
MM Research Preprints, 212–219
No. 18, Dec. 1999. Beijing

Development of An Object-Oriented Number

System 1)

Hong Yang
Beijing Municipal Computing Center

hyang@mmrc.iss.ac.cn

Zhuo-Jun Liu and Dong-Dai Lin
Institute of Systems Science

Academia Sinica
{zliu,ddlin}@mmrc.iss.ac.cn

Abstract. With the development of computer algebra and its applications, the com-
puter algebra system attracts more and more attention in scientific research and educa-
tion fields. Obviously, a number system that manipulates multi-precision numbers is a
necessary and important part for any computer algebra system. In this paper, we will
discuss the implementation and technique details of our object-oriented number system.
First we give out object-oriented analysis and design for the number system, and then
some important algorithms and their implementation are discussed. A new representa-
tion for multi-precision integers is also presented in this paper.

1. Introduction

With the development of computer algebra and its applications, the computer algebra
system has attracted more and more attention in scientific research and education fields.
Unlike numerical computing system, computer algebra system are expected to manipulate
mathematical expressions symbolically and handle numbers exactly so that no errors arise
in their operations. It’s well known that the range of numbers that can be represented and
manipulated by the computer’s hardware is limited by the computer word size. A number
system that enables exact arithmetic on arbitrary (large) integers is called multi-precision
number system. It is obviously a necessary and important part for any computer algebra
system, and is a prerequisite for the implementation of the whole computer algebra system.

In this paper, we will present such a multi-precision number system. Our system can
be used either as a separate multi-precision system or as a basic module for a computer
algebra system. In fact, it has been used as a basic module of ELIMINO system, which is a
computer-mathematics research system based on Wu’s method. The main objectives of the
number system are that:

• Computations with the number system should run at optimal speed.

• The number system is expected to provide plentiful functions for the development of
a whole computer algebra system.

• The number system itself should be easy to use, that is, it should have a friendly
interface.

1) This work was supported in part by the 973 project

Number System Development 213

In order to make the number system to be extended, especially to be easily integrated into a
whole computer algebra system, we adopt the object-oriented technology in its development.

In the next section, we will give an outline of the analysis and design for the number
system. In the third section of this paper, the internal representation and some important
algorithms for multi-precision integers will be discussed.

2. Analysis and design of the number system

Numbers are the most fundamental objects to be manipulated in the implementation
of any computer algebra system. According to the view of object-oriented technique, the
number system can be considered as a collection of number objects. In this section, we will
discuss the object-oriented analysis and design for the number system and thus we can get
a developing outline of the number system.

2.1. The architecture of the number system
As a separate system or as a basic module of ELIMINO system, the number system

is expected to be able to represent and manipulate several types of numbers such as multi-
precision integers, fractions and floating-point numbers. Therefore the number system should
contain at least three main classes TBigInt, TFraction and TFloatNum that correspond to
the above types. Since the numbers of different types always have some common properties,
we have also defined a class TNumber as the base class of the three main classes. Thus
the common attributions and methods can be shared among these classes. This also means
that the object of any number type can be treated as an object of type TNumber, and its
exact type needn’t be cared about. In addition, arithmetic operations can work on mixed
kinds (types) of numbers since the system knows how to convert to each other among them
automatically. Such a TNumber class can bring us much convenience, e.g. it allows us to
build a class of polynomial with TNumber coefficients, or a class of matrices with TNumber
entries. Such classes are of course much more generic. The following Fig. 1 shows the
structure relationship among these classes.

Fig. 1: Architecture of The Number System

2.2. Attribution analysis for the number system
Attributions are data elements used to describe an instance of an object or classification

structure. They clarify what is meant by the name of an object, by adding more detail about
the abstraction being modeled.

214 H.Yang, Z.J.Liu, D.D.Lin

As a base class, a TNumber object has an internal pointer ”ptr” of type TNumber *
which can point to any derived object of TNumber and thus allows TNumber objects to
represent many different subtypes of numbers.

TBigInt is the most fundamental and important data type of the number system. Ac-
cording to the representation of multi-precision integers, two main attributions of TBigInt
are ”numBlock” and ”len”. ”numBlock” is a pointer to the memory space in which the
data of a multi-precision integer is stored. ”len” records the length of the memory space
allocated to the integer along with its sign. More detailed information about the internal
representation for multi-precision integers will be discussed in Section 3.1.

On the basis of TBigInt, the class TFraction and the class TFloatNum are defined very
straightforward. TFraction has two attributions ”nu” and ”de” of type TBigInt * to repre-
sent the numerator and the denominator, respectively, and TFloatNum has two attributions
”mant” and ”exp” of type TBigInt * and type int to represent the mantissa part and the
exponent (base 10) part of a floating-point number, respectively. It’s noticed that the value
of the floating-point number is mant ∗ 10exp. The attribution ”len” is used to indicate the
number of digits carried in the mantissa part (i.e. the accuracy of a floating-point number).

From the above discussion, we can see that both class TFraction and class TFloatNum
are designed to be constructed by the class TBigInt, so the implementation of the class
TBigInt is a basis of the development of the whole number system and it is what we focus
on in this paper.

2.3. Method analysis for the number system
A method is the processing to be performed upon receipt of a message. The method

analysis for the class TBigInt means the analysis of the related operations on multi-precision
arithmetic. A number system that mainly deals with multi-precision integers must include
at least the following operations:

• Input and output subroutines of a multi-precision integer.

• The arithmetic operations, essentially addition, subtraction, multiplication, division
and exponentiation, etc.

• Left and right shifts of a multi-precision integer by small integers.

The above operations are all basic and necessary operations. They have a very close
relationship with the internal representation for integers and should be developed first in
the number system. On the basis of the implementation of these operations, we can further
accomplish modular arithmetic as well as other mathematical operations when needed. These
operations may include:

• The greatest common divisors (GCD) of multi-precision integers.

• Integer factorization and its related operations.

• Some useful mathematical functions, such as sqrt(square root), log2(base 2 logarithm),
integer factorial, etc.

Number System Development 215

• The related operations on modular arithmetic.

The method analysis of the class TFraction and the class TFloatNum is similar to that
of the class TBigInt, therefore we will not give out more discussion about it.

3. Implementation of the number system

In this section, we will first discuss the internal representation for multi-precision integers,
and then some important algorithms and their implementation are presented. Please refer
[?] to see how the number system works.

3.1. Internal representation for multi-precision integers
It is well known that the integer that can be represented by the computer’s hardware is

limited. We shall call an integer that can not be represented by the computer’s hardware
(i.e. can not be stored in one computer word) a multi-precision integer, which is the
essence of multi-precision arithmetic. A multi-precision integer N is constructed by a linear
list (a0, a1, ..., al−1). The value of the multi-precision integer is

N = s
l−1∑
i=0

aiB
i

In the above formula, B is the base of the representation. So a multi-precision integer can
also be considered as a base B integer. We shall call a non-negative integer less than B a
single-precision integer. Here, ai(i = 0, 1...l − 1) are all single-precision integers, which
we shall call the B-digit of N . s is either 1 or -1, corresponding to the sign of N . l is called
the B-length of N.

In principle, the base B may be any positive integer up to the upper limit for integers
allowable for the computer’s hardware. But from the consideration of implementation, the
usual choice for B is to choose the square root of the computer word size as the base. This
choice will help to easily implement the multi-precision arithmetic because all the arithmetic
operations between B-digits can be performed in one computer word. We assume that the
working platform on which our number system runs is a 32-bit machine, so we choose B = 216

as the base of our number system.
As being known to all, there are three conventional representation methods to implement

the linear list data structure for multi-precision integers. The three methods contain the
linked list representation, the dynamic array representation and the fixed-length
array representation, among which the first two representations are used in most computer
algebra systems.

Each of the three representation methods has both advantages and disadvantages. The
linked list representation, which uses each node to represent each single-precision digit (B-
digit), involves at least two disadvantages: 1. a considerable amount of memory space is
required for the pointers; and 2. the access time for each digit is much higher than the
access time required in the array representation.

Relative to the linked list representation, the dynamic array representation uses less
storage and less access time. However this method requires more sophisticated storage
management algorithm.

216 H.Yang, Z.J.Liu, D.D.Lin

The fixed-length array representation, which means every multi-precision integer is al-
located an array of length L (L is a pre-pecified constant), can overcome the difficulty of
storage management, but it will waste a considerable amount of memory space in storing
the high-order zero digits.

Considering all the disadvantages mentioned above and the implementation of the storage
management module in ELIMINO system[?], we adopt another representation in our number
system, which is a reasonable compromise and we call it the block representation. Let nb

is a pre-defined positive integer by the system’s storage management module. We use some
blocks to represent the multi-precision integer N . Each block is a fixed-length array that
contains nb single-precision digits and is allocated from the storage management module in
ELIMINO system. There are T = [(l− 1)/nb] + 1 blocks in all to represent the integer. The
block representation is shown as Fig. 2.

Fig. 2: Block Representation
In fact, the idea of the block representation is to combine the linked list representation

with the fixed-length array representation. The block representation is an effort that tries to
increase the number system’s efficiency by taking a balance among the storage management,
the access time and the cost of the memory space.

The following table compares the dynamic array representation with the block represen-
taion by testing the computing time of the integer mulitiplication (classical algorithm) on
ALPHA workstation 6005/333. In the table, n means the number of decimal digits of the two
multiplicands, and len means their B-length. The times are given in microseconds.

len n Array Repr. Block Repr.
313 1506 83330 66664
496 2386 233324 199992
626 3011 299988 283322
695 3345 383318 366652
772 3717 466648 449982
991 4772 566644 733304
3126 15052 5249790 7433036
6251 30103 21765796 29682146

From the above table, we can see that the block representation shows more superior than
the dynamic array representation when the multiplicands are not so large. The reason is
that the allocation time for a fixed-length block from the storage management module in
ELIMINO system is less than that for a dynamic array from the operation system directly.

Number System Development 217

Obviously, the main disadvantage of the block representation is that the code complexity
of the algorithms for basic arithmetic operations is much higher than that of the array
representation.

3.2. Implementation of some algorithms in the number system
Many algorithms for multi-precision arithmetic and rational arithmetic have been im-

plemented in our number system. It is obvious that we cannot discuss all the implemented
algorithms in the space available here. In this section, we only give out the implementation of
the input/output algorithms in which we adopt a strategy to get a substantial saving in the
processing time, and the implementation of the FFT-based (Fast Fourier Transformation)
multiplication algorithm, which is a different implementation from the usual way.

3.2..1. Input and output algorithms
The input and output subroutines are basic and important operations in the number

system. They are used to provide interfaces for the system. The I/O problem is actually the
conversion between decimal and base B representation. That is, the input subroutine is to
convert an integer from decimal to base B representation, while the output subroutine does
the reverse work.

From the consideration of efficiency, a slight modification to the input algorithm can be
achieved by converting from decimal first to base 10k (k = blog10Bc) representation and
then computing the base B representation from there. A similar modification can also be
performed on the output algorithm. Compared with the direct conversion between decimal
and base B, the modified algorithms can save a lot of computing time.

3.2..2. An implementation of the FFT-based multiplication algorithm
For the multiplication of two multi-precision integers, the most frequently used algorithms

are classical algorithm (O(n2)), Karatsuba algorithm
(O(nlog23)) and FFT-based algorithm (O(n ∗ ln(n) ∗ ln(ln(n)))), among which the FFT-
based algorithm is the fastest algorithm in theory and will be discussed in detail in this
section.

It is noticed that the FFT-based algorithm implemented in many computer algebra sys-
tems is usually the algorithm suggested by A.Schönhage and V.Strassen[?] which is a thor-
oughly symbolic method. The trade-off point for the algorithm (i.e. the length of the mul-
tiplicands when the FFT-based method becomes faster than the classical method) is nearly
20000 decimal digits [?]. The fact shows that the algorithm is of theoretical interest but has
not a practical significance for computer algebra system. In our number system, a hybrid
implementation of floating-point operations and symbolic computations for the FFT-based
algorithm has been realized. Therefore, this implementation is different from A.Schönhage
and V.Strassen’s symbolic implementation. It is shown from our experiments that we have
deduced the trade-off point by making use of floating-point operations in the FFT-based
algorithm and thus making the algorithm more practical.

The main idea of the FFT-based algorithm comes from the fact that the multiplication
of two multi-precision integers can be considered as the convolution product of two vectors.

Suppose u = (u0, u1, ..., un−1) and v = (v0, v1, ..., vn−1) are two vectors corresponding to
two multi-precision integers. w = (w0, w1, ..., wn−1) is the convolution product of u and v:
w = u⊗ v. That is, wi =

∑n−1
j=0 (uj ∗ vi−j), i = 0, 1, ..., n− 1.

218 H.Yang, Z.J.Liu, D.D.Lin

According to the property of Fourier transformation, we can get a FFT-based algorithm
for determining the convolution product w. The algorithm can be briefly described as follows:

Step 1. Calculate the Fourier transformation of u and v: F(u) = ũ = (ũ0, ũ1, . . . , ũn−1)
and F(v) = ṽ = (ṽ0, ṽ1, . . . , ṽn−1).

Step 2. Calculate w̃ = (w̃0, w̃1, . . . , w̃n−1) by ũ and ṽ: w̃i = ũi ∗ ṽi, i = 0, 1, . . . , n− 1.
Step 3. Apply the inverse Fourier transformation to calculate w : w = F−1(w̃).
When the FFT-based algorithm is used to evaluate the multiplication of two multi-

precision integers, only an adjusting step for w needs to be added:
Step 4. Perform the following steps on w: First, propagate the carries from left to right

by floating-point operations. Second, transform each floating-point digit to integer digit.
Then w is the multiplication of u and v.

It should be noticed that the floating-point operations are required in each step of the
above algorithm.

We must point out that our implementation of the FFT-based algorithm has one fun-
damental limitation: the round-off errors existed in the floating-point operations. But we
must notice a fact that the result of the algorithm remains exact as long as the precision of
the floating-point operations is high enough. [?] gives out a detailed discussion about the
precision of the floating-point operations which can get enough information. It is proved
by our experiments that using the 64-bit (i.e. double type in C++ language) floating-point
operations is enough for the multiplication of integers with less than 1024 B-digits (i.e.
about 5000 decimal digits). In fact, theoretical disscusion in [?] shows that using the 128-bit
floating-point operations is enough for the multiplication of integers with less than 1024 ∗ 48

B-digits. Note that such integer will cost 120 Megabytes in space memory. So we can say
that using the 128-bit floating-point operations is sufficient for almost all the multiplication
of two multi-precision integers that we would meet.

Fig. 3: Comparison of Two Multiplication Algorithms
Fig. 3 compares both multiplication algorithms on ALPHA workstation

6005/333. The two multiplicands are generated randomly with n decimal digits. It follows
from the figure that the trade-off point for the FFT-based algorithm implemented in our
number system is up to roughly 500 decimal digits.

Number System Development 219

4. Remarks

In this paper, we have discussed the implementation of our object-oriented number sys-
tem. Some technique details are presented. We notice that there are still a lot of futher
work to do with our number system, including the optimization of related algorithms, the
implementation of some new methods and so on. In our succeeding work, we will try to
make the number system to be an efficient and robust basis for the development of computer
algebra system by continuously increasing its efficiency and perfecting its function.

References

[1] Dongdai Lin, Jun Liu and Zhuojun Liu. Mathematical Research Software: ELIMINO. Proceed-
ings of the 3rd ASCM, 107-114, Aug. 6-8, 1998. Lanzhou.

[2] Franz Winkler. Polynomial Algorithms in Computer Algebra. Linz, Austria, 1996.
[3] von zur Gathen, J. and Gerhard, J., Modern Computer Algebra, Cambridge Press, 1999.
[4] D.E.Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second

edition). Addison-Wesley, 1981.
[5] K.O.Geddes, S.R.Czapor and G.Labahn. Algorithms for Computer Algebra. Kluwer Academic

Publishers, 1992.
[6] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag Berlin

Heidelberg, 1993.
[7] Hans Riesel, Prime Numbers and Computer Methods for Factorization. Birkhauser Boston, Inc.

1985.
[8] Zhuojun Liu and Wenda Wu. STAR: A Small Tool for Algebraic Research. Proceedings of

ASCM96, Kobe of Japan, 1996.
[9] B.Buchberger, G.E.Collins, R.Loos and R.Albrecht. Computer Algebra Symbolic and Algebraic

Computation (second edition). Springer-Verlag/Wien, 1983.

