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1. Introduction

The characteristic set method is a tool for studying systems of polynomial or algebraic differential
equations (Kolchin, 1973; Ritt, 1950). Recent results on the characteristic set method, which are used
in this paper, can be found in Aubry et al. (1999), Boulier et al. (1995), Bouziane et al. (2001), Chou
and Gao (1990, 1993), Gao and Chou (1993), Hubert (2000), Wu (1994) and Yang et al. (1996). The
idea of the method is to privilege systems which have been put in a special “triangular form”, also
called an ascending chain or simply a chain. The zero set of any finitely generated polynomial or
differentially algebraic system of equations may be decomposed into the union of the zero sets of
chains. One can also use the method to solve a system of equations, to determine the dimension,
the degree, and the order of a finitely generated system of polynomials or differential polynomials, to
solve the radical ideal membership problem, to prove the Noetherian property of differential equation
systems, to prove theorems from elementary and differential geometries, and to solve problems from
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engineering fields such as computer vision, computer aided design, computer graphics, and robotics.
For surveys, please consult Wang (2000) and Wu (2001).

The notion of characteristic set for difference polynomial systems was proposed by Ritt and Doob
(1933) and Ritt and Raudenbush (1939). The general theory of difference algebra was established by
Cohn (1965). Due to differences between the differential case and the difference case, algorithms and
properties for difference chains were studied only very recently (Gao et al., 2009; Gao and Yuan, 2006).

A natural problem is to consider systems of mixed differential and difference polynomials, called
DD-polynomials. In van der Hoeven (1996), it was outlined how to generalize the characteristic
set method to this setting. However, the author overlooked an additional difficulty in the
proof of Rosenfeld’s Lemma. Although all theoretical properties of differential algebra (dimension
polynomials, finite generation of ideals, etc.; see also Kondratieva et al. (1999)) do generalize to the
DD-setting, the algorithmic counterparts have to be redeveloped.

In this paper, we will present a characteristic set method for ordinary mixed DD-polynomial
systems. The following results are established in this paper.

(1) Based on the concept of characteristic sets, we prove that DD-polynomial systems are Noetherian
in the sense that for an infinite set P of DD-polynomials, there exists a finite set Q of DD-
polynomials such that P and Q have the same solutions.

(2) We introduce the concepts of coherent and regular chains and prove that a chain is coherent and
regular if and only if it is the characteristic set for its saturation ideal. This result gives a simple
method to determine whether a DD-polynomial belongs to the saturation ideal of a chain.

(3) We define proper irreducible chains and prove that a proper irreducible chain is regular and its
saturation ideal is reflexive. This gives a constructive criterion for a chain to be regular. We further
introduce the concept of strongly irreducible chains and prove that an ideal is prime and reflexive
if and only if its characteristic set is strongly irreducible and coherent.

(4) Based on the above results, we propose an algorithm which can be used to decompose the zero
set for a finitely generated DD-polynomial set into the union of zero sets of proper irreducible,
and thus regular and reflexive, chains.

(5) We prove that a coherent and proper irreducible chain always has zeros. As a consequence, we
give an algorithm to solve the perfect ideal membership problem for DD-polynomials.

As a consequence, we could say that a major portion of the existing results on characteristic set
methods for algebraic and differential polynomial systems are now been extended to the differential-
difference case.

Among the five results mentioned above, the Noetherian property is different from that
in Kondratieva et al. (1999), because our assumption on the differential-difference structure is more
general. The other results are the main contributions of this paper.

Comparing to the factorization free decomposition algorithms for differential polynomial systems
(Boulier et al., 1995; Bouziane et al., 2001; Hubert, 2000), our work has two major distinctions. First,
Rosenfeld’s Lemma is not valid in this case and we cannot check properties of a coherent chain from
its algebraic counterpart. Secondly, in the differential case, one only needs to consider the initial and
separant of a differential polynomial when constructing the saturation ideal; in our case, we need to
consider all possible transforms of the initial of a difference polynomial. This makes it impossible to
check whether a chainis regular as directly as in the differential case. As a partial remedy, we introduce
the concept of proper irreducible chains. Another missing result is that we cannot decompose the
perfect ideal generated by a set of DD-polynomials into the intersection of prime ideals. In order to do
that, we need to know how to check whether a chain is strongly irreducible which is an open problem.

Comparing to the decomposition algorithms for difference polynomial systems (Gao et al., 2009;
Gao and Yuan, 2006), the major difference lies in the results on proper irreducible chains. The
definition for a proper irreducible chain in Gao et al. (2009) cannot be extended to the differential-
difference case directly. In order to give an appropriate definition, we first work out a new definition
for difference polynomials (Gao et al., 2006) and then extend this definition to the mixed case. The
proofs for the facts that a proper irreducible chain is regular (Theorem 5.8) and the validity of the
algorithm to check whether a chain is proper irreducible (Lemma 6.3) are essentially different from
those in Gao et al. (2009) and Gao et al. (2006). In our definition of proper irreducible chains in the
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differential-difference case, we need to check the membership for the saturation ideal of a differential
chain and we generally do not know how to compute a basis for this ideal. In order to avoid this difficult
question, new techniques are developed. Perfect ideal membership problem is solved for the first time
in the differential-difference case.

The paper is organized as follows. In Section 2, we introduce notations. In Section 3, we prove the
Noetherian property for DD-polynomial systems. In Section 4, we prove the properties for regular
chains. In Section 5, we prove the properties for proper and strongly irreducible chains. In Section 6,
we give the zero decomposition algorithm.

2. DD-ring and DD-polynomials

2.1. DD-operators

Let K be a computable field containing the field Q(x) of rational functions in an indeterminate x. A
differential operator o defined on K is a map o : K — K satisfying

of +g) =) +a(g)
ofg) =a(f) -g +a@) -f

forany f, g € K. A difference operator § defined on K isamap § : K — K satisfying

§(f+8) =4d(f)+d(g)
§(fg) = 8(f)d(g)
Sf)=0&f=0

forany f, g € K. We also call §(f) the translation of f. Iterated translations §*(f) are called transforms.
If all elements of K are functions in x, then the ordinary differentiation w.r.t. x is a differential operator.
The shift operator §(x) = x + 1 and the g-difference operator §(x) = gx are examples of difference
operators.

A key fact to deal with the hybrid differential-difference case is to make an assumption on how the
differential and the difference operators interact. In this paper, we assume the existence of a non-zero
element h € K, such that the operators § and 9 commute according to the following rule:

38 =h-8a. (1)
It is easy to check that for a positive integer s, we have

08° = hsé°9,

hszﬁéi(h). 2)
i=0

A product of the form ]_[f‘zo 8i(h)™ is called an h-product. More generally, we have

38 = Arp(hs)8%" + -+ - 4+ Ap1(hg)S%9, (3)
where the A, ; are differential polynomials which are recursively determined by

Ago(F) =1

Ar,i(F) = FAr—l,i—l(F) + A;_l?i(F)-
In particular, A, ,(F) = F' forall r.

Example 2.1. If h = 1, then (1) implies that the two operators are commutative, which is the case
assumed in Kondratieva et al. (1999). A typical example is the shift operator S with (5f)(x) = f(x+ 1).
More generally, the commutation rule (1) is motivated by treating the difference operator as the right-
composition with a non-trivial function. Indeed, if

() =f@X)
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for any function f (x) and a fixed function ¢ (x), then
I (x) 5 afx)\  9p(x)
0x ax ) ox

whence (1) is satisfied for h = d¢(x)/9dx. In particular, the g-difference operator Q : f(x) — f(gx)
fits in our setting, even though Q does not commute with o.

W (%) =af (¢(x))) = $a(f (%)),

A field K with two operators § and o satisfying (1) is called a DD-field. A DD-field K is called reflexive
if for any a € K there exists a b € K such that b = a. We denote b = §~'a and call b the inversion of
a. In this paper, we assume that K is a reflexive DD-field.

We denote 2o = {1}, 21 = {8, 9}. Foreachr € N, we define £2,, 1 = £2, U §£2, U a2, inductively.
These sets are subsets of £2, with £2 = | J _ §2;. It is clear that

2 = {§Mg™0 ... 5N}

reN

where n; and m; are non-negative integers and where we understand that §° = 2° = Idx. We denote
by K[£2] the ring of DD-operators, which is the free associative (and generally non-commutative)
algebra generated by K, § and 9, subject to the commutation rule (1).

Remark 2.2. Each element @ € K[$2] can also be regarded as an operator @ on K. We will denote
the set of such operators by K[§2]x. In general, the mapping @ — @y is not injective. For instance, if
dx = Id and og = 0, then K[£2]x = K. Similarly, if K = C(x), 9x = d/dx and 6k : f (x) — f(gx) with
q = exp(2mi/n), then K[2]x = K[2] & - - - ® K[2]6""'. We have not pursued so far the question of
finding more interesting examples of this kind.

Given w € £2, we define its total order to be the smallest r = ord(w) with w € £2;. Let

O = {8°|a, B € N},
Oij) = {8k <il<j k+1<i+j)

Notice that @ is a proper subset of £2. A shuffle of a word with letters in {6, o} is obtained by repeated
transposition of these letters.

Lemma 2.3. For any shuffle w = §™o™ ... 8™ € §2 of 5"o™, we have
® = h,8M" +R,,
wheren =ny+---+n, m=my + --- 4+ my, h, is an h-product and R,, € K[® _;n,m)].

Proof. We prove the Lemma by induction over n + m. If n + m = 0, then we may take h,, = 1 and
R, = 0,so0 assume n + m > 1. Assume first that w = d@. By the induction hypothesis, we have

® = hyd™ 1" + Ry,
where hy, is an h-product and R; € K[®_[;—1,m]]. It follows that
w = (8hy)8™d" + SRy,

where h,, = &h, is an h-product and, using the induction hypothesis, R, = 6R; € K[O_[n.ml.
Similarly, if @ = o, then we may write

& = hyd™" ! + R,
and application of a yields
@ = hyhnd™a" + b 8™ ! + aRs,
where h,, = h;h,, is an h-product and R, = héﬁma”_] + R, € K[O nm]. O

Proposition 2.4. We have K[$2] = K[®] and ® is a basis of the K-vector space K[2].
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Proof. In view of the above Lemma, we have 2 C K[®], whence K[£2] C K[®], by linearity. In
order to show that @ is a free family, let us incarnate @ as K-linearly independent operators on a
DD-superfield K D K (see also Remark 2.2). This can be done by taking K to be the fraction field of
K(Y) of the ring of DD-polynomials to be constructed below. By construction, the elements in @Y are
algebraically independent in this field, so @ € ® — @ must be injective. This is only possible if the
elements in ® are K-linearly independent. O

Remark 2.5. Using the commutation rule (1) the other way around, one may also rewrite each
w € 8V as a K-linear combination of elements in & = {0'¢’|i,j € N}. In a similar way as above,
it can be shown that K[£2] = K[ Z] and that Z is a basis of K[£2].

2.2. DD-polynomials

Let Y = {yi, ..., yn} be a finite number of indeterminates (which may intuitively be considered
as functions of x). We denote

QY = {wyilw € 22,y; € Y}
OY = {8%°y|d,s € N, y; € Y}.

For convenience, we also denote
Yias = 8% ).

The set
R = K{Y} = K[Y]

is called the DD-ring of DD-polynomials over K in Y. The difference operator § on R is the unique ring
homomorphism which extends the difference operator on K and sends wy; to (§w)y; for eachw € &
andi € {1, ..., n}. The derivation o on R is the unique derivation which extends the derivation on K
and sends §93°y; to hy8%a°y; for all d, s and i. By construction, we have

Proposition 2.6. K{Y} = K[®Y] and ®Y is a transcendence basis of K{Y} over K.

Remark 2.7. The Proposition implies that we may view DD-polynomials in K{Y} either as DD-
polynomials in a finite number of variables Y or as ordinary polynomials in an infinite number of
variables @Y. In addition, we may regard them as pure differential polynomials in an infinite number
of variables §"VY. In this case, Ye.s.0 are considered as differential indeterminates and y. s as the tth
derivatives of y s o.

A DD-ideal, or simply an ideal, is a subset I of R, which is an algebraic ideal in R and is closed under
o and 4. An ideal I is called reflexive if 6P € I implies P € I, for all P € R. Let P be a set of elements
of R. The ideal generated by PP is denoted by [P]. Obviously, [P] is the set of all linear combinations of
transforms of successive derivatives of the DD-polynomials in P. Given P € R, let

Ap = {PO ... (§"P)"ip, ..., i € N}.

An ideal I is called perfect if Ap NI # @ implies P € I for all P € R. The perfect ideal generated by PP is
denoted as {PP}. A perfectideal is always reflexive. Anideal I is called a prime ideal if for DD-polynomials
Pand Q,PQ € IimpliesP € lorQ € I.

For a set of DD-polynomials IP, we write () for the ordinary or algebraic ideal generated by P, and
[P], for the differential ideal generated by P.

2.3. Admissible orderings

Consider a total ordering < on @Y. For a DD-polynomial P € K[®Y], we define Vp to be the set
of all elements of ®Y occurring in P. If P is a subset of K[@Y], then we set Vp = UPE]P Vp. If Vp #£ 0,
then Vp has a maximal element for <, which is denoted by vp or v(P). We call it the leader of P.
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The ordering < is said to be admissible if

Aq:v(0y) < v(80y), for any 0y € OY;
v(0y) < v(aby), for any 0y € OY;

Ay i v(80y) < wv(80'y'), forany Ay <6’y in OY;
v(00y) < v(30’y’), forany Oy <60’y in OY.

Admissible orderings exist: one example is the ordering <; defined by:
8d1 aS1yC] Sl 8d2852y62 <:> (Cl ’ d] ’ S]) SIEX (CZ’ d27 32)’

where <, stands for the pure lexicographical ordering. Another popular ordering is the total order
based ordering:

8NPy <4 822y = (dy + 51, d1, 51, 1) <iex (d2 + 52, da, S2, J).

In this paper, we will always assume that < is admissible. We will also assume thaty; < --- < yj,
which can always be made to hold after a permutation of indexes.

An extended variable is an element of @Y raised to some strictly positive power. The set of such
variables will be denoted by (®@Y)*, and we use letters with star exponents v* to denote extended
variables. We extend the admissible ordering < on variables to extended variables by vd < (Ve if
and only if either v < v/, or v = v’ and d < e. The extended leader of a non-ground DD-polynomial
P is denoted by vy = vgeg(P’”P ). The admissible ordering < can be extended to DD-polynomials. For
DD-polynomials P and Q, we will write P < Q if vy < v(’s. Ifvp = v;‘i, then we will write P ~ Q.

Lemma 2.8. Let P; € K[®Y]. Then any descending sequence Py > P, > P3 > - - - is finite.

Proof. The sequence (P;);cy induces a sequence (a;, b;, ¢;, d;)icy With v*(P;) = (8%ia¢ yal.)di. Similarly,
the ordering < on (@Y)* induces a total ordering <’ on {1, ..., n} x N3, which extends the canonical

partial product ordering. Now for any a;, the sequence (b;, ¢;, d;);cn is strictly decreasing for <’, whence
its finiteness, by Dickson’s Lemma. O

2.4. Pseudo-remainders

We consider the DD-ring K[®Y], where Y = {yi,...,Yyn}. Let Y. = {y1,...,y.}. For a DD-
polynomial P € K[®Y], we define the class of P to be the smallest c = cls(P) such that P € K[®@Y_].
If P € K, then we set cIs(P) = 0. If the leader of P is 8y. = y..j, then we define ord(P) = i+ j,
ords(P, yc) =i, ordy(P, yc) = j.

If the leader of P € R \ Kis y. 4.5, then P has the following canonical representation:

P =Py 4+ Py + -+ Po, (4)

where vp, < vp (i =0, ..., t).Ip = Py is called the initial of P. ldeg(P) = t is called the leading degree
of P. Applying o and § to P, we have

Lemma 2.9. Let P be of form (4). Then

8P = (8Pt)y£,d+1,s + (5Pt—1)y£:f+1,s + -+ 6P
oP = sPyc,d,s+1 + R,

where

d—1
, aP
Sp = 8'(h)
: 11:! aJ’C,d,s

is called the separant of P and R is a DD-polynomial with lower leading variable than y. g s+1.

Proof. The first equation is obvious. The second one is a consequence of (2). O
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Algorithm 1 — rprem(Q, P)

Input: DD-polynomials P, Q € R with P £ 0.
Output: The pseudo-remainder of Q w.r.t. P.

If P € K then return 0.
SetR := Q.
While Jw* € Vi, vp < o* do
Choose the highest w™ under <.
Set R := aprem(R, (w/vp)P). [*|
Return R

[*| aprem(P, Q) stands for the algebraic pseudo-remainder of P w.r.t. Q in variable vg.

If the leader of P € R \ K is y. 45, then we say that Q is reduced w.r.t. P if and only if (1) Y dk s+
does not occur in Q for k > 0,1 > 0 and (2) deg(Q, Yc.a+ks) < deg(P,y.qs) fork > 0.If P € K\ {0},
then 0 is the only DD-polynomial which is reduced w.r.t. P.

We define a partial ordering < on ® by

0=8" =<8 =0 = a<a AB<p.
If9 < @', then we define
0'/0 = 5%~ =P

and notice that (6'/6)6 is a shuffle of 6.

We define a partial ordering < on extended variables by v* = (8y;)¢ < (8'y;)¢ = (v))*, if and
only if & < 0’ and either d < e, or 6’/6 is not a pure difference operator. We remark that < is still a
well-quasi-ordering.

Consider DD-polynomials P, Q € R with P =£ 0. Then the algorithm rprem computes the pseudo-
remainder of Q w.r.t. P. It is easily checked that rprem(Q, P) is reduced w.r.t. P.

Lemma 2.10. Define
Hp = IpSp
Hp = A, A, = {IS|l € Aj,,S € Ay, }.

and let R = rprem(Q, P). Then there exists an H € Hp such that vy < vq and
HQ =R mod [P],

where we recall that [P] stands for the DD-ideal generated by P.

Proof. For every step of the loop of the above procedure, the order of I(,,,)p is less than the order of
v(Q), so this is a direct consequence of the above procedure and Lemma 2.9. O

2.5. Zero sets

Let P C K{Y} be a finite system of DD-polynomials and let K be a DD-superfield of K. A zero of P
inKis atuple (31, ..., 9n) € K" with P(Jq, ..., 9,) = 0forall P € P. We use Zero(P) to denote the
set of all zeros of P. Let D be a polynomial. We use Zero(P/D) to denote the set of zeros of P which do
not annul D.

If (51, ..., Pa) is a zero of P, the DD-morphism p : K{Y} — K over K with p(y;) = J; for each i is
called amodel of P. There is a close relationship between the existence of models and the non-triviality
of the perfect DD-ideal {P}:

Proposition 2.11. The system IP admits a model if and only if 1 & {P}.
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Proof. Assume that P admits a model p : K{Y} — K. Then P C kerp and {P} < {kerp).
Moreover, the DD-ideal ker p is perfect: given P € K{Y} with P ...(8kP)* e kerp, we have
p(P)o .. (8¥p(P))k = 0. Since K is a DD-field, it follows that 8 p(P) = 0, whence p(P) = 0 and
P € ker p. Having proved that ker p is perfect, it follows that {PP} C ker p. We conclude that 1 ¢ {P},
since 1 € ker p.

Conversely, if 1 € {P}, then a similar argument as in the proof of Lemma 3.14 yields the existence
of a perfect prime DD-ideal p O {IP}. Consider the natural DD-morphism p of K into the fraction field
K of the DD-ring R = R/p. By construction, p(P) = 0, so p is a model for P. O

Remark 2.12. More generally, one may consider a system of DD-equations P C K{Y} together with
one DD-inequation Q € K{Y}. In that case,amodel of P = 0, Q # 0isa DD-morphism p : K{Y} — KR
over K with p(P) = 0and p(Q) # 0. In a similar way as above, one proves that P = 0, Q # 0 admits
a model if and only if Q ¢ {P}. Furthermore, Q ¢ {P} ifand only if 1 ¢ {P} : Hq.

Remark 2.13. Assuming that K is a field of meromorphic functions and that § is the right composition
with an analytic function ¢, an interesting question is to find models p : K{Y} — K of P in DD-fields
KK with a more analytic flavour. A typical candidate for K would be the DD-field of ultimate sequences
(fa)n=n, of analytic germs at points z, with z, 1 = ¢(z,), by taking (8f),—1 = f, o ¢.

3. Characteristic sets of DD-polynomial ideals

3.1. Auto-reduced sets

A subset A C K{Y} \ K is said to be auto-reduced, if each P € « is reduced w.r.t. each DD-
polynomial in 4 \ {P}. An auto-reduced set A = {Ay,...,A;} with vy, < --- < vy, is called an
ascending chain or simply a chain.

Given y; 4 s to be the leading variable of a polynomial in », we define its DD-index to be (d, s). The
structure of a chain could be easily understood from the DD-indices of its elements.

Proposition 3.1. Let A be a chain. The set of indices for the polynomials in A with a fixed class i will be
denoted by IND;. If we arrange IND; = {(ay, b1), ..., (as, bs)} such thata; < a, < --- < a,. Then we
have

ead;<ay<---<aandby > by > --- > b,
e Ifbj = bjy1, then d(q; b, < d(gj,y,b;,1), Where d(q; 1)) is the leading degree of the polynomial with index
(aj, by).
Proof. Let A; and A, be the corresponding DD-polynomials of (ay, b;) and (ay, b;). We show that
a; = a, cannot happen. Otherwise, consider b; and b,. If by = b,, then A; and A, have the same
leader, which is impossible. If by < b,, then A, is not reduced w.r.t. A{, which is also impossible.
Similarly, by > b, cannot happen. This proves that a; < a,. Similarly, we can prove that a; < @ 1. If
bj = bj+1, since the corresponding DD-polynomials of (a;, bj), (aj+1, bj+1) are auto-reduced, we have
dig.by < gy by O
We use the following example to illustrate the above result.
Example 3.2. Consider the following chain for the ordering <, from Section 2.2.
A= {A]7A2’A37A4}
Aq :J’%,z,:«;
Ay :y%,lz + Y111 (5)
A3 :y%,S,O +y1,4,]
Ay =Y1,7,0 +Y1.40-

The DD-indices for the DD-polynomials in + are given in Fig. 1.
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Fig. 1. The indices of chain + from (5).

Lemma 3.3. Any auto-reduced set is finite.

Proof. Assume the contrary and consider an infinite auto-reduced set {Pq, P,, ...}. The sequence
Py, Py, ... induces a sequence (a;, b;, ¢i, d;)icy With v*(P;) = (8PiaC yai)di and modulo the extraction of
a subsequence, we may assume without loss of generality that a; = g; for all i, j. If P; is reduced w.r.t.
P;, then we cannot have (b;, ¢;, d;) > (b, ¢j, d;) for the partial product ordering on N3. It follows that

(b1, c1,dq), (by, c3,d3), ... are pairwise distinct and incomparable for <. This contradicts Dickson’s
Lemma. O
Let A = {Ay,...,Ap} and B = (B4, ..., By} be chains. We define a partial ordering < on chains

by setting A < B if there exists aj with A; ~ B;for 1 <i < jand eitherA; < Bjorj =q+ 1 < p.The
ordering < is also called a ranking.

Lemma 3.4. Any descending chain A1 > A, > A3 > --- is finite.

Proof. Assume the contrary. The first elements of the chains 41, 4,, ...satisfy A1 1 > A1 > ---.By
Lemma 2.8, there exists anindex j; withA; ; ~ A;j, ; foralli > j;.Similarly, there exists an index j, > jj
with A; ; ~ A;, » for alli > j,. By induction, we get a sequence j; < j, < --- with A;; ~ A;, ; for all k
and i > j,. But then {A;, 1, Aj, 2, . . .} is an infinite auto-reduced set, which contradicts Lemma 3.3. O

Let P be a set of DD-polynomials and consider the set of chains of DD-polynomials in P. Among all
those chains, the above Lemma implies that there exists at least one chain with lowest rank. Such a
chain is called a characteristic set of PP.

A DD-polynomial is said to be reduced w.r.t. a chain if it is reduced to every DD-polynomial in the
chain.

Lemma 3.5. If 4 is a characteristic set of P and A a characteristic set of P U {P} for a DD-polynomial P,
then we have A > A . Moreover, if P is reduced w.r.t. A, then A > A .

Proof. The first statement is obviously true, since the characteristic set of P is in P U {P}. As to the

second statement, assume A = Aq, ..., A, and P € P, with cIs(P) = m, is reduced w.r.t. A. If m >
cls(Ap), then the chain Ay, ..., Ap, P is of rank lower than A. If cIs(Ar—1) < m < cls(Ay) < cIs(Ap),
then the chain A4, ..., Ax_1, P is of rank lower than 4. Hence 4 > AL O

Lemma 3.6. A chain A is a characteristic set of P if and only if P does not contain a non-zero DD-
polynomial which is reduced w.r.t. A.

Proof. By Lemma 3.5, we just need to prove the sufficiency. Assume 8 = By,...,B; is the
characteristic set of I, while + is not. We have 8 < w«. If there exists a k < min{s, p} with B, < Ay,
then By is reduced w.r.t. 4. Otherwise s > p and B, is reduced w.r.t. . Both of the cases contradict
the hypothesis and show that 4 is the characteristic set of P. O
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3.2. Extension of chains and pseudo-remainders

To compute the pseudo-remainder of Q w.r.t. P, we need to lift the difference and differential
orders of P by considering 6P for certain & € ®. In order to compute the pseudo-remainder of a DD-
polynomial w.r.t. a chain, we also need to select a DD-polynomial in the chain and to lift its orders. But,
the selection of the DD-polynomial is not unique. More seriously, for some DD-polynomial A selected
from the chain and the corresponding DD-operator 6, A might be linear in its leader, and for other
DD-polynomials, the lifted DD-polynomial might not be linear in its leader. In order to give a proper
definition for pseudo-remainders, we introduce the concept of extension for chains.

Let 4 be a chain. A variable y. 4 s is called a principal variable of 4 if there exists an A € « such that
va = Ye.as- Otherwise, it is called a parametric variable of 4. Denote the set of principal variables and
the parametric variables of A by M4 and P, respectively. It is clear that

For a DD-polynomial set Pand 1 < ¢ < n, let d[(;) be the largest d such that y. 4 s occurs in P, sﬁf)
the largest s such that y. 4 ; occurs in P, and

Vp = {¥es,c € M4|FP € P,a,b:deg(P,ycqap) >0,1<c=<n,s<at=<bh}
Lp = {YC,s,tEIP eP:uvp :)/c,s,t}~

So Lp is the set of leading variables of P and Vp is the set of principal variables such that for any
V = Y..s.¢ occurring in P, all principal variables u of «4 satisfying u < v are in Vp. Note that Vp implicitly
depends on .

For a chain » and a set of DD-polynomials P, we say that Ap is an extension of A w.r.t. P if it satisfies
the following properties:

e Forany P € Ap, there exista® € ® and an A € 4 such that P = 6A.

e Apisanalgebraic triangular set under the ordering < whenally. , , are considered as independent
variables.

e L,, = Vpuy,. Intuitively, this means that if a principal variable v’ of 4 occurs in P U #p, then any
principal variable v satisfying v < v should be the leading variable of some polynomial in 4p. This
property guarantees that all the principle variables needed in computing a pseudo-remainder of
any polynomial in P w.r.t. A will appear as leading variables of #Ap.

e A DD-polynomial P is reduced w.r.t. » if and only if P is reduced w.r.t. Ap = Apy when all yc n m
are considered as independent variables. This property guarantees that for any 6A € Ap, 6A has
the lowest degree for all n € @ and B € 4 such that vos = v,.

Given a DD-polynomial set I, the algorithm Extension shows how to compute an extension of 4
w.r.t. P, which is clearly satisfying the above properties. In what follows, we will use this algorithm to
compute Ap.

Example 3.7. Continue from Example 3.2. For P = y§77’4 + ¥1.3.2, we have d((Q}) =7, 58) =4, and

J‘\yp = {A], 3A1, azAl, a3A1,
Ay, 3Ay, Ay, 3PA,, 0%A,, 8Ay, 83A,, §9%A,, 833A,, §3%A,,
As, 3As, 3As, 33 A;, 0%As, P As, 8A3, 83A3, 83%A3, 83°As, §3°As,
Ay, 0A4, %Ay, A4, 0*A4).

Let wy; = y1.5.4- Then for each of Ay, A, and As, its leader satisfies the condition in S1. The condition
in S2 is not satisfied. In $3, we choose the one with largest ords, which is A3. As a consequence, we
will add 3*A; to 4p. Notice that the DD-polynomial with the largest ords will have the smallest ord,
for its leading variable.

The DD-indices for the DD-polynomials in 4p are given in Fig. 2, where a solid dot represents the
index of a newly added DD-polynomial.



X.S. Gao et al. / Journal of Symbolic Computation 44 (2009) 1137-1163 1147

Algorithm 2 — Extension(A,P)

Input: A chain 4 and a set P of DD-polynomials.

Output: The extension Ap of A w.r.t. P.

S0. LetL=1L4 Q=AUP H= {yc,dgxs[g),c =1,...,n},V=Vy\L and Ap = A.

S1. If there exist w, n and ¢ with wy. € V, ny. € Land n < w, then choose w and c such that
wy. is largest for <. If there are no such w, n and c, then return Ap.

S2. If for all the Ay, € L satisfying & < w, w/6 is a difference operator, let 1 be the largest of
those 6 under <, go to S4.

S3. If there exists a 0y, € L such that w/6 is not a difference operator, let n be the one with
largest in ords. Go to S4.

S4. Let A; € +A such that vy, = ny.. Let Q = (w/NA;, Ap = Ap U{Q}L,V =V U (Vg \ Ly).

Delete wy. from V and goto S1. Since all the variables in V \ L, are less than wy,, this
process will terminate.

For a DD-polynomial P, let Ap = A/p,. The pseudo-remainder of a DD-polynomial P w.r.t. to a chain
4 is defined to be the algebraic pseudo-remainder of P w.r.t. to the algebraic triangular set +Ap:

rprem(P, A) = aprem(P, Ap).
Let A = A4, ..., A, be a chain. We define
Ay = Ay, Ay,
Hy = Ha; - Hap,
o
Lemma 3.8. Let R = rprem(Q, +4). Then R is reduced w.r.t. A and there exists an H € H, such that
vy < vq and

HQ = R mod [4]
HQ = R mod (Aq).

Proof. This is a direct consequence of the procedure to compute 4 and rprem. [
The saturation ideal of 4 is defined to be
sat(#A) = [4] : Hy = {P € K[®Y] | dH € H, : HP € [A]}.

Notice that H, is closed under translation and multiplication. Hence sat(+) is a DD-ideal. It is also
clear that if rprem(P, A) = 0 then P € sat(+). Conversely, P € sat(#) generally does not imply
rprem(P, ) = 0 and the condition for this to be valid will be given in Section 4.

3.3. Noetherian property of perfect ideals

As an application, we may prove that all perfect ideals in K[@Y] are finitely generated, or
equivalently, the solutions for any set of DD-polynomials are the same as a finite set of DD-
polynomials.

Given a DD-polynomial set I, we inductively define

Py =P
IEDn == {P|AP N []P)nfl] 75 @},
so that

?) = JP.

keN
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Fig. 2. The indices of chain +p.

Lemma 3.9. Let P, Q € K[®Y]. Then (§"9°1P)(692Q) € (PQ),.

Proof. It is classical (see Ritt (1950), Page 9) that (3°1P)(9*2Q) € (PQ).Indeed, for any A, B € K[®Y]
with AB € [PQ], we have A’B' = A(AB) — A'(AB) € [PQ]. By induction over n it follows that
AB" € [PQ] = (AB/)ZH € [PQ].Hence AB € (PQ); = AB’ € (PQ); and the result follows by induction
over s1 and s,. We also have (6" P)(8™2Q) € (PQ);: assuming by symmetry thatd = r, — r; > 0, we
have (8"P)(82Q) - - - (§14P)(8™219Q) e §7(PQ)R C [PQ]. Applying the pure differential and the
pure difference cases in turn, we obtain the Lemma. O

Lemma 3.10. Let PP be any set of elements of K[@Y] and P and Q any two elements of K[®Y]. If S is
contained in (PUP), and T in (PU Q),, n > 1, then ST is contained in (P U PQ ),42.

Proof. We prove the Lemma by weak induction over n, i.e., if n > 1, then we assume the Lemma
proved up to order n — 1. Let S € (PUP), and T € (P U Q),. Then there exist S = S© ... (§S) €
AsN[(PUP),_q]and T = T ... (8'TY* € A; N[(PUQ),_1]. Increasing the i and j if necessary, we
may assume without loss of generality that (i, ...is) = (jg, ..., Jj:). Now ST is a linear combination
of terms of the form U = (6"19°1A)(6"29*2B), withA € (PUP),_1andB € (PUQ),_1.If n = 1, then
Lemma 3.9impliesU € [P]+(PQ), € (PUPQ),.Ifn > 1,thenagainU € (PUPQ )1, by the induction
hypothesis. We conclude that ST = (ST)® - - - (§°(ST))* € [(PU PQ)ni1]and ST € (PUPQ)piz. O

Lemma 3.11. Let P be any set of elements of K[®Y] and P and Q any two elements of K[Y]. Then
{PUPQ} ={PUP}N{PUQ]J.

Proof. We only need to show that, S being any element in the intersection, S is contained in {P U PQ }.
Let n be such that S is contained in (PUP), and in (PUQ),. Then by Lemma 3.10, S? is in (PUPQ ) .».
Thus Sisalsoin (PUPQ)pp. O

Lemma 3.12. Let P, Q be two sets of elements of K[@Y]. Then {P} N {Q} = {PQ}.

Proof. In a similar way as for Lemma 3.10, one proves by induction over n that P, N Q, € (PQ)p.».
The result follows by passing to the limit. O

Lemma 3.13. Let P be a subset of K[®@Y] and P € {IP}. Then there exists a finite subset X of P, such that
Pe{X}

Proof. Since {P} = |,y
The case n = 0is trivial. Assume that we have proved the Lemma up to n — 1. We have Pe [P.—1], for

some P € Ap. Hence Pe [Q1, ..., Qq] for some Qy, ...,Qq € Py_q.Foreach 1 < j < g, there exists
a finite subset X of P, such that Q; € {X}}, by the induction hypothesis. For ¥ = Xy U --- U X, we
thenhave P € {¥}. O

P,, we have P € P, for some n. Let us prove the Lemma by induction on n.

Lemma 3.14. If there exists a non-finitely generated perfect DD-ideal, then the set of non-finitely
generated perfect DD-ideals admits a maximal element, and every such a maximal element is prime.
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Proof. The union of a totally ordered set of non-finitely generated perfect DD-ideals is again a non-
finitely generated perfect DD-ideal. The existence of a maximal element follows therefore by Zorn’s
Lemma. Now let m be any such maximal element. Clearly m # K. Let P,Q € K[®Y] \ m. Then
{m, P} and {m, Q} are finitely generated, say by X, resp. T. By Lemmas 3.11 and 3.12, we have
{m,PQ} = {X} N {T} = {XT}, whence PQ & m. This proves that m is prime. O

Theorem 3.15. The DD-ring K[®@Y] is Noetherian in the sense that all perfect ideals in K[®Y] are finitely
generated.

Proof. First we fix some admissible ordering on @Y. Suppose that the conclusion of the Theorem
is false. By Lemma 3.14, there exists a maximal non-finitely generated perfect DD-ideal m, which is
prime. Let € be a characteristic set for m.

Let P be in m. We can write HP = R mod [C], where H € H¢ and R is reduced w.r.t. C. Now
Lemma 3.6 implies R = 0,s0 HP € [C] and HeP € {€C}. This proves that Hem C {C}.

Since the initials and separants of € are reduced w.r.t. G, they are not in m. Since m is prime, we have
He ¢ m. So the perfect DD-ideal {He, m} strictly contains m. Therefore, {He, m} is finitely generated by
the maximality hypothesis. Applying Lemma 3.13, each generator is in a perfect DD-ideal generated
by a finite subset of m U {H¢}. Hence, we can write {He, m} = {He, P}, for some P C mand Pis a finite
set. We conclude that m is finitely generated, since m = m N {He, m} = m N {He, P} = {Hem, P} C
{¢,P}. O

4. Coherent and regular chains

A key property for a chain + is whether it is the characteristic set of its saturation ideal sat(+). In
this Section, we will give a necessary and sufficient condition for this property to hold.

4.1. Coherent chains

Consider two DD-polynomials A1, A, € R\ K. If cIs(A1) # cls(Ay), then we define A(Aq, A;) = 0.
If cls(A1) = cls(Ay) = ¢, let vy, = 61yc, va, = 62Yc, and 6 € O the smallest under < such that
0, < 6,6, < 0.0rdering A; and A, such that deg((6/6,)A1) > deg((0/6,)A,), we define the A-
polynomial of A; and A, to be

A(A1, A7) = apremy, ((0/61)A1, (6/62)A2).

Givenachain A4 = Ay, ..., A;, we denote by A(+4) the set of non-zero A-polynomials A(Aq, A,) for all
A1, Ay € A.Achain «4 is said to be coherent, if rprem(P, A) = OforallP € A(+4). Alinear combination
C =) yco QOA; will be said to be canonical if OA; in the expression are distinct elements in 4 for a
DD-polynomial P. In other words, C € (Ap).

Lemma 4.1. Let A be a coherent chain, A € 4, and 6 € ©. Then there exist a DD-polynomial P and an
H € H, such that vy < vy and HOA has a canonical representation:

HOA= Y Q. (7)

vp=va,BeAp

Proof. Let ¢ = cls(A). The DD-polynomials in 4 with class c are Ac 1, ..., Ac k. and A = A¢ ;.
IfOA € Agyy, the Lemma is true. Otherwise, we will prove this by induction on the ordering of vy,.
I:et Ack be lalrgest w.r.t. <, such that ords(Ac k) < ords(6A). Then the B with vg = vg4 in (7) must be

OkAc  for a 6, € ©. Consider the A-polynomial R = A(A¢ i, Ac.x) of Ac x and A. ;. Then there exists
t €N, 6 € ©,and 6 € O, such that vga_; = vga, and
H6A = Q6Acx + R

where H; is either the initial or the separant of A. ; and vg < vga. We have vy, < vga. Since A is a
coherent chain, rprem(R, ) = aprem(R, Ag) = 0. We have

H,R = Z B,A,

A€AR,va<uR
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where H, € H, such that vy, < vg < vga. S0 we have

HoH{6A = HyQOkAc i + Z B4A.

AeAR,vA<vgiA

_ From the index diagram (Fig. 2), we have §; < 6.Let§ = 6/6; = §%° and 6; € © be a shuffle of
60y. Perform 6 on the above equation, by Lemma 2.3, we have

g8 (HHDOA =FO A+ Y. CynB,

BeA,ne®,vyp<vga

where g € K. Use the induction hypothesis, we have that each 7B has a canonical representation. So
there exist a DD-polynomial P’ and an Hs € H,, with vy, < vga such that

Hs Y amB|= ) QcC.

BeA,ne®,vyp<vgp v <vga,CEA]

LetH = H3g8d(H2H§). Thenvy < vga, H € H, and HAA has a canonical representation of form (7). O

Lemma 4.2. Let A = Ay, ..., A be a coherent chain. For any f = ) g; jn;A;, there is an H € H,, such
that H - f has a canonical representation, and vy < max{vy,}.

Proof. This is a direct consequence of Lemma 4.1. O

4.2. Regular algebraic triangular sets

We will recall some results about regularity of algebraic polynomials with respect to an algebraic
triangular set.

Let A = Ay, ..., A, be a non-trivial triangular set in K[xy, ..., x,] over a field K of characteristic
zero. Let y; be the leading variable of A;, y = {y1,...,¥p}and u = {xq,...,x,} \ y. u is called the
parameter set of 4. We can denote K[x, ..., X;] as K[u, y]. For a triangular set A = Ay, ..., Ap, let

I ={1};1---1,;‘;|i1,...,ip,eN} (8)

Ha = {LiSa 12 Sh liv, 1, - - ip, Jp € N}
The quotient ideal
asat(A) = (A) : 14

is called the algebraic saturation ideal.
For a polynomial P and a triangular set A = Ay, Ay, ..., A, in K[u, y] with u as the parameter set,
let

Pp =P,P_4 = RESI(Pi,A,‘,y,‘), i= p,..., 1

and define Resl(P, A) = Py, where Resl(P, Q, y) is the resultant of P and Q w.r.t. y. We assume that if
y does not appear in P, Resl(P, Q, y) = P. It is clear that Resl(P, 4) € K[u].

A polynomial P is said to be regular w.r.t. a triangular set 4 if Resl(P, A) # 0. A = Aq, ..., Apis
called regular if the initials of A; are regular w.r.t. 4. A is called saturated if the initials and separants
of A; are regular w.r.t. A.

Lemma 4.3 (Aubry et al., 1999). Let A be a triangular set. Then A is a characteristic set of asat(A) =
(A) : 14 if and only if A is regular.

Lemma 4.4 (Bouziane et al., 2001). A polynomial g is not regular w.r.t. a regular triangular set A if and
only if there is a non-zero f in K[u, y] such that fg € (A) and g is reduced w.r.t. .

Lemma 4.5 (Aubry et al., 1999, Bouziane et al., 2001). Let 4 be a regular triangular set. Then a
polynomial P is regular w.r.t. A if and only if (P, 4) N K[u] # {0}.

Lemma 4.6 (Bouziane et al., 2001, Hubert, 2000). Let 4 be a saturated triangular set. Then (A) : 1, =
(A) : Hy is a radical ideal.
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4.3. Regular chains

Let 4 be a chain and P a DD-polynomial. P is said to be regular w.r.t. 4 if it is regular w.r.t. Ap when
P and Ap are treated as algebraic polynomials. We say that 4 is regular if any DD-polynomial in H, is
regular w.r.t. A.

Lemma 4.7. If a chain + is a characteristic set of sat(+), then for any DD-polynomial P, Ap is a regular
algebraic triangular set.

Proof. By Lemma 4.3, we only need to prove that 8 = Ap is the characteristic set of (8) : Ig
Let W be the set of all the 8y; such that 8y; is of lower or equal ordering than a 8y; occurring in
B. Then B C K[W]. If 8 is not a characteristic set of (8) : Ig, then there exists a non-zero
Q € (B) : Ig N K[W] which is reduced w.r.t. 8. Q does not contain any 8y; of higher ordering
than those in W. As a consequence, Q is also reduced w.r.t. 4. Since Q € (B) : Ig C sat(+) and A is
the characteristic set of sat(+) (by Lemma 3.6), we get the contradictionQ = 0. O

Lemma 4.8. Let A be a coherent and regular chain, and R a DD-polynomial reduced w.r.t. 4. IfR € sat(A),
then R = 0, or equivalently, 4 is the characteristic set of sat(A).

Proof. Let A = Ay, Ay, ..., A Since R € sat(4), thereisan H; € H,, suchthatH; -R=0 mod [A].
Since « is regular, H; is difference regular w.r.t. -, that is, there exists a DD-polynomial H; and a
non-zero N € K[V] such that

Hi-Hi=N+ > QB

UBSUH1 ,BEA[.H
where V is the set of parameters of Ay, as an algebraic triangular set. Hence,
NR=H;-H;-R=0 mod [A].

Or equivalently,

N-R= Zg,-,jG,-,jAj. (9)

Since A is a coherent chain, by Lemma 4.2, there is an H, € H, such that H, - N - R has a canonical
representation, where vy, < max{vgl.’jAj} in Eq. (9). That is

H2 N - R—Zgupz] s (10)
ij

where Up; ;4 aT€ pairwise different. If max{vpl A } in (10) is lower than max{vy, JAJ} in (9), we have
already reduced the highest ordermg of vy, Aj 1n ( ). Otherwise, assume v, = max{vpl..jAj} and

Py = 1 - Vs Ab + Ry. Substituting v Ab by — 72 in (10) leaves the left-hand side unchanged since

Vh, < Uy, N is free of v, and deg(R vpaAb) < deg(paAp, Vy,a,)- In the right-hand side, p,Ap
becomes zero, i.e. max{vy, 4} decreases. Clearing denominators of the substituted formula of (10), we
obtain a new equation:

I;-Hz-N-R:Zf,'jTLjAJ'. (11)

Notice that in the right-hand side of (11), the highest ordering of 7; jA; and I} - H are less than v,
and I} - H, is regular w.r.t. . Then after multiplying a DD-polynomial, the right-hand side of (11) can
be represented as a linear combination of t; jA; all of which is strictly lower than v,,4,. Repeating the

above process, we can obtain a non-zero N € K[V], such that
N-R=0.

Then R = 0. By Lemma 3.6, »4 is the characteristic set of sat(«4). O
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The above Lemma is a modified differential-difference version of Rosenfeld’s Lemma (Rosenfeld,
1959). Notice that both the condition and the conclusion are stronger in our version. The following
example shows that Rosenfeld’s Lemma (Rosenfeld, 1959) cannot directly be extended to differential-
difference case. Consequently, the approach proposed in Boulier et al. (1995) does not directly
generalize to the differential-difference setting.

Example 4.9. Let us consider the chain A = {y%,]’o—l, (ym,o—l)y;o,o—l—]} inK{y1, y2}. A is coherent

and y1.1,0 + 1isreduced w.r.t. A.yq1,10 + 1 € sat(4), because H = 1@1!0’0_1)}%’070“ = Y100 — 1 and

S(H)(Y1.1.0 + 1) =y7 ;9 — 1 € [A]. On the other hand, y1.10 + 1 ¢ asat(.A).
The following Theorem is one of the main results in this paper.
Theorem 4.10. A chain 4 is the characteristic set of sat(+) if and only if A is coherent and regular.

Proof. If 4 is coherent and regular, then by Lemma 4.8, +4 is a characteristic set of sat(+4). Conversely,
let A = Aj, Ay, ..., A be a characteristic set of the saturation ideal sat(+) and I; = I4;, S; = Sy,. For
any 1 <i <j <l letR =rprem(4;;, A), sothatR € sat(-A) and R is reduced w.r.t. . It follows that
R = 0, since A is the characteristic set of sat(.), whence » is coherent. In order to prove that +4 is
regular, we need to show that any P € H, is regular w.r.t. 4. Assume this is not true. By definition,
P is not regular w.r.t. the algebraic triangular set 4p. By Lemma 4.7, Ap is regular. By Lemma 4.4,
there is an F # 0 which is reduced w.r.t. Ap (and hence +), such that P - F € (Ap) C [+A]. Since
P € H,, F € sat(+), F is reduced w.r.t. A4 and 4 is the characteristic set of sat(+4), we have F = 0, a
contradiction. Hence, P is regular w.r.t. A and + is regular. [

As a Corollary, we have
Corollary 4.11. Let A be a coherent and regular chain. Then sat(4) = {P|rprem(P, 4) = 0}.

Theorem 4.10 is significant because it provides a theoretically easy way to check whether a DD-
polynomial is in sat(.). Unfortunately, and unlike the algebraic and differential cases, it is difficult to
ensure that » is regular. Indeed, even if the initials and separants of - are regular w.r.t. +, it may still
happen that sat(4A) = [1]:

Example 4.12. Let A = {8y, y1y>+1}. Theinitial of y1y,+1,I = yq,isregular w.r.t. A4, but8I-1 € [A]
which implies 1 € sat(+4).
Theorem 4.13. If A is a coherent and regular chain, then

sat(A) = | ) (Ap) tHap = | (Ap) 1 L4,

PeK{Y} PeK{Y}

Proof. It is easy to see that sat(A) = [A] : Hy D UPGK{Y}(AP) : Hy,. Let f € sat(s). Since A is
coherent and regular, +4 is the characteristic set of sat(+). Then rprem(P, 4A) = 0, or prem(f, 4Ap) = O.
We have P € (4p) : Hy,. Hence sat(A) C UpeK{Y}(Ap) : Hy, . Since A is regular, Ap is saturated, by
Lemma 4.6, (#4p) : 14, = (4p) : Hy,, so we proved the Theorem. 0O

5. Irreducible chains

We do not know of any direct method to check whether a given chain is regular, since this requires
an infinite number of regularity tests for all possible transforms of the initials and separants. In this
Section, we will give a constructive criterion for a chain to be regular by introducing the concept of
proper irreducible chains.

5.1. Irreducible algebraic and differential chains

To define the concept of proper irreducible chains, we need several properties of algebraic
irreducible triangular sets. An algebraic triangular set B is called irreducible if 8B is regular and there
exist no polynomials P and Q which are reduced w.r.t. 8 and such that PQ € asat(8) (Ritt, 1950; Wu,
1989).

Lemma 5.1 (Wu, 1994). Let A be an irreducible algebraic triangular set. Then asat(+A) is a prime ideal
and for any polynomial P, P is regular w.r.t. A if and only if P & asat(A).
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Fig. 3. The indices of triangular set A*.

The above Lemma was extended to the case of ordinary differential polynomials. Let A be a
differential triangular set (Ritt and Doob, 1933; Wu, 1994). The differential saturation ideal of A is
defined to be

dsat(4) = [4], : HY (12)

where [+4]; is the differential ideal generated by 4 and H, is defined in (8) when « is treated as a
differential triangular set.

Lemma 5.2 (Ritt and Doob, 1933, Wu, 1989). Let A be a triangular set consisting of ordinary differential
polynomials. If 4 is irreducible when considered as an algebraic triangular set, then dsat(+) is a prime
differential ideal with A as its characteristic set.

Let A be a chain and P C K{Y}. A DD-polynomial corresponding to the bottom index in each
column of the index figure (like Fig. 3) of Ap is of form §9A for an A € . The set of these DD-
polynomials is called the difference part of Ap and is denoted by Ap. The following result is clear.

Lemma 5.3. Ap is a differential triangular set when the DD-polynomials are treated as differential
polynomials (see Remark 2.7 ).

5.2. Proper irreducible chains

Let 4 be a chain. We assume the ranking to be an elimination ranking, and after a proper renaming
of the variables, we can put it under the following form:

A11(U, y1), ..., AL, (U, y1)
A= (13)
Ap,l(wayl, ,Yp), . '-aAp,kp(U’yh s -7yp)

where U = {uy, ..., uqg} and p + q = n. For any i, we assume that cls(A; ;) = cls(A; k).

Let A* = #s4, and A = A* the difference part of 4* (definition in Section 5.1). + and A4* will
play a central role in the rest of this paper. Let - be the chain in (5), then the index set of A™ is given
in Fig. 3. The index set of A is {(2, 3), (3, 2), (4, 2), (5, 0), (6, 0), (7, 0), (8, 0)}.

A chain A is said to be proper irreducible if

e A" is an algebraic irreducible triangular set; and
e 5P e dsat(4) implies P € dsat(+4). Note that 4 is a differential triangular set.

Remark 5.4. The first condition in the above definition is equivalent to the fact that -4 is a differential
irreducible triangular set. Since 4 C 4*, and the leading variables are distinct differential variables, /4
is a differential irreducible triangular set. On the other hand, each DD-polynomial in 4* \ 4 is obtained
by differentiations of a DD-polynomial in . Thus, a DD-polynomial in 4* \ s is linear in its leader
and with the separant of a DD-polynomial in s as its initial. Since «4 is differential irreducible, these
initials are regular w.r.t. 4 and hence A*. As a consequence +* is an irreducible algebraic triangular
set.



1154 X.S. Gao et al. / Journal of Symbolic Computation 44 (2009) 1137-1163

Lemma 5.5. Let A be a coherent and proper irreducible chain of the form (13). If P is a non-zero DD-
polynomial in K[PP4], then §P is regular w.r.t. A, where P, is defined in (6).

Proof. Notice that the indices of §P can be obtained by adding one to the §-order of the indices of
P, or equivalently by moving the indices of P to the right-hand side by one in the index Figure of .
For an illustration, please consult Fig. 3. As a consequence, the DD-polynomials A € 4sp such that v,
appears in 8P correspond to the leftmost indices on each row in the index Figure of #4sp. Let us denote
these DD-polynomials by H.

To test whether §P is regular w.r.t. Asp, we only need to consider those DD-polynomials in «sp
which will be needed when eliminating the leading variables of H with resultant computations. More
precisely, these DD-polynomials € can be found recursively as follows:

e C =H,and
e if there exists an A € #sp such that vy € Ve \ Le, then add A to C.

From the definition of regularity, it is clear that 6 P is regular w.r.t. Asp iff SP is regular w.r.t. C.IfA € H,
then either A € A or A = 9*Ag, Ag € A.Let A = 2°Ag, Ay € +. Due our choice of the ordering <,

we have clgs) ag) = dig) for any class c. Therefore, starting from A, all the DD-polynomials constructed

in the above procedure are also of the form a°By for By € +. Since all DD-polynomials in € \ 4 are
linear in their leaders with their initials in H; and 4 is irreducible, we know that € is an irreducible
triangular set and asat(C) C dsat(s4).

Suppose that 6P is not regular w.r.t. 4sp. Then 8P is not regular w.r.t. €. Since C is irreducible,
Lemma 5.1 implies P € asat(C) < dsat(4). By the definition of proper irreducible chains,
P € dsat(+). By Lemma 5.2, dprem(P, 4) = 0. On the other hand, since P € K[P,], we have
dprem(P, A) = P = 0; a contradiction. O

The following example shows that, if we replace dsat by asat in the definition of proper irreducible
chains, then the above Lemma becomes false.

Example 5.6. Let A1 = y1.2.0 — Y0.0.0, A2 = ¥2.2.0 — Y0.0.2, and A = Ay, A,. It is easy to see that A is
an algebraic irreducible triangular set. Let Q = ¥2.0.0 — Y1.02 € K[P4]. We have 8%Q = A, — ’A; €
sat(+4), but Q & sat(-).

The following is a key Lemma for proper irreducible chains.

Lemma 5.7. Let 4 be a coherent and proper irreducible chain of form (13). If P is regular w.r.t. A, then 5P
is regular w.r.t. A.

Proof. We prove the Lemma by induction on the order of P. If P € K[P,], then we are done by
Lemma 5.5. Assuming that the conclusion holds for any DD-polynomial Q with vy <; vp, we will
prove the Lemma for P.

We first prove the following result.

IfH € Hy and vy <; vsp, then H is regular w.r.t. 4. (14)

Let I be the set of the initials and separants of the DD-polynomials in +. By Lemma 5.1, any element
in I is regular w.r.t. A* and hence regular w.r.t. 4. Let ; = 8 fori > 0.IfH € I; and vy <; vsp, then
H = 4L, L € I,and v, <; vp. By the induction hypothesis, H is regular w.r.t. 4. Repeating the above
procedure, we can prove that if H € I; and vy <; vsp, then H is regular w.r.t. 4. Since H, is the set of
products of elements in all [;, each H € H,, satisfying vy <, vsp is regular w.r.t. 4.

Let B = {A € Asp | va < vsp}. By (14), B is a regular algebraic triangular set.

Since P isregular w.r.t. 4, there exist a DD-polynomial Q and a non-zero DD-polynomial G € K[P]
such that Q - P = Gmod (4p). This can be expressed by the following equation:

Q- P=G+ Y B (15)
AeAp,vp<vp
Since G is obtained from P by eliminating some variables using DD-polynomials in 4p, we have
ve < vp and SEE)} < sf;;;, dgcc)} < dxi, for each class c. Hence Vsc € Ly, C Ly,,. By Lemma 5.5,
3G is regular w.r.t. Asc. From v < vp and Vs C L 4,,, it follows that §G is regular w.r.t. 8.
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Applying § on (15), we have
8Q-8P=08G+ Y OBuA. (16)
S8A€SAp,v5a<vsp

For any 6A in the above equation, there are two cases. (1) A € Agp.(2) A & Asp. Since +4 is coherent,
Lemma 4.1 yieldsan H € H,, vy <; vs4 < vsp such that HSA has a canonical representation. Hence,
there existsan H € Hy, vy <; vsp and a DD-polynomial R such that

H8Q-8P=HSG + Y GA
AcAR,va<vsp

Since vy <; vsp, H is regular w.r.t. 4, by (14). Since 8G is regular w.r.t. 8 and vsg < vsp, there exist
DD-polynomials P; € K[P4], Qq, T such that P; # 0 and

QHSG=Pi+ )  DuA.
Ae AT, v4<Vsp
So there exists a DD-polynomial Ry with
QHSQ-8P=P1+ > EAA. (17)

AEAR] ,VA<VUsp
We decompose the sum in Eq. (17) into two parts:

QHS8Q - 8P = P; + Z E4A + Z EgB. (18)

AE€AsP,UA=<VsP BgAsp,BeAR, ,up=<vsp

In the rightmost sum in this equation, let By = I, v’g: — Uy be largest for the ordering <;, where
Iz, € H, is the initial of B;. Since all the B in this sum are in +Ag,, By is determined uniquely. Replacing

v’g; by Uy /Ig,, we have
t
QP =IgPi+ Y EA+ > E,B, (19)
A€Asp,vpa<vsp AgAsp A€ AR, ,UB<|VB,
where Vg, <1 VB, =I Usp, t; € N, and Ip, is regular w.r.t. ». Since Vsp C Ly,,, Py € K[P4] and for
A € Asp, Vi C Ly,,, for any B # By in the third part of Eq. (17), vg <; vg,, they do not change under
the above substitution.

Since Ig, is regular w.r.t. 4, similar to the above procedure, there exist DD-polynomials Q, P, €
K[P4], Ry, such that P, # 0 and

QSP=P,+ > = FA+ > F;B. (20)

A€Asp,vA<Vsp BgAsp,BEAR, ,vp<|vp; SVsp

The leader of each B in the above equation is less than vg,. Repeating the procedure for (20), by
Lemma 3.4, after a finite number of steps, the rightmost sum in Eq. (20) will be eliminated. As a
consequence, there is an H and a non-zero R € K[P,] such that

HSP=R+ Y  QA=R+ ) QA
AcAgp,va=<Usp AcA g

Since B is a regular algebraic triangular set, by Lemma 4.5, 8P is regular w.r.t. 8 € +Agp. That is 6P is
regular w.r.t. A. O

The following result gives a constructive criterion to check whether a chain is regular.
Theorem 5.8. A coherent and proper irreducible chain is regular.

Proof. Let 4 = Ay,...,An, [; =I5, and Sj = Sy Since 4 is an irreducible differential triangular
set, Lemma 5.1 implies that I; and S; are regular w.r.t. 4 and hence regular w.r.t. 4. By Lemma 5.7, all

8';, 8'S; are regular w.r.t. 4. As a consequence, the products of §'I;, §'S; are regular w.r.t. 4 and A is
regular. O
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The condition in the above Theorem can be lessened. This gives the following result which will
be used below in the procedure to check whether a given chain is regular. For details, please refer to
Lemma 6.3.

Corollary 5.9. Let 4 be a chain satisfying the following conditions

e A™is an algebraic irreducible triangular set, and
e SP € asat(A™) implies P € asat(A™).

Then A is regular.

Proof. Let A* = Ay, ..., An, [j = IA)), and S; = S,. Then the 9-orders for 8'l;, 8'S; are less than or
equal to d = maxac 4+ ord,(A). Hence we only need to prove that Lemma 5.7 is still valid for a chain
A satisfying the conditions in this corollary and under the extra hypothesis ord,(P) < d. For this, it
suffices to show that Lemma 5.5 is still valid under these conditions. This is indeed the case, because
ord,(P) < dimplies € C A*, and the rest of the proofs can be carried out similarly. O

Theorem 5.10. Let A be a coherent and proper irreducible chain. Then sat(+4) is reflexive.

Proof. For any 6P € sat(«),if P ¢ sat(+), then rprem(P, ) # 0 and drprem(P, 4) € sat(-4). So we
can assume that §P € sat(+) and P is reduced w.r.t. 4. By Theorems 5.8 and 4.10, A is both regular
and the characteristic set of sat(«4). Since §P € sat(-4) we have rprem(§P, A) = 0. So there exists
an H € I, such that HSP € (Asp) and H is regular w.r.t. Asp. Consequently, there exists a non-zero

GSP = ) BaA. (21)

AcAsp
Let € = Az N {89%9°A | 89A € A*}. We have [C] C dsat(s4). Since each DD-polynomial A € Agp \ C
must be the transform of a DD-polynomial B which corresponds to the last index of a row in the index

diagram for G, the leading degree of A is the same as that of B. As a consequence, §P is reduced w.r.t.
Asp \ C. We decompose the right-hand side of Eq. (21) into two parts:

GSP = ZDAA + Z DgB.

AeeC BeAsp\C
Let B = Igvf — U, where I € H is the initial of B. Replacing vk by U/Iz, we have

HGSP = Z CiA € [C] C dsat(A),
AeC

where H € H,, and is regular w.r.t. 4. Since G € K[P,4] and 8P is reduced w.r.t. Asp \ C, GSP does not
change under the above substitution. Let B € Agsp \ C with class c. Forany A € C, by the construction

of A%, d&)} < dgg)} and hence A will not change under the above substitution. Since A* is irreducible,

G € K[Py4], H is regular w.r.t. 4, and HGSP € dsat(+4), by Lemma 5.2, we have HG ¢ dsat(A) and
6P € dsat(+4). Since » is proper irreducible, we have P € dsat(-4) C sat(+4); a contradiction. O

5.3. Consistency of proper irreducible chains

In order to solve the perfect ideal membership problem, we need to show that a coherent and
proper irreducible chain 4 is consistent, or equivalently, that sat(#) admits a zero in a suitable DD-
extension field. This is achieved by extending Cohn'’s theory of kernels to the DD-case.

Let K be a DD-field. We will denote by K(f, ..., f;), the differential field extension of K with
elements f1, ..., f; in some differential overfield of K. We will denote by K{g, ..., g} the DD-field
extension of K with elements g1, ..., g in some DD-overfield of K.

Let a; = (aj1,...,a;n),i = 0,...,1 be n-tuples, where q;; are elements from a differential
extension field of K. Consider the differential field

R =K(ag, ay, ..., a),



X.S. Gao et al. / Journal of Symbolic Computation 44 (2009) 1137-1163 1157

together with a differential ring isomorphism

T: K(a07 cee ar—l)a - K(al’ cee ar)a
which extends é and such that Ta; = a;.1,1 = 0, ..., r — 1. The differential ring R endowed with such
an operator T is called a DD-kernel of length r.
Definition 5.11. Let U = {uy, ..., uq} be such that uy; = a,; fori; < --- < i, If U is a differential
transcendence basis for a, over K(ag, ay, . . ., a,_1), then U is called a DD-parametric set. We denote by
dim(R) the differential dimension of K(ag, ay, ..., a,;) over K(ay, a1, ..., a,_1). Then a DD-parametric

set contains precisely dim(R) elements. Furthermore, we can define oordyR to be the differential order
of K(ag, ..., a;), over K(a, ..., a-_y, U), (Ritt, 1950).

We need the following results, which can be found in Ritt (1950), on pages 49 and 51.

Lemma 5.12 (Ritt, 1950). Let X and X’ be non-trivial differential prime ideals of respective dimensions
q and ¢, such that X’ is a proper divisor of X. Then q < q¢'. If ¢ = ¢/, then every parametric set U for X’
is a parametric set for X and the order of X’ relative to U is less than the order of X relative to U.

Lemma 5.13 (Ritt, 1950). Let X be a non-trivial differential prime ideal of dimension q. Let X’ be the
differential ideal generated by X in an extension K’ of K. Then X’ is perfect and each of its essential prime
divisors Xj,j =1, ..., s, is of dimension q. If ¢ > 0, then every parametric set U for X is a parametric set
for every X; and the orders of the X relative to U are all equal to the order of X relative to U. If ¢ = O,
then every X; has the same order as X.

The following lemma is a key ingredient for proving the consistency of a proper irreducible chain.
Its proof is analogous to Cohn’s proof (Cohn, 1965, page 150) in the pure difference case.

Lemma 5.14. There is a prolongation R’ of R consisting of a differential overfield K(a, ..., a,,
ar.1); of K(a, ..., a,), and an extension T’ of T to a differential isomorphism of K(a, ..., a;), onto
K(ay, ..., ar41); WithT'a, = a, 4.

Proof. Let IT be the differential prime ideal with generic zero a, in the differential polynomial
ring K(a, ..., a,_1),{X}, where X denotes (xi, ..., X,). Let IT’ be obtained from IT by replacing the
coefficients of the polynomials of IT by their images under T. Then [T’ is a prime differential ideal in
K(ay, ..., ar),{X}and generates anideal X inK(a, ..., a,),{X}. Let @ be an essential prime divisor of
X. By Lemma 5.13, the differential dimension of @ is equal to that of IT’. If U is the parametric set of
IT’, then it must be the parametric set of @, and the order of @ w.r.t. U is equal to the order of IT’ w.r.t.
U. We choose a, 1 to be a generic zero of @. Let IT" = {P € K(ay, ..., a,),{X}| P(a,51) = 0}, and
denote by U the parametric set of I7”. Then dim(/7”) = |U| and the differential order of I7” w.r.t. U
is equal to the differential order of @ w.r.t. U. So IT’, IT” admit the same parametric set and the same
order w.r.t. this parametric set. Since a, 1 is also a zero of I17’, we have IT’ C I1”. By Lemma 5.12, we
know that IT" = IT”, and a, is also a generic zero of IT’. Consequently, there is an isomorphism T’
of K(a, ..., a,;);ontoK(ay, ..., dar1), which is an extension of T. This proves the lemma. O

Theorem 5.15. Let + be a coherent and proper irreducible chain. Then Zero(sat(4)) # .

Proof. Let 4 be a proper irreducible chain of the form (13). Denote the difference part of A™ by
A={Bi1,....,Bic;,....Bp1, ..., Bpc .

where lvar(B; ;) = y;. Let o; = ords(Bi,, ¥i),i =1, ..., p, € = MaXac* 1<i<q {0rds (A, u;)},
U={dul1<i<q0<j<e}, Uy=8Up={Yull<i<gl<j<e+1},
Yo={8yil1<i<p,0<j<o0i— 1}, Y1 =8Yo={8yi|1<i<p, 1<j=< o}

Then Vo = Uy U Yy and V; = 8V = U; U Y; have the same number of elements.

Since + is proper irreducible, . is an irreducible differential triangular set when §'u; and §'y; are
treated as independent differential variables. Hence, dsat(+4) is a differential prime ideal in K{\7},
where V. = Uy U Yo U {8%1y1,...,8%y,}. Let n = («;j, Bij) be a generic zero of this differential
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prime ideal. Then every polynomial in . vanishes at §u; = o, 8y; = B, but not their initials and
separants.

We will construct a DD-kernel of length one. Let ag and a; be obtained from V, and V; by replacing
§u; and 8'y; with the corresponding a;j and B; ;. We take K(ao, a,), for our kernel. The difference
operator § introduces a map from K(ap), to K(a;), by §(e;j) = «;j1 and §(Bi;) = Bij+1. We will
prove that § gives rise to an isomorphism between K(ag), and K(a;),. Let

Bo=A—{Bic,.... By}, By = {SA|A € By}

From the definition of 4, By # ¥ and the §-order of y; in B;j € B does not exceed o, — 1. As a
consequence, dg is a generic zero of the differential prime ideal Iy = dsat(By). Let I = dsat(A).

Since 6By = B; and dag = ay, by the nature of the difference operator, 8, is an irreducible
differential triangular set in K{V;}, and a; is a zero of the prime ideal I; with 8, as a characteristic set.
We will prove that I; = dsat(87) = I N K{V;}, which means that a; is generic.

In order to show thatl; = INK{V;},lett; = ords(Bi 1), U* = Uy U Uy, Y* = Yo UYj. Since dsat(4)
is reflexive, we can choose U; and {y;j|1 < i < p, 1 <j < t;} as the parametric set of the differential
ideal INK{Uy, Y;1}. Moreover, the differential order of INK{U;, Y;} w.r.t. this parametric set equals the
differential order of INK{Up, Yo} w.r.t. its parametric set Up and {y; j|1 < i < p, 0 <j < t;—1}. Hence,
the number of parameters and the order w.r.t. these parameters are the same for Iy and I N K{Uy, V;}.
Now the number of parameters and the order w.r.t. these parameters also coincide for Iy and I;. Since
the prime ideals I; and I N K{U, V} satisfy I; C I N K{V;}, Lemma 5.12 implies that they have the
same dimension and order, whence I = I N K{V;}. Since § : Iy — I; is an isomorphism between two
prime ideals, é : K(ag), — K(ay), is a differential field isomorphism.

At this point, we have proved that K(ag, a,), is a DD-kernel over K. By successive applications of
Lemma 5.14, we obtain a sequence of kernels R, = K(a, ..., a-yp)s, h =0, 1, ..., and isomorphisms
T, of K(a, ..., aryp—1), onto K(ay, ..., ar4p), such that R4 is a prolongation of Ry, and Ry = R. The
union of all Ry, h = 0, 1, ... defines a DD-field K{a) = K(a, ay, . ..),, where the difference operator
is defined by da; = a;;.1. We denote i to be the value induced by 7 in K(a). We will show that i is a
zero of sat(A).

Let A € «. From the construction of the kernel, A vanishes at v, contrary to its initial and separant.
Furthermore, §P(yy) = 0 implies P(¢¥) = 0 for any DD-polynomial P: using the isomorphism
s : K(a,aq,...,a,) — K(ay,...,0a41), we have (6P)(ay,...,a,41) = 0 = P(a,ay,...,a,) =
0. Consequently, §%°A vanishes at v for all d and s, but not its initial. We conclude that ¥ €
Zero(sat(A)). O

5.4. Strongly irreducible chains

We first show that a proper irreducible chain does not necessarily define a prime ideal.

Example 5.16. Consider A = {A; = yi,, +t, Ay = Y30, + t + k } from Cohn (1948) in
K{y1,y2} where K is Q(t) with the difference operator 6t = t + 1 and k is a positive integer.
A" = {A1, A1, Ay, 6Ay}. If k > 1, then « is proper irreducible. But sat(+) is not prime, because

Ay — 8¥(A1) = (2,00 — Y1.k0) ¥2.0.0 + Y1.k0)-

A proper irreducible chain « is said to be strongly irreducible if Ap is an algebraic irreducible
triangular set for any DD-polynomial P. In this Section, we will prove that any reflexive prime ideal
can be described with strongly irreducible chains. The following Theorem gives a description of prime
ideals in terms of strongly irreducible chains.

Theorem 5.17. Let 4 be a coherent and strongly irreducible chain. Then sat(.4) is a reflexive prime ideal.
On the other side, if I is a reflexive prime ideal and 4 the characteristic set for I, then I = sat(-4) and A4 is
a coherent and strongly irreducible chain.

Proof. “=—" Since 4 is coherent and proper irreducible, Theorem 4.10 implies that « is regular
and # is the characteristic set of sat(+). For two DD-polynomials P and Q such that PQ € sat(«),
Theorem 4.13 yields a DD-polynomial R with PQ € asat(-g). Since +g is an irreducible triangular set,
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Lemma 5.1 implies P € asat(-4g) or Q € asat(.g). Therefore, sat(A) is a prime ideal. By Theorem 5.10,
sat(+) is reflexive. This shows that sat(+4) is a reflexive prime ideal.

“«<="Since » is the characteristic set of I, it is coherent, regular, and I C sat(.), by Theorem 4.10.
On the other hand, for P € sat(+4), there exists an H € H, with HP € [+A]. Since I is a reflexive
prime ideal, the initials and separants of A, as well as their transforms, are not in I. Hence P € I and
I = sat(«). For any DD-polynomial P, +4p is an irreducible triangular set. Otherwise there exist DD-
polynomials G and H, which are reduced w.r.t. Ap, and such that GH € asat(4p) C sat(-4). Hence G
and H are reduced w.r.t. 4. As a consequence, G, H ¢ I = sat(+) but GH € I, which contradicts to the
fact that I is a prime ideal. If 5P € dsat(-A), we have 6P € sat(+) = I, whence P € sat(-4). Since 4
is coherent and regular, we have P € asat(.p). Since 4 is irreducible, dsat(-4) is a prime differential
ideal. Without loss of generality, we may assume that dg;} < dig) for all c, where dﬁf) is the largest d

such that y. 4 s occurs in P. As a consequence Ap < dsat(+) and P € asat(Ap) C dsat(s). O

6. Zero decomposition algorithms

In this Section, we will present an algorithm which can be used to decompose the zero set of a finite
DD-polynomial system into the union of the zero sets of proper irreducible chains. Such algorithms
are called zero decomposition algorithms. We will also show how to solve the perfect ideal membership
problem.

6.1. Test of proper irreducibility

In this section, we will give an algorithm to check whether a chain is proper irreducible. The
following algorithm checks if a chain is regular.

Algorithm 3 Regular(4)
Input: A coherent chain « of the form (13) such that A* is irreducible.
Output: (true,d) if 4 is regular.
(false,P) otherwise. P consists of DD-polynomials reduced w.r.t. 4 such that

Zero(A) = Zero(4 U P) U U Zero(A U {I;}) U U Zero(4 U {S;}) (22)
i j

where [; and S; are the initials and separants of the DD-polynomials in +.
G :=GBasis(asat(4*)) [*/
G, := E"1(GN K[Uy, Y;]) where
U;, Y; are the variables in G minus those u; o 5, Yk,0,+ With ords zero.
If G; C (G) then return (true,?).
Else return (false,{aprem(g, A*) | g € G1 \ (G)}).

[*| G := GBasis(asat(+4*)) computes the Groebner basis w.r.t. the eliminating ordering y.o; >
Ye0i=1 > ***Ye—1.01& > - > Y105 > Ugog > -+ > Uy0k > ---.In Gao and Chou (1993), it is
proved that for any chain A C K[xq, ..., X,], we have asat(4) = (A, zZI, — 1) NK[Xq, ..., X,], where
z is a new variable. Based on this result, we can compute the Groebner basis of asat(4™*).

Proposition 6.1. Algorithm Regular is correct.

Proof. If the algorithm returns true, we will show that «4 is regular. Since A* is irreducible, by
Corollary 5.9, we need only to show that §P € asat(4*) implies P € asat(A*). If P € asat(A*),
from the variable order used by us, we have 6P € (G N K[Uq, Y;]) and whence P € (G;) C (G). Thus,
A is regular. If the algorithm returns false, forg € G; \ (G), we have aprem(g, A*) # 0 and it is
reduced w.r.t. 4. It is clear that the right-hand side of (22) is included in Zero(.4). For n € Zero(+), if
I;(n)Sj(n) = 0 we have n € Zero(+4 U {I;}) UZero(A U {S;}). Otherwise, from the definition of asat, for
any P € P, 6P(n) = 0 and hence P(n) = 0. We thus proved (22). O
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Algorithm DCS converts an irreducible differential triangular set under one variable order to an
irreducible differential triangular set under another variable order.

Algorithm 4 — DCS(A)

Input: A is an irreducible differential triangular set in K{Y} with any variable order.
Output: A differential characteristic set 8 of dsat(+) under the variable ordering:
Ye1.0,i > Ve, kj forany k # 0.

Let H be the product of the initials and separants of .
Compute a zero decomposition

Zero(A/H) = ‘EmJl Zero(dsat(-;)/H)

with the Variety Decomposition Theorem on page 308 of Wu (1989), where «; are irreducible
differential chains.

For k from 1 to m do
if dprem(P, A) = O for all P € Ay return Ay.

Proposition 6.2. The algorithm DCS is correct.

Proof. By the definition of dsat, we have

Zero(dsat(4)/H) = Zero(A/H) = U Zero(dsat(-;)/H). (23)

Since # is irreducible, by Lemma 5.2, dsat(+4) is a differential prime ideal. Then dsat(4) C dsat(+;)
for any i. Due to (23), a generic zero of dsat(+) must be in some Zero(dsat(+y)). For this k, we have
dprem(P, A) = 0 for all P € Ay. So such a k exists. We will show that dsat(4) = dsat(+4y). For any
P € dsat(Ay), there exists an H; € Hy, suchthat H{P € [Ar]. We have H; ¢ dsat(.4), since otherwise
H; € dsat(4A) C dsat(Ay). Since dprem(P, A) = O for all P € Ay, there exists an H, € H, with
H{H,P € [4]. Since H{H;, ¢ dsat(+4), we have P € dsat(+4). So dsat(+4A) = dsat(Ay). O

Now, we can give the algorithm to check whether a chain is proper irreducible.

Algorithm 5 — Prolrr(4)

Input: A coherent chain « of the form (13) such that A* is irreducible.
Output: (true,d), if + is proper irreducible.
(false,lP), otherwise. IP consists of DD-polynomials reduced w.r.t. A such that

Zero(A) = Zero(A U P) U UZero(A U {I;}) U UZero(A U {S;}) (24)

where [; and S; are the initials and separants of the polynomials in ».
Let (test, P) = Regular(A*).
If test = false, then return(false,P)
Else, let G := DCS(A)
G =GN K[U], Y]] where
Uy, Y7 are the variables in G, except for those u; o j, yi 0,x With zero ord;.
G1 := 67 "Gy, where r is the largest s, such that § °G; is a DD-polynomial.
If dprem(g, 4A) = 0 for all g € Gy, then return (true,?).
Else return (false,{dprem(g, 4) # 0 | g € G1}).

Proposition 6.3. The algorithm Prolrr is valid.
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Proof. If Prolrr(.A) returns (true,), then we will show that P € dsat(s4) for any 8P € dsat(+4). Since
dsat(+) = dsat(.Ay), where s is obtained from DCS(+4), we have 8P € dsat(s4y). Since Ay is an
irreducible differential chain, dprem(8P, 4;) = 0. We denote G; = 4, N K[U;, Y1], Go = 871Gy,
where K[Uq, Y1] is described in algorithm Prolrr. Then dprem(éP, A,) = dprem(sP, G;) = 0. So
there exists an H € Hg, with

HSP = Y QipdB,

ieN,BeG,

where H, B, Qi € K[U, Y{]. Applying ! to this equation, we obtain (" 'H)P € [Gol,. Since
dg) < dg} for all G € Go and c, we have A¢ C [+4], and rprem(G, 4) = aprem(G, #4¢) =
dprem(G, ) = 0. Consequently, (§~'H)P € dsat(-). Since 4y is an irreducible differential chain
and H is regular w.r.t. 4y, it is regular w.r.t. Ay C [+];. It follows that 8§~'H must be regular
W.LLt. Ag-1y C [A],; otherwise § 'H € asat(sg-1y). Since Regular returns true, s+ is regular. By
Theorem 4.10, we infer that - is the characteristic set of sat(-4), so that H € sat(+4). Since + is regular,
rprem(H, A) = aprem(H, Ay) = dprem(H, ) = 0; a contradiction. We conclude that P € dsat(+).
Eq. (24) can be proved similarly to that of (22). O

6.2. The zero decomposition algorithm

We first give two lemmas. A chain # is called a Wu characteristic set of a set P of DD-polynomials
if A4 C [P] and rprem(P, A) = 0 for all P € IP. As a direct consequence of Lemma 3.8, we have

Lemma 6.4. Let PP be a finite set of DD-polynomials, A = A, ..., A, a Wu characteristic set of PP,
I = Is,, Si = Sp,, and H = [ ], I;S;. Then

Zero(P) = Zero(A/H) U UZero(]P UaAU{L}) U U Zero(P U A U {S;})
i=1 i=1

Zero(P) = Zero(sat(+4)) U U Zero(P U 4 U {I;}) U U Zero(P U 4 U {S}).
i=1 i=1

Lemma 6.5. (Lemma 3 on page 181 in Wu (1994)) If 8B is a reducible algebraic triangular set, then we
can find a set of polynomials P = {Py, P,, . .., Py} such that each P; is reduced w.r.t. 8 and

h

Zero(8) = | Jzero(8 U {P}) U | JZero(8 U {I).
i=1 i

Here [; stand for the initials of the polynomials in B.

We are now in a position to state the main algorithm ZDT of this paper which achieves the zero
decomposition of a perfect DD-ideal.

Theorem 6.6. Let P be a finite set of DD-polynomials in K{y1, ..., ¥ }. Then the algorithm ZDT computes
a sequence of coherent and proper irreducible chains 4+, . . ., 4y, such that

k
Zero(P) = UZero(eAvi/Hi)

i=1
k

Zero(P) = |_JZero(sat(y)),
i=1

where H; is a product of the initials and separants of ;.
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Algorithm 6 — ZDT(PP)

Input: A finite set P of DD-polynomials.
Output: W = {1, ..., Ay} such that 4; is a coherent and proper irreducible
chain and Zero(P) = U:‘:l Zero(sat(+;)).

Let B := CS(P), B :=By,...,Bp. [*/
If 8 = 1 thenreturn {}.
Else
LetR := {rprem(f, B) #0 | f € (P\ B) U A(B)}.
IfR = () then
If 8* is not algebraic irreducible then
return W:=Uf_ ZDT(P U 8 U {P;HU ZDT (P U 8 U {I}}),
where P;, I; correspond to the polynomials in Lemma 6.5 for 8*
Else, let (test, P) :=Prolrr(B).
If test then W = {B}UZDT(P U 8 U {[;}) UZDT(P U B8 U {S;}).
Else W:= ZDT(P, 8, P)U ZDT (PU B8 U {[HUZDT (P U B U {S}),
where [;, S; are the initials and separants of the DD-polynomials in B
Else W :=ZDT(P U R).

[*| CS(P) gives the characteristic set of P. Since P is finite, it is easy to find CS(PP).

Proof. The algorithm ZDT is similar to the algebraic and differential zero decomposition algorithms in
Ritt and Doob (1933) and Wu (1994), except for using algorithm Prolrr. If R = {J, then 8 is a coherent
Wau characteristic set of P. If 8* is not algebraic irreducible, by Lemma 6.5, we have

Zero(B*) = Zero(B) = _LhJ] Zero(B U {P;}) U UZero(B U {I;}).
i= J

Since B is a Wu characteristic set of P, we have Zero(P) = Zero(PU 8B) = UL] Zero(PU B U {P;}) U
UjZero(P U 8 U {I;}).

Since B is coherent and 8* is irreducible, we can call Algorithm Prolrr(B). If test = true, the result
comes from Lemma 6.4. If test = false, from Algorithm Prolrr, we have

Zero(B) = Zero(B U P) U Zero(B U {I;}) U Zero(B U {S;}).

Since B is a Wu characteristic set of P, we have Zero(P) = Zero(PUB) = Zero(PUBUP)UU,Zero(PU
B U A{;}) U Zero(P U B8 U {S;}). This proves the correctness of the algorithm. The termination of the
algorithm is guaranteed by Lemmas 3.4 and 3.5. O

We now show how to solve the perfect ideal membership problem.

Corollary 6.7. There exists an algorithm which takes a finite set P C K and Q € P on input and which
checks whether Q € {P}.

Proof. By Proposition 2.11, we have Q € {P} if and only if Zero(P U {zQ — 1}) = ¢ for a new variable
z. Now the theorem yields a decomposition

m
Zero(PU {zQ — 1}) = U Zero(sat(+4;)), (25)
i=1
where «; are coherent and proper irreducible chains. We have Zero(sat(+4;)) % @ for each i, by
Theorem 5.15. Hence Q € {P}ifand only if m = 0in (25). O
Example 6.8. LetA; = y13,0—Y0,0,00A2 = ¥2,2,0—Yo,0,2 and A = Ay, A;. Then + is already a coherent
chain and the algorithm ZDT directly calls Prolrr(+4). The algorithm Prolrr calls DCS(4 ), since A* =
A1, 8A1, Ay, 8A; is an algebraic irreducible triangular set. In the algorithm DCS, we have H = 1 and,
under the new variable order 0,02 > Y0,0,0 > Y0,1.2 > Y0,1.,0 > Y1.2.0 > Y1.3,0 > ¥2.2.0 > Y2.3.0,

Zero(A") = Zero(dsat(Aq, A, A3, 3A3)) = Zero(A;, A1, Az, 8A3),
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where A; = y,.2.0 —Y1.2.2- The algorithm DCS returns Ay, §A;, As, 6As. Back in the algorithm Prolrr we
have G; = §2{A3} = {A4 = ¥2.0.0 — Y1.0.2} The algorithm Prolrr returns (false,{A4}). We now return
to the algorithm ZDT with input {A1, A;, As}. Since 8 = Ay, A4 is a coherent and proper irreducible
chain, the algorithm returns 8 and we have Zero(4) = Zero(sat(8)) = Zero(B).
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