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Approximating complex curves with simple parametric curves is widely used in CAGD,
CG, and CNC. This paper presents an algorithm to compute a certified approximation to
a given parametric space curve with cubic B-spline curves. By certified, we mean that
the approximation can approximate the given curve to any given precision and preserve
the geometric features of the given curve such as the topology, singular points, etc. The
approximated curve is divided into segments called quasi-cubic Bézier curve segments
which have properties similar to a cubic rational Bézier curve. And the approximate
curve is naturally constructed as the associated cubic rational Bézier curve of the control
tetrahedron of a quasi-cubic curve. A novel optimization method is proposed to select
proper weights in the cubic rational Bézier curve to approximate the given curve. The
error of the approximation is controlled by the size of its tetrahedron, which converges to
zero by subdividing the curve segments. As an application, approximate implicit equations
of the approximated curves can be computed. Experiments show that the method can
approximate space curves of high degrees with high precision and very few cubic Bézier
curve segments.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Parametric curves are widely used in different fields such as computer aided geometric design (CAGD), computer graphics
(CG), computed numerical control (CNC) systems (Hoschek and Lasser, 1993; Piegl and Tiller, 1997). One basic problem in
the study of parametric curves is to approximate the curve with lower degree curve segments. For a given digital curve,
there exist methods to find such approximate curves efficiently (Pottmann et al., 2002; Renka, 2005; Aigner et al., 2007;
Kong and Ong, 2009). If the curve is given by explicit expressions, either parametric or implicit, these methods are still
usable. However, some important geometric features such as singular points cannot be preserved. In this paper, we will
focus on computing approximate curves which can approximate the given curve to any precision and preserve the topology
and certain geometric features of the given space curve. Such an approximate curve is called a certified approximation.
Here, the geometric features include cusps, self-intersected points, inflection points, torsion vanishing points, as well as the
segmenting points and the left (right) Frenet frames of these points.

There are lots of papers tried to approximate a smooth parametric curve segment (Hoschek and Lasser, 1993; Degen,
1993; Degen, 2005; Farin, 2008; Hijllig and Koch, 1995; Xu and Shi, 2001; Pelosi et al., 2005; Rababah, 2007; Chen et al.,
2010). Among them, Geometric Hermite Interpolation (GHI) is a typical method for the curve approximation. Degen (2005)
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presented an overview over the developments of geometric Hermite approximation theory for planar curves. Several 2D
interpolation schemes to produce curves close to circles were proposed in Farin (2008). The certified approximation were
considered by some authors and they focused on the case of planar curves (Gao and Li, 2004; Yang, 2004; Li et al., 2006;
Ghosh et al., 2007).

For space curves, Hijllig and Koch (1995) improved the standard cubic Hermite interpolation with approximation order
five by interpolating a third point. Xu and Shi (2001) considered the GHI for space curves by parametric quartic Bézier
curve. Pelosi et al. (2005) discussed the problem of Hermite interpolation by using PH cubic segments. Chen et al. (2010)
enhanced the GHI by adding an inner tangent point and the approximation was then more accurate. These methods were
mainly designed for the local approximation of a parametric curve segment. The approximate curves obtained generally
cannot preserve geometric features and topologies for the global approximation. The algorithms had to be improved to meet
certain special conditions. For instance, Wu et al. (2003) presented an algorithm to preserve the topology of voxelisation
and Chen et al. (2011) gave the formula of the intersection curve of two ruled surfaces by the bracket method. As a further
development for certified approximation, more properties such as the topology and singularities of the curve need to be
discussed in the approximation process. We would like to give the local approximation with certain restrictions. And the
local approximation methods can then be used in the global certified approximation naturally.

The certified approximation is also based on the topology determination. For implicit curves, the problem of topology
determination was studied in some papers such as Alcázar and Sendra (2005), Liang et al. (2009), Daouda et al. (2008),
Cheng et al. (2009). Efficient algorithms were proposed in Wang et al. (2009) and Rubio et al. (2009) to compute the
real singular points of a rational parametric space curve by the μ-basis method and the generalized D-resultant method
respectively. An algorithm was proposed to compute the topology for a rational parametric space curve (Alcázar and Díaz-
Toca, 2010). However, even we have the methods to determine the topology of space curves and the methods to approximate
the space curves with free form curves, the combination of them is not straightforward. The topology may change while
the line edges in topology graph are replaced by the approximate free form curve segments. For example, some knots may
be brought in or lost such that the crossing number of the approximate curve is not equivalent to the approximated curve.

In this paper, we compute a certified approximation to a given parametric space curve with a rational cubic B-spline
curve based on the topology. The cubic rational Bézier curve is taken as the approximate curve segment because it is the
simplest non-planar curve and has nice properties (Forrest, 1980; Chen et al., 2002). The presented method consists of two
major steps.

In the first step, the given space curve segment is divided into sub-segments which have similar properties to a cu-
bic rational Bézier curve. Such curve segments are called quasi-cubic Bézier curves. The preliminary work of our division
procedure is to compute the singular points and the topology graph of the given curve, which have already been studied
in Manocha and Canny (1992), Wang et al. (2009), Rubio et al. (2009), Alcázar and Díaz-Toca (2010). Inflection points and
torsion vanishing points of the curve are also added as character points. We further divide the curve segments to ensure
that the subdivided curve segments have similar properties to a cubic Bézier curve. For instance, each curve segment has an
associated control tetrahedron whose four vertices consist of the two endpoints of the curve segment and the two intersec-
tion points of the tangent lines and the osculating planes at the different endpoints respectively. And the curve segment is
inside its associated control tetrahedron. Furthermore, we need to ensure some monotone properties about the associated
control tetrahedron, which are necessary for the convergence of the algorithm. The tetrahedrons are then just the control
polytope of the approximate cubic Bézier curves. In other words, the approximate curve is controlled by the sequence of the
tetrahedrons. And this property ensure the topological isotopy for the approximated and approximate curves. Some more
careful discussions are proposed for both cubic Bézier and quasi-cubic curve segments.

In the second step of the algorithm, we use a cubic rational Bézier spline to approximate a quasi-cubic Bézier curve
obtained in the first step. Some different approximation methods can be used here such as GHI with inner tangent
points (Chen et al., 2010). However, as we mentioned, a quasi-cubic Bézier curve has an associated control tetrahedron.
The associated cubic rational Bézier curve of this tetrahedron is naturally used as the approximate curve. So, each curve
segment and its approximated cubic curve segment share the same control tetrahedron. A novel method, called shoulder
point approximation, is proposed to select parameters in the cubic Bézier curve so that it can optimally approximate the
given curve segment. If the distance between the two curve segments is larger than the given precision, we further sub-
divide the given curve segment and approximate each sub-segment similarly. The error of the approximation is controlled
by the size of the associated tetrahedrons, which are proved to converge to zero. In the subdivision process, there is one
important difference between our algorithm with the others. We only need to check the collision of the sub-tetrahedrons
subdivided from which are the intersected before the subdivision, since the sub-tetrahedrons are included in its father tetra-
hedrons. In general algorithms, one has to check the collision of all pair of the approximate curve segments or their control
polytopes after a subdivision. Finally, the rational cubic Bézier curves are converted to a C1 rational B-spline with a proper
knot selection and used as the final approximate curve. After a cubic parametric approximate segment is computed, we can
compute its algebraic variety using the μ-basis method (Cox et al., 1998), which can be used as the approximate implicit
equations for the given parametric curve.

The proposed method is implemented and experimental results show that the method can be used to compute certified
approximate curves to high degree space curves efficiently. The computed rational B-spline has very few pieces and can
approximate the given curves with high precision.
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The rest of this paper is organized as follows. In Section 2, some notations and preliminary results are given. In Section 3,
we give the algorithm to compute the dividing points such that each divided segment is a quasi-cubic curve. In Section 4,
the method of parameter selection for the cubic rational Bézier segments is proposed and then an algorithm based on
shoulder point approximation is given. We also prove that the termination of the algorithm. The final algorithm is given in
Section 5, and some examples are used to illustrate the algorithm. In Section 6, the paper is concluded.

2. Preliminaries

Basic notations and preliminary results about rational parametric curves and cubic Bézier curves are presented in this
section.

2.1. Basic notations

A parametric space curve is defined as

r(t) = (
x(t), y(t), z(t)

)
, (2.1)

where x(t), y(t), z(t) ∈ Q(t) and Q is the field of rational numbers. In the univariate case, Lüroth’s theorem provides a
proper reparametrization algorithm and some improved algorithms which can also be found such as Manocha and Canny
(1992). So we assume that (2.1) is a proper parametric curve in an interval [0,1] since any interval [a,b] can be transformed
to [0,1] by a parametric transformation t ← t−a

b−a . Further, the denominators of (2.1) are assumed to have no real roots in
[0,1].

The tangent vector of r(t) is r′(t) = (x′(t), y′(t), z′(t)) and the tangent line of r(t) at a point r(t0) is T(t0) = r(t0) +
λr′(t0), λ ∈ Q. A point r(t0) is called a singular point if it corresponds to more than one parameters with multiplicities
counted. A singular point is called a cusp if r′(t0) is the vector of zeros, which means that t0 is a multiple parameter;
otherwise, it is an ordinary singular point (Rubio et al., 2009). The curvature and torsion of the curve are

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

, τ (t) = (r′, r′′, r′′′)
‖r′ × r′′‖ .

A point is called an inflection if its curvature is zero and called torsion vanishing point if its torsion is zero. All these points
are called character points of the curve, and r(t) is a normal curve if it has a finite number of character points. A rational
space curve is always a normal curve. In this paper, we assume that κ(t) �≡ 0 and τ (t) �≡ 0, which means that the curve is
not a planar curve.

If r(t0) is not a character point, then the Frenet frame at r(t0) can be defined as F(t0) := {r(t0);α(t0),β(t0),γ (t0)}
where α(t0) = r′(t0)

‖r′(t0)‖ , β(t0) = γ (t0) × α(t0), γ (t0) = r′(t0)×r′′(t0)
‖r′(t0)×r′′(t0)‖ are the unit tangent vector, unit principal normal vector,

and unit bi-normal vector, respectively. And the osculating plane is O (t0) := ((x, y, z) − r(t0)) · γ (t0) = 0.
For a point with κ(t0) = 0, the bi-normal vector is not defined, neither is the osculating plane. Here, we define them

using limit. Consider the limit limt→t0 γ (t) of the bi-normal vector at t0. Since the left limit and the right limit are gen-
erally different, we define the left bi-normal vector and the right bi-normal vector as γ −(t0) := limt→t0−0 γ (t) and γ +(t0) :=
limt→t0+0 γ (t) respectively. The limitations always exist if r(t) is a rational space curve of form (2.1). As a consequence, the
left and right osculating planes at t0 are O −(t0) := ((x, y, z)− r(t0)) ·γ − = 0 and O +(t0) := ((x, y, z)− r(t0)) ·γ + = 0. If the
κ(t0) �= 0, one can find that γ +(t0) = γ −(t0) and O +(t0) = O −(t0).

Similarly, if t0 is at a cusp, we define the left and right tangent vectors as α−(t0) := limt→t0−0 α(t) and α+(t0) :=
limt→t0+0 α(t), respectively. Hence, the corresponding left and right principal vectors are β−(t0) := γ −(t0) × α−(t0) and
β+(t0) := γ +(t0) × α+(t0). We also denote the left and right tangent lines as T−(t0) = r(t0) + λα−(t0) and T+(t0) = r(t0) +
λα+(t0) where λ is the real number parameter. Then, a rational parametric curve r(t) always has left and right Frenet
frames.

2.2. Rational cubic Bézier curve

A rational Bézier curve with degree n has the following form

p(t) =
∑n

i=0 ωipi Bn
i (t)∑n

i=0 ωi Bn
i (t)

, t ∈ [0,1],

where ωi � 0 are associated weights of the control points pi ∈ R3 and Bn
i (t) = (n

i

)
(1 − t)n−iti . When n = 3, it defines a cubic

rational Bézier curve where ♦p0p1p2p3 is called the control tetrahedron of p(t). One can set the weight ω0 = ω3 = 1 up to
a parametric transformation. We now consider the cubic curve and omit superscript 3 from B3

i (t)

p(t) = p0 B0(t) + ω1p1 B1(t) + ω2p2 B2(t) + p3 B3(t)

B0(t) + ω1 B1(t) + ω2 B2(t) + B3(t)
, t ∈ [0,1]. (2.2)

The rational cubic Bézier curve (2.2) has the following properties.
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Fig. 1. Shoulder point of a Bézier cubic curve.

Lemma 2.1. Let p(t) be a non-planar cubic rational curve of the form (2.2). Then

1) p(t) passes through the endpoints p0,p3 with the corresponding tangent directions p′(0) and p′(1) parallel to p0p1 and p2p3
respectively.

2) p0p1p2 and p1p2p3 are the osculating planes of p(t) at the endpoints p0 and p3 , respectively.
3) p(t) lies inside its control tetrahedron ♦p0p1p2p3 .
4) p(t) has no singular points and κ(t) �= 0, τ (t) �= 0 in [0,1].
5) For any t�

1 < t�
2 ∈ [0,1], the control tetrahedron of p�(t) = p(t), t ∈ [t�

1, t�
2], is inside the control tetrahedron of p(t).

6) ‖p0p01‖,‖p1p12‖, and ‖p2p23‖ are strictly monotone for t� ∈ (0,1) where p01,p12 , and p23 are the intersection points of the
osculating plane O (t�) with p0p1,p1p2, and p2p3 respectively.

7) ‖p0p03‖ and ‖p1p12‖ are strictly monotone for t� ∈ (0,1) where p03 = p1p2p(t�) ∩ p0p3 and p12 = p0p3p(t�) ∩ p1p2 .

Proof. Properties 1), 2) and 3) are basic properties of Bézier curves and the proof can be founded in Hoschek and Lasser
(1993). They also can be checked directly.

For 4), Li and Cripps shown that there is no cusps and inflection points for a non-degenerate rational cubic space curves
in Li and Cripps (1997), and the torsion can be checked directly. Wang et al. also proved that a cubic space curve has no
singular points by moving planes method in Wang et al. (2009).

5) can be proved by a successive Decasteljau subdivision (Hoschek and Lasser, 1993). The control tetrahedron of p�
1(t), t ∈

[t�
1,1] is inside the control tetrahedron of p(t). Successively, the control tetrahedron of p�(t), t ∈ [t�

1, t�
2], lies in the control

tetrahedron of p�
1(t).

Property 6) can be derived from the above five properties. Also this property is a special case of the following Theo-
rem 3.10 in this paper.

For 7), it is sufficient to prove that the planes p1p2p(t�) and p0p3p(t�) do not touch p(t�) with t� ∈ (0,1), respectively.
Since p0p3p(t�) passes through p0,p3 and p(t) is cubic, p0p3p(t�) cannot have any tangent point different from p0,p3.
Supposing the plane p1p2p(t�) touches p(t�) at t� ∈ (0,1), the osculating plane O (t�) must intersects p1p2p(t�) with the
tangent line T(t�). By 6), T(t�) must intersect p1p2 which is the intersection line of O (0), O (1). However, according to
Decasteljau subdivision, the intersection point of T(t�) and O (0) is always different from that of T(t�) and O (1). Then there
is a contradiction. �

The shoulder point of a cubic Bézier curve will play an important role (Forrest, 1980). The definition is given below.

Definition 2.2. Let p(t) be a curve of the form (2.2). Its shoulder point s is defined as intersection point of p(t) and the
plane p1p2pM where pM = (p0 + p3)/2 (Fig. 1).

Proposition 2.3. Let s be the shoulder point of p(t). Then s = p(1/2) = λ1p1 + λ2p2 + (1 − λ1 − λ2)pM where λ1 = 3ω1
2+3ω1+3ω2

,

λ2 = 3ω2
2+3ω1+3ω2

.

Proof. By 7) of Lemma 2.1, there exists a unique intersection point of p(t) and the plane p1p2pM . And λ1, λ2 and 1−λ1 −λ2
are just the area coordinates of s in the triangle p1p2pM . More details can be found in Forrest (1980). �

It is known that the curve is closer to the control point when its associated weight is greater. We now consider the point
which has the maximum distance to the planes P1 = p0p2p3 and P2 = p0p1p3 respectively.

Definition 2.4. Let r(t), t ∈ [0,1] be a curve segment on the same side of a plane Q with the two endpoints on Q . For
another plane R parallel to Q , a tangent point of r(t) with the plane R is called a parallel point of r(t) associated to the
plane Q .

According to the definition, a parallel point should satisfy
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∣∣r′(t),q1 − q0,q2 − q0
∣∣ = 0, (2.3)

where q0,q1 and q2 are three non-colinear points on Q . In general, there may be several parallel points for a curve
segment and a fixed plane. However, for the rational cubic curve segment (2.2), there is a unique parallel point associated
to P1 = p0p2p3, and similarly, there is a unique parallel point associated to P2 = p0p1p3.

Proposition 2.5. Let p(t) be a non-planar cubic rational curve of the form (2.2). Then there are unique parallel points associated to
the planes P1 and P2 respectively, and they are points of p(t) having the maximal distance to P1 and P2 respectively.

Proof. By Eq. (2.3), we can find that 3t3−6t2+6t−2
3t(t−1)2 = ω1 and 3t3−3t2+3t−1

3t2(t−1)
= ω2 are the constraint equations for the parallel

points associated to P1 and P2 respectively. They are two monotone functions for t ∈ (0,1) with two asymptotes t = 0,1. It
means that for any weights there is only one parallel point associated to Pi . Furthermore, the parallel point has the maximal
distance since the endpoints of the curve are on Pi . �
3. Quasi-cubic segments on space parametric curves

In this section, we propose a method to divide a given curve r(t) into segments which have similar properties to cubic
Bézier curves, which are called quasi-cubic Bézier segments and can be approximated by cubic rational Bézier curves nicely.

3.1. Conditions for subdivision

Let t0, t1 be the endpoints of a curve segment r(t). We will define an associated tetrahedron for it. Let O +(t0) and
O −(t1) be the right and left osculating planes at the endpoints respectively. We denote their intersection line as L, if they
are not parallel. Since L and the right tangent line T+(t0) are coplanar, they intersect at a point r1 if they are not parallel.
Similarly, L and the right tangent line T−(t1) intersect at a point r2 if they are not parallel. So we obtain an associated
tetrahedron ♦(t0, t1) = ♦r0r1r2r3 where r0 = r(t0) and r3 = r(t1) if r1 �= r2.

We have shown that a cubic Bézier curve segment has eight properties in Lemma 2.1 and Proposition 2.5. In the follow-
ing, we will show how to divide any given rational curve segment into sub-segments having similar properties.

Definition 3.1. A curve segment is called a quasi-cubic Bézier curve segment, or simply a quasi-cubic segment, if it has the eight
properties in Lemma 2.1 and Proposition 2.5.

Theorem 3.2. Given r(t) and t0 , there always exists t1 > t0 such that r(t), t ∈ [t0, t1] is a quasi-cubic Bézier curve segment.

We leave the proof of this theorem at the end of Section 3.2.

Definition 3.3. Let r(t), t ∈ [t0, t1] be a quasi-cubic segment. Then its associated cubic Bézier curve segment is defined by the
associated tetrahedron of r(t), i.e., the control points are r0, r1, r2 and r3.

In order to divide the curve segment into quasi-cubic segments, we first add the inflection points and torsion vanishing
points as the dividing points, denoted by P. The parameters of these points can be computed by solving the real roots of
κ(t)τ (t) = 0. The left and right Frenet frames are also needed. There are several efficient methods to find the real roots of
a univariate polynomial (Rouillier and Zimmermann, 2004; Cheng et al., 2009) and one can use the procedures realroot
and isolate in Maple.

We need to find more dividing points. Fix a start point t = t0, we now try to determine t1 such that t1 − t0 is as big as
possible and the segment is included in its associated tetrahedron designed above. Several boundary parametric values to
exclude some special points with respect to t0 are computed in the following cases:

Condition I). Let t�
1 > t0 be its nearest parametric value from P. Find t1 ∈ (t0, t�

1) such that F1(s1, s2) := α+(s1) ·γ −(s2) �=
0 and F2(s1, s2) := α−(s2) ·γ +(s1) �= 0 for any t0 � s1 < s2 � t1, meaning that the right tangent vector α+(s1) is not parallel
to the left osculating plane O −(s2) and the left tangent vector α−(s2) is not parallel to the left osculating plane O +(s1).

Since the curve is non-planar, Fi(s1, s2), i = 1,2, cannot be identically zero. We take a further look at the inequalities
F1 �= 0, F2 �= 0. Since the derivative can be computed using limits, r(t) is differentiable to any order although the left
and right derivative may be different. For conveniences, we omit the +,− marks to distinguish between left and right
derivatives. In what below, we give detailed analysis for F1 and the analysis of F2 is similar.

F1(s1, s2) = α(s1) · γ (s2) = |r′(s1), r′(s2), r′′(s2)|
‖r′(s1)‖‖r′(s2) × r′′(s2)‖ .

Assuming s1 = t0 + δ1, s2 = s1 + δ2, δ1 � 0, δ2 > 0, F1(s1, s2) is re-parameterized as

F1(δ1, δ2) = |r′(t0 + δ1), r′(t0 + δ1 + δ2), r′′(t0 + δ1 + δ2)|
‖r′(t0 + δ1)‖‖r′(t0 + δ1 + δ2) × r′′(t0 + δ1 + δ2)‖ .
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Expanding the vectors of the numerator at t = t0 + δ1 as Taylor series r′
S(t0 + δ1), r′

S (t0 + δ1 + δ2) and r′′
S (t0 + δ1 + δ2)

respectively, and combining them, we have

F1(δ1, δ2) = δ2
2 |r′

S(t0 + δ1), r̃′′
S(t0 + δ1 + δ2), r̃′′′

S (t0 + δ1 + δ2)|
‖r′(t0 + δ1)‖‖r′(t0 + δ1 + δ2) × r′′(t0 + δ1 + δ2)‖ , (3.1)

where r̃′′
S (t0 + δ1 + δ2) = (r′

S (t0 + δ1 + δ2) − r′
S (t0 + δ1))/δ2 and r̃′′′

S (t0 + δ1 + δ2) = (r′′(t0 + δ1 + δ2) − r̃′′
S(t0 + δ1 + δ2))/δ2.

Furthermore, when δ2 = 0, r̃′′
S (t0 + δ1) = r′′

S (t0 + δ1) and r̃′′′
S (t0 + δ1) = r′′′

S (t0 + δ1).
Let f1(δ1, δ2) = F1(δ1, δ2)/δ

2
2 . Then f1(δ1,0) = τ (t0 + δ1)/‖r′(t0 + δ1)‖. F1(δ1, δ2) = 0 is a planar curve in the plane

of (δ1, δ2) which has two components: a double line δ2
2 = 0 and another planar curve f1(δ1, δ2) = 0. That means f1 = 0

intersects δ2 = 0 with the points which are exactly the torsion vanishing points τ (t0 + δ1) = 0 of r(t). And we need not
compute these points since they are already included in the separating points needed in the topology computation which
is discussed in Section 3.3. Consider the intersection points of f1(δ1, δ2) and δ1 = 0. We can find that the real roots of
f1(0, δ2) = 0 are associated to the vector α(s1) = r′(t0) just paralleling to the osculating plane O (s2) = O (t0 + δ2).

Thus, condition I) can be reduced to solve the following optimization problem

min δ1 + δ2

s.t. F1(δ1, δ2) = 0, δ1 � 0, δ2 > 0 (3.2)

and then t1 can be selected from (t0, t0 +δ1 +δ2). There are numerical methods to solve the optimization problem. However,
we prefer to solve it based on the above discussion since it is enough to get a boundary parametric value less than the
exact solution of (3.2). We can find the positive real roots of f1(δ1,0) and f1(0, δ2) for δ1 and δ2 respectively. Let δ�

1 be the
minimal one among all the real roots. Then δ1 + δ2 = δ�

1 defines a line. If the line does not intersect f1 in the first quadrant,
then t1 can be in (t0, t0 + δ�

1). This can be checked by finding the real roots of f1(δ
�
1 − δ2, δ2) = 0. Otherwise, set δ�

1 ← δ�
1/2

and check the process repeatedly until the proper δ�
1 is found. If f1(δ1,0) and f1(0, δ2) have no positive real roots, δ�

1 can
be initialed as δ�

1 = t�
1 − t0.

Similarly, we can find such a δ�
2 for F2. Finally, let t�

2 = min(t0 + δ�
1, t0 + δ�

2) be the boundary parametric value of t1.

Remark 3.4. The function F1(δ1, δ2) in (3.1) actually has a finite number of terms if the approximated curve r is a rational
curve. If r is a parametric curve in elementary functions, F1(δ1, δ2) will be in the series form. However, the problem (3.2)
can still be solved using a numerical method. Starting with an initial value δ�

1, we can find a boundary number by checking
whether δ1 + δ2 = δ�

1 and F1(δ1, δ2) have common points in the first quadrant with one of the directions {δ0 ← δ�
1/2, δ0 ←

2δ�
1}.

Further restrictions will be proposed afterward. We will omit the similar discussions and solving processes and give the
conditions directly.

Condition II). Let t∗
2 be the parametric value t1 computed in the above procedure. Find t1 ∈ (t0, t�

2) such that

F (s1, s2) := α+(s1) × (
r(s2) − r(s1)

) · α−(s2) �= 0

for any t0 � s1 < s2 � t1, which means that the right tangent line T+(s1) and the left tangent line T−(s2) are not coplanar.
Condition III). Let t∗

3 be the parametric value t1 computed in the above procedure. We should find t1 ∈ (t0, t�
3) such

that F1(s1, s2) := O −(s2)(r(s1)) �= 0 and F2(s1, s2) := O +(s1)(r(s2)) �= 0, which imply that r(s1) is not on the left osculating
plane O −(s2) and r(s2) is not on the right osculating plane O +(s1).

Conditions I), II), and III) are used to guarantee that the tetrahedron ♦r0r1r2r3 is not degenerated to a plane polygon.
However, these conditions are still not sufficient for the curve segment lying inside ♦r0r1r2r3. We will give one more
condition such that the curve segment lies inside the tetrahedron and has only one parallel points associated to planes P1
and P2 respectively.

Let t̃1 < t�
4 where t�

4 is the parameter value obtained from III). Then the curve segment r(t), t ∈ [t0, t̃1] satisfies the
conditions of I) to III) and r(t) has no character points. We will try to find t� ∈ (t0, t̃1] such that for any s1 < s2 < s3 ∈ [t0, t�],
the tangent vectors α(s1), α(s2), and α(s3) are not coplanar, i.e.,∣∣α(s1),α(s2),α(s3)

∣∣ �= 0. (3.3)

The following lemma is needed for further discussion.

Lemma 3.5. For a fixed t0 and ∀ε > 0, F (s1, s2) := |α(t0),α(s1),α(s2)| = 0 has solutions (s1, s2) in (0, ε)2 if and only if r(t) is a
planar curve.

Proof. It can be checked by expanding vectors to Taylor series which are partly illustrated above. �
And the lemma also holds for F mentioned in I) to III). It means that F (s1, s2) has no branch segment on the first

quadrant of the (s1, s2) plane connecting the origin point.
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Condition IV). Find t� ∈ (t0, t̃1) such that F := |α(s1),α(s2),α(s3)| �= 0 for any s1 < s2 < s3 ∈ [t0, t�] ⊂ [t0, t̃1]. That means
r(t) does not have a triple of linear dependent tangents in [t0, t�]. Suppose s1 = t0 + δ1, s2 = s1 + δ2 and s3 = s2 + δ3 where
δ1 � 0, δ2 > 0 and δ3 > 0.

If δ1 > 0, then we need to find the least t0 + δ1 + δ2 + δ3 with F (δ1, δ2, δ3) = 0, that is,

min δ1 + δ2 + δ3

s.t. F (δ1, δ2, δ3) = 0, δ1, δ2, δ3 > 0.

By Taylor expansion, we find that F (δ1, δ2, δ3) has no branch passing through the (δi, δ j) plane from the first octant in the
space of (δ1, δ2, δ3). Then we initialize δi, i = 1,2,3, in the plane δ1 + δ2 + δ3 = δ�

1 = t̃1 and check the intersection of the
plane with F . Set the boundary parametric value t�

51 = δ�
1 if there is no intersection; otherwise set δ�

1 ← δ�
1/2 and repeat

the checking process.
If δ1 = 0, then F (δ2, δ3) degenerates to the special case mentioned in Lemma 3.5 and we can find a boundary parametric

value as t�
52. Finally, let t� = min(t�

51, t�
52).

We have the following key theorem.

Theorem 3.6. Let t� be found by the above process. For any ε > 0, t1 = t� − ε > t0 , the associated tetrahedron ♦r0r1r2r3 of r(t), t ∈
[t0, t1] is not degenerated. Furthermore,

1) r(t) passes through the endpoints r0, r3 with the corresponding tangent directions r′(t0) and r′(t1) parallel to r0r1 and r2r3
respectively.

2) r0r1r2 and r1r2r3 are the osculating planes of r(t) at the endpoints r0 and r3 , respectively.
3) r(t) lies inside its control tetrahedron ♦r0r1r2r3 .
4) r(t) has no singular points and κ(t) �= 0, τ (t) �= 0 in [t0, t1].
5) There exists only one parallel point between r1 and r0r2r3 , same to r2 and r0r1r3 .

Proof. According to conditions I) to III), the tetrahedron ♦r0r1r2r3 does not degenerate. 1), 2), and 4) are also followed by
the discussions.

The curve segment is inside the tetrahedron. We claim that the curve segment and r3 are on the same side of plane
P3 = r0r1r2. Otherwise, there exists a parallel point p associated to P3 but on the different side with r3, since r(t) is a
smooth segment. Then α(p) is parallel to P3 which contradicts to I). Similarly, the curve and r0 are on the same side of
P0 = r1r2r3. Furthermore, the curve and r1 are on the same side of P1 = r0r2r3. Otherwise, there exist at least two parallel
points p1,p2 on different sides of P1. Then |α(p1),α(p2),α(r3)| = 0 which contradicts to condition IV). Similarly, the curve
and r2 are on the same side of P2 = r0r1r3. Therefore, 3) is followed.

Finally, 5) is correct. Otherwise, there exist at least two parallel points associated to P1 or P2 which will lead a contra-
diction to condition IV). �
Proposition 3.7. For any t�

1 < t�
2 ∈ [t0, t1], the sub-tetrahedron ♦r�

0r�
1r�

2r�
3 of the sub-segment r�(t), t ∈ [t�

1, t�
2] also has the properties

listed in Theorem 3.6.

Proof. In the dividing process, the conditions in I) to IV) are satisfied for the parameters through the interval not just only
for the endpoints. Then the properties are all satisfied within [t�

1, t�
2] ⊂ [t0, t1]. �

3.2. Further properties of the divided segment

In this subsection, we prove that the curve segment obtained in the preceding section also has properties 6) and 7) in
Lemma 2.1. Before that, we need some preparations.

Suppose that the curve segment r(t), t ∈ [t0, t1] satisfies conditions I)–IV) in the preceding section.

Lemma 3.8. Let ♦r0r1r2r3 be the control tetrahedron of a given curve segment r(t), t ∈ [t0, t1]. Then for any t� ∈ (t0, t1), the control
tetrahedron ♦r0r�

1r�
2r�

3 of the curve segment r(t), t ∈ [t0, t�] has the following properties:

1. r�
1 and r1 are on the same side of r0 in the tangent line T(t0);

2. r�
2 and r2 are on the same side of T(t0) in the osculating plane O (t0).

Proof. Using the first and second order Taylor expansion of r(t), one can prove the lemma. �
Lemma 3.9. Let O (t�) be the osculating plane of curve r(t) at t� ∈ [t0, t1]. If r(t) does not pass through O (t�), then τ (t�) = 0.

Proof. Similar to the discussions of condition I), using the third order Taylor expansion, one can see that
|r′(t�), r′′(t�), r′′′(t�)| = 0, that is τ (t�) = 0. �
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Fig. 2. The osculating plane.

We now prove another key property for the curve segments.

Theorem 3.10. Let ♦r0r1r2r3 be the associated tetrahedron of a curve segment r(t), t ∈ [t0, t1]. Then ‖r0r01‖,‖r1r12‖, and ‖r2r23‖
are strictly monotone in (t0, t1) where r01, r12 , and r23 are the intersection points of the osculating plane O (t�) and r0r1, r1r2 , and
r2r3 respectively.

Proof. Firstly, the intersection point r01 of r0r1 and the osculating plane O (t�) must be on the same side with r1 with
respect to r0 on the curve segment. Otherwise, subdividing r(t) at t� , the sub-segment r�

1(t), t ∈ [t0, t�] will not be inside
its tetrahedron for r01 �= r0 by Lemma 3.8. We denote by r02 the intersection point of line r0r2 and O (t�). Similarly, r23 is
on the same side with r2 with respect to r3 and r02 is on the same side with r2 w.r.t. r0 (see Fig. 2).

Secondly, we claim that there exist no t�
1 < t�

2 in [t0, t1] such that the osculating planes O (t�
1) and O (t�

2) have the same
intersection point r01 with r0r1. It is sufficient to prove that there has no t� ∈ (t0, t1) such that the osculating plane O (t�)

passes through r1 by assuming t�
2 = t1 and denote t�

1 by t� . Otherwise, if the osculating plane O (t�) passes through r1, then
O (t�) passes through the line r1r(t�) but cannot pass through r0 and r3 by the restrictions in condition I). Hence O (t�) has
only two possible cases: it either intersects r0r3 and the polygonal line r0r2r3, or intersects r0r2 and r2r3. In the first case,
let the intersection points of T(t�) and O (t0), O (t1) be rO 0 , rO 1 respectively. Then rO 0 and rO 1 are on the same side with
respect to r(t�) in line T(t�). Which means that one of the sub-segments r�

1(t), t ∈ [t0, t�] and r�
2(t), t ∈ [t�, t1] cannot be

inside its tetrahedron by the first paragraph of the proof, a contradiction to Proposition 3.7. In the second case, the points
r0 and r3 are on the same side of O (t�). By Proposition 3.7, the sub-segment curves at t = t� are also on the same side of
O (t�). Then the curve r(t) does not pass through O (t�) at t� , which means that τ (t�) = 0 by Lemma 3.9. Hence, ‖r0r01‖
and ‖r2r23‖ are monotone.

It is known that r01 lies on r0r1 and r23 lies on r2r3. We claim that r12 must be on r1r2. Otherwise, assuming O (t�) has
no common points with r1r2, then O (t�) must intersect with r0r1, r0r2, r1r3, and r2r3. That means r0 and r3 are on the
same side of O (t�), and then τ (t�) = 0, a contradiction.

Since the curve is inside its tetrahedron, r(t�) is inside the quadrangle r01r12r23r30. Actually, r(t�) is inside the triangle
r01r12r23. r(t�) cannot be on r01 and r23 according to condition III). So, if r(t�) is not inside the triangle r01r12r23, then r(t�)

is on the opposite side with r12 with respect to r01r23 or on r01r23. Then T(t�) ∩ O (t0) is not inside r01r12, or, T(t�) ∩ O (t1)

is not inside r12r23, since r01r12r23r30 is convex. Without loss of generality, we suppose T(t�) ∩ O (t0) is not in r01r12. Then
T(t�) ∩ O (t0) are on the same side with r2 w.r.t. r0r1 in O (t0) by Lemma 3.8. Hence, T(t�) ∩ O (t0) and T(t�) ∩ O (t1) is on
the same side of r(t�) in T(t�), which means that one of the sub-segments r�

1(t), t ∈ [t0, t�] and r�
2(t), t ∈ [t�, t1] cannot be

inside its tetrahedron, a contradiction to Proposition 3.7.
Therefore, r(t�) can only be inside the triangle r01r12r23, and T(t�) can only intersect r01r12 with r012 and intersect r12r23

with r123. Subdivide r(t) at t = t� to get curve segments r�
1(t), t ∈ [t0, t�], and r�

2(t), t ∈ [t�, t1], and their tetrahedrons as
♦r0r01r012r(t�) and ♦r(t�)r123r23r3. It has been shown that these two sub-tetrahedrons are inside the tetrahedron ♦r0r1r2r3.
As a consequence, for any t�

1 < t�
2 in [t0, t1], the sub-tetrahedron of the sub-segment r�(t), t ∈ [t�

1, t�
2] is inside the tetrahedron

♦r0r1r2r3.
Finally, we prove that ‖r1r12‖ is monotone. It suffices to show that there exist no t�

1 < t�
2 ∈ [t0, t1] such that O (t�

1) and
O (t�

2) have a common point in r1r2. Otherwise, we assume O (t�
1) and O (t�

2) have a common point r�
12 in r1r2. Since r0r01

and r2r23 are monotonously increasing, r01(t�
1) and r23(t�

1) are on the same side of O (t�
2). Hence the intersection line of

O (t�
1) and O (t�

2) can only be outside of the tetrahedron ♦r0r1r2r3 passing through r�
12. Then the sub-tetrahedron of the

sub-segment r�
12(t), t ∈ [t�

1, t�
2], cannot be inside the tetrahedron ♦r0r1r2r3, which contradicts to the consequence in the

preceding paragraph. �
For clarity, we summarize the properties mentioned in the proof of the above theorem as follows.

Proposition 3.11. For any t�
1 < t�

2 ∈ [t0, t1], the sub-tetrahedron ♦r�
0r�

1r�
2r�

3 of the sub-segment r�(t), t ∈ [t�
1, t�

2] is inside the tetrahe-
dron ♦r0r1r2r3 .

Similar to 7) of Lemma 2.1, we have the following proposition. The proof is also similar to that of 7) of Lemma 2.1.
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Proposition 3.12. ‖r0r03‖ and ‖r1r12‖ are strictly monotone with t� ∈ (t0, t1) where r03 and r12 are the intersection points
r1r2r(t�) ∩ r0r3 and r0r3r(t�) ∩ r1r2 respectively.

Proof. It is sufficient to prove that the planes r1r2r(t�) and r0r3r(t�) are not tangent to r(t) at t� ∈ (t0, t1). If the plane
r1r2r(t�) is tangent to r(t) at t� ∈ (t0, t1), then the osculating plane O (t�) must intersect r1r2r(t�) with the tangent line
T(t�). By Theorem 3.10, T(t�) must intersect r1r2 which is the common line of O (t0) and O (t1). Dividing the curve segment
into two sub-segments r�

1(t) and r�
2(t), then one of them cannot be inside its sub-tetrahedron according to Lemma 3.8 which

contradicts to Proposition 3.11. And one can similarly discuss the case for the plane r0r3r(t�). �
According to Proposition 3.12, r(t) and the plane r1r2rM have a unique intersection point sr where rM = (r0 + r3)/2.

We call sr the shoulder point of the segment r(t), t ∈ [t0, t1]. Similar to Proposition 3.7, we can see that Theorem 3.10 and
Proposition 3.12 also hold for any sub-segment r�(t), t ∈ [t�

1, t�
2].

When we subdivide the approximated curve segment at a point t = t� , by Theorem 3.10, we assume that the osculating
plane O (t�) intersects r0r1, r1r2 and r2r3 at r01, r12 and r23 respectively. Then, one can have the following corollary.

Corollary 3.13. Let k1(t�) = |r1r01|
|r1r0| ,k2(t�) = |r2r12|

|r2r1| and k3(t�) = |r3r23|
|r3r2| , then ki(t�) is monotone and ki(t�) ∈ (0,1) with t� ∈ (t0, t1),

i = 1,2,3.

We finally give the proof of Theorem 3.2 by summarizing the above discussions.

Proof. Set t1 as Theorem 3.6, then r(t), t ∈ [t0, t1] has the eight properties in Theorems 3.6, 3.10 and Propositions 3.11, 3.12.
It means that the segment r(t), t ∈ [t0, t1] is a quasi-cubic segment. �
3.3. Subdivision algorithm

As we mentioned in the introduction, the topology graph G of a parametric space curve can be computed by the method
in Alcázar and Díaz-Toca (2010).

A topology graph is a graph G = {V,E} where V is a set of points in the Euclidean space V = {vi = (αi, βi, γi)} and E is a
set of edges E = {(vi,v j)|vi,v j ∈ V}, any two edges do not intersect except in the endpoints. A graph G is a topology graph
of a parametric space curve r(t) if G and r(t) have the same topology.

The singular points of the space curve are included as vertices in G . In this paper, we need to add more information to
the vertices in our algorithm. For each vertex vi in the topology graph, we now update it to

V i = {
vi = r(ti0), {ti0, ti1, . . . , tik},

{F−
i0 , . . . ,F−

ik

}
,
{F+

i0 , . . . ,F+
ik

}}
, (3.4)

where each ti j is a real parameter such that r(ti j) = vi , F−
i j and F+

i0 are the left and right Frenet frames of vi with respect
to the parameters ti j, j = 0, . . . ,k. The point set V thus updated is called the extended vertex list. Methods to compute the
limitation of the tangent are also introduced in Daouda et al. (2008).

The edges in G are not used directly in our approximation algorithm, but they give the connection relationship of two
updated vertices. Since the space curve is parametric, the connection relationship is given by the parameters corresponding
to the points in V in the increasing order. So in our paper, we use the extended vertex list V instead of topology graph.

Example 3.14. Fig. 3(a) shows a space curve with a cusp, whose topology graph is given in Fig. 3(b). Fig. 4(a) shows a
numerical approximate curve which does not pass through the cusp. We may use the topology graph or a refined topology
graph to approximate the curve segment as shown in Fig. 4(b). This method has two drawbacks. First, we generally needs
hundreds even thousands line segments to approximate the curve segment for a small precision (Cheng et al., 2009). Second,
the approximate curve cannot keep the tangent directions of left and right sides of the cusp point. In this paper, we use a
cubic Bézier curve instead of a line segment as shown in Fig. 4(c), which is not only more precise but keeps the geometric
properties of the original curve.

Based on the above analysis, we now give the segment dividing algorithm.

Algorithm 3.15. Curve subdivision.
Input: A normal curve segment r(t), t ∈ [0,1].
Output: An extended vertex list with elements as (3.4).

1. Compute the certified vertex list V with all character points as vertices with the method in Alcázar and Díaz-Toca
(2010). The parameters and the left and right Frenet frames are recorded. Suppose the real roots associated to the
character points are si, i = 1, . . . , l − 1, and 0 = s0 < s1 < · · · < sl = 1.
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Fig. 3. Topology graph of the curve.

Fig. 4. Numerical approximate curve.

2. Divide each interval [si, si+1] as si = si0 < si,1 < · · · < si,ki = si+1 such that each segment satisfies the conditions given
in I) to IV).

3. Rearrange the si j in an ascending order and rename them as ti, i = 0, . . . ,n. Find the left and right Frenet frames of
each segment r(t), t ∈ [ti, ti+1].

4. Add all these new points to the extended vertex list V which is now ready for approximation.

Each curve segment is defined by two adjoint vertices of V . By Proposition 3.7, the curve segment from the algorithm
is in the tetrahedron and has the properties in Theorems 3.6, 3.10 and Propositions 3.11, 3.12. Hence each curve segment
obtained from Algorithm 3.15 is a quasi-cubic segment and so are its sub-segments.

4. Shoulder point approximation

In this section, we propose an efficient algorithm to construct a set of cubic Bézier curve segments which approximate a
quasi-cubic segment obtained in Algorithm 3.15 to any approximate bound.

Firstly, we focus on one quasi-cubic segment r(t), t ∈ [t0, t1]. Let r0, r3 be the endpoints of the segment, r1 the intersec-
tion point of the tangent line at r0 and the osculating plane of r3, and r2 the intersection point of the tangent line at r3
and the osculating plane of r0. Then {r0, r1, r2, r3} defines a family of rational cubic curves

p(ω1,ω2, s) = r0 B0(s) + ω1r1 B1(s) + ω2r2 B2(s) + r3 B3(s)

B0(s) + ω1 B1(s) + ω2 B2(s) + B3(s)
, s ∈ [0,1]. (4.1)

Then p(ω1,ω2, s) is called the associated cubic Bézier curve segment of r(t). It has been shown that p(ω1,ω2, s) meets r(t)
at its endpoints r(t0) and r(t1). Furthermore, p(ω1,ω2, s) and r(t) have the same left and right tangent directions and
osculating planes at the endpoints, and the same control tetrahedron ♦r0r1r2r3.

Proposition 4.1. Let p(ω1,ω2, s), s ∈ [0,1] be the associated cubic Bézier curve segment of r(t), t ∈ [t0, t1]. Then p(ω1,ω2, s) can
approximate r(t) at their endpoints with order two by setting proper ω1 and ω2 , i.e., {p(0) = r(t0),p(1) = r(t1)} and {p′(0) =
r′(t0),p′(1) = r′(t1)}.

Proof. Following the construction of p(s) for r(t), they are G1 interpolated at their endpoints with arbitrary weights ω1
and ω2. According to the properties of the cubic Bézier curve, one can set the proper ω1 and ω2 such that p(s) and r(t) are
C1 interpolated at their endpoints. �

In Proposition 4.1, the weights are selected to enhance the approximation order from G1 to C1 at the endpoints. Actually,
on can get {p(ω1,ω2,0) = r(t0),p(ω1,ω2,1) = r(t1)} and {p′(ω1,ω2,0) = k1ω1r′(t0),p′(ω1,ω2,1) = k2ω2r′(t1)}, where k1
and k2 are positive constants. Hence we can set ω1 and ω2 such that k1ω1 = 1 and k2ω2 = 1. However, in the following
paragraphs, we would like to use the freedom of weights to minimize the position approximation error. Hence, we will
show how to compute the proper weights ω1,ω2 such that p(s) is an optimal approximation to r(t).
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The selection of the weights often leads to some optimization problems such as minω1,ω2 (maxs,t d(ω1,ω2, s, t)2) where
d(ω1,ω2, s, t) is the distance function between p(ω1,ω2, s) and r(t) in certain forms (Pottmann et al., 2002). The compu-
tation is usually not efficient and some global error analysis is introduced to simplify the optimization problem (Dokken,
2001). Another possible method is to approximate the target curve segment by checking the parallel points. We can push
the parallel points of the approximated curve and the approximate curve (4.1) as near as possible. It also leads to an optimal
problem for a function with degree three. In the following, we introduce a novel method which avoids any optimizations.

The shoulder point sp of p(s) is given in Proposition 2.3. The shoulder point sr of r(t) can be computed as the unique
intersection point of r(t) and the triangle r1r2rM . Supposing the plane P (x, y, z) is defined by r1, r2, and rM , then the
shoulder point corresponds to a real root t� ∈ (t0, t1) of P ◦ r(t) with r(t�) lying in the triangle r1r2rM . So D(ω1,ω2) =
‖sp − sr‖2 is a rational function in ω1,ω2 with total degree two. Finding the positive solution from the equations

⎧⎪⎪⎨
⎪⎪⎩

∂ D

∂ω1
= 0,

∂ D

∂ω2
= 0,

(4.2)

we obtain the weights for the approximate cubic curve (4.1).
Before the approximation, we will estimate the error between the two curves. Since there does not have any simple

method to compute the distance of two parametric curves with different parameters, we use the distance between r and
the implicit variety of a rational cubic curve p. It has been proved that the associated implicit ideal Ip of p can be computed
using the μ-basis method (Cox et al., 1998) efficiently:

Lemma 4.2. The associated ideal of p has the form Ip = 〈 f (x, y, z), g(x, y, z), h(x, y, z)〉, where f , g and h are quadratic polynomials,
i.e., the resultants of p′s μ-basis in pairs.

The algorithm of μ-basis is given in Deng et al. (2005). Generalizing the approximation error function in Chuang and
Hoffmann (1989), we have

e( f , r) =
(

f (r)2

fx(r)2 + f y(r)2 + f z(r)2

)1/2

.

Let e(p, r) := e( f , r) + e(g, r) + e(h, r) = e(t) be the univariate error function in t . Then the approximation error can be set
as the following optimization problem:

e = max
t0�t�t1

(
e(t)

)
.

There are many methods to solve this problem. However, for the efficiency in practice, we often sample t as ti = (t1−t0)i
m , i =

0, . . . ,m, for a proper m, say m = 300, and set the approximate error as max(e(ti)).
The following algorithm is proposed to approximate a quasi-cubic curve segment via shoulder point approximation.

Algorithm 4.3. Shoulder point approximation.
Input: A quasi-cubic curve segment r(t), t ∈ [t0, t1], and a positive error bound δ.
Output: A set of cubic Bézier curves which is a δ-approximation for r(t).

1. Construct the associated tetrahedron of r(t) and the rational Bézier cubic curve p(ω1,ω2, s), s ∈ [0,1] as shown in (4.1).
2. Compute the weights (ω1,ω2) such that ‖sp − sr‖ is as small as possible.

(a) Compute shoulder points sr and sp(ω1,ω2) of r(t) and p(s) respectively.
(b) Find a pair of real roots (ω1,ω2) by solving the equation system (4.2).

3. Compute the approximate error δ̄ = e(t). If δ̄ < δ then output p(s). Otherwise, divide r(t) to two parts on its middle
point of arc length and repeat the approximation process for each sub-segment.

Example 4.4. A curve segment r(t), t ∈ [0,21/32], represented by the black curve with degree six is given by Algorithm 3.15
and the approximate cubic Bézier curve is the red dash curve in Fig. 5. The weights are ω1 = ω2 = 1 in the left figure. After
executing step 2 of Algorithm 4.3, we have ω1 = 5/11,ω2 = 16/31 in the right figure. The numerical errors are 0.29 and
0.04 respectively computed from error function e(t) by setting m = 300.

To show the termination of the above algorithm, we need the following lemma.

Lemma 4.5. The edge of the sub-tetrahedron in Algorithm 4.3 converges to zero when the arc length of its subdivided curve segment
converges to zero.
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Fig. 5. Selecting the weights for Bézier cubic curve.

Proof. There exists a t = t�
1 ∈ (t0, t1) such that k1 = 1/2 since k1(t) is monotone with t in (t0, t1) by Corollary 3.13. Con-

sider the sub-segment r(t), t ∈ [t0, t�
1] and subdivide it at t = t�

2 such that k2 = 1/2 for the sub-tetrahedron ♦(t0, t�
1). Then,

subdivide r(t), t ∈ [t0, t�
2], at t = t�

3 such that k3 = 1/2 for ♦(t0, t�
3). Let t(1) = t�

3. We obtain a sub-segment r(t), t ∈ [t0, t(1)],
whose sub-tetrahedron ♦(t0, t(1)) has vertices r(1)

0 = r0, r(1)
1 , r(1)

2 , r(1)
3 . Similarly, we can construct r(i)

j , j = 0,1,2,3, and t(i) .

According to the subdividing process, let r(0)
j = r j, j = 0,1,2,3. Then, we have ‖r(i)

0 r(i)
1 ‖ < ‖r(i−1)

0 r(i−1)
1 ‖/2, ‖r(i)

1 r(i)
2 ‖ <

‖r(i−1)
0 r(i−1)

1 ‖/2 + ‖r(i−1)
1 r(i−1)

2 ‖/2 and ‖r(i)
2 r(i)

3 ‖ < ‖r(i−1)
0 r(i−1)

1 ‖/2 + ‖r(i−1)
1 r(i−1)

2 ‖ + ‖r(i−1)
2 r(i−1)

3 ‖/2 for i > 0. Hence, the

lengths of the three edges ‖r(i)
0 r(i)

1 ‖, ‖r(i)
1 r(i)

2 ‖ and ‖r(i)
2 r(i)

3 ‖ of a sub-tetrahedron ♦(t0, t(i)) converge to zero when i → ∞.
Since r(t), t ∈ [t0, t1], is a rational curve and has no singular point, t(i) − t0 converges to zero when i → ∞.

Let t ∈ [t0, t1] and ♦r0r′
1(t)r′

2(t)r′
3(t) its tetrahedron. Then s(t) = ‖r0r′

1(t)‖ + ‖r′
1(t)r′

2(t)‖ + ‖r′
2(t)r′

3(t)‖ converges to zero
when t → t0, since r(t) has no singularities in [t0, t1]. Hence when the arc length of its subdivided curve segment converges
to zero, which means t → t0, the edge of sub-tetrahedron converges to zero. �

The termination of Algorithm 4.3 can be guaranteed by the following theorem.

Theorem 4.6. In Algorithm 4.3, the approximation error converges to zero for the subdivision procedure.

Proof. By Lemma 4.5, when the arc length of its subdivided curve segment converges to zero, the edge of the sub-
tetrahedron converges to zero. Since the approximation error is controlled by the edges, it converges to zero for the
subdivision procedure. �
Remark 4.7. In Algorithm 4.3, Step 3 is given to simplify the proof of the convergence. In fact, for less computation, we
always implement the algorithm with the following step instead of 3.

3′ . Compute the approximate error δ̄ = e(t). If δ̄ < δ then output p(s). Otherwise, divide r(t) to two parts on its shoulder
point sr repeat the approximation process for each sub-segment.

According to the proof of Lemma 4.5, the algorithm fails if a subsequence of si does not converge to zero under shoulder
point subdivision process, and it never happened in our experiments. It is an interesting problem to prove the termination
of this version of the algorithm.

5. Algorithms and experimental results

After dividing the curve to segments by Algorithm 3.15, we can approximate each curve segment by the shoulder ap-
proximation method in Algorithm 4.3. In this section, we give the main approximation algorithm and the experimental
results.

The global approximation is based on the local approximation and topology determination in the above sections. Some
relationships of the approximate curve segments are considerable in the global view. In our approximation, the line edges
in the topology graph are replaced by the associated cubic Bézier curve segments. To ensure the topological isotopy before
and after the replacement, we restrict the cubic curve segments to have the appropriate topology based on the topology
graph.

It is shown that an associated cubic Bézier curve segment are decided by its tetrahedron. Let ♦p1
0p1

1p1
2p1

3 and ♦p2
0p2

1p2
2p2

3
be two control tetrahedrons of two cubic Bézier curve segments p1(s) and p2(s). Then p1(s) and p2(s) can have no common
points except for their endpoints. In the further consideration, we give two cases for the problem. The first case is that p1(s)
and p2(s) have only one common point being the endpoint and the same Frenet frames at this endpoint. And the other
positional situations of p1(s) and p2(s) are included in the second case.

If all the pairs of cubic Bézier curves satisfy the second case, then to ensure that cubic curve segment does not bring in
the unexpected knots while it replaces the line edge, one can give a sufficient condition that each cubic curve segment has
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no common points with the control tetrahedron of another curve segment except for the endpoint. This condition can be
strengthened if we do not want to check the collision between a cubic curve segment and a tetrahedron. The condition can
be that the two tetrahedrons have no inner points. By Lemma 4.5, the condition can be satisfied by subdividing the curve
segments. Then the approximate curve have same topology with the given curve, since the approximate curve is controlled
by the sequence of the tetrahedrons. Each tetrahedron has no common inner points with other tetrahedrons.

We then only need to discuss the pairs of cubic Bézier curves belong to the first case. Assuming p1
0 = p2

0, then p2
1 is on

the radial (1 − λ)p1
0 + λp1

1, λ � 0, and p2
2 is on the same side with p1

2 on the plane p1
0p1

1p1
2. According to the monotonicity

of the Bézier curve in Lemma 2.1, p1(s) and p2(s) can replace the their associated line edges without topology modification.

Algorithm 5.1. Certified B-spline approximation with error bound.
Input: A normal curve segment r(t), t ∈ [t0, t1] and a positive error bound δ.
Output: A cubic B-spline p(s) such that the approximate error between p(s) and r(t) is less than δ and the approximate
implicit spline for r(t).

1. Divide the curve r(t) into quasi-cubic segments by Algorithm 3.15.
2. Check the topology conditions.

(a) Check the intersection of any pair of cubic Bézier curves which have the same Frenet frame at the endpoint, divide
them to two parts on their shoulder points respectively, if they have common points more the endpoints.

(b) Check the collision of any pair of tetrahedrons, divide them to two parts on their shoulder points respectively, if
they have inner points.

3. For each segment, find the cubic Bézier curves which approximate the given curve segment with precision δ by Algo-
rithm 4.3.

4. Find the implicit form for the cubic Bézier curves with the μ-basis method (Cox et al., 1998).
5. Convert the resulting rational cubic Bézier curves to a rational B-spline with a proper knot selection as the method

presented in Piegl and Tiller (1997).

Remark 5.2. In the process of topology conditions checking, we only need to check the collision of the sub-tetrahedrons
subdivided from which are the intersected before the subdivision, since the sub-tetrahedrons are included in its father
tetrahedrons. It means that the less and less pairs of tetrahedrons need to be checked in the subdivision process.

Theorem 5.3. From Algorithm 5.1, we obtain a piecewise C1 continuous approximate cubic B-spline curve which keeps the singular
points, inflection points, and torsion vanishing points of the approximated parametric curve. At cusps, the approximate curve is C0

continuous.

Proof. Algorithm 5.1 gives the G1 cubic Bézier spline since it is constructed as the Hermite interpolation of the original
curve, if the character points are not cusps. Then C1 continuity can be ensured from the conversion from the Bézier spline
with a proper knot selection (Piegl and Tiller, 1997). The singular points of the curve are treated as segmenting points. Since
at the segmenting points, the left and right Frenet frames are preserved, the origin curve and the approximate curve have
the same singular points. Since the cubic spline introduces no more singular points, the algorithm keeps the singular points.
At a cusp, its left (right) tangent and osculating plane are kept according to Algorithm 3.15, and the approximate curve is
then only C0 continuous.

The character points include the vertices of the topology graph. The topology conditions ensure that the topology is
persevered while the topology line edges are replaced by the cubic Bézier curve segments. According to Theorem 4.6, the
approximate curve from Algorithm 5.1 converges to the approximated curve and they have the same topology.

The left and right Frenet frames of the approximate curves are the same as that of the approximated curve at the
character points, which means that the principal normal vector and the osculating plane are both kept. Then the principal
normal vector changes its direction at the inflection point. Similarly, the curve does not pass through the osculating plane
at the torsion vanishing point. �

Finally, we give several examples to illustrate the algorithm.

Example 5.4. The space curve r1(t) from Example 6 in Alcázar and Díaz-Toca (2010) has a singular point (0,0,0) at t =
±1,±∞, where

r1(t) =
(

1 − t2

(t2 + 1)2
,

t(1 − t2)

(t2 + 1)2
,

t2(1 − t2)

(t2 + 1)4

)
.

The curve segment r1(t), t ∈ [−2,2], and its approximate spline curve p(s) are shown in Fig. 6, they are shown in the same
figure for comparison and the tetrahedron sequence is also given in Fig. 7, the numerical error e(t) is shown in Fig. 8.

As we know, the point (0,0,0) is a characteristic point from the topology determining. It is preserved in p(s) and p(s)
is C1 at this point. Each corresponding segment of p(s) and r1(t) is interpolated with the Frenet Frames at the endpoints.
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Fig. 6. r1(t) and p(s).

Fig. 7. r1(t) v.s. p(s) and control tetrahedron.

Fig. 8. Numerical error for r1 with m = 300.

One can find that r1(t), t ∈ [−∞,+∞], is an asymmetric space trifolium curve. To approximate the other two parts of
t ∈ [−∞,−2] and t ∈ [2,+∞], we can transform t = ±∞ to t = 0 by a reparametrization as t′ = 1/t . Then approximating
r1(t′), t′ ∈ [−1/2,1/2], and combining the former spline segment, we can get the approximation of the whole trifolium
curve.

Example 5.5. Two more space curves are given in this example. r2(t) has a complex singular point and r3(t) is a random
curve with degree nine.

r2(t) =
(

t2(t − 1)2

(1 + t2)2
,

t(t − 1)3

1 + t2
,

t(t − 1)4

1 + t2
.

)
, t ∈ [−1/16,3/2],

r3(t) =
(

t(1181t8 − 1878t7 − 1236t6 + 1960t5 + 2058t4 − 2688t3 + 532t2 − 9 + 72t)

−2 + 9t − 72t2 + 308t3 − 840t4 + 1218t5 − 952t6 + 588t7 − 408t8 + 149t9

− t(−1686t7 + 287t8 + 3252t6 − 2464t5 + 462t4 + 168t3 − 28t2 + 9)

−2 + 9t − 72t2 + 308t3 − 840t4 + 1218t5 − 952t6 + 588t7 − 408t8 + 149t9

− 4t2(263t7 − 924t6 + 1338t5 − 1190t4 + 861t3 − 483t2 + 154t − 18)

−2 + 9t − 72t2 + 308t3 − 840t4 + 1218t5 − 952t6 + 588t7 − 408t8 + 149t9

)
, t ∈ [0,1].

The approximated curves, approximate spline curves, and the numerical errors are shown in the following figures (Figs. 9,
10, 11). In r2(t), (0,0,0) is a self-intersected point with t = 0,1, it is also a cusp point at t = 1. This point is preserved in
our approximate B-spline curve p(s). Furthermore, the limited tangent directions of the cusp are also preserved. p(s) is C1

or C0 at (0,0,0) when p(s) passes through (0,0,0) as a self-intersected or a cusp point respectively. The approximation
information for curves r1, r2, and r3 is listed in Table 1.
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Fig. 9. r2(t) v.s. p2(s) and r3(t) v.s. p3(s).

Fig. 10. Numerical error for r2.

Fig. 11. Numerical error for r3.

Table 1
Numerical Approximation.

Curve Degree Error Segments Interval

r1 8 0.004157 8 [−2,2]
r2 5 0.0001677 4 [− 1

16 , 3
2 ]

r3 9 0.03298 6 [0,1]

6. Conclusion and further work

We present an algorithm to construct a rational cubic B-spline approximation for a space parametric curve. The main
purpose of the work is to present an isotopic approximation method which preserves the geometric features of the original
curve. The approximated curve is divided into quasi-cubic segments which have similar properties to those of a cubic Bézier
curve. Sufficient conditions are proposed for a divided segment having the expected properties and then its approximate
Bézier spline is naturally constructed. Based on these properties, the shoulder point approximate algorithm is presented and
it is proved to be convergent. An approximate implicitization can be found by the μ-basis method. The method is applicable
for any parametric space curve in theory, although the given conditions are more difficult to compute when the parametric
expression is not in rational form.

The intersection curve of a parametric surface and an implicit surface is another important type of space curves. The
curve can be regarded as parametric form with two parameters and a constraint function for them. As a further work, we
will study the approximation of this type of space curve.
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