Graphs, Posets, Sudoku, and Gröbner Bases

David A. Cox

Department of Mathematics and Statistics
Amherst College
dacox@amherst.edu

Beijing, August 2015
Overview

This course will cover four topics:

1. Graphs and Binomial Edge Ideals
2. Graphs and Coloring Ideals
3. Lattices and Join-Meet Ideals
4. Sudoku Puzzles

These topics are linked by the theory of Gröbner bases:

- Topics 1 and 2 use Gröbner bases in the statements of theorems.
- Topic 3 uses Gröbner bases in the proof of a theorem.
- Topic 4 is a fun application of Gröbner bases.

We begin with a quick review of Gröbner bases.
This course will cover four topics:

1. Graphs and Binomial Edge Ideals
2. Graphs and Coloring Ideals
3. Lattices and Join-Meet Ideals
4. Sudoku Puzzles

These topics are linked by the theory of Gröbner bases:

- Topics 1 and 2 use Gröbner bases in the statements of theorems.
- Topic 3 uses Gröbner bases in the proof of a theorem.
- Topic 4 is a fun application of Gröbner bases.

We begin with a quick review of Gröbner bases.
Overview

This course will cover four topics:

1. Graphs and Binomial Edge Ideals
2. Graphs and Coloring Ideals
3. Lattices and Join-Meet Ideals
4. Sudoku Puzzles

These topics are linked by the theory of Gröbner bases:

- Topics 1 and 2 use Gröbner bases in the statements of theorems.
- Topic 3 uses Gröbner bases in the proof of a theorem.
- Topic 4 is a fun application of Gröbner bases.

We begin with a quick review of Gröbner bases.
Overview

This course will cover four topics:

1. Graphs and Binomial Edge Ideals
2. Graphs and Coloring Ideals
3. Lattices and Join-Meet Ideals
4. Sudoku Puzzles

These topics are linked by the theory of Gröbner bases:

- Topics 1 and 2 use Gröbner bases in the statements of theorems.
- Topic 3 uses Gröbner bases in the proof of a theorem.
- Topic 4 is a fun application of Gröbner bases.

We begin with a quick review of Gröbner bases.
Overview

This course will cover four topics:

1. Graphs and Binomial Edge Ideals
2. Graphs and Coloring Ideals
3. Lattices and Join-Meet Ideals
4. Sudoku Puzzles

These topics are linked by the theory of Gröbner bases:

- Topics 1 and 2 use Gröbner bases in the statements of theorems.
- Topic 3 uses Gröbner bases in the proof of a theorem.
- Topic 4 is a fun application of Gröbner bases.

We begin with a quick review of Gröbner bases.
Let \(R = k[x_1, \ldots, x_n] \) be a polynomial ring over a field \(k \).

Definition

A monomial order on \(R \) is a total order \(> \) on the monomials \(x^\alpha = x_1^{a_1} \cdots x_n^{a_n} \) such that

- \(x^\alpha > x^\beta \Rightarrow x^\alpha x^\gamma > x^\beta x^\gamma \) for all \(x^\gamma \).
- \(x^\alpha > 1 \) for all \(x^\alpha \neq 1 \).

A monomial order allows to define the leading term \(\text{LT}(f) = cx^\alpha \) of a nonzero polynomial \(f \in R \).

Definition

\(\{g_1, \ldots, g_t\} \) is a Gröbner basis of a nonzero ideal \(I \subseteq R \) if \(g_1, \ldots, g_t \in I \) and for every \(f \neq 0 \) in \(I \), \(\text{LT}(f) \) is divisible by some \(\text{LT}(g_i) \).

There are powerful algorithms for computing Gröbner bases.
Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k.

Definition

A **monomial order** on R is a total order $>$ on the monomials $x^\alpha = x_1^{a_1} \cdots x_n^{a_n}$ such that

- $x^\alpha > x^\beta \Rightarrow x^\alpha x^\gamma > x^\beta x^\gamma$ for all x^γ.
- $x^\alpha > 1$ for all $x^\alpha \neq 1$.

A monomial order allows to define the **leading term** $\text{LT}(f) = cx^\alpha$ of a nonzero polynomial $f \in R$.

Definition

$G = \{g_1, \ldots, g_t\}$ is a **Gröbner basis** of a nonzero ideal $I \subseteq R$ if $g_1, \ldots, g_t \in I$ and for every $f \neq 0$ in I, $\text{LT}(f)$ is divisible by some $\text{LT}(g_i)$.

There are powerful algorithms for computing Gröbner bases.
Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k.

Definition

A **monomial order** on R is a total order $>$ on the monomials $x^\alpha = x_1^{a_1} \cdots x_n^{a_n}$ such that

- $x^\alpha > x^\beta \Rightarrow x^\alpha x^\gamma > x^\beta x^\gamma$ for all x^γ.
- $x^\alpha > 1$ for all $x^\alpha \neq 1$.

A monomial order allows to define the **leading term** $\text{LT}(f) = c x^\alpha$ of a nonzero polynomial $f \in R$.

Definition

$G = \{g_1, \ldots, g_t\}$ is a **Gröbner basis** of a nonzero ideal $I \subseteq R$ if $g_1, \ldots, g_t \in I$ and for every $f \neq 0$ in I, $\text{LT}(f)$ is divisible by some $\text{LT}(g_i)$.

There are powerful algorithms for computing Gröbner bases.
Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k.

Definition

A monomial order on R is a total order $>$ on the monomials $x^\alpha = x_1^{a_1} \cdots x_n^{a_n}$ such that

- $x^\alpha > x^\beta \Rightarrow x^\alpha x^\gamma > x^\beta x^\gamma$ for all x^γ.
- $x^\alpha > 1$ for all $x^\alpha \neq 1$.

A monomial order allows to define the **leading term** $\text{LT}(f) = c x^\alpha$ of a nonzero polynomial $f \in R$.

Definition

$G = \{g_1, \ldots, g_t\}$ is a **Gröbner basis** of a nonzero ideal $I \subseteq R$ if $g_1, \ldots, g_t \in I$ and for every $f \neq 0$ in I, $\text{LT}(f)$ is divisible by some $\text{LT}(g_i)$.

There are powerful algorithms for computing Gröbner bases.
Let $R = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k.

Definition

A monomial order on R is a total order $>$ on the monomials $x^\alpha = x_1^{a_1} \cdots x_n^{a_n}$ such that

- $x^\alpha > x^\beta \Rightarrow x^\alpha x^\gamma > x^\beta x^\gamma$ for all x^γ.
- $x^\alpha > 1$ for all $x^\alpha \neq 1$.

A monomial order allows to define the leading term $\text{LT}(f) = cx^\alpha$ of a nonzero polynomial $f \in R$.

Definition

$G = \{g_1, \ldots, g_t\}$ is a Gröbner basis of a nonzero ideal $I \subseteq R$ if $g_1, \ldots, g_t \in I$ and for every $f \neq 0$ in I, $\text{LT}(f)$ is divisible by some $\text{LT}(g_i)$.

There are powerful algorithms for computing Gröbner bases.
A Gröbner basis $G = \{g_1, \ldots, g_t\}$ of an ideal I is a basis of I, i.e.,

$$I = \langle g_1, \ldots, g_t \rangle.$$

G is reduced if every g_i has the property that for all $j \neq i$, $\text{LT}(g_j)$ divides no term of g_i.

Once we fix a monomial order on R, every nonzero ideal $I \subseteq R$ has a unique reduced Gröbner basis.

(The Consistency Theorem) Over \mathbb{C}, a system of polynomial equations

$$f_1 = \cdots = f_s = 0$$

has no solutions if and only if $\{1\}$ is the reduced Gröbner basis of the ideal $I = \langle f_1, \ldots, f_s \rangle$.
A Gröbner basis $G = \{g_1, \ldots, g_t\}$ of an ideal I is a basis of I, i.e.,

$$I = \langle g_1, \ldots, g_t \rangle.$$

G is reduced if every g_i has the property that for all $j \neq i$, \text{LT}(g_j)$ divides no term of g_i.

Once we fix a monomial order on R, every nonzero ideal $I \subseteq R$ has a unique reduced Gröbner basis.

(The Consistency Theorem) Over \mathbb{C}, a system of polynomial equations

$$f_1 = \cdots = f_s = 0$$

has no solutions if and only if $\{1\}$ is the reduced Gröbner basis of the ideal $I = \langle f_1, \ldots, f_s \rangle$.
More on Gröbner Bases

- A Gröbner basis $G = \{g_1, \ldots, g_t\}$ of an ideal I is a basis of I, i.e.,
 \[I = \langle g_1, \ldots, g_t \rangle. \]

- G is reduced if every g_i has the property that for all $j \neq i$, $\text{LT}(g_j)$ divides no term of g_i.

- Once we fix a monomial order on R, every nonzero ideal $I \subseteq R$ has a unique reduced Gröbner basis.

- (The Consistency Theorem) Over \mathbb{C}, a system of polynomial equations
 \[f_1 = \cdots = f_s = 0 \]
 has no solutions if and only if $\{1\}$ is the reduced Gröbner basis of the ideal $I = \langle f_1, \ldots, f_s \rangle$.
A Gröbner basis $G = \{g_1, \ldots, g_t\}$ of an ideal I is a basis of I, i.e.,

$$I = \langle g_1, \ldots, g_t \rangle.$$

G is reduced if every g_i has the property that for all $j \neq i$, $\text{LT}(g_j)$ divides no term of g_i.

Once we fix a monomial order on R, every nonzero ideal $I \subseteq R$ has a unique reduced Gröbner basis.

(The Consistency Theorem) Over \mathbb{C}, a system of polynomial equations

$$f_1 = \cdots = f_s = 0$$

has no solutions if and only if $\{1\}$ is the reduced Gröbner basis of the ideal $I = \langle f_1, \ldots, f_s \rangle$.

A labeling of G is a bijection $V(G) \simeq [n] = \{1, \ldots, n\}$. Given a labeling, we typically assume $V(G) = [n]$.

Definition

The binomial edge ideal of a labeled graph G is the ideal J_G in the polynomial ring $k[x_1, \ldots, x_n, y_1, \ldots, y_n]$ generated by the binomials

$$f_{ij} = x_i y_j - x_j y_i$$

for all i, j such that $ij \in E(G)$ and $i < j$.

Question

When do the binomials f_{ij} form a Gröbner basis of J_G?
A labeling of G is a bijection $V(G) \cong [n] = \{1, \ldots, n\}$. Given a labeling, we typically assume $V(G) = [n]$.

Definition

The binomial edge ideal of a labeled graph G is the ideal J_G in the polynomial ring $k[x_1, \ldots, x_n, y_1, \ldots, y_n]$ generated by the binomials

$$f_{ij} = x_i y_j - x_j y_i$$

for all i, j such that $ij \in E(G)$ and $i < j$.

Question

When do the binomials f_{ij} form a Gröbner basis of J_G?
Closed Graphs

Definition

A labeling of G is **closed** if for all distinct edges $ji, ik \in E(G)$ with either $j > i < k$ or $j < i > k$, then $jk \in E(G)$.

A graph is **closed** if it has a closed labeling.

A labeling of G gives a direction to each edge $ij \in E(G)$ where the arrow points from i to j when $i < j$. Then closed means the following:

Whenever the arrows point away from i (on the left) or towards i (on the right), closed means that j and k are connected by an edge.
Closed Graphs

Definition

A labeling of G is **closed** if for all distinct edges $ji, ik \in E(G)$ with either $j > i < k$ or $j < i > k$, then $jk \in E(G)$.

A graph is **closed** if it has a closed labeling.

A labeling of G gives a direction to each edge $ij \in E(G)$ where the arrow points from i to j when $i < j$. Then closed means the following:

Whenever the arrows point away from i (on the left) or towards i (on the right), closed means that j and k are connected by an edge.
A labeling of G is **closed** if for all distinct edges $ji, ik \in E(G)$ with either $j > i < k$ or $j < i > k$, then $jk \in E(G)$.

A graph is **closed** if it has a closed labeling.

A labeling of G gives a direction to each edge $ij \in E(G)$ where the arrow points from i to j when $i < j$. Then closed means the following:

Whenever the arrows point away from i (on the left) or towards i (on the right), closed means that j and k are connected by an edge.
Theorem (Herzog, Hibi, Hreinsdóttir, Kahle, Rauh; Ohtani)

A labeling of G is closed \iff the f_{ij} form a Gröbner basis of J_G for the lex order satisfying

$$x_1 > \cdots > x_n > y_1 > \cdots > y_n.$$

Proof.

(\Leftarrow) Suppose the f_{ij} form a Gröbner basis and $i < j < l$ with $ij, il \in E(G)$. Then J_G contains

$$f = y_l f_{ij} - y_j f_{il} = y_l (x_i y_j - x_j y_i) - y_j (x_i y_l - x_l y_i) = -x_j y_i y_l + x_l y_i y_j$$

and $\text{LT}(f) = -x_j y_i y_l$. This is divisible by $\text{LT}(f_{rs}) = x_r y_s$, $r < s$, $rs \in E(G)$. The only possibility is $\text{LT}(f_{jl}) = x_j y_l$ since $i < j < l$. Hence $jl \in E(G)$.

(\Rightarrow) Use the Buchberger Criterion. Exercise!
Theorem (Herzog, Hibi, Hreinsdóttir, Kahle, Rauh; Ohtani)

A labeling of G is closed \iff the f_{ij} form a Gröbner basis of J_G for the lex order satisfying

$$x_1 > \cdots > x_n > y_1 > \cdots > y_n.$$

Proof.

(\Leftarrow) Suppose the f_{ij} form a Gröbner basis and $i < j < l$ with $ij, il \in E(G)$. Then J_G contains

$$f = y_l f_{ij} - y_j f_{il} = y_l(x_i y_j - x_j y_i) - y_j(x_i y_l - x_l y_i) = -x_j y_i y_l + x_l y_l y_j$$

and $\text{LT}(f) = -x_j y_i y_l$. This is divisible by $\text{LT}(f_{rs}) = x_r y_s$, $r < s$, $rs \in E(G)$. The only possibility is $\text{LT}(f_{jl}) = x_j y_l$ since $i < j < l$. Hence $jl \in E(G)$.

(\Rightarrow) Use the Buchberger Criterion. Exercise!
The Theorem

Theorem (Herzog, Hibi, Hreinsdóttir, Kahle, Rauh; Ohtani)

A labeling of G is closed \iff the f_{ij} form a Gröbner basis of J_G for the lex order satisfying

$$x_1 > \cdots > x_n > y_1 > \cdots > y_n.$$

Proof.

(\Leftarrow) Suppose the f_{ij} form a Gröbner basis and $i < j < l$ with $ij, il \in E(G)$. Then J_G contains

$$f = y_l f_{ij} - y_j f_{il} = y_l (x_i y_j - x_j y_i) - y_j (x_i y_l - x_l y_i) = -x_j y_i y_l + x_l y_i y_j$$

and $\text{LT}(f) = -x_j y_i y_l$. This is divisible by $\text{LT}(f_{rs}) = x_r y_s$, $r < s$, $rs \in E(G)$. The only possibility is $\text{LT}(f_{jl}) = x_j y_l$ since $i < j < l$. Hence $jl \in E(G)$.

(\Rightarrow) Use the Buchberger Criterion. **Exercise!**
When Does a Graph Have a Closed Labeling?

Not Closed

Closed!
Three Properties

A graph G is

- **Chordal** if every cycle has a chord.

- **Claw-free** if

 ![Graph Diagram]

 is not an induced subgraph of G.

- **Narrow** if every shortest path P of maximal length has the property that every vertex of G either lies on P or is adjacent to P.

Proposition (Herzog, Hibi, Hreinsdóttir, Kahle, Rauh)

A closed graph is chordal and claw-free.

Exercise: Prove this.
A graph G is
- **Chordal** if every cycle has a chord.
- **Claw-free** if

 \[
 \begin{small}
 \begin{array}{c}
 G
 \\
 \end{array}
 \end{small}
 \]

 is not an induced subgraph of G.
- **Narrow** if every shortest path P of maximal length has the property that every vertex of G either lies on P or is adjacent to P.

Proposition (Herzog, Hibi, Hreinsdóttir, Kahle, Rauh)

* A closed graph is chordal and claw-free.

Exercise: Prove this.
A graph G is

- **Chordal** if every cycle has a chord.
- **Claw-free** if

 is not an induced subgraph of G.
- **Narrow** if every shortest path P of maximal length has the property that every vertex of G either lies on P or is adjacent to P.

Proposition (Herzog, Hibi, Hreinsdóttir, Kahle, Rauh)

A closed graph is chordal and claw-free.

Exercise: Prove this.
Three Properties

A graph G is
- **Chordal** if every cycle has a chord.
- **Claw-free** if

is not an induced subgraph of G.
- **Narrow** if every shortest path P of maximal length has the property that every vertex of G either lies on P or is adjacent to P.

Proposition (Herzog, Hibi, Hreinsdóttir, Kahle, Rauh)

A closed graph is chordal and claw-free.

Exercise: Prove this.
Three Properties

A graph G is

- **Chordal** if every cycle has a chord.
- **Claw-free** if

 is not an induced subgraph of G.

- **Narrow** if every shortest path P of maximal length has the property that every vertex of G either lies on P or is adjacent to P.

Proposition (Herzog, Hibi, Hreinsdóttir, Kahle, Rauh)

A closed graph is chordal and claw-free.

Exercise: Prove this.
Theorem (Erskine)

A connected graph is closed ⇐⇒ it is chordal, claw-free and narrow.

Remark

The conditions of the theorem are independent of each other:

- A claw is narrow and chordal but not claw-free.
- A 4-cycle is narrow and claw-free but not chordal.
- The graph
 ![Triforce](image)
 is chordal and claw-free but not narrow (Legend of Zelda triforce).
Characterize Closed Graphs

Theorem (Erskine)

A connected graph is closed ⇐⇒ it is chordal, claw-free and narrow.

Remark

The conditions of the theorem are independent of each other:

- A claw is narrow and chordal but not claw-free.
- A 4-cycle is narrow and claw-free but not chordal.
- The graph

![Graph Example](image.png)

is chordal and claw-free but not narrow (Legend of Zelda triforce).
Theorem (Erskine)

A connected graph is closed \iff it is chordal, claw-free and narrow.

Remark

The conditions of the theorem are independent of each other:

- A claw is narrow and chordal but not claw-free.
- A 4-cycle is narrow and claw-free but not chordal.
- The graph

![Graph](image)

is chordal and claw-free but not narrow (Legend of Zelda triforce).
Theorem (Erskine)

A connected graph is closed \iff it is chordal, claw-free and narrow.

Remark

The conditions of the theorem are independent of each other:

- A claw is narrow and chordal but not claw-free.
- A 4-cycle is narrow and claw-free but not chordal.

The graph

is chordal and claw-free but not narrow (Legend of Zelda triforce).
Characterize Closed Graphs

Theorem (Erskine)

A connected graph is closed \iff it is chordal, claw-free and narrow.

Remark

The conditions of the theorem are independent of each other:

- A claw is narrow and chordal but not claw-free.
- A 4-cycle is narrow and claw-free but not chordal.
- The graph

![Diagram](image)

is chordal and claw-free but not narrow (Legend of Zelda triforce).

Definition

A *k*-coloring of a graph G is a function from $V(G)$ to a set of k colors such that adjacent vertices have distinct colors.

Example

This graph has a 3-coloring.
Graph Ideal

Definition

The \textit{k-coloring ideal} of \(G\) is the ideal \(I_{G,k} \subseteq \mathbb{C}[x_i \mid i \in V]\) generated by:

- \(x_i^k - 1\) for all \(i \in V(G)\)
- \(x_i^{k-1} + x_i^{k-2}x_j + \cdots + x_ix_j^{k-2} + x_j^{k-1}\) for all \(ij \in E(G)\).

Lemma

\(V(I_{G,k}) \subseteq \mathbb{C}^n\) consists of all \(k\)-colorings of \(G\) for the set of colors consisting of the \(k^{th}\) roots of unity

\[\mu_n = \{1, \zeta_k, \zeta_k^2, \ldots, \zeta_k^{k-1}\}, \quad \zeta_k = e^{2\pi i / k}.\]

Proof. \[
\frac{(x_i^k - 1) - (x_j^k - 1)}{x_i - x_j} = x_i^{k-1} + x_i^{k-2}x_j + \cdots + x_j^{k-1}.
\]
Graph Ideal

Definition

The *k*-coloring ideal of G is the ideal $I_{G,k} \subseteq \mathbb{C}[x_i \mid i \in V]$ generated by:

- for all $i \in V(G)$: $x_i^k - 1$
- for all $ij \in E(G)$: $x_i^{k-1} + x_i^{k-2}x_j + \cdots + x_ix_j^{k-2} + x_j^{k-1}$.

Lemma

$V(I_{G,k}) \subseteq \mathbb{C}^n$ consists of all k-colorings of G for the set of colors consisting of the k^{th} roots of unity

$$\mu_n = \{1, \zeta_k, \zeta_k^2, \ldots, \zeta_k^{k-1}\}, \quad \zeta_k = e^{2\pi i / k}.$$

Proof. \[
\frac{(x_i^k - 1) - (x_j^k - 1)}{x_i - x_j} = x_i^{k-1} + x_i^{k-2}x_j + \cdots + x_j^{k-1}.
\]
The \(k \)-coloring ideal of \(G \) is the ideal \(I_{G,k} \subseteq \mathbb{C}[x_i | i \in V] \) generated by:

- for all \(i \in V(G) \): \(x_i^k - 1 \)
- for all \(ij \in E(G) \): \(x_i^{k-1} + x_i^{k-2}x_j + \cdots + x_ix_j^{k-2} + x_j^{k-1} \).

Lemma

\(\mathcal{V}(I_{G,k}) \subseteq \mathbb{C}^n \) consists of all \(k \)-colorings of \(G \) for the set of colors consisting of the \(k \)th roots of unity

\[\mu_n = \{ 1, \zeta_k, \zeta_k^2, \ldots, \zeta_k^{k-1} \}, \quad \zeta_k = e^{2\pi i/k}. \]

Proof.

\[
\frac{(x_i^k - 1) - (x_j^k - 1)}{x_i - x_j} = x_i^{k-1} + x_i^{k-2}x_j + \cdots + x_j^{k-1}.
\]
Two Observations

- G has a k-coloring $\iff V(I_{G,k}) \neq \emptyset$.
- By the Consistency Theorem, there is a Gröbner basis criterion for the existence of a k-coloring.

3-Colorings

For 3-colorings, the ideal $I_{G,3}$ is generated by

- for all $i \in V(G)$: $x_i^3 - 1$
- for all $ij \in E(G)$: $x_i^2 + x_ix_j + x_j^2$.

These equations can be hard to solve!

Theorem

3-colorability is NP-complete.
The Existence of Colorings

Two Observations

- \(G \) has a \(k \)-coloring \(\iff V(I_{G,k}) \neq \emptyset \).
- By the Consistency Theorem, there is a Gröbner basis criterion for the existence of a \(k \)-coloring.

3-Colorings

For 3-colorings, the ideal \(I_{G,3} \) is generated by

- for all \(i \in V(G) \): \(x_i^3 - 1 \)
- for all \(ij \in E(G) \): \(x_i^2 + x_i x_j + x_j^2 \).

These equations can be hard to solve!

Theorem

3-colorability is NP-complete.
Two Observations

- G has a k-coloring $\iff V(I_{G,k}) \neq \emptyset$.
- By the Consistency Theorem, there is a Gröbner basis criterion for the existence of a k-coloring.

3-Colorings

For 3-colorings, the ideal $I_{G,3}$ is generated by

- for all $i \in V(G)$: $x_i^3 - 1$
- for all $ij \in E(G)$: $x_i^2 + x_ix_j + x_j^2$.

These equations can be hard to solve!

Theorem

3-colorability is NP-complete.
The Existence of Colorings

Two Observations

- G has a k-coloring $\iff V(I_{G,k}) \neq \emptyset$.
- By the Consistency Theorem, there is a Gröbner basis criterion for the existence of a k-coloring.

3-Colorings

For 3-colorings, the ideal $I_{G,3}$ is generated by

- for all $i \in V(G)$: $x_i^3 - 1$
- for all $ij \in E(G)$: $x_i^2 + x_i x_j + x_j^2$.

These equations can be hard to solve!

Theorem

3-colorability is NP-complete.
The Existence of Colorings

Two Observations

- G has a k-coloring $\iff V(I_{G,k}) \neq \emptyset$.
- By the Consistency Theorem, there is a Gröbner basis criterion for the existence of a k-coloring.

3-Colorings

For 3-colorings, the ideal $I_{G,3}$ is generated by

- for all $i \in V(G)$: $x_i^3 - 1$
- for all $ij \in E(G)$: $x_i^2 + x_ix_j + x_j^2$.

These equations can be hard to solve!

Theorem

3-colorability is NP-complete.
Example

This example of a graph with a 3-coloring is due to Chao and Chen (1993).

Hillar and Windfeldt (2008) compute the reduced Gröbner basis of the graph ideal $I_{G,3}$ for lex with $x_1 > \cdots > x_{12}$.

The reduced Gröbner basis is:

\[
\begin{align*}
\{ & x_3^2 - 1, \ x_7 - x_{12}, \ x_4 - x_{12}, \ x_3 - x_{12}, \\
& x_1^2 + x_{11}x_{12} + x_{12}^2, \ x_9 - x_{11}, \ x_6 - x_{11}, \ x_2 - x_{11}, \\
& x_{10} + x_{11} + x_{12}, \ x_8 + x_{11} + x_{12}, \ x_5 + x_{11} + x_{12}, \\
& x_1 + x_{11} + x_{12} \}\.
\end{align*}
\]

Note $x_8 - x_{10}, \ x_5 - x_{10}, \ x_1 - x_{10} \in I_{G,3}$.
Example

This example of a graph with a 3-coloring is due to Chao and Chen (1993).

Hillar and Windfeldt (2008) compute the reduced Gröbner basis of the graph ideal $I_{G,3}$ for lex with $x_1 > \cdots > x_{12}$.

The reduced Gröbner basis is:

$$\{ x_{12}^3 - 1, \ x_7 - x_{12}, \ x_4 - x_{12}, \ x_3 - x_{12},$$

$$x_{11}^2 + x_{11}x_{12} + x_{12}^2, \ x_9 - x_{11}, \ x_6 - x_{11}, \ x_2 - x_{11},$$

$$x_{10} + x_{11} + x_{12}, \ x_8 + x_{11} + x_{12}, \ x_5 + x_{11} + x_{12},$$

$$x_1 + x_{11} + x_{12} \}.$$

Note $x_8 - x_{10}, \ x_5 - x_{10}, \ x_1 - x_{10} \in I_{G,3}$.
Uniquely k-Colorable Graphs

The Chao/Chen graph has essentially only one 3-coloring.

Definition

A graph G is **uniquely k-colorable** if it has a unique k-coloring up to the permutation of the colors.

Hillar and Windfeldt show that unique k-colorability is easy to detect using Gröbner bases.

We start with a k-coloring of G that uses all k colors. Assume the k colors occur among the last k vertices. Then:

- Use variables $x_1, \ldots, x_{n-k}, y_1, \ldots, y_k$ with lex order

$$x_1 > \cdots > x_{n-k} > y_1 > \cdots > y_k.$$

- Use these variables to label the vertices of G.

Uniquely k-Colorable Graphs

The Chao/Chen graph has essentially only one 3-coloring.

Definition

A graph G is uniquely k-colorable if it has a unique k-coloring up the permutation of the colors.

Hillar and Windfeldt show that unique k-colorability is easy to detect using Gröbner bases.

We start with a k-coloring of G that uses all k colors. Assume the k colors occur among the last k vertices. Then:

- Use variables $x_1, \ldots, x_{n-k}, y_1, \ldots, y_k$ with lex order

 $x_1 > \cdots > x_{n-k} > y_1 > \cdots > y_k$.

- Use these variables to label the vertices of G.
Uniquely k-Colorable Graphs

The Chao/Chen graph has essentially only one 3-coloring.

Definition

A graph G is **uniquely k-colorable** if it has a unique k-coloring up to the permutation of the colors.

Hillar and Windfeldt show that unique k-colorability is easy to detect using Gröbner bases.

We start with a k-coloring of G that uses all k colors. Assume the k colors occur among the last k vertices. Then:

- Use variables $x_1, \ldots, x_{n-k}, y_1, \ldots, y_k$ with lex order

 $$x_1 > \cdots > x_{n-k} > y_1 > \cdots > y_k.$$

- Use these variables to label the vertices of $G.$
Some Interesting Polynomials

Consider the following polynomials:

\[
y_k^k - 1
\]
\[
h_j(y_j, \ldots, y_k) = \sum_{\alpha_j+\ldots+\alpha_k=j} y_j^{\alpha_j} \cdots y_k^{\alpha_k}, \quad j = 1, \ldots, k - 1
\]
\[
x_i - y_j, \quad \mathrm{color}(x_i) = \mathrm{color}(y_j), \quad j \geq 2
\]
\[
x_i + y_2 + \cdots + y_k, \quad \mathrm{color}(x_i) = \mathrm{color}(y_1).
\]

In this notation, the Gröbner basis given earlier is:

\[
\{ y_3^3 - 1, \\
h_2(y_2, y_3) = y_2^2 + y_2 y_3 + y_3^2, \quad h_1(y_1, y_2, y_3) = y_1 + y_2 + y_3, \\
x_7 - y_3, \quad x_4 - y_3, \quad x_3 - y_3, \quad x_9 - y_2, \quad x_6 - y_2, \quad x_2 - y_2, \\
x_8 + y_2 + y_3, \quad x_5 + y_2 + y_3, \quad x_1 + y_2 + y_3 \}.
\]
Some Interesting Polynomials

Consider the following polynomials:

\[y_k^k - 1 \]
\[h_j(y_j, \ldots, y_k) = \sum_{\alpha_j + \cdots + \alpha_k = j} y_j^{\alpha_j} \cdots y_k^{\alpha_k}, \quad j = 1, \ldots, k - 1 \]
\[x_i - y_j, \quad \text{color}(x_i) = \text{color}(y_j), \quad j \geq 2 \]
\[x_i + y_2 + \cdots + y_k, \quad \text{color}(x_i) = \text{color}(y_1). \]

In this notation, the Gröbner basis given earlier is:

\[\{ y_3^3 - 1, \]
\[h_2(y_2, y_3) = y_2^2 + y_2 y_3 + y_3^2, \quad h_1(y_1, y_2, y_3) = y_1 + y_2 + y_3, \]
\[x_7 - y_3, \quad x_4 - y_3, \quad x_3 - y_3, \quad x_9 - y_2, \quad x_6 - y_2, \quad x_2 - y_2, \]
\[x_8 + y_2 + y_3, \quad x_5 + y_2 + y_3, \quad x_1 + y_2 + y_3 \}. \]
A Theorem

- G has vertices $x_1, \ldots, x_{n-k}, y_1, \ldots, y_k$.
- G has a k-coloring where y_1, \ldots, y_k get all the colors.
- $\mathbb{C}[x_1, \ldots, x_{n-k}, y_1, \ldots, y_k]$ with lex $x_1 > \cdots > x_{n-k} > y_1 > \cdots > y_k$.

Using this data, we create:

- The coloring ideal $I_{G,k} \subseteq \mathbb{C}[x_1, \ldots, x_{n-k}, y_1, \ldots, y_k]$.
- The n polynomials g_1, \ldots, g_n given by

 $y_k^k - 1, \quad h_j(y_j, \ldots, y_k) \quad (j = 2, \ldots, k - 1), \quad y_1 + \cdots + y_k$
 $x_i - y_j \quad (x_i \text{ has color } y_j, \ j \geq 2), \quad x_i + y_2 + \cdots + y_k \quad (x_i \text{ has color } y_1)$.

Theorem (Hillar and Windfeldt)

The following are equivalent:

- G is uniquely k-colorable.
- $g_1, \ldots, g_n \in I_{G,k}$.
- $\{g_1, \ldots, g_n\}$ is the reduced Gröbner basis for $I_{G,k}$.
A Theorem

- G has vertices $x_1, \ldots, x_{n-k}, y_1, \ldots, y_k$.
- G has a k-coloring where y_1, \ldots, y_k get all the colors.
- $\mathbb{C}[x_1, \ldots, x_{n-k}, y_1, \ldots, y_k]$ with lex $x_1 > \cdots > x_{n-k} > y_1 > \cdots > y_k$.

Using this data, we create:

- The coloring ideal $I_{G,k} \subseteq \mathbb{C}[x_1, \ldots, x_{n-k}, y_1, \ldots, y_k]$.
- The n polynomials g_1, \ldots, g_n given by

 $y_k^k - 1, \quad h_j(y_j, \ldots, y_k) \quad (j = 2, \ldots, k - 1), \quad y_1 + \cdots + y_k$

 $x_i - y_j \quad (x_i \text{ has color } y_j, \quad j \geq 2), \quad x_i + y_2 + \cdots + y_k \quad (x_i \text{ has color } y_1)$.

Theorem (Hillar and Windfeldt)

The following are equivalent:

- G is uniquely k-colorable.
- $g_1, \ldots, g_n \in I_{G,k}$.
- $\{g_1, \ldots, g_n\}$ is the reduced Gröbner basis for $I_{G,k}$.
A Theorem

- G has vertices $x_1, \ldots, x_{n-k}, y_1, \ldots, y_k$.
- G has a k-coloring where y_1, \ldots, y_k get all the colors.
- $\mathbb{C}[x_1, \ldots, x_{n-k}, y_1, \ldots, y_k]$ with lex $x_1 \succ \cdots \succ x_{n-k} \succ y_1 \succ \cdots \succ y_k$.

Using this data, we create:

- The coloring ideal $I_{G,k} \subseteq \mathbb{C}[x_1, \ldots, x_{n-k}, y_1, \ldots, y_k]$.
- The n polynomials g_1, \ldots, g_n given by

 $y_k^k - 1, \quad h_j(y_j, \ldots, y_k) \ (j = 2, \ldots, k - 1), \quad y_1 + \cdots + y_k$

 $x_i - y_j \ (x_i \text{ has color } y_j, \ j \geq 2), \quad x_i + y_2 + \cdots + y_k \ (x_i \text{ has color } y_1)$.

Theorem (Hillar and Windfeldt)

The following are equivalent:

- G is uniquely k-colorable.
- $g_1, \ldots, g_n \in I_{G,k}$.
- $\{g_1, \ldots, g_n\}$ is the reduced Gröbner basis for $I_{G,k}$.
Comments

- The theorem on the previous slide assumes that we know k vertices that will carry distinct colors.
- Hillar and Windfeldt have a version of the theorem that does make this assumption.

References

We will now take a 10 minute break before resuming the course.
Comments

- The theorem on the previous slide assumes that we know k vertices that will carry distinct colors.
- Hillar and Windfeldt have a version of the theorem that does make this assumption.

References

We will now take a 10 minute break before resuming the course.
Comments and References

Comments

The theorem on the previous slide assumes that we know k vertices that will carry distinct colors.

Hillar and Windfeldt have a version of the theorem that does make this assumption.

References

We will now take a 10 minute break before resuming the course.
Comments and References

Comments

- The theorem on the previous slide assumes that we know k vertices that will carry distinct colors.
- Hillar and Windfeldt have a version of the theorem that does make this assumption.

References

We will now take a 10 minute break before resuming the course.
Lattices

Graphs are not the only combinatorial objects that give interesting ideals. Here we explore ideals associated to finite lattices.

A poset is a partially ordered set. All posets are assumed to be finite.

Definition

Let \((L, \geq)\) be a poset and fix \(a, b \in L\).

- \(a\) and \(b\) have a **join** if \(\{a, b\}\) has a least upper bound in \(L\) with respect to \(\geq\). If a join exists, it is unique and is denoted \(a \lor b\).

- \(a\) and \(b\) have a **meet** if \(\{a, b\}\) has a greatest lower bound in \(L\) with respect to \(\geq\). If a meet exists, it is unique and is denoted \(a \land b\).

Definition

A lattice is a poset \(L\) such that for every \(a, b \in L\), \(a \lor b\) and \(a \land b\) exist.
Lattices

Graphs are not the only combinatorial objects that give interesting ideals. Here we explore ideals associated to finite lattices.

A poset is a partially ordered set. All posets are assumed to be finite.

Definition

Let \((L, \geq)\) be a poset and fix \(a, b \in L\).

- \(a\) and \(b\) have a **join** if \(\{a, b\}\) has a least upper bound in \(L\) with respect to \(\geq\). If a join exists, it is unique and is denoted \(a \lor b\).

- \(a\) and \(b\) have a **meet** if \(\{a, b\}\) has a greatest lower bound in \(L\) with respect to \(\geq\). If a meet exists, it is unique and is denoted \(a \land b\).

Definition

A **lattice** is a poset \(L\) such that for every \(a, b \in L\), \(a \lor b\) and \(a \land b\) exist.
Graphs are not the only combinatorial objects that give interesting ideals. Here we explore ideals associated to finite lattices.

A poset is a partially ordered set. All posets are assumed to be finite.

Definition

Let \((L, \geq)\) be a poset and fix \(a, b \in L\).

- \(a\) and \(b\) have a **join** if \(\{a, b\}\) has a least upper bound in \(L\) with respect to \(\geq\). If a join exists, it is unique and is denoted \(a \lor b\).
- \(a\) and \(b\) have a **meet** if \(\{a, b\}\) has a greatest lower bound in \(L\) with respect to \(\geq\). If a meet exists, it is unique and is denoted \(a \land b\).

Definition

A **lattice** is a poset \(L\) such that for every \(a, b \in L\), \(a \lor b\) and \(a \land b\) exist.
Graphs are not the only combinatorial objects that give interesting ideals. Here we explore ideals associated to finite lattices.

A poset is a partially ordered set. All posets are assumed to be finite.

Definition

Let (L, \geq) be a poset and fix $a, b \in L$.

- a and b have a **join** if $\{a, b\}$ has a least upper bound in L with respect to \geq. If a join exists, it is unique and is denoted $a \lor b$.

- a and b have a **meet** if $\{a, b\}$ has a greatest lower bound in L with respect to \geq. If a meet exists, it is unique and is denoted $a \land b$.

Definition

A **lattice** is a poset L such that for every $a, b \in L$, $a \lor b$ and $a \land b$ exist.
A lattice L is:
- **distributive** if $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for all $a, b, c \in L$.
- **modular** if $a \leq b$ implies $a \lor (c \land b) = (a \lor c) \land b$ for all $c \in L$.

Example

The power set $\mathcal{P}(A)$ of a finite set A is partially ordered by inclusion. It is a lattice where join is \cup and meet is \cap, and is distributive since

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Comments
- Every distributive lattice is modular.
- The converse can fail: there exist modular lattices that are not distributive. We will soon see an example.
Distributive and Modular Lattices

Definition

A lattice \(L \) is:

- **distributive** if \(a \land (b \lor c) = (a \land b) \lor (a \land c) \) for all \(a, b, c \in L \).
- **modular** if \(a \leq b \) implies \(a \lor (c \land b) = (a \lor c) \land b \) for all \(c \in L \).

Example

The power set \(\mathcal{P}(A) \) of a finite set \(A \) is partially ordered by inclusion. It is a lattice where join is \(\cup \) and meet is \(\cap \), and is distributive since

\[
A \cap (B \cup C) = (A \cap B) \cup (A \cap C).
\]

Comments

- Every distributive lattice is modular.
- The converse can fail: there exist modular lattices that are not distributive. We will soon see an example.
Distributive and Modular Lattices

Definition

A lattice L is:

- **distributive** if $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for all $a, b, c \in L$.
- **modular** if $a \leq b$ implies $a \lor (c \land b) = (a \lor c) \land b$ for all $c \in L$.

Example

The power set $\mathcal{P}(A)$ of a finite set A is partially ordered by inclusion. It is a lattice where join is \cup and meet is \cap, and is distributive since

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Comments

- Every distributive lattice is modular.
- The converse can fail: there exist modular lattices that are not distributive. We will soon see an example.
Distributive and Modular Lattices

Definition

A lattice L is:
- **distributive** if $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for all $a, b, c \in L$.
- **modular** if $a \leq b$ implies $a \lor (c \land b) = (a \lor c) \land b$ for all $c \in L$.

Example

The power set $\mathcal{P}(A)$ of a finite set A is partially ordered by inclusion. It is a lattice where join is \cup and meet is \cap, and is distributive since

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Comments

- Every distributive lattice is modular.
- The converse can fail: there exist modular lattices that are not distributive. We will soon see an example.
Distributive and Modular Lattices

Definition

A lattice \(L \) is:

- **distributive** if \(a \land (b \lor c) = (a \land b) \lor (a \land c) \) for all \(a, b, c \in L \).
- **modular** if \(a \leq b \) implies \(a \lor (c \land b) = (a \lor c) \land b \) for all \(c \in L \).

Example

The power set \(\mathcal{P}(A) \) of a finite set \(A \) is partially ordered by inclusion. It is a lattice where join is \(\cup \) and meet is \(\cap \), and is distributive since

\[
A \cap (B \cup C) = (A \cap B) \cup (A \cap C).
\]

Comments

- Every distributive lattice is modular.
- The converse can fail: there exist modular lattices that are not distributive. We will soon see an example.
Distributive and Modular Lattices

Definition

A lattice L is:
- **distributive** if $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for all $a, b, c \in L$.
- **modular** if $a \leq b$ implies $a \lor (c \land b) = (a \lor c) \land b$ for all $c \in L$.

Example

The power set $\mathcal{P}(A)$ of a finite set A is partially ordered by inclusion. It is a lattice where join is \cup and meet is \cap, and is distributive since

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Comments

- Every distributive lattice is modular.
- The converse can fail: there exist modular lattices that are not distributive. We will soon see an example.
Join-Meet Ideals

Definition

Let L be a finite lattice and let R be the polynomial ring whose variables are the elements of L. Then the join-meet ideal of L is

$$I_L = \langle a b - (a \lor b)(a \land b) \mid a, b \in L \rangle \subseteq R.$$

A natural question concerns how properties of the lattice L relate to properties of the ideal I_L. Here is a nice example.

Theorem (Hibi, 1987)

The join-meet ideal I_L is prime if and only if the lattice L is distributive.

We now discuss some of the interesting relations between Gröbner bases and join-meet ideals.
Definition

Let L be a finite lattice and let R be the polynomial ring whose variables are the elements of L. Then the join-meet ideal of L is

$$I_L = \langle a b - (a \lor b)(a \land b) \mid a, b \in L \rangle \subseteq R.$$

A natural question concerns how properties of the lattice L relate to properties of the ideal I_L. Here is a nice example.

Theorem (Hibi, 1987)

The join-meet ideal I_L is prime if and only if the lattice L is distributive.

We now discuss some of the interesting relations between Gröbner bases and join-meet ideals.
Join-Meet Ideals

Definition

Let L be a finite lattice and let R be the polynomial ring whose variables are the elements of L. Then the join-meet ideal of L is

$$I_L = \langle a b - (a \vee b)(a \wedge b) \mid a, b \in L \rangle \subseteq R.$$

A natural question concerns how properties of the lattice L relate to properties of the ideal I_L. Here is a nice example.

Theorem (Hibi, 1987)

The join-meet ideal I_L is prime if and only if the lattice L is distributive.

We now discuss some of the interesting relations between Gröbner bases and join-meet ideals.
Definition

Let L be a finite lattice and let R be the polynomial ring whose variables are the elements of L. Then the join-meet ideal of L is

$$I_L = \langle a b - (a \lor b)(a \land b) \mid a, b \in L \rangle \subseteq R.$$

A natural question concerns how properties of the lattice L relate to properties of the ideal I_L. Here is a nice example.

Theorem (Hibi, 1987)

The join-meet ideal I_L is prime if and only if the lattice L is distributive.

We now discuss some of the interesting relations between Gröbner bases and join-meet ideals.
We first give a Gröbner basis criterion for a lattice to be distributive.

Theorem (Hibi, Qureshi)

Let L be a lattice. The following are equivalent:

1. L is distributive.
2. I_L is prime.
3. \[
\{ a \cdot b - (a \lor b)(a \land b) \mid a, b \in L \text{ incomparable} \}
\] is a Gröbner basis for I_L for any monomial order satisfying $a \cdot b > (a \lor b)(a \land b)$ when a, b are incomparable.

Proof.

(1) \Leftrightarrow (2) \Rightarrow (3) was proved by Hibi in 1987.

(3) \Rightarrow (1) was noted by Qureshi in 2012.
We first give a Gröbner basis criterion for a lattice to be distributive.

Theorem (Hibi,Qureshi)

Let L be a lattice. The following are equivalent:

1. L is distributive.
2. I_L is prime.
3. $\{a b - (a \lor b)(a \land b) \mid a, b \in L \text{ incomparable}\}$ is a Gröbner basis for I_L for any monomial order satisfying $a b > (a \lor b)(a \land b)$ when a, b are incomparable.

Proof.

(1) \iff (2) \implies (3) was proved by Hibi in 1987.

(3) \implies (1) was noted by Qureshi in 2012.
We first give a Gröbner basis criterion for a lattice to be distributive.

Theorem (Hibi, Qureshi)

Let L be a lattice. The following are equivalent:

1. L is distributive.
2. I_L is prime.
3. $\{ab - (a \lor b)(a \land b) \mid a, b \in L \text{ incomparable}\}$ is a Gröbner basis for I_L for any monomial order satisfying $ab > (a \lor b)(a \land b)$ when a, b are incomparable.

Proof.

(1) \iff (2) \implies (3) was proved by Hibi in 1987.

(3) \implies (1) was noted by Qureshi in 2012.
We first give a Gröbner basis criterion for a lattice to be distributive.

Theorem (Hibi,Qureshi)

Let L be a lattice. The following are equivalent:

1. L is distributive.
2. I_L is prime.
3. \[\{a \cdot b - (a \lor b)(a \land b) \mid a, b \in L \text{ incomparable}\}\] is a Gröbner basis for I_L for any monomial order satisfying $a \cdot b > (a \lor b)(a \land b)$ when a, b are incomparable.

Proof.

(1) \iff (2) \implies (3) was proved by Hibi in 1987.

(3) \implies (1) was noted by Qureshi in 2012.
We first give a Gröbner basis criterion for a lattice to be distributive.

Theorem (Hibi,Qureshi)

Let L be a lattice. The following are equivalent:

1. L is distributive.
2. I_L is prime.
3. \{ $a \land b - (a \lor b)(a \land b) \mid a, b \in L \text{ incomparable}$ \} is a Gröbner basis for I_L for any monomial order satisfying $a \land b > (a \lor b)(a \land b)$ when a, b are incomparable.

Proof.

(1) \iff (2) \implies (3) was proved by Hibi in 1987.

(3) \implies (1) was noted by Qureshi in 2012.
If L is modular but not distributive, then I_L is not prime. The next thing would be for I_L to be radical. Recall:

- The radical of an ideal I is $\sqrt{I} = \{ f \in R \mid f^m \in I \text{ for some } m \}$.
- I is a radical ideal if $\sqrt{I} = I$.

There is a nice Gröbner basis criterion for an I to be radical.

Proposition

Let $G = \{g_1, \ldots, g_t\}$ be a Gröbner basis of I. If $\text{LT}(g_i)$ is square-free for every i, then I is a radical ideal.

Proof.

If $\text{LT}(g_i)$ is square-free, then $\text{LT}(g_i) \mid \text{LT}(f^m) \Rightarrow \text{LT}(g_i) \mid \text{LT}(f)$.

Exercise: Complete the proof.
If L is modular but not distributive, then I_L is not prime. The next thing would be for I_L to be radical. Recall:

- The **radical** of an ideal I is $\sqrt{I} = \{ f \in R \mid f^m \in I \text{ for some } m \}$.
- I is a **radical ideal** if $\sqrt{I} = I$.

There is a nice Gröbner basis criterion for an I to be radical.

Proposition

Let $G = \{ g_1, \ldots, g_t \}$ be a Gröbner basis of I. If $\text{LT}(g_i)$ is square-free for every i, then I is a radical ideal.

Proof.

If $\text{LT}(g_i)$ is square-free, then $\text{LT}(g_i) \mid \text{LT}(f^m) \Rightarrow \text{LT}(g_i) \mid \text{LT}(f)$.

Exercise: Complete the proof.
If L is modular but not distributive, then I_L is not prime. The next thing would be for I_L to be radical. Recall:

- The **radical** of an ideal I is $\sqrt{I} = \{f \in R \mid f^m \in I \text{ for some } m\}$.
- I is a **radical ideal** if $\sqrt{I} = I$.

There is a nice Gröbner basis criterion for an I to be radical.

Proposition

Let $G = \{g_1, \ldots, g_t\}$ be a Gröbner basis of I. If $\text{LT}(g_i)$ is square-free for every i, then I is a radical ideal.

Proof.

If $\text{LT}(g_i)$ is square-free, then $\text{LT}(g_i) \mid \text{LT}(f^m) \Rightarrow \text{LT}(g_i) \mid \text{LT}(f)$.

Exercise: Complete the proof.
Modular Non-Distributive Lattices

If L is modular but not distributive, then I_L is not prime. The next thing would be for I_L to be radical. Recall:

- The **radical** of an ideal I is $\sqrt{I} = \{ f \in R \mid f^m \in I \text{ for some } m \}$.
- I is a **radical ideal** if $\sqrt{I} = I$.

There is a nice Gröbner basis criterion for an I to be radical.

Proposition

Let $G = \{ g_1, \ldots, g_t \}$ be a Gröbner basis of I. If $\text{LT}(g_i)$ is square-free for every i, then I is a radical ideal.

Proof.

If $\text{LT}(g_i)$ is square-free, then $\text{LT}(g_i) \mid \text{LT}(f^m) \Rightarrow \text{LT}(g_i) \mid \text{LT}(f)$.

Exercise: Complete the proof.
A Family of Examples

We next show that I_L is radical for some modular non-distributive lattices L. Gröbner bases play a key role in the proof.

Here are two lattices. The one on the left is distributive; the one on the right is modular but not distributive. **Exercise: Prove this.**

The lattice on the right will be denoted L_k.

![Diagram of two lattices]
L_k is a Radical Modular Lattice

Theorem (Ene and Hibi)

The ideal I_{L_k} is radical.

Before beginning the proof, we note that I_{L_k} contains

$$x_{k+1}z - x_ky_{k+1}, \; y_kz - x_ky_{k+1}, \; x_{k+1}y_k - x_ky_{k+1}.$$

Hence I_{L_k} also contains the polynomials

$$(x_{k+1}z - x_ky_{k+1}) - (y_kz - x_ky_{k+1}) = x_{k+1}z - y_kz = (x_{k+1} - y_k)z$$

and (guided by the Buchberger Criterion)

$$y_k(x_{k+1}z - x_ky_{k+1}) - z(x_{k+1}y_k - x_ky_{k+1}) + (z - y_k)(y_kz - x_ky_{k+1}),$$

which simplifies to $y_kz^2 - y_k^2z$.
L_k is a Radical Modular Lattice

Theorem (Ene and Hibi)

The ideal I_{L_k} is radical.

Before beginning the proof, we note that I_{L_k} contains

$$x_{k+1}z - x_k y_{k+1}, \quad y_k z - x_k y_{k+1}, \quad x_{k+1}y_k - x_k y_{k+1}.$$

Hence I_{L_k} also contains the polynomials

$$(x_{k+1}z - x_k y_{k+1}) - (y_k z - x_k y_{k+1}) = x_{k+1}z - y_k z = (x_{k+1} - y_k)z$$

and (guided by the Buchberger Criterion)

$$y_k(x_{k+1}z - x_k y_{k+1}) - z(x_{k+1}y_k - x_k y_{k+1}) + (z - y_k)(y_k z - x_k y_{k+1}),$$

which simplifies to $y_k z^2 - y_k^2 z$.

We now sketch the proof that I_{L_k} is radical.

Proof.

- **Step 1:** Write down a Gröbner basis of $I = I_{L_k}$. The basis includes the polynomials $y_k^2 z - y_k z^2$ and $(x_{k+1} - y_k)z$ from the previous slide. Since $\text{LT}(y_k^2 z - y_k z^2)$ is not square-free, we cannot use the Proposition to conclude that I is radical.

- **Step 2:** Prove that $I = \langle I, x_{k+1} - y_k \rangle \cap \langle I, z \rangle$ using $(x_{k+1} - y_k)z \in I$ and Gröbner bases.

- **Step 3:** Prove that $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ have Gröbner bases with square-free leading terms.

- **Step 4:** By the Proposition, $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ are radical.

- **Step 5:** Then we are done since the intersection of radical ideals is again a radical ideal!
We now sketch the proof that I_{L_k} is radical.

Proof.

- **Step 1:** Write down a Gröbner basis of $I = I_{L_k}$. The basis includes the polynomials $y_k^2 z - y_k z^2$ and $(x_{k+1} - y_k)z$ from the previous slide. Since $\text{LT}(y_k^2 z - y_k z^2)$ is not square-free, we cannot use the Proposition to conclude that I is radical.

- **Step 2:** Prove that $I = \langle I, x_{k+1} - y_k \rangle \cap \langle I, z \rangle$ using $(x_{k+1} - y_k)z \in I$ and Gröbner bases.

- **Step 3:** Prove that $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ have Gröbner bases with square-free leading terms.

- **Step 4:** By the Proposition, $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ are radical.

- **Step 5:** Then we are done since the intersection of radical ideals is again a radical ideal!
We now sketch the proof that I_{L_k} is radical.

Proof.

- Step 1: Write down a Gröbner basis of $I = I_{L_k}$. The basis includes the polynomials $y_k^2 z - y_k z^2$ and $(x_{k+1} - y_k)z$ from the previous slide. Since $\text{LT}(y_k^2 z - y_k z^2)$ is not square-free, we cannot use the Proposition to conclude that I is radical.

- Step 2: Prove that $I = \langle I, x_{k+1} - y_k \rangle \cap \langle I, z \rangle$ using $(x_{k+1} - y_k)z \in I$ and Gröbner bases.

- Step 3: Prove that $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ have Gröbner bases with square-free leading terms.

- Step 4: By the Proposition, $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ are radical.

- Step 5: Then we are done since the intersection of radical ideals is again a radical ideal!
We now sketch the proof that I_{L_k} is radical.

Proof.

- **Step 1:** Write down a Gröbner basis of $I = I_{L_k}$. The basis includes the polynomials $y_k^2z - y_kz^2$ and $(x_{k+1} - y_k)z$ from the previous slide. Since $\text{LT}(y_k^2z - y_kz^2)$ is not square-free, we **cannot** use the Proposition to conclude that I is radical.

- **Step 2:** Prove that $I = \langle I, x_{k+1} - y_k \rangle \cap \langle I, z \rangle$ using $(x_{k+1} - y_k)z \in I$ and Gröbner bases.

- **Step 3:** Prove that $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ have Gröbner bases with square-free leading terms.

- **Step 4:** By the Proposition, $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ are radical.

- **Step 5:** Then we are done since the intersection of radical ideals is again a radical ideal!
We now sketch the proof that I_{L_k} is radical.

Proof.

> **Step 1:** Write down a Gröbner basis of $I = I_{L_k}$. The basis includes the polynomials $y_k^2 z - y_k z^2$ and $(x_{k+1} - y_k)z$ from the previous slide. Since $\text{LT}(y_k^2 z - y_k z^2)$ is not square-free, we cannot use the Proposition to conclude that I is radical.

> **Step 2:** Prove that $I = \langle I, x_{k+1} - y_k \rangle \cap \langle I, z \rangle$ using $(x_{k+1} - y_k)z \in I$ and Gröbner bases.

> **Step 3:** Prove that $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ have Gröbner bases with square-free leading terms.

> **Step 4:** By the Proposition, $\langle I, x_{k+1} - y_k \rangle$ and $\langle I, z \rangle$ are radical.

> **Step 5:** Then we are done since the intersection of radical ideals is again a radical ideal!
References

- T. Hibi, *Distributive lattices, affine semigroup rings and algebras with straightening laws*, in *Commutative Algebra and Combinatorics (Kyoto, 1985)*, North-Holland, Amsterdam, 1987, 93–109,

Classic Sudoku

Sudoku instructions:

Fill out the grid so that every row, every column and every 3×3 box contains the digits 1, 2, 3, 4, 5, 6, 7, 8, 9.

This Sudoku took me about 20 minutes (I am an average solver).
Classic Sudoku

Sudoku instructions:

Fill out the grid so that every row, every column and every 3×3 box contains the digits $1, 2, 3, 4, 5, 6, 7, 8, 9$.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td></td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
<td>8</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

This Sudoku took me about 20 minutes (I am an average solver).
Sudoku instructions:

Fill out the grid so that every row, every column and every 3×3 box contains the digits $1, 2, 3, 4, 5, 6, 7, 8, 9$.

This Sudoku took me about 20 minutes (I am an average solver).
A Sudoku gives a graph with:

- vertices = 81 squares
- edges = links between
 - squares in same 3×3
 - squares in same row
 - squares in same column

Every vertex has degree

- 8 (from same 3×3) +
- 6 (from same row, not in 3×3) +
- 6 (from same column, not in 3×3)

$= 20$

Since $\sum_{\text{vertices}} \text{degree of vertex} = 81 \cdot 20 = 2 \cdot \#\text{edges}$, we see that the Sudoku graph has 810 edges!
The Sudoku Graph

A Sudoku gives a graph with:

- vertices = 81 squares
- edges = links between
 - squares in same 3×3
 - squares in same row
 - squares in same column

Every vertex has degree
8 (from same 3×3) +
6 (from same row, not in 3×3) +
6 (from same column, not in 3×3)
= 20

Since $\sum_{\text{vertices}} \text{degree of vertex} = 81 \cdot 20 = 2 \cdot \# \text{edges}$, we see that the Sudoku graph has 810 edges!
We can cast a Sudoku puzzle as a graph coloring problem!

Colors: \{1, 2, \ldots, 9\}

Goal: Extend the partial coloring to a full coloring.

In a properly constructed Sudoku, the partial coloring has a unique extension to a complete coloring.
We can cast a Sudoku puzzle as a graph coloring problem!

Colors: \{1, 2, \ldots, 9\}

Goal: Extend the partial coloring to a full coloring.

In a properly constructed Sudoku, the partial coloring has a unique extension to a complete coloring.
We can cast a Sudoku puzzle as a graph coloring problem!

Colors: \{1, 2, \ldots, 9\}

Goal: Extend the partial coloring to a full coloring.

In a properly constructed Sudoku, the partial coloring has a unique extension to a complete coloring.
To solve this Sudoku, use:

- 81 variables x_{ij}, $1 \leq i, j \leq 9$.
- Relabel the 9 variables for red squares as y_1, \ldots, y_9.
- The 9-coloring equations.
- Eight further equations
 \[h_8(y_8, y_9) = h_7(y_7, y_8, y_9) = \cdots = h_1(y_1, \ldots, y_9) = 0 \]
 that make y_1, \ldots, y_9 distinct.
- The 16 equations $x_{31} = y_7$, $x_{33} = y_6$, $x_{37} = y_2$, \ldots

Assuming a unique solution, a Gröbner basis will consist of polynomials of the form $x_{i1} - y_i$, etc. that tell us how to fill in the blank squares!
Problem: The Gröbner basis method for solving a 9×9 Sudoku is extremely slow. *Singular* takes 20 minutes to solve a Sudoku.

Alternative: 4×4 Sudoku puzzles are much easier. We will consider:

The first has a **unique solution** while the second has **two solutions**.
The 4 × 4 Case

The Graph

The 4 × 4 Sudoku graph has 16 vertices, each of which has degree

\[3 (2 \times 2) + 2 \text{ (row)} + 2 \text{ (column)} = 7\]

Since \(16 \cdot 7 = 2 \cdot 56\), the 4 × 4 Sudoku graph has 56 edges.

The Equations

We will use 16 variables \(x_{11}, \ldots, x_{44}\), and the 4-coloring equations are

for the vertex \(ij\): \(x_{ij}^4 - 1 = 0\)

if an edge connects vertices \(ij, kl\): \(x_{ij}^3 + x_{ij}^2 x_{kl} + x_{ij} x_{kl}^2 + x_{kl}^3 = 0\)

There are \(16 + 56 = 72\) equations. The “colors” are 1, \(-1\), \(i\), \(-i\), where \(i = \sqrt{-1}\).
The 4×4 Case

The Graph

The 4×4 Sudoku graph has 16 vertices, each of which has degree

$$3 \times (2 \times 2) + 2 \times \text{(row)} + 2 \times \text{(column)} = 7$$

Since $16 \times 7 = 2 \times 56$, the 4×4 Sudoku graph has 56 edges.

The Equations

We will use 16 variables x_{11}, \ldots, x_{44}, and the 4-coloring equations are

for the vertex ij:

$$x_{ij}^4 - 1 = 0$$

if an edge connects vertices ij, kl:

$$x_{ij}^3 + x_{ij}^2 x_{kl} + x_{ij} x_{kl}^2 + x_{kl}^3 = 0$$

There are $16 + 56 = 72$ equations. The “colors” are $1, -1, i, -i$, where $i = \sqrt{-1}$.
In Mathematica

\[\text{In[1]} := S := \{-1 + x11^4, x11^3 + x11^2 x12 + x11 x12^2 + x12^3, -1 + x12^4, x11^3 + x11^2 x13 + x11 x13^2 + x13^3, x12^3 + x12^2 x13 + x12 x13^2 + x13^3, -1 + x13^4, x11^3 + x11^2 x14 + x11 x14^2 + x14^3, x12^3 + x12^2 x14 + x12 x14^2 + x14^3, x13^3 + x13^2 x14 + x13 x14^2 + x14^3, -1 + x14^4, x11^3 + x11^2 x21 + x11 x21^2 + x21^3, x12^3 + x12^2 x21 + x12 x21^2 + x21^3, -1 + x21^4, x11^3 + x11^2 x22 + x11 x22^2 + x22^3, x12^3 + x12^2 x22 + x12 x22^2 + x22^3, x21^3 + x21^2 x22 + x21 x22^2 + x22^3, -1 + x22^4, x13^3 + x13^2 x23 + x13 x23^2 + x23^3, x14^3 + x14^2 x23 + x14 x23^2 + x23^3, x21^3 + x21^2 x23 + x21 x23^2 + x23^3, x22^3 + x22^2 x23 + x22 x23^2 + x23^3, -1 + x23^4, x13^3 + x13^2 x24 + x13 x24^2 + x24^3, x14^3 + x14^2 x24 + x14 x24^2 + x24^3, x21^3 + x21^2 x24 + x21 x24^2 + x24^3, x22^3 + x22^2 x24 + x22 x24^2 + x24^3, x23^3 + x23^2 x24 + x23 x24^2 + x24^3, -1 + x24^4, \ldots, -1 + x44^4 \} \]

\[\text{In[2]} := \text{Length}[S] \]

\[\text{Out[2]} = 72 \]

Thanks to Trevor Hyde '12
The First Example

We will use 1 \leftrightarrow 1, 2 \leftrightarrow i, 3 \leftrightarrow -1, 4 \leftrightarrow $-i$.

Then we compute in Mathematica:

\[
\begin{align*}
\text{In[3]} & := x_{11} := 1; \ x_{21} := -i; \\
& \quad x_{41} := -1; \ x_{14} := -1; \ , \ x_{44} := 1
\end{align*}
\]

\[
\begin{align*}
\text{In[4]} & := \text{GroebnerBasis}[S, \{x_{12}, x_{13}, \\
& \quad x_{22}, x_{23}, x_{24}, x_{31}, x_{32}, x_{33} \\
& \quad x_{34}, x_{42}, x_{43}\}] \\
\end{align*}
\]

\[
\begin{align*}
\text{Out[4]} & = \{-i + x_{43}, i + x_{42}, i + x_{34}, \\
& \quad 1 + x_{33}, -1 + x_{32}, -i + x_{31}, \\
& \quad -i + x_{24}, -1 + x_{23}, 1 + x_{22}, i + x_{13}, -i + x_{12}\}
\end{align*}
\]

Thus $x_{43} = i \leftrightarrow 2$, which we fill in. Then we fill in the rest. Solved!
The First Example

We will use $1 \leftrightarrow 1$, $2 \leftrightarrow i$, $3 \leftrightarrow -1$, $4 \leftrightarrow -i$.

Then we compute in Mathematica:

In[3] := $x_{11} := 1$; $x_{21} := -i$;
 $x_{41} := -1$; $x_{14} := -1$; $x_{44} := 1$

In[4] := GroebnerBasis[S, {x_{12}, x_{13}, x_{22}, x_{23}, x_{24}, x_{31}, x_{32}, x_{33}, x_{34}, x_{42}, x_{43}}]

Out[4] = {$-i + x_{43}$, $i + x_{42}$, $i + x_{34}$, $1 + x_{33}$, $-1 + x_{32}$, $-i + x_{31}$, $-i + x_{24}$, $-1 + x_{23}$, $1 + x_{22}$, $i + x_{13}$, $-i + x_{12}$}

Thus $x_{43} = i \leftrightarrow 2$, which we fill in. Then we fill in the rest. Solved!
The First Example

We will use \(1 \leftrightarrow 1, \ 2 \leftrightarrow i, \ 3 \leftrightarrow -1, \ 4 \leftrightarrow -i. \)

Then we compute in *Mathematica*:

In[3] := \(x11 := 1; \ x21 := -i; \)
\(x41 := -1; \ x14 := -1; \ x44 := 1 \)

In[4] := GroebnerBasis[S, \{x12, x13, x22, x23, x24, x31, x32, x33, x34, x42, x43\}]

Out[4] = \{\(-i + x43, \ i + x42, \ i + x34, \ 1 + x33, \ -1 + x32, \ -i + x31, \ -i + x24, \ -1 + x23, \ 1 + x22, \ i + x13, \ -i + x12\}\}

Thus \(x43 = i \leftrightarrow 2 \), which we fill in. Then we fill in the rest. Solved!
The Second Example

We first clear $x21$ and then proceed as before:

\[
\begin{align*}
\text{In}[5] & := \text{Clear}[x21] \\
\text{In}[6] & := \text{GroebnerBasis}[S, \{x12, x13, x21, x22, x23, x24, x31, x32, x33, x34, x42, x43\}] \\
\text{Out}[6] & = \{1 + x43^2, x42 + x43, x34 + x43, x31 - x43, x24 - x43, x21 + x43, x13 + x43, x12 - x43, 1 + x33, -1 + x32, -1 + x23, 1 + x22\}
\end{align*}
\]

\[1 + x43^2 = 0\]
\[\Rightarrow x43 = i, -i\]
\[\Rightarrow x43 \leftrightarrow 2, 4\]
The Second Example

We first clear x_{21} and then proceed as before:

```
In[5] := Clear[x_{21}]
```

```
In[6] := GroebnerBasis[S, \{x_{12}, x_{13}, x_{21}, x_{22}, x_{23},
    x_{24}, x_{31}, x_{32}, x_{33}, x_{34}, x_{42}, x_{43}\}]
```

```
Out[6] = \{1 + x_{43}^2, x_{42} + x_{43}, x_{34} + x_{43}, x_{31} - x_{43},
    x_{24} - x_{43}, x_{21} + x_{43}, x_{13} + x_{43}, x_{12} - x_{43},
    1 + x_{33}, -1 + x_{32}, -1 + x_{23}, 1 + x_{22}\}
```

```
1 + x_{43}^2 = 0
\Rightarrow x_{43} = i, -i
\Rightarrow x_{43} \leftrightarrow 2, 4
```
The Second Example

We first clear x_{21} and then proceed as before:

In[5] := Clear[x_{21}]

In[6] := GroebnerBasis[S, {x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{24}, x_{31}, x_{32}, x_{33}, x_{34}, x_{42}, x_{43}}]

Out[6] = \{1 + x_{43}^2, x_{42} + x_{43}, x_{34} + x_{43}, x_{31} - x_{43},
\frac{x_{24} - x_{43}}{x_{21} + x_{43}}, x_{13} + x_{43}, x_{12} - x_{43},
1 + x_{33}, -1 + x_{32}, -1 + x_{23}, 1 + x_{22}\}

\[1 + x_{43}^2 = 0\]
\[\Rightarrow x_{43} = i, -i\]
\[\Rightarrow x_{43} \leftrightarrow 2, 4\]

Conclusion

We have seen some interesting combinatorial objects:

- Closed Graphs.
- Graph Colorings and Sudoku.
- Distributive and Modular Lattices.

Each of these led to an ideal in a polynomial ring, and to understand the ideals, the key player was the theory of Gröbner bases.

In this course, I have presented a small sample of the amazing things that you can do with Gröbner bases.

Thank you for your attention!
We have seen some interesting combinatorial objects:

- Closed Graphs.
- Graph Colorings and Sudoku.
- Distributive and Modular Lattices.

Each of these led to an ideal in a polynomial ring, and to understand the ideals, the key player was the theory of Gröbner bases.

In this course, I have presented a small sample of the amazing things that you can do with Gröbner bases.

Thank you for your attention!
Conclusion

We have seen some interesting combinatorial objects:

- Closed Graphs.
- Graph Colorings and Sudoku.
- Distributive and Modular Lattices.

Each of these led to an ideal in a polynomial ring, and to understand the ideals, the key player was the theory of Gröbner bases.

In this course, I have presented a small sample of the amazing things that you can do with Gröbner bases.

Thank you for your attention!
We have seen some interesting combinatorial objects:

- Closed Graphs.
- Graph Colorings and Sudoku.
- Distributive and Modular Lattices.

Each of these led to an ideal in a polynomial ring, and to understand the ideals, the key player was the theory of Gröbner bases.

In this course, I have presented a small sample of the amazing things that you can do with Gröbner bases.

Thank you for your attention!