Computing the Multiplicity Structure of an Isolated Singular Solution: Case of Breadth One 1)

Nan Li and Lihong Zhi
Key Laboratory of Mathematics Mechanization
Institute of Systems Science, AMSS, Academia Sinica
Beijing 100080, China
linan08@amss.ac.cn, lzhi@mmrc.iss.ac.cn

Abstract. We present an explicit algorithm to compute a closed basis of the Max Noether space of \(I = (f_1, \ldots, f_t) \) at a given isolated singular solution \(\hat{x} = (\hat{x}_1, \ldots, \hat{x}_s) \) when the Jacobian matrix \(J(\hat{x}) \) has corank one. The algorithm is efficient both in time and memory use. Moreover, it can be modified to compute an approximate basis if the coefficients of \(f_1, \ldots, f_t \) and \(\hat{x} \) are only known with limited accuracy.

1. Introduction

Motivation and problem statement. Consider an ideal \(I \) generated by a polynomial system \(F = \{f_1, \ldots, f_t\} \), where \(f_i \in \mathbb{C}[x_1, \ldots, x_s], i = 1, \ldots, t \). For a given isolated singular solution \(\hat{x} = (\hat{x}_1, \ldots, \hat{x}_s) \) of \(F \), suppose \(Q \) is the isolated primary component whose associate prime is \(P = (x_1 - \hat{x}_1, \ldots, x_s - \hat{x}_s) \). In [25], we used symbolic-numeric method based on the geometric jet theory of partial differential equations introduced in [22, 27, 3] to compute the index \(\rho \), the minimal nonnegative integer such that \(P^\rho \subseteq Q \), and the multiplicity \(\mu = \dim(\mathbb{C}[x]/Q) \), where \(Q = (I, P^\rho) \). A basis for the Max Noether space of \(I \) at \(\hat{x} \) is obtained from the null space of the truncated coefficient matrix of the involutive system. The size of these coefficient matrices is bounded by \(t(\rho + s) \times (\rho + s) \) which will be very big when \(\rho \) or \(s \) is large. In general \(\rho \leq \mu \), however, when the corank of the Jacobian matrix is one, then \(\rho = \mu \), which is also called the breadth one case in [8, 7], the size of the matrices grows extremely fast with the multiplicity \(\mu \). As pointed out in [26], the matrix size becomes the main bottleneck that slows down the overall computation. This is the main motivation for us to consider whether we can compute the multiplicity structure of \(\hat{x} \) efficiently in this worst case.

In [8, 7], they presented an efficient algorithm for computing a dual basis for the breadth one case by solving a deflated system of size roughly \((\mu t) \times (\mu s)\). A general construction of a Gauss basis of differential conditions at a multiple point was also given in [15, Section 4.3], the breadth one case is just a special case. The size of linear systems they constructed is bounded by \((\mu t) \times (\mu s)\), and they assumed that \(I \) is a zero dimensional system. In [24, Section 8.5],

1) Supported by NKBRPC (2004CB318000) and the Chinese National Natural Science Foundation under Grant 10401035 and 60821002/F02.
an algorithmic approach for determining a basis of the local dual space incrementally was stated and some examples were given to show that only a sizeable number of free parameters are needed when we compute the k-th order Max Noether condition.

Main contribution. In the breadth one case, following Stetter’s arguments and smart strategies given in [24, Section 8.5], we prove that the number of free parameters used in computing each order of the Max Noether condition of I at \hat{x} can be reduced to $s - 1$. So that we can compute the multiplicity structure of an isolated multiple zero \hat{x} very efficiently by solving $\mu - 2$ linear systems with size bounded by $t \times (s - 1)$. Moreover, during the computation, we only need to store polynomials, the LU decomposition of the last $s - 1$ columns of the Jacobian matrix and the computed differential operators. Therefore, in the breadth one case, both storage space and execution time for computing a closed basis of the Max Noether space are reduced significantly. Furthermore, we modify the algorithm for computing an approximate basis when singular solutions and polynomials are only known approximately.

Structure of the paper. Section 2. is devoted to recalling some notations and well-known facts. In Section 3., we prove that for the breadth one case, a closed basis of the Max Noether space of I at \hat{x} can be constructed incrementally by checking whether a differential operator parameterized by $s - 1$ variables is consistent with polynomials in I. In Section 4., we describe an algorithm for computing a closed basis of the Max Noether space of I at \hat{x} and the multiplicity μ. If I and \hat{x} are only known with limited accuracy, then we modify the symbolic algorithm by introducing one more parameter and using singular value decomposition or LU decomposition with pivoting to ensure the numeric stability of the algorithm. Three examples are given to demonstrate that our algorithms are applicable to positive dimensional systems, analytic systems and polynomial systems with irrational or approximate coefficients. The complexity analysis and experiments are done in Section 5.

We mention some ongoing research in Section 6.

2. Preliminaries

Suppose we are given an isolated multiple root \hat{x} of the polynomial system $F = \{f_1, \ldots, f_t\}$ with multiplicity μ and index ρ.

Let $D(\alpha) = D(\alpha_1, \ldots, \alpha_s) : \mathbb{C}[x] \to \mathbb{C}[x]$ denote the differential operator defined by:

$$D(\alpha_1, \ldots, \alpha_s) := \frac{1}{\alpha_1! \cdots \alpha_s!} \partial x_1^{\alpha_1} \cdots \partial x_s^{\alpha_s},$$

for non-negative integer array $\alpha = [\alpha_1, \ldots, \alpha_s]$. We write $\mathfrak{D} = \{D(\alpha), \; |\alpha| \geq 0\}$ and denote by $\text{Span}_{\mathbb{C}}(\mathfrak{D})$ the \mathbb{C}-vector space generated by \mathfrak{D} and introduce a morphism on \mathfrak{D} that acts as “integral”:

$$\Phi_j(D(\alpha)) := \begin{cases}
D(\alpha_1, \ldots, \alpha_j - 1, \ldots, \alpha_s), & \text{if } \alpha_j > 0, \\
0, & \text{otherwise}.
\end{cases}$$

As a counterpart of the anti-differentiation operator Φ_j, we define the differentiation operator Ψ_j as

$$\Psi_j(D(\alpha)) := D(\alpha_1, \ldots, \alpha_j + 1, \ldots, \alpha_s).$$
Definition 2.1 Given a zero $\hat{x} = (\hat{x}_1, \ldots, \hat{x}_s)$ of an ideal $I = (f_1, \ldots, f_t)$, we define the Max Noether space $[17]$ of I at \hat{x} as

$$\triangle_{\hat{x}}(I) := \{ L \in \text{Span}_\mathbb{C}(\mathcal{D}) | L(f)|_{x=\hat{x}} = 0, \forall f \in I \}. \quad (1)$$

The space $\{ L_{\hat{x}} | L \in \triangle_{\hat{x}}(I) \}$, where $L_{\hat{x}}(f) := L(f)|_{x=\hat{x}}$, is called the local dual space of I at \hat{x}. Conditions equivalent to $L(f)|_{x=\hat{x}} = 0, \forall L \in \triangle_{\hat{x}}(I)$ are called Max Noether conditions, see [17].

For a non-negative integer k, $\triangle_{\hat{x}}^{(k)}(I)$ consists of differential operators in $\triangle_{\hat{x}}(I)$ with differential order bounded by k. We have that $\text{dim}_{\mathbb{C}}(\triangle_{\hat{x}}^{(k)}(I)) = \mu$, where μ is the multiplicity of the zero \hat{x}.

Definition 2.2 A subspace $\triangle_{\hat{x}}$ of $\text{Span}_{\mathbb{C}}(\mathcal{D})$ is said to be closed, if its dimension is finite, and if

$$L \in \triangle_{\hat{x}} \implies \Phi_j(L) \in \triangle_{\hat{x}}, \quad j = 1, \ldots, s. \quad (2)$$

Suppose $\text{Span}(L_0, L_1, \ldots, L_{\mu-1})$ is closed and $L_0, \ldots, L_{\mu-1}$ are linearly independent differential operators satisfy that $L_i(f_j)|_{x=\hat{x}} = 0, \quad j = 1, \ldots, t, \quad i = 0, \ldots, \mu - 1$, then due to the closedness, $L_i(q \cdot f_j)|_{x=\hat{x}} = 0, \forall q \in \mathbb{C}[x_1, \ldots, x_s]$. Hence, $\triangle_{\hat{x}}(I) = \text{Span}(L_0, L_1, \ldots, L_{\mu-1})$.

Remark 2.3 Suppose $\triangle_{\hat{x}}(I) = \text{Span}(L_0, L_1, \ldots, L_{\mu-1})$, then $\{L_0, \ldots, L_{\mu-1, \hat{x}}\}$ is a dual basis of the local dual space of I at \hat{x}, where $L_{i, \hat{x}}(f) := L_i(f)|_{x=\hat{x}}$. Hence, for simplicity, in the following context, we only show how to compute a closed basis of the Max Noether space of I at \hat{x}.

Lemma 2.4 Let $J(\hat{x})$ be the Jacobian matrix of a polynomial system $F = \{ f_1, \ldots, f_t \}$ evaluated at \hat{x}. Suppose the corank of $J(\hat{x})$ is one, i.e., the dimension of its null space is one, then $\text{dim}(\triangle_{\hat{x}}^{(k)}(I)) = \text{dim}(\triangle_{\hat{x}}^{(k-1)}(I)) + 1$ for $1 \leq k \leq \mu - 1$ and $\text{dim}(\triangle_{\hat{x}}^{(k)}(I)) = \text{dim}(\triangle_{\hat{x}}^{(\mu-1)}(I))$, for $k \geq \mu$. Hence $\mu = \rho$.

Proof. Lemma 2.4 is an immediate consequence of [23, Theorem 2.2] and [8, Lemma 1].

3. Max Noether Space of Breadth One

In this section, we are mainly interested in computing a closed basis of the Max Noether space $\triangle_{\hat{x}}(I)$ when the corank of the Jacobian matrix $J(\hat{x})$ is one. In [24, Section 8.5], an algorithmic approach for determining a basis of the local dual space incrementally was stated and some examples were given to show that only a sizeable number of free parameters are needed when we compute the k-th order Max Noether condition. It is very interesting to see that in the breadth one case, the number of free parameters used in computing the k-th order Max Noether condition following Stetter’s strategies can be reduced to $s - 1$. We state below our main theorem.

Theorem 3.1 Suppose we are given an isolated multiple root \hat{x} of the polynomial system $F = \{ f_1, \ldots, f_t \}$ with multiplicity μ and the corank of the Jacobian matrix $J(\hat{x})$ is one,
and $L_1 = D(1, 0, \ldots, 0) \in \triangle^{(1)}(I)$. We can construct the k-th order Max Noether condition incrementally for k from 2 to $\mu - 1$ by the following formula:

$$L_k = P_k + a_{k, 2}D(0, 1, \ldots, 0) + \cdots + a_{k, s}D(0, \ldots, 1),$$

(3)

where P_k has no free parameters and is obtained from the computed basis $\{L_1, \ldots, L_{k-1}\}$ by the following formula:

$$P_k = \Psi_1(Q_1) + \Psi_2((Q_2)i_1=0) + \cdots + \Psi_s((Q_s)i_1=i_2=\cdots=i_{s-1}=0),$$

(4)

where

$$Q_1 = L_{k-1}, \quad Q_j = a_{2, j}L_{k-2} + \cdots + a_{k-1, j}L_1, \quad 2 \leq j \leq s.$$

(5)

Here $i_1 = \cdots = i_{j-1} = 0$ means that we only pick up terms which do not contain derivatives in $\partial x_1, \ldots, \partial x_{j-1}$, and $a_{i, j}$ are known parameters appearing in L_i for $2 \leq i \leq k - 1$ and $2 \leq j \leq s$.

The parameters $a_{k, j}$, $j = 2, \ldots, s$ in (3) are determined by checking whether

$$[P_k(f_1)|_{x=\hat{x}}, \ldots, P_k(f_l)|_{x=\hat{x}}]^T$$

can be written as a linear combination of the last $s - 1$ linearly independent columns of the Jacobian matrix $J(\hat{x})$.

Remark 3.2 It has been pointed out in [24, Section 8.5] that if L_1 is not $D(1, 0, \ldots, 0)$ but a linear combination of $\partial x_1, \ldots, \partial x_s$, then we can perform linear transformation of the variables which takes the vector of the linear combination into a unit vector $(1, \ldots, 0)^T$ and reduces the situation to the one where $L_1 = D(1, 0, \ldots, 0)$. However, the change of variables usually will destroy the sparsity structure of input polynomials and might be avoided by using directional derivative [1, 24].

Let us suppose now that the given isolated multiple root \hat{x} of an ideal $I = (f_1, \ldots, f_l)$ has multiplicity μ and the corank of its Jacobian matrix $J(\hat{x})$ is one, and $L_0 = D(0, \ldots, 0), L_1 = D(1, 0, \ldots, 0) \in \triangle^{(1)}(I)$. In the following, we show how to compute incrementally from L_0, L_1, a closed set of linearly independent differential operators $L_2, \ldots, L_{\mu-1}$ of derivative order $2, \ldots, \mu - 1$ respectively, and $\triangle(I) = \text{Span}(L_0, L_1, L_2, \ldots, L_{\mu-1})$.

Lemma 3.3 Suppose $\{L_0, \ldots, L_{\mu-1}\}$ is a closed set of μ linearly independent differential operators which form a basis of the Max Noether space $\triangle(I)$, where the highest order derivative of L_k is k, then $D(k, 0, \ldots, 0)$ is the only term in L_k consisting of the k-th derivative.

Proof. The proof is done by induction on k. It is clear that Lemma 3.3 is true for $k = 0, 1$. Our inductive assumption is that, L_{k-1} has only one term $D(k-1, 0, \ldots, 0)$ as the $(k-1)$-th derivative, therefore, the k-th order differential operator which retains closedness can only be $\Psi_j(D(k-1, 0, \ldots, 0))$ for $1 \leq j \leq s$. However, when $j \neq 1$, $\Phi_1^{k-1}(\Psi_j(D(k-1, 0, \ldots, 0))) = \Psi_j(D(0, \ldots, 0))$ which does not belong to the subspace generated by $\{L_0, L_1\}$ and violate the closedness condition. Hence, $j = 1$ and the only k-th order derivative in L_k is $D(k, 0, \ldots, 0)$.

\square
According to Lemma 3.3, in the following, we suppose that
\[L_k = D(k,0,\ldots,0) + \{\text{derivatives of order bounded by } k-1\}. \]
Moreover, we assume that there are no terms \(D(i,0,\ldots,0) \) for \(i < k \) appear in \(L_k \), otherwise, we can reduce it by \(L_i \).

Lemma 3.4 Under the assumptions above, we have
\[
\begin{align*}
\Phi_1(L_k) &= L_{k-1}, \\
\Phi_j(L_k) &= c_{k-2,j}L_{k-2} + \cdots + c_{0,j}L_0, \quad 2 \leq j \leq s.
\end{align*}
\]

Proof. Suppose
\[\Phi_1(L_k) = L_{k-1} + c_{k-2,1}L_{k-2} + \cdots + c_{0,1}L_0. \]
If \(c_{i,1} \neq 0, \quad 0 \leq i \leq k-2 \) then \(\Phi_1(L_k) \) must have the term \(D(i,0,\ldots,0) \). Hence \(L_k \) has the term \(D(i+1,0,\ldots,0) \) for \(i \leq k-2 \) which contradicts the assumptions. Our claim follows for the first equation.

The second equation is clear since the only \(k \)-th order derivative in \(L_k \) is \(D(k,0,\ldots,0) \). We will prove later that \(c_{i,j} \) for \(1 \leq i \leq k-2 \) are determined by \(\{L_0,\ldots,L_{k-1}\} \).

Proof of Theorem 3.1. Since
\[
P_k = \Psi_1(\Phi_1(P_k)) + \{\text{derivatives in } P_k \text{ do not contain } \partial_{x_1}^{i_1} \text{ for } i_1 > 0\}
= \Psi_1(\Phi_1(P_k)) + \Psi_2(\Phi_2(P_k))_{i_1=0}
+ \{\text{derivatives in } P_k \text{ do not contain } \partial_{x_1}^{i_1}\partial_{x_2}^{i_2} \text{ for } i_1, i_2 > 0\}
= \Psi_1(\Phi_1(P_k)) + \Psi_2(\Phi_2(P_k))_{i_1=0} + \cdots + \Psi_s(\Phi_s(P_k))_{i_1=i_2=\cdots=i_{s-1}=0},
\]
we prove the theorem inductively by showing that
\[\Phi_1(P_k) = L_{k-1}, \quad \Phi_j(P_k) = a_{2,j}L_{k-2} + \cdots + a_{k-1,j}L_1, \quad 2 \leq j \leq s. \]

(7)
Therefore, formulas (4) and (5) are correct by setting \(Q_j = \Phi_j(P_k), \quad 1 \leq j \leq s \).

- For \(k = 2 \), it is clear that \(P_2 = D(2,0,\ldots,0) \) and (7) is correct.
- For \(k = 3 \), suppose \(L_3 = P_3 + a_{3,2}D(0,1,0,\ldots,0) + \cdots + a_{3,s}D(0,\ldots,1) \), where \(P_3 \) consists of derivatives of order at least two. By formula (6),
\[\Phi_1(P_3) = \Phi_1(L_3) = L_2, \quad \Phi_j(P_3) = c_{1,j}L_1, \quad 2 \leq j \leq s. \]

If \(c_{1,j} \neq 0 \), then the term \(D(1,0,\ldots,1,\ldots,0) \) with 1 at positions 1 and \(j \) must appear in \(P_3 \), moreover, due to the closedness, the term must be obtained by applying \(\Psi_1 \) to \(L_2 = D(2,0,\ldots,0) + a_{2,2}D(0,1,0,\ldots,0) + \cdots + a_{2,s}D(0,\ldots,1) \) since \(L_2 \) does not include the term \(D(1,0,\ldots,0) \). Therefore
\[c_{1,j} = a_{2,j}, \quad \text{for } 2 \leq j \leq s, \]
and (7) is correct for \(k = 3 \).
• For $k > 3$, we assume the formula (7) is correct up to $k - 1$. According to (6), it is clear that

$$\Phi_1(P_k) = \Phi_1(L_k) = L_{k-1}, \quad \Phi_j(P_k) = c_{k-2,j}L_{k-2} + \cdots + c_{1,j}L_1, \quad 2 \leq j \leq s.$$

Similarly, if $c_{i,j} \neq 0$, then P_k must have a term $c_{i,j}D(i,0,\ldots,1,0,\ldots,0)$ which has 1 at the position j, for $2 \leq j \leq s$. Moreover, to retain closedness, this term should come from $\Psi_1(L_{k-1})$ since there is no $D(i,0,\ldots,0)$ term in L_{k-1} for $1 \leq i \leq k - 2$. Hence the term $c_{i,j}D(i-1,0,\ldots,1,0,\ldots,0)$ appears in L_{k-1}. If $i = 1$, then $c_{i,j} = a_{k-1,j} = a_{k-j,i}$, otherwise, it must appear in $\Psi_1(L_{k-2})$ according to (4), which implies that $c_{i,j}D(i-2,0,\ldots,1,0,\ldots,0)$ should appear in L_{k-2}. In the same way, we can proceed further until L_{k-i} and get

$$c_{i,j} = a_{k-i,j}, \quad \text{for } 2 \leq j \leq s.$$

Therefore, the formula (7) is correct for $\Phi_j(P_k)$, $1 \leq j \leq s$.

• The differential operator L_k defined by formulas (3, 4, 5) retains closedness and $L_k \in \Delta_\hat{x}(k)(I)$ if and only if the vector $[P_k(f_1)|_{x=\hat{x}}, \ldots, P_k(f_l)|_{x=\hat{x}}]^T$ can be written as a linear combination of the last $s-1$ linear independent columns of the Jacobian matrix $J(\hat{x})$. The values for the parameters $a_{k,j}$, $j = 2, \ldots, s$ can be determined if the linear combination does exist. Otherwise, we are finished and the multiplicity of the root \hat{x} is k.

\[\square\]

4. Algorithms for Computing a Basis of Max Noether Space

The routine MultiplicityStructureBreadthOneSymbolic below takes as input exact polynomials $F = \{f_1, \ldots, f_l\}$ which generate an ideal I, an exact isolated solution \hat{x} and the Jacobian matrix of F evaluated at \hat{x} has corank one, and returns the multiplicity μ and a closed basis $L = \{L_0, \ldots, L_{\mu-1}\}$ of the Max Noether space of I at \hat{x}.

Algorithm 4.1 MultiplicityStructureBreadthOneSymbolic

Input: An isolated singular solution \hat{x} of a polynomial system $F = \{f_1, \ldots, f_l\}$, and the Jacobian matrix of F evaluated at \hat{x} has corank one, $L_0 = D(0,0,\ldots,0)$, $L_1 = D(1,0,\ldots,0) \in \Delta_\hat{x}(1)(I)$.

Output: A closed basis $L = \{L_0, \ldots, L_{\mu-1}\}$ of the Max Noether space of I at \hat{x} and the multiplicity μ.

1. Set $k = 2$ and $P_2 = D(2,0,\ldots,0)$. Compute the LU decomposition of N which consists of the last $s-1$ columns of $J(\hat{x})$. Suppose $N = LU$.

2. Compute $p_k = [P_k(f_1)|_{x=\hat{x}}, \ldots, P_k(f_l)|_{x=\hat{x}}]^T$. If the triangular system $L \cdot b_k = -p_k$ is solvable then solve the triangular system $U \cdot a_k = b_k$ to get $a_k = [a_{k,2}, \ldots, a_{k,s}]^T$, set $L_k = P_k + a_{k,2}D(0,1,0,\ldots,0) + \cdots + a_{k,s}D(0,\ldots,0,1)$, and go to Step (3). Otherwise, go to Step (4).
3. Set \(k := k + 1 \), \(P_k = \Psi_1(L_{k-1}) + \Psi_2(Q_2)_{i_1=0} + \cdots + \Psi_s((Q_s)_{i_1=i_2=\cdots=i_{s-1}=0}) \), where \(Q_j = a_{2,j}L_{k-2} + \cdots + a_{k-1,j}L_1 \), for \(2 \leq j \leq s \), and go back to Step (2).

4. The algorithm returns \(\{ L_0, L_1, \ldots, L_{\mu-1} \} \) as a basis of the Max Noether space of \(I \) at \(\xHat \) and the multiplicity \(\mu = k \).

Remark 4.2 If \(L_1 \) is not \(D(1,0,\ldots,0) \), we compute a null vector of \(F'(\xHat) \), denoted by \(r_1 \), and then form a regular matrix \(R = [r_1, \ldots, r_s] \). By mapping \(x \) to \(Rz \), we generate a new system \(H(z) = F(Rz) \), and apply \texttt{MultiplicityStructureBreadthOneSymbolic} to \(H \) and \(\xHat = R^{-1}\xHat \) to get a closed basis. We map it back to a closed basis of \(\Delta_{\xHat}(I) \) by the following formula:

\[
D(\alpha) = \frac{1}{\alpha_1! \cdots \alpha_s!} \partial z_1^{\alpha_1} \cdots \partial z_s^{\alpha_s} = \frac{1}{\alpha_1! \cdots \alpha_s!} \partial (r_1^T \cdot x)^{\alpha_1} \cdots \partial (r_s^T \cdot x)^{\alpha_s} = \frac{1}{\alpha_1! \cdots \alpha_s!} \sum_{|\beta|=|\alpha|} c_\beta \cdot \beta_1! \cdots \beta_s! \cdot D(\beta).
\]

In Maple implementation of \texttt{MultiplicityStructureBreadthOneSymbolic}, we associate polynomials with the differential operators and this allows \(\Psi_j \) to be implemented as multiplication by \(x_j \). For example, we store \(L_1 = D(1,0,\ldots,0) \) as the polynomial \(x_1 \) and store \(\Psi_j(L_1) = D(1,0,\ldots,0,1,0,\ldots,0) \) as \(x_1 x_j \).

Example 4.3 [6] Consider a polynomial system

\[
F = \{2x^2 - x - x^3 + z^3, \ x - y - x^2 + xy + z^2, xy^2z - x^2z - y^2z + x^3z.\}
\]

The system \(F \) has \((0,0,0)\) as a 5-fold isolated solution, and there are also two other simple isolated zeros but the ideal \(I \) defined by polynomials in \(F \) is not zero dimensional since the entire line \(\{ z = 0, x = 1 \} \) is a solution of \(F \) [6].

Set \(\xHat = [0,0,0]^T \) and \(L_0 = D(0,0,0) \). The Jacobian matrix of \(F \) evaluated at \(\xHat \) is

\[
J(\xHat) = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

which is annihilated by \(r_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \).

We complete this column by \(r_2 = [0,1,0]^T \), \(r_3 = [1,0,0]^T \) to form a regular \(3 \times 3 \)-matrix \(R \) and generate a new polynomial system \(H(z) = F(Rz) \):

\[
H = \{2z^2 - z - z^3 + x^3, \ z - y - z^2 + yz + x^2, \ xy^2z - xz^2 - xy^2 + xz^3.\}
\]

The Jacobian matrix of \(H \) evaluated at \(\xHat = R^{-1}\xHat \) is

\[
J(\xHat) = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.
\]
Initialize $L_1 = D(1, 0, 0)$, $P_2 = D(2, 0, 0)$, then we get $p_2 = [0, 1, 0]^T$. Solving

$$N \begin{bmatrix} a_{2,2} \\ a_{2,3} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_{2,2} \\ a_{2,3} \end{bmatrix} = - \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

gives $a_{2,2} = 1, a_{2,3} = 0$. Hence

$$L_2 = D(2, 0, 0) + D(0, 1, 0).$$

From the data above, iteration $k = 3$ proceeds

$$Q_1 = L_2,$$
$$Q_2 = a_{2,2}(L_1)_{i_1=0} = 0,$$
$$Q_3 = a_{2,3}(L_1)_{i_1=0, i_2=0} = 0,$$

so $P_3 = \Psi_1(L_2) = \Psi_1(D(2, 0, 0) + D(0, 1, 0)) = D(3, 0, 0) + D(1, 1, 0)$, then $p_3 = [1, 0, 0]^T$. Solving $N[a_{3,2}, a_{3,3}]^T = -p_3$ gives $a_{3,2} = 1, a_{3,3} = 1$. Hence

$$L_3 = D(3, 0, 0) + D(1, 1, 0) + D(0, 1, 0) + D(0, 0, 1).$$

Now we continue with $k = 4$ to obtain

$$L_4 = D(4, 0, 0) + D(2, 1, 0) + D(1, 1, 0) + D(1, 0, 1) + D(0, 2, 0).$$

For $k = 5$, we have

$$\Phi_1(P_5) = L_4, \quad \Phi_2(P_5) = L_3 + L_2, \quad \Phi_3(P_5) = L_2.$$

Hence

$$P_5 = \Psi_1(L_4) + 2D(0, 2, 0) + D(0, 1, 1),$$

and $p_5 = [0, 0, -1]^T$. The fifth order differential operator consistent with closedness is

$$L_5 = P_5 + a_{5,2}D(0, 1, 0) + a_{5,3}D(0, 0, 1).$$

Since the last entry of p_5 is nonzero, there are no parameters $a_{5,2}, a_{5,3}$ exist such that L_5 is consistent with H. So that we transform $\{L_0, \ldots, L_4\}$ back to a basis of the Max Noether space of I at \hat{x}:

$$L_0 = D(0, 0, 0), \quad L_1 = D(0, 0, 1), \quad L_2 = D(0, 0, 2) + D(0, 1, 0),$$
$$L_3 = D(0, 0, 3) + D(0, 1, 1) + D(0, 1, 0) + D(1, 0, 0),$$
$$L_4 = D(0, 0, 4) + D(0, 1, 2) + D(0, 1, 1) + D(1, 0, 1) + D(0, 2, 0).$$

Notice that the matrix R only maps variables $[x, y, z]$ to $[z, y, x]$.

If I and \hat{x} are only known approximately, in order to compute an approximate closed basis of $\triangle_{\hat{x}}(I)$, for ensuring the numerical stability, we need to add a free parameter to P_k and solve the resulted linear system using the singular value decomposition or LU decomposition with pivoting.
Algorithm 4.4 MultiplicityStructureBreadthOneNumeric

Input: An isolated singular solution \(\hat{x} \) of a polynomial system \(F = \{f_1, \ldots, f_t\} \), and the Jacobian matrix of \(F \) evaluated at \(\hat{x} \) has corank one with respect to a given tolerance \(\tau \), an approximate basis \(L_0 = D(0,0,\ldots,0) \), \(L_1 = D(1,0,\ldots,0) \) of \(\Delta^{(1)}_F(I) \).

Output: A closed approximate basis \(L = \{L_0, \ldots, L_{\mu-1}\} \) of the Max Noether space of \(I \) at \(\hat{x} \) and the multiplicity \(\mu \).

1. Set \(k = 2 \), \(P_2 = D(2,0,\ldots,0) \), and \(N \) consists of the last \(s-1 \) columns of \(J(\hat{x}) \).
2. Compute \(p_k = [P_k(f_1)|_{x=\hat{x}}, \ldots, P_k(f_t)|_{x=\hat{x}}]^T \). For the given tolerance \(\tau \), if the linear system \([p_k, N] \cdot a_k = 0\) is solvable, we get \(a_k = [a_{k,1}, \ldots, a_{k,s}]^T \), set \(L_k = a_{k,1}P_k + a_{k,2}D(0,1,0,\ldots,0) + \cdots + a_{k,s}D(0,\ldots,0,1) \), and go to Step (3). Otherwise, go to Step (4).
3. Set \(k := k + 1 \), \(P_k = \Psi_1(L_{k-1}) + \Psi_2((Q_2)_{i_1=0}) + \cdots + \Psi_s((Q_s)_{i_1=0=\cdots=0}) \), where \(Q_j = \frac{b_{k-2,j-1}L_{k-2} + \cdots + b_{1,j-1}L_1}{Q_j} \). For \(1 \leq i \leq k-2 \) and \(2 \leq j \leq s \), \(b_{i,j} \) is the coefficient of \(D(i,0,\ldots,0,1,0,\ldots,0) \) in \(\Psi_1(L_{k-1}) \), which has 1 at the position \(j \), and \(l_i \) is the coefficient of \(D(i,0,\ldots,0) \) in \(L_i \). Go back to Step (2).
4. The algorithm returns \(\{L_0, L_1, \ldots, L_{\mu-1}\} \) as an approximate basis of the Max Noether space of \(I \) at \(\hat{x} \) and the multiplicity \(\mu = k \).

Remark 4.5 In order to show the correctness of MultiplicityStructureBreadthOneNumeric, we need to check whether \(Q_j \) in Step (3) is defined properly. Suppose \(D(i,0,\ldots,0,1,0,\ldots,0) \) is a term in \(\Psi_1(L_{k-1}) \) which has 1 at the position \(j \) for \(1 \leq i \leq k-2 \) and \(2 \leq j \leq s \), then \(D(i,0,\ldots,0) \) must be a term in \(\Phi_j(p_k) \) with the same coefficient, which is \(b_{i,j} \). On the other hand, by the formula (6) and lemma 3.3, we have

\[
\Phi_j(p_k) = c_{k-2,j}L_{k-2} + \cdots + c_{1,j}L_1, \quad 2 \leq j \leq s.
\]

Hence, the coefficient of \(D(i,0,\ldots,0) \) in \(\Phi_j(p_k) \) is \(c_{i,j} \cdot l_i \). Therefore, from

\[
b_{i,j} = c_{i,j} \cdot l_i,
\]

we derive that \(c_{i,j} = \frac{b_{i,j}}{l_i} \), for \(1 \leq i \leq k-2 \) and \(2 \leq j \leq s \).

In Step 2, suppose \(a_k = [a_{k,1}, \ldots, a_{k,s}]^T \) is a null vector of \([p_k, N]\) with respect to the given tolerance \(\tau \), then we have

\[
|L_k(f_j)|_{x=\hat{x}} \leq \tau, \quad \text{for} \quad 0 \leq k \leq \mu - 1 \quad \text{and} \quad 1 \leq i \leq t.
\]

Moreover, according to our construction, all these computed \(L_k \), \(0 \leq k \leq \mu - 1 \) satisfy the closedness condition, hence, \(\{L_0, L_1, \ldots, L_{\mu-1}\} \) is a closed approximate basis of the Max Noether space of \(I \) at \(\hat{x} \).

Example 4.6 [8] Consider the polynomial system

\[
F = \{14x + 33y - 3\sqrt{5}(x^2 + 4xy + 4y^2 + 2) + \sqrt{7}x^3 + 6x^2y + 12xy^2 + 8y^3, 41x - 18y - \sqrt{5} + 8x^3 - 12x^2y + 6xy^2 - y^3 + 3\sqrt{7}(4xy - 4x^2 - y^2 - 2)\}.
\]

The system \(F \) has \((2\sqrt{7} + 5\sqrt{5}, -\sqrt{5} + 2\sqrt{7})\) as a 5-fold isolated solution.
Unlike algorithms based on Gröbner basis, we can use \texttt{MultiplicityStructureBreadthOneSymbolic} to compute an exact dual basis of F at \hat{x}, despite of irrational numbers $\sqrt{5}, \sqrt{7}$ in F and \hat{x}. In order to comparing with \texttt{MultiplicityStructureBreadthOneNumeric}, we normalize the differential operators with respect to the highest order derivative in x, and obtain:

\[
L_0 = D(0, 0), \quad L_1 = D(1, 0) + \frac{1}{3} D(0, 1), \\
L_2 = D(2, 0) + \frac{1}{3} D(1, 1) + \frac{1}{9} D(0, 2), \\
L_3 = D(3, 0) + \frac{1}{3} D(2, 1) + \frac{1}{9} D(1, 2) + \frac{1}{27} D(0, 3) + \frac{25}{54} D(1, 0) - \frac{25}{18} D(0, 1), \\
L_4 = D(4, 0) + \frac{1}{3} D(3, 1) + \frac{1}{9} D(2, 2) + \frac{1}{27} D(1, 3) + \frac{1}{81} D(0, 4) + \frac{25}{27} D(2, 0) \\
\quad - \frac{100}{81} D(1, 1) - \frac{25}{27} D(0, 2).
\]

In [8], the coefficients of F and \hat{x} are rounded to five digits. Hence, choosing tolerance $\tau = 0.002$, we apply \texttt{MultiplicityStructureBreadthOneNumeric} to the rounded system and the approximate singular root. After normalizing and cutting off coefficients with absolute values less than τ, we obtain an approximate basis:

\[
L_0 = D(0, 0), \quad L_1 = D(1, 0) + 0.33341 D(0, 1), \\
L_2 = D(2, 0) + 0.33343 D(1, 1) + 0.11116 D(0, 2), \\
L_3 = D(3, 0) + 0.33343 D(2, 1) + 0.11117 D(1, 2) + 0.037065 D(0, 3) \\
\quad + 0.46313 D(1, 0) - 1.3891 D(0, 1), \\
L_4 = D(4, 0) + 0.33343 D(3, 1) + 0.11117 D(2, 2) + 0.037065 D(1, 3) \\
\quad + 0.012358 D(0, 4) + 0.92629 D(2, 0) - 1.2347 D(1, 1) - 0.92629 D(0, 2).
\]

The values of $L_i(F)|_{x=\hat{x}}$ for $0 \leq i \leq 4$ are

\[
L_0(F)|_{x=\hat{x}} = (-0.00066377, -0.00039331)^T, \\
L_1(F)|_{x=\hat{x}} = (-0.00023342, 0.00023341)^T, \\
L_2(F)|_{x=\hat{x}} = (-0.0000099698, 0.0000099694)^T, \\
L_3(F)|_{x=\hat{x}} = (-0.00060593, 0.00060608)^T, \\
L_4(F)|_{x=\hat{x}} = (0.00080432, -0.00080428)^T.
\]

An example of an analytic system. The method introduced in this paper can also be applied to systems of analytic equations, since the construction of the system of linear equations only relies on the existence of the partial derivatives of the analytic system up to the order μ.

Example 4.7 [7, Example 6] Consider the analytic system

\[
F = \{x^2 \sin(y), \ y - z^2, \ z + \sin(x^n)\}.
\]

The system F has $(0,0,0)$ as an $2(n+1)$-fold isolated solution.
The Jacobian matrix of F evaluated at $\hat{x} = [0, 0, 0]^T$ is:

$$
J(\hat{x}) = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.
$$

The rank deficiency of $J(\hat{x})$ is one and its null vector is $[1, 0, 0]^T$. Hence, $L_1 = D(1, 0, 0)$. For $k \geq 2$, in order to compute L_k, we only need to check whether the vector $p_k = [P_k(f_1)|_{x=\hat{x}}, P_k(f_2)|_{x=\hat{x}}, P_k(f_3)|_{x=\hat{x}}]^T$ can be written as linear combination of the last two columns of $J(\hat{x})$, which is equivalent to check whether the first entry of p_k is zero. The dominant cost is the evaluation of $P_k(F)$ at \hat{x}. This can be done very efficiently since each polynomial in F only consists of one or two terms. Therefore, for this example, our algorithm MultiplicityStructureBreadthOneSymbolic is significantly faster and more powerful than the algorithm presented in [7].

<table>
<thead>
<tr>
<th>n</th>
<th>5</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplicity</td>
<td>12</td>
<td>102</td>
<td>202</td>
<td>402</td>
<td>602</td>
<td>802</td>
<td>1002</td>
</tr>
<tr>
<td>time</td>
<td>0.056</td>
<td>0.608</td>
<td>2.077</td>
<td>9.596</td>
<td>35.415</td>
<td>105.060</td>
<td>232.490</td>
</tr>
</tbody>
</table>

Table 1. Algorithm Performance of Example 4.7

Remark 4.8 The reviewer pointed out that for this analytic system, the local ring at $(0, 0, 0)$ has basis $\{x^2y, y - z^2, z + x^n\}$ and the standard basis $\{y - z^2, z + x^n, x^{2n+2}\}$ can be computed by Singular from the algebraic basis in negligible amount of time. From the degree of the variable x, we know that the multiplicity of $(0, 0, 0)$ is $2n + 2$.

5. Complexity and Experiments

The complexity of algorithms MultiplicityStructureBreadthOneSymbolic and MultiplicityStructureBreadthOneNumeric is dominated by solving $\mu - 2$ linear systems with size bounded by $t \times s - 1$ or $t \times s$ respectively, and the evaluations of

$$
p_k = [P_k(f_1)|_{x=\hat{x}}, \ldots, P_k(f_t)|_{x=\hat{x}}]^T.
$$

Although we only need to store polynomials and the computed Max Noether conditions during the computation, similar to other any algorithm designed to calculate and store the dual basis in memory, our algorithm suffers too when polynomials or the differential operators are not sparse. The following example is kindly provided by the reviewer.

Example 5.1 Consider a system $F = \{f_1, \ldots, f_s\}$ given by

$$
f_i = x_i^3 + x_i^2 - x_{i+1}, \text{ if } i < s,
$$

$$
f_s = x_s^2
$$

with zero $(0, 0, \ldots, 0)$ of multiplicity 2^s.
Table 2. Algorithm Performance of Example 5.1

<table>
<thead>
<tr>
<th>s</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplicity</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>time</td>
<td>0.023</td>
<td>0.059</td>
<td>0.510</td>
<td>23.093</td>
<td>11061.269</td>
</tr>
</tbody>
</table>

In the following table, we show the time needed for computing the Max Noether conditions for s from 2 to 6.

For $s = 6$, about 17MB of memory is used to store the differential operators $\{L_0, \ldots, L_{63}\}$ and takes about 3 hours. For $s \geq 7$, we are not able to obtain all Max Noether conditions after running the algorithm for 2 days.

Example 5.2 Consider a system $F = \{f_1, \ldots, f_s\}$ given by

\[
 f_i = x_i^2 + x_i - x_{i+1}, \text{ if } i < s,
\]

\[
 f_s = x_s^3
\]

with zero $(0, 0, \ldots, 0)$ of fixed multiplicity 3.

Table 3. Algorithm Performance of Example 5.2

<table>
<thead>
<tr>
<th>s</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>0.071</td>
<td>0.166</td>
<td>1.126</td>
<td>21.528</td>
<td>270.735</td>
</tr>
</tbody>
</table>

For this example, the computational time only increases almost cubically with respect to the number of variables since the polynomials have very few terms and the multiplicity is fixed.

The Maple code and all test results, including examples from the PHCpack demos, are available at http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/.

6. Conclusion

The multiplicity structure of a singular solution has been studied extensively in [7, 26, 21, 25, 5, 6, 2, 8, 24, 17, 10, 15, 18, 16, 14]. In this paper, we present an algorithm `MultiplicityStructureBreadthOneSymbolic` based on Stetter’s strategies [24] for computing a closed basis of the Max Noether space of $I = (f_1, \ldots, f_t)$ at \hat{x} efficiently in the breadth one case.

The number of parameters used in computing each order of Max Noether condition is $s - 1$, which does not increase along with the multiplicity. The algorithm has also been extended to deal with approximately known systems and multiple roots. We are going to investigate the minimum number of parameters needed in computing a closed basis for $\triangle_{\hat{x}}(I)$ if the breadth is not one.

It is still a challenge problem to compute the multiple solutions of polynomial systems accurately. Various methods have been proposed for refining an approximate singular solution to high accuracy [25, 13, 12, 9, 11, 4, 19, 20]. The breadth one case root refinement has
been studied in [7, 8, 9]. We have started to investigate how to apply the strategies in our paper to reduce the matrices appeared in the [25, 8] to obtain a more efficient algorithm for refining an approximately known multiple root for this special case.

Acknowledgments

We greatly thank Zhonggang Zeng for fruitful discussions during his visit to our lab in July, 2009. The authors wish to thank the reviewers for valuable suggestions and comments that have improved the presentation of the paper.

References

