quality fair surfaces with $G*2$ smoothness are sometimes required and
important. The experiments show that the proposed method is efficient and yields high quality
$G~28 surfaces.

Zhaohui Guo, Jiansong Deng, Falai Chen, Xiaohong Jia
University of Science and Technology of China
Proper Reparameterization of Rational Curves Using p-Bases

An improper parameterization of a curve defines a many-to-one correspondence between
the parameter values and the points on the curve. Hence the expression of the improper
parameterization is redundant for tracing the curve more than once. Proper reparameterization
presents the essential parametrization of the
curve by establishing a concise one-to-one correspondence between the parameter values and the
points on the curve. This paper proposes a new efficient algorithm to compute the proper



reparameterization of planar curves. The algorithm makes use of the property of homogeneous
function and the technique of computing p-bases. Some examples are given to illustrate the new
approach.

Ruixia Song
College of Sciences, North China University of Tech., Beijing, China
On the V-system Over Triangular Domain

The V-system is a complete orthogonal system on L,[0,1]. Comparing with the other
orthogonal systems, the V-system has some distinctive characteristics: (1) The V-system is
composed of smooth functions and discontinuous piecewise polynomials at multi-levels. (2) The
V-system has multiresolution property and local support. (3) Using partial sum of the V-series, the
geometric information expressed by piecewise polynomials can be precisely reconstructed without
Gibbs phenomenon. 4 Inthe case of k=0 the V-system is just Haar system.

This paper further studies the V-system of two variables, The main contribution is to introduce

the V-system of degree k defined over triangular domain for £ =0,1,2,3,---

The V-system of degree k over triangular domain is constructed by groups and classes.

Firstly choose %(k+l)(k+2) linear independent functions defined on triangular domain,

using the Schmidt orthogonalization method to obtain orthonormal functions, which compose the

first group of the V-system of degree k. We write it as

Vki,l(xay)a i= 192,,%(k+1)(k+2)

The second group of the V-system of degree k consists of %(k+l)(k+ 2) piecewise

polynomials of two variables of degree k£ (the generators ,must be constructed) defined on

triangular domain under triangulation at level 1, denoted by Vk’;2 (P),i=12,-- -,%(k +1)(k+2).

The construction of m-th (m =3,4,---)group of V-system of degree k is accomplished by

performing squeezing and shifting operations on each of the generators, duplicating them into
each of the sub-triangles under the triangulation at level m-2, set the function value 0 when x is

outside the particular sub-triangle. The m-th group is divided into %(k+1)(k+2) classes, and

each class contains 4" functions. Vk’/n denotes the j-th function in i-th class of m-th group of

V-system of degree £, its expression is:

2" 2«
2,,1—_2)), (x,0)€G, 55,

0, others

. -1
2m—2 Vklyz (2m—2 ()C _ fm_z )’ 2m—2 (y

L]
Vk,m -



m— i m— m— 2"’1*1 —2a+?2
Vk[,}ﬁz = 2 ? Vk,z (_2 z(x - 2£2 )s_ 2 Z(y T))s ()C, y) € Ga,Zﬁ

0, others,
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Automated derivation of the Backlund transformations for a class of nonlinear PDE

A direct and algorithmic method for constructing a kind of auto Backlund transformations
(BT) is proposed. And a Maple package named AutoBT, which can entirely automatically
generate auto BT is presented, the effectiveness of AutoBT is demonstrated by
applications to a variety of nonlinear evolution equations with physical interest as
examples. Not only are previously known BT relations recovered but in some cases new

or more general form of BT relations are obtained.

A family of (N+1)-dimensional generalized NLS equations: similarity transformations

and spatiotemporal solitons

In this paper, a family of (N+1)-dimensional generalized nonlinear Schrodinger (NLS)
equations is investigated. Firstly, we make a similarity transformation to reduce this
family of equations to a family of nonlinear ordinary differential equations with constant
coefficients and a system of nonlinear partial differential equations. Secondly, we solve
these two families of nonlinear determined equations using some ansatze, respectively.
Finally, many types of solutions of the family of (N+1)-dimensional generalized NLS

equations are derived. In particular, for the case N is greater than 1, these obtained solutions

19



contain arbitrary functions which generate abundant structures and are useful to explain

some physical phenomena.
Yonggui Zhu
School of Science, Communication University of China, Beijing 100024, China

New exact solitary-wave solutions with compact support for the K(2,2,1) and K(3,3,1)

equations
In this paper, the Adomian decomposition method is employed to find the solitary solutions

for K(22,1) equation: u, +(u’) +u’) . +u,, =0 and K(33,1) equation:

XXX

u, +w’), +@’),, +u,, =0 . New exact solitary solutions with compact support are

XXX

developed by the symbolic computation system, Maple.
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Rongquan Feng, Hongfeng Wu
School of Mathematical Sciences, Peking University
Efficient Arithmetics on Elliptic Curves over Fields of Characteristic 3

Efficient elliptic curve arithmetic is crucial for cryptosystems based on elliptic curves. Such
cryptosystems often require computing kP for a given integer k and a curve point P . For
example, if k is a secret key and P is another user's public key then kP is a Diffie-Hellman
secret shared between the two users. So a main operation for elliptic curve cryptosystems is the

point multiplication: Q = kP , where the multiplier & is generally a secret (or private) parameter.
Many methods to speed up this operation have been actively studied.
A non-supersingular elliptic curve over a field of characteristic 3 has a point of order three if

and only if it can be written in the form y2 =X +x+b or equivalently the Hessian

form x° + y3 +1=Dxy . In this talk, new point multiplication algorithms in two forms:

Weierstrass and Hessian forms are presented. These algorithms are more efficient than the best
known algorithms in elliptic curves over fields of characteristic 3. Moreover, efficient and secure
point multiplication algorithms based on the Euclid addition chain and the double-base chain, and
the unified additions formulae are also given. These algorithms can protect against the
side-channel analysis.
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Chunming Tang1 Zhuojun Liu® Dingyi Pei'
1 School of Mathematics and Information Sciences, Guangzhou University, China(510006)}
2 Key Laboratory of Mathematics Mechanization, CAS, China(100080)
Efficiently Cryptographic Primitive from Z-protocols*

In this paper, we will construct the following cryptographic primitive based on ) -protocols
if one-way function exists:

1 interactive witness indistinguishable and witness hiding protocols for any NP;

2 non-interactive witness indistinguishable and non-interactive witness hiding protocol for
any NP;

3 non-interactively perfectly hiding and computationally binding commitment scheme.

Comparing with existed works, items 1 and items 2 were constructed from ) -protocol on
Hamiltonian Cycle and ) -protocol for relation OR, however, they are constructed only from
> -protocol on Hamiltonian Cycle in this paper. In FOCS2006, STOC2006, STOC2007, a
perfectly hiding and computationally binding commitment scheme was constructed under the
existence of one-way functions respectively, however, all of them have polynomial number of
rounds, i.e., impractical. Our works will be the first work to construct practically perfectly hiding

and computationally binding commitment scheme under the existence of one-way function.

Keywords: Cryptography, witness indistinguishable, witness hiding, Y -protocol, perfectly hiding
and computationally binding commitment scheme.

1 Walsh 2  Bent

Xiao-Shan Gao, Fengjuan Chai, and Chunming Yuan
Institute of Systems Science, Chinese Academy of Sciences

A Characteristic Set Method for Solving Boolean Equations and Applications in
Cryptanalysis of Stream Ciphers

We present a characteristic set method for solving polynomial equation systems in the finite
field F2. Due to the special property of F2, the given characteristic set methods are much more

22



efficient and simpler than the general characteristic set method. In particular, we could give an
explicit formula for the number of solutions for a given polynomial equation system. We can also
prove that the well-ordering principle can be executed in a polynomial number of steps in terms of
the number of variables. We also use our methods to solve equations raised from cryptanalysis of
stream ciphers based on nonlinear filter generators. Extensive experiments show that our method

is comparable with the best implemented Groebner basis method for a large set of problems.
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Yong-Bin Li
School of Applied Mathematic
University of Electronic Science and Technology of China

Some further property of triangular sets
Let K be a field of characteristic 0 and K[x,,...,x,] the ring of polynomials in the

variables x,...,x, with coefficients in K. ~Suppose that
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T:[fl(ula"':ur’yl)af‘z(ula""uwylﬂyz)"":J{s(ula---:ur:yla---ays)],

where (u,,...,u_,¥,,...,»,) is a permutation of (X,,...,X, ), is a triangular set in K[x,,...,x,].

The following important assertion proved by Aubry et al. in 1999 (other proof given by Wang in
2000): T isaregularset introduced by Yang and Zhang in 1991 and Kalkbrener in 1993 if

and only if sat(T)={peK][x,,...,x, ]| prem(p,T) =0} can be deduced from the result
Ideal *(T)={p e K(u,,....u.)[y,....v,]| prem(p,T) =0} where Ideal*(T) stands for
the ideal generated by all elements of T in K(u,,...,u,)[),,..., ¥, ], obtained by Yang et al. in

1996. Furthermore, we present that T is also a Grobner basis of Ideal*(T) if Tis a
normal triangular set (or p-chain introduced by Gao et al. in 1992 ).

According to the analytic method established by Zhang et al. in 1991, the U-set of T

(denoted by U,) which is usually more simple than the set of initials of T. U, has the
following useful property Zero(T/U,) < Zero(sat(T)) (presented by author in 2006) .

Furthermore, we prove that Zero(sat(T)) = Zero(ldeal(T):U™) where Ideal(T) stands

for the ideal generated by all elements of T inK[x,,...,x,] and U = Hu, this  result

uelUy
develops the assertion  Zero(sat(T)) = Zero(ldeal(T):V*), V = H v (obtained by
veini(T)
Wang 2000). Based upon the above results, we give a note on improving the unmixed
decomposition for the variety (introduced by Gao et al. in 1993).

An algorithm of global optimization using cut-peak functions

An algorithm is proposed for finding a global minimizer of a multimodal
function with multiple variables. The basic idea of the algorithm is described as
follows: Constructing a so-called cut-peak function and a choice function for each
present minimizer, the original problem of finding a global solution is converted into
an auxiliary minimization problem of finding local minimizers of the choice function,
whose objective function values are smaller than previous ones. For a local minimum
solution of auxiliary problems this procedure is repeated until no new minimizer with
a smaller objective function value could be found for the last minimizer. Construction
of auxiliary problems and choice of parameters are relatively simple, so this algorithm
is relatively easy to implement, and the results of the numerical tests are satisfactory
compared to the filled function methods. As an application, the algorithm is also used
for finding zeros of nonlinear functions and proved more satisfactory.
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A Major Index for Matchings and Set Partitions

For a permutation 7=a,a;...a,, a pair (a; a;) is called an inversion if i <j and a;> a;. The
statistic inv(z) is defined as the number of inversions of z. The descent set D(z) is defined as {i: a;
> a4+ }, whose cardinality is des(m). The sum of the elements of D(x) is called the major index of
7 (also called the greater index) and denoted maj(z). One of the classical results on permutations is
the equidistribution of the statistics inv and maj. A statistic equidistributed with inv is called
Mahonian.

Given a partition of /n]/={1,2,...,n}, there is a natural generalization of inversions, namely,
2-crossings, which can be viewed easily on a graphical representation of the partition. In this
paper we introduce a new statistic, called the p-major index and denoted pmaj(P), on the set of
partitions of /n]/. We prove that for any S, TC [/n/ with |S|=|T|, pmaj and cr 2, the number of
2-crossings, are equally distributed on the set P_n(S, 7). Here P_n(S, T) is the set of partitions of
[n] for which S is the set of minimal block elements, and T is the set of maximal block elements.
Restricted to permutations, the pair (¢ 2, pmaj) coincides with (inv, maj). This generalizes
MacMahon's equidistribution theorem for the permutation statistics.

( ) , , 257061

Yongwei WU, Chen Gang, Guangwen YANG, Weimin Zheng
Department of Computer Science and Technology;
Tsinghua National Laboratory for Information Science and Technology

Grid Scheduling based on Prediction of Task Completion Time

Scheduling problems of grid research area are paid more and more attention recently. In this
paper, a grid Scheduling model based on Prediction of task Completion Time (SPCT) is proposed.

Through Using Least Squares Discrete Curve Fitting, SPCT dynamically establishes the
regression function of Completion Time of Task (CTT) according to the historical record first.
Predicted Completion Time of each coming task is calculated for each candidate node with the
regression function secondly. And then, the node with the least value will be allocated to run the
task.

The SPCT is used to input data sensitive applications and implemented in one real-world grid
environment, Bioinformatics Grid Platform. Experimental result shows that the SPCT could
reduce the average CTT of tasks by 19%.
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