
Jrl Syst Sci & Complexity (2008) 21: 191–208

A CHARACTERISTIC SET METHOD FOR SOLVING
BOOLEAN EQUATIONS AND APPLICATIONS IN
CRYPTANALYSIS OF STREAM CIPHERS∗

Fengjuan CHAI · Xiao-Shan GAO · Chunming YUAN

Received: 25 March 2008 / Revised: 7 April 2008
c©2008 Springer Science + Business Media, LLC

Abstract This paper presents a characteristic set method for solving Boolean equations, which is

more efficient and has better properties than the general characteristic set method. In particular, the

authors give a disjoint and monic zero decomposition algorithm for the zero set of a Boolean equation

system and an explicit formula for the number of solutions of a Boolean equation system. The authors

also prove that a characteristic set can be computed with a polynomial number of multiplications of

Boolean polynomials in terms of the number of variables. As experiments, the proposed method is used

to solve equations from cryptanalysis of a class of stream ciphers based on nonlinear filter generators.

Extensive experiments show that the method is quite effective.

Key words Boolean equation, characteristic set method, cryptanalysis, finite field, stream ciphers.

1 Introduction

The characteristic set (CS) method is an effective tool for studying systems of polynomial
equations, algebraic differential equations, and algebraic difference equations[1−3]. The idea of
the method is to reduce an equation system in general form to equation systems in a special
“triangular form”, also called ascending chains. The zero-set of any finitely generated equations
can be decomposed into the union of the zero-sets of ascending chains. As a consequence, solving
an equation system can be reduced to solving cascaded univariate equations.

Boolean equation solving is a fundamental problem in computer science and has many ap-
plications such as hardware design and verification[4−5], cryptanalysis of ciphers[6−8], and SAT
problem solving[9]. The problem of deciding whether a Boolean equation system has a solution is
NP-complete[10]. There exist many approaches to solving Boolean equations, such as the classic
algebraic methods[11], the logic methods such as the Davis-Putnam procedure[12], the graph-
based methods such as the BDD method[13], and the Gröbner basis and XL methods[4,6,8,14].

In this paper, we propose two CS methods to solve Boolean equations, which is equivalent to
polynomial equation solving in the finite field F2. By taking account of the special property of
F2, our proposed methods are much more efficient and have better properties than the general
CS method.

Fengjuan CHAI · Xiao-Shan GAO · Chunming YUAN
Key Laboratory of Mathematics Mechanization, Institute of Systems Science, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, Beijing 100190, China. Email: xgao@mmrc.iss.ac.cn.
∗This research is partially supported by a National Key Basic Research Project of China under Grant No.
2004CB318000.

192 FENGJUAN CHAI · XIAO-SHAN GAO · CHUNMING YUAN

The first major improvement is that we can decompose the zero set of a Boolean equation
system as the disjoint union of the zero sets of ascending chains consisting of monic polynomials.
As a consequence, we can give an explicit formula for the number of solutions of the equation
system.

The well-ordering principle is a basic step of the CS method, which can be used to compute
a so-called Wu-CS for an equation system. If the Wu-CS satisfies certain properties, it provides
at least one solution to the original equation system.

The second improvement is that we design well-ordering principles which can be executed in
n steps and use a polynomial number of polynomial multiplications, where n is the number of
variables. We also design an algorithm, where the degrees of the polynomials occurring in the
algorithm do not increase. This allows us to control the size of the polynomials effectively. Since
Boolean polynomial equation solving is NP-complete, there exist no universally fast algorithms
for this problem. The philosophy behind our algorithms is that we will compute each Wu-CS
or branch effectively by controlling the size of the polynomials and reducing the total number
of branches using various strategies.

The general CS methods do not have the properties mentioned above[15]. The work [16–18]
considered CS methods for polynomials with coefficients in a field of a positive characteristic.
These algorithms also do not have the above-mentioned properties.

We implement our algorithm with the C language. Besides the concept of ascending chain,
we also use the concept of Wu chain defined in [19] and the concept of weak chain defined in
[20] in our program. In order to save space, we use SZDD[21] to represent Boolean polynomials.
Experiments show that this can speed up the program significantly.

As experiments, we use our methods to solve equations from cryptanalysis of stream ciphers
based on nonlinear filter generators. Extensive experiments have been done for equation systems
with variables ranging from 40 to 128. Experiments show that our algorithms provide an
effective tool for solving equations over F2.

The rest of this paper is organized as follows. In Section 2, we introduce some notations
and preliminary results. In Section 3, we present the CS methods. In Section 4, we present a
direct algorithm to decompose the zero set of a polynomial system into the zero sets of monic
ascending chains. In Section 5, we discuss the issues in the implementation of the algorithms.
In Section 6, our methods are used to solve equations from cryptanalysis of stream ciphers
based on nonlinear filter generators. Conclusions are given in Section 7.

2 Notations and Preliminary Results

Let F2 be the field consisting of 0 and 1. We will consider the problem of equation solving
over F2. Let X = {x1, x2, · · · , xn} be a set of indeterminants and

R2 = F2[X]/(H),

where H = {x2
1 +x1, x

2
2 +x2, · · · , x2

n +xn}. Then, R2 is a Boolean ring†. Note that R2 has zero
divisors. For instance, xi and xi + 1 are zero divisors. An element P in R2 is called a Boolean
polynomial, or simply a polynomial, and has the following canonical representation

P = Ms + Ms−1 + · · ·+ M0,

where Mi is a product of several distinct variables.
†A ring is called a Boolean ring if all its elements are idempotent. See page 31 of [11].

CHARACTERISTIC SET METHOD FOR BOOLEAN EQUATIONS 193

Let P be a set of polynomials in R2. We use Zero(P) to denote the common zeros of the
polynomials in P in the affine space Fn

2 , that is,

Zero(P) = {(a1, a2, · · · , an), ai ∈ F2, s.t. ∀P ∈ P, P (a1, a2, · · · , an) = 0}.
Let D be a polynomial in R2. We define a quasi-variety to be

Zero(P/D) = Zero(P) \ Zero(D).

For a polynomial set P, we use (P) to denote the ideal generated by the polynomials in P.
The following are well-known results. Please see [22] for their proofs.

Lemma 2.1 Let I be a polynomial ideal in R2.
1) I = (x0 + a0, x1 + a1, · · · , xn + an) if and only if (a0, a1, · · · , an) is the only solution to I;
2) I = (1) if and only if I has no solutions;
3) Let P ∈ R2 and s a positive integer. Then P s = P .
As a consequence of 2) in Lemma 2.1, we have the following corollary.
Corollary 2.2 Let P ∈ R2 and P 6= 1. Then, Zero(P) 6= ∅.
Lemma 2.3 Let U, V , and D be polynomials and P a polynomial set in R2. We have

(UV + 1) = ({U + 1, V + 1}); (1)

(UV + U + V) = ({U, V }); (2)

Zero(∅/D) = Zero(D + 1); (3)

Zero(P) = Zero(P ∪ {U}) ∪ Zero(P ∪ {U + 1}). (4)

Proof We can prove (1) as follows: (UV +1) = (UV +1, (U+1)(UV +1)) = (UV +1, U+1) =
(V + 1, U + 1). Equation (2) can be proved similarly: (UV + U + V) = (UV + U + V, (U +
1)(UV + U + V)) = (UV + U + V, UV + V) = (U, V). For any element α ∈ Fn

2 , D(α) 6= 0
implies D(α) = 1. This proves (3). Note that U(U + 1) ≡ 0. Then, (4) is obviously true.

3 A Characteristic Set Method in R2

We will give a CS method to solve Boolean polynomial equations, which is more efficient
and has better properties than the general CS method.

3.1 Triangular Sets and Chains

Let P ∈ R2. The class of P , denoted by cls(P), is the largest c such that xc occurs in P . If
P ∈ F2, we set cls(P) = 0. If cls(P) = c > 0, we call xc the leading variable of P , denoted as
lvar(P). The leading coefficient of P as a univariate polynomial in lvar(P) is called the initial
of P , and is denoted by init(P).

A sequence of nonzero polynomials

A : A1, A2, · · · , Ar (5)

is a triangular set if either r = 1 and A1 = 1 or 0 < cls(A1) < cls(A2) < · · · < cls(Ar). For a

triangular set A of form (5), let IA =
r∏

i=1

init(Ai).

Let P = Ixc + U with I = init(P) and class c. For Q ∈ R2, write Q as a polynomial in xc:
Q = Jxc + V . If J 6= 0, the pseudo-remainder of Q wrt P is defined as

prem(Q,P) = IQ + JP = IV + JU.

194 FENGJUAN CHAI · XIAO-SHAN GAO · CHUNMING YUAN

If J = 0, we define prem(Q, P) = Q. If P = 1, define prem(Q, P) = 0. For a triangular set A
of form (5), the pseudo-remainder of Q wrt A is defined as

prem(Q,A) = prem(prem(Q,Ar), {A1, A2, · · · , Ar−1}) and prem(Q, ∅) = Q.

Let R = prem(Q,A). By 3) in Lemma 2.1, we have

JQ =
∑

i

QiAi + R, (6)

where J is a factor of IA and Qi are polynomials. The above formula is called the remainder
formula.

Let P be a set of polynomials and A a triangular set. We use prem(P,A) to denote the set
of nonzero prem(P,A) for P ∈ P.

A polynomial Q is reduced wrt P 6= 0 if cls(P) = c > 0 and xc does not occur in Q. A
polynomial Q is reduced wrt a triangular set A if P is reduced wrt all the polynomials in A. It
is clear that prem(P,A) is reduced wrt A for any polynomial P .

The saturation ideal of a triangular set A is defined as

sat(A) = {P ∈ R2| IAP ∈ (A)}.
The saturation ideal in R2 is very simple.

Lemma 3.1 For a triangular set A = A1, A2, · · · , Ap, sat(A) = (A1, A2, · · · , Ap, IA + 1).
Proof Denote I = (A1, A2, · · · , Ap, IA + 1). If P ∈ sat(A), then there exist polynomials Bi

such that
IAP =

∑

i

BiAi.

Let A0 = IA + 1 and substitute IA = A0 + 1 into the above equation, we have P =
∑
i

BiAi +

PA0 ∈ I. Thus, sat(A) is contained in I.
For the other side of the equation, let P ∈ I. Then, there exist polynomials Ci such that

P =
∑

i

CiAi + C0A0.

Multiply IA to both sides of the above equation and note that IA(IA + 1) = 0, and we have
IAP =

∑
i

IACiAi. Then, P ∈ sat(A). The proof is completed.

A triangular set A is called monic if the initial of each polynomial in A is 1. A monic
triangular set can be written as the following form:

A : A1 = xc1 + U1(U), A2 = xc2 + U2(U), · · · , Ap = xcp + Up(U), (7)

where U = {xi|i 6= cj , j = 1, 2, · · · , p} is called the parameter set of A. Let q = |U|. Then,
p + q = n. The dimension of A is defined to be dim(A) = q = n− |A|.

Lemma 3.2 Let A be a monic triangular set. Then, |Zero(A)| = 2dim(A).
Proof The dimension of A is the number of parameters of A, that is, dim(A) = |U|. For

any xi ∈ U, we assign values 0 and 1 to xi. Then, there are 2dim(A) parametric values for U.
For each of these parametric values, A = 0 has exactly one solution since A is monic.

A triangular set A of form (5) is called an ascending chain, or simply a chain, if Aj is reduced
wrt Ai for i < j. A chain A is called conflicting if IA = 0. It is clear that if A is conflicting,
then, Zero(A/IA) = ∅. Otherwise, we have the following lemma.

Lemma 3.3 Let A be a non-conflicting chain. Then, Zero(A/IA) 6= ∅.

CHARACTERISTIC SET METHOD FOR BOOLEAN EQUATIONS 195

Proof Let A = A1, A2, · · · , Ap and Ai = Iixci + Ui, where Ii = init(Ai). Since A is a chain,
IA is reduced wrt A and does not contain xci

, i = 1, 2, · · · , p. Let U = X \ {xc1 , xc2 , · · · , xcp
}.

Since IA 6= 0, it is easy to show that there exists a value η for U such that IA(η) 6= 0. Then
Ii(η) 6= 0 and we can solve xci

from Ai = Ii(η)xci
+ Ui(η) = 0. We thus find an element in

Zero(A/IA).
Note that regular chains do not make much sense for Boolean equations, since a regular

chain could be conflicting as shown by the simple example: A = x1x2 + 1, (x1 + 1)x3 + 1.

3.2 Well-Ordering Principles

Let A : A1, A2, · · · , Ar and B : B1, B2, · · · , Bs be two triangular sets. A is said to be
of lower ordering than B, denoted as A ≺ B, if either there is a k such that cls(A1) =
cls(B1), cls(B2), · · · , cls(Ak−1) = cls(Bk−1), while cls(Ak) < cls(Bk); or r > s and cls(A1) =
cls(B1), cls(B2), · · · , cls(Ar) = cls(Br). We have the following basic property for triangular sets.

Lemma 3.4 Let A1 Â A2 Â · · · Â Am be a strictly decreasing sequence of triangular sets
in R2. Then, m ≤ 2n.

Proof Note that a polynomial P and lvar(P) have the same ordering. Since we only
consider the ordering of the triangular sets, we may assume that polynomials in the triangular
sets are variables. We call the class of the first polynomial in a triangular set to be the
class of that triangular set. We will construct the maximal triangular set with class c. The
triangular set with the highest ordering is C1 = xn. The next two triangular sets are C2 =
xn−1, C3 = xn−1, xn. Following these triangular sets are the triangular sets with xn−2 as
the first polynomial: C4 = xn−2, C5 = xn−2, xn, C6 = xn−2, xn−1, C7 = xn−2, xn−1, xn. Let
C1 Â C2 Â · · · Â Cak

be the triangular sets with class ≥ k. Then, the triangular sets with class
k − 1 are xn−k+1, {xn−k+1} ∪ C1, · · · , {xn−k+1} ∪ Cak

. Let ak be the number of polynomials
in the maximal triangular set with class k. We have ak−1 = 2ak + 1 and a1 = 2a2 + 1 =
22a3 + 2 + 1 = a3a4 + 22 + 2 + 1 = 2n−1 + · · · 2 + 1 = 2n − 1. Considering the trivial triangular
set {1}, we have m ≤ 2n.

By Lemma 3.4, among all the chains contained in a polynomial set P, there exists one with
the lowest ordering. Such a chain is called a CS of P. We have the following basic property for
CSs[1−2].

Lemma 3.5 Let A be a CS of a polynomial set P. If P is reduced wrt A, then, a CS of
P ∪ {P} is of lower ordering than A.

Let P be a polynomial set. We set P0 = P and choose a CS B0 of P0. Let R0 = prem(P0,B0).
Suppose that R0 6= ∅. Then, we form a new polynomial set P1 = P ∪ R0. Choose now a CS B1

of P1. By Lemma 3.5, B1 is of lower ordering than B0. Continuing in this way, we will obtain
successively Pi, Bi, Ri, i = 1, 2, · · ·, moreover,

B0 Â B1 Â B2 Â · · · .

By Lemma 3.4, the sequence can only be a finite one so that up to a certain stage m we should
have Rm = ∅. According to [1,19], the above procedure can be exhibited in the form of the
procedure (8) as below:

P = P0 P1 · · · Pi · · · Pm

B0 B1 · · · Bi · · · Bm = C
R0 R1 · · · Ri · · · Rm = ∅,

(8)

where
Pi = Pi−1 ∪ Ri−1, (9)

196 FENGJUAN CHAI · XIAO-SHAN GAO · CHUNMING YUAN

Bi is a CS of Pi, and Ri = prem(Pi,Bi). As a consequence of Lemma 3.4, we have the following
proposition.

Proposition 3.6 In procedure (8), we have m < 2n.
In procedure (8), Bm = C verifies

prem(P, C) = {0} and Zero(P) ⊂ Zero(C). (10)

Any chain C satisfying property (10) is called a Wu-CS of P. We have the following key
property of a Wu-CS.

Theorem 3.7 (Well-ordering principle in R2) Let C be a Wu-CS of a polynomial set P.
Then, we have

Zero(P)

= Zero(C/IC)
⋃(p⋃

i=1

Zero(P ∪ C ∪ {Ii})
)

(11)

= Zero(C ∪ {I1 + 1, · · · , Ip + 1})
⋃ (p⋃

i=1

Zero(P ∪ C ∪ {I1 + 1, · · · , Ii−1 + 1, Ii})
)

, (12)

where Ii, i = 1, 2, · · · , p, are the initials of the polynomials in C. When i < 0, we assume that
Ii does not occur in the formula.

Proof Equation (11) is a direct consequence of the remainder formula (6). Equation (12) is
a consequence of (11), (3), (1), and the fact that Zero(P)∪ Zero(Q) = Zero(P)∪ Zero(Q/P) =
Zero(P) ∪ Zero({P + 1, Q}).

This result is significant because it represents the zero set for a general polynomial set as
the zero set of a chain. By Lemma 3.3, if the CS is non-conflicting, then Zero(P) 6= ∅.

In procedure (8), the size of Pi could increase very fast. We may adopt the following way
to compute Pi and Theorem 3.7 is still valid,

Pi = P ∪ Bi−1 ∪ Ri−1. (13)

A more drastic way to reduce the size of Pi is proposed by Wu[23]. Instead of (13), we use
the following formula to compute Pi:

Pi = Bi−1 ∪ Ri−1. (14)

Then, |Pi| is always less than or equal to |P|. In this case, procedure (8) will terminate, but
Cm is not a Wu-CS of P any more. We have the following result.

Theorem 3.8 (Modified well-ordering principle) Let C be a chain computed from a poly-
nomial set P with procedures (8) and (14), Ij , j = 1, 2, · · · , s, the initials of the polynomials in
C = Bm,Bm−1 · · · ,B0 with the initials of polynomials in C appearing first in the sequence, and
Hj = prem(Ii, C), j = 1, 2, · · · , s. Then, we have

Zero(P)

= Zero(C ∪ {H1 + 1, · · · ,Hs + 1})
⋃ (s⋃

i=1

Zero(P ∪ C ∪ {H1 + 1,· · · ,Hi−1 + 1,Hi})
)
. (15)

Proof Let Kl =
l∏

i=1

Ii and Jl =
l∏

i=1

Hi. From [23], we have

Zero(P) = Zero(C/Km)
⋃ (s⋃

i=1

Zero(P ∪ C ∪ {Ii}/Ki−1)
)

. (16)

CHARACTERISTIC SET METHOD FOR BOOLEAN EQUATIONS 197

Since C is a chain, the initials of the polynomials in C are reduced wrt C. Hence, for the
initials Ii, i = 1, 2, · · · , t of C, we have Hi = Ii and Ki = Ji. For j > t, Hj = prem(Ij , C).
Then, for j > t, by the remainder formula (6), we have Zero(C/Kj) = Zero(C/Kt

j∏
i=t+1

Ii) =

Zero(C/Jt

j∏
i=t+1

Hi) = Zero(C/Jj). Thus, (16) becomes

Zero(P) = Zero(C/Jm)
⋃ (s⋃

i=1

Zero(P ∪ C ∪ {Hi}/Ji−1)
)

.

Now, Equation (15) can be proved similarly to (12).
Note that in (12) and (15), we obtain a disjoint decomposition for the zero set Zero(P). The

technique to obtain this kind of decomposition was introduced in [20,24].

3.3 Zero Decomposition Theorems in R2

We now give the zero decomposition theorem (ZDT). Notice that the following ZDT given
in [19] is still valid and the proof is also the same as that in [19].

Theorem 3.9 (ZDT) For a finite polynomial set P, there is an algorithm to determine
non-conflicting chains Aj , j = 1, 2, · · · , s, such that

Zero(P) =
s⋃

j=1

Zero(Aj/IAj
).

In R2, we give the following more elegant form of ZDT.
Theorem 3.10 (Disjoint Monic ZDT) For a finite polynomial set P, we can find monic

chains Aj , j = 1, 2, · · · , s, such that

Zero(P) =
s⋃

i=1

Zero(Ai)

and Zero(Ai) ∩ Zero(Aj) = ∅ for i 6= j. As a consequence, we have

|Zero(P)| =
s∑

i=1

2dim(Ai).

Proof By Theorem 3.7, we have (12). If C is monic, then Ii +1 = 0. Let A1 = C and repeat
procedure (8) for P1 = P∪C ∪ {I1 + 1, · · · , Ii−1 + 1, Ii}. Otherwise, repeat procedure (8) for P1

and P2 = C ∪{I1 +1, I2 +1, · · · , Ip +1}. Since Ii is reduced wrt C, according to Lemma 3.5, the
new chains obtained in this way will be of lower ordering than that of C. By Lemma 3.4, the
procedure will end in a finite number of steps and all the chains obtained are monic. Since the
components are disjoint in (12), by Lemma 3.2, the number of solutions are

∑s
i=1 2dim(Ai).

We give a precise description for this ZDT in Algorithm DMZDT.
Example 3.11 Let P = x1x2x3 − 1. By Theorem 3.9, we have Zero(P) = Zero(P/x1x2).

By Theorem 3.10 or Algorithm 1, Zero(P) = Zero(x1 + 1, x2 + 1, P) ∪ Zero(x1, P) ∪ Zero(x1 +
1, x2, P) = Zero(x1 + 1, x2 + 1, x3 + 1).

Example 3.12 Let P = {x1x2 + x2 + x1 + 1}. By Algorithm 1, Zero(P) = Zero(A1) ∪
Zero(A2), where A1 = x1, x2 + 1,A2 = x1 + 1. Then, |Zero(P)| = 20 + 21 = 3.

3.4 Complexity Analysis of the Modified Well-ordering Principle

We will show that the key step of the zero decomposition, that is, the modified well-ordering
principle, can be done in a polynomial number of steps and with a polynomial number of
polynomial multiplications.

198 FENGJUAN CHAI · XIAO-SHAN GAO · CHUNMING YUAN

Table 1 Algorithm 1–DMZDT (P)

Input: A finite set of polynomials P.
Output: A sequence of monic chains Ai such that Zero(P) =

⋃
i

Zero(Ai) and

Zero(Ai) ∩ Zero(Aj) = ∅ for i 6= j.
1 Set P∗ = {P}, A∗ = ∅.
2 While P∗ 6= ∅, do

2.1 Choose a P from P∗. P∗ = P∗ \ {P}.
2.2 Set Q to be a copy of P.
2.3 Do

C = A CS of Q.
R = prem(Q \ C, C).
Q = Q ∪ R (or P ∪ C ∪ R).

Until R = ∅.
2.4 Let I = {init(P) 6= 1 |P ∈ C} = {I1, I2, · · · , Is}.
2.5 If I = ∅, A∗ = A∗ ∪ {C}.
2.6 Else, do

Let J =
s∏

i=1

Ii.

If J 6= 0, do P∗ = P∗ ∪ {C ∪ {I1 + 1, I2 + 1, · · · , Is + 1}}.
For i from 1 to s, do
P1 = P ∪ C ∪ {I1 + 1, · · · , Ii−1 + 1, Ii}.
P∗ = P∗ ∪ {P1}.

3 Return A∗.

We repeat the modified well-ordering principle here.

P = P0 P1 · · · Pi · · · Pm

B0 B1 · · · Bi · · · Bm = C
R0 R1 · · · Ri · · · Rm = ∅,

(17)

where Pi = Bi−1 ∪ Ri−1, Bi is a CS of Pi, and Ri = prem(Pi,Bi).
The following lemma describes a special property of the above elimination procedure in R2.
Lemma 3.13 With the notation introduced in (17), let X(i) be the set of leading variables

of polynomials in B0 ∪B1 ∪ · · · ∪ Bi, where 0 ≤ i ≤ m. Then, for any y in X(i), there is at most
one polynomial in Pi+1 with positive degree in y. Moreover, if such a polynomial exists, y is its
leading variable.

Proof Let y be an element of X(i). We proceed by induction on i. If i = 0, then there exists
a unique polynomial f0 in B0 with lvar(f) = y. Furthermore, y does not appear in any element
of R0, because all the polynomials in B0 are linear in their leading variables. Hence, in P1, f0

is the unique polynomial involving y, which is clearly the leading variable. The lemma holds
when i = 0.

Assume that the lemma holds for the values lower than i, and consider the case in which i
is positive. If all elements of Pi are free of y, then there is nothing to prove. Hence, we
assume further that there is a polynomial in Pi involving y. If y is in lvar(Bi), then the same
argument used in the preceding paragraph implies that y is not in Ri. Therefore, there is a
unique polynomial in Pi+1 that involves y. If y is not in lvar(Bi), then it must be in X(i−1).
The induction hypothesis implies that there is a unique polynomial fi in Pi involving y, and
that y = lvar(fi). Let r = prem(fi,Bi). If r is free of y, so are the elements of Pi+1. Otherwise,
r is the unique polynomial in Pi+1 involving y. Furthermore, y = lvar(r) because y = lvar(fi)
by the induction hypothesis. This completes our induction.

CHARACTERISTIC SET METHOD FOR BOOLEAN EQUATIONS 199

The following lemma gives a bound for the length of procedure (17).
Lemma 3.14 Let B0 Â B1 Â · · · Â Bm be a strictly decreasing sequence of chains in

procedure (17). Then, m is no more than n, the number of variables in R2.
Proof Let X(i) be the same as in Lemma 3.13. We have an increasing chain

X(0) ⊆ X(1) ⊆ · · · ⊆ X(m),

which implies |X(0)| ≤ |X(1)| ≤ · · · ≤ |X(m)|. We are going to show that

|X(0)| < |X(1)| < · · · < |X(m−1)|. (18)

Suppose the contrary that X(i) = X(i+1) for some i with 0 ≤ i ≤ m− 2. Put

R′i = {f ∈ Ri | lvar(f) /∈ X(i)}.
If R′i is nonempty, then we let f be an element with lowest order in R′i. By Lemma 3.13, f
is free of any variable in X(i), so lvar(f) is in X(i+1), a contradiction to the assumption
that X(i) = X(i+1). This proves that R′i = ∅, i.e., lvar(Ri) ⊂ X(i). It follows from the
definition of Pi+1 that lvar(Pi+1) ⊂ X(i). Again, by Lemma 3.13, all polynomials in Pi+1 have
distinct leading variables and are reduced with respect to each other. Therefore, Pi+1 = Bi+1,
and the procedure (17) will terminate at i + 1, which is less than m, a contradiction. This
establishes (18), which implies that n ≥ m.

Theorem 3.15 Let l = |P|. The modified well-ordering principle, or procedure (17),
terminates for at most n + 1 iterations and needs O(n2l) polynomial multiplications.

Proof By Lemma 3.14, in procedure (17), m ≤ n, that is, the procedure will stop after at
most n + 1 iterations. Notice that to do a pseudo-remainder needs two polynomial multipli-
cations. To compute Ri, since |Pi| ≤ l, we need to do at most 2|Ri||Bi| ≤ 2nl multiplications.
Hence, the total number of multiplications is at most m ∗ (2nl) ≤ 2n(n + 1)l.

Remark Theorem 3.15 gives a polynomial upper bound for the number of arithmetic
polynomial operations in the modified well-ordering principle. However, the number of times to
do the well-ordering principle in the zero decomposition algorithm is exponential in the worst
case. In Subsection 5.1, we introduce heuristics to reduce this number. Experimental results
given in Section 6 show that our heuristics are quite effective.

3.5 Using Wu Chains and Weak Chains

Note that the output of Algorithm 1 is a sequence of chains. To improve the efficiency of
the algorithm, we could use other types of chains.

A triangular set A of form (5) is said to be a Wu chain if init(Ai) is reduced wrt Ai−1. A
is called a weak chain if prem(init(Ai),Ai−1) 6= 0.

The concept of Wu chain is defined in [19]. The concept of weak chain is defined in [20].
Similar to [19] and [20], we can develop zero decomposition theorems for these types of chains.
The purpose of using these chains is to reduce the size of the polynomials occurring in the
algorithm.

We have three ways to generate new polynomial sets: (9), (13), and (14), and three types
of chains. Therefore, we have nine types of combinations to do zero decomposition. We will
compare these approaches in Section 6.

4 A Top-Down Algorithm for Zero Decomposition

In Section 3, the zero decomposition algorithm repeatedly uses the well-ordering principle
to obtain the CSs. The algorithm follows the traditional way of doing the elimination[1−2]. It

200 FENGJUAN CHAI · XIAO-SHAN GAO · CHUNMING YUAN

processes bottom up, that is, it starts from the polynomials with the lowermost classes and
works the way to polynomials with higher classes. Another approach is to work top-down, that
is, it starts from the polynomials with the highest class[25−28].

In this section, we will give a more direct algorithm TDZDT to obtain a monic zero decom-
position based on the top-down idea. Again, by taking account of the special properties of R2,
our decomposition algorithm has stronger properties.

Table 2 Algorithm 2–TDZDT(P)

Input A finite set of polynomials P.
Output A sequence of monic chains Ai such that Zero(P) =

⋃
i

Zero(Ai) and

Zero(Ai) ∩ Zero(Aj) = ∅.
1 Set P∗ = {P}, A∗ = ∅.
2 While P∗ 6= ∅, do

2.1 Choose a Q from P∗. P∗ = P∗ \ {Q}.
2.2 Set A = ∅.
2.3 While Q 6= ∅ do

2.3.1 If 1 ∈ Q, Zero(Q) = ∅. Set Q = A = ∅ and goto 2.4.
2.3.2 Let Q1 ⊂ Q be the polynomials with the highest class.
2.3.3 Let Q ∈ Q1 be a polynomial whose initial is of the lowest ordering.
2.3.4 Let Q = Ixc + U such that cls(Q) = c, init(Q) = I.
2.3.5 If I = 1, do

A = A ∪ {Q}.
Q = (Q \Q1) ∪ prem(Q1, Q).

2.3.6 Else, do
Let Q1 = xc + U , Q2 = Q1 \ {Q}.
A = A ∪ {Q1}.
Q = (Q \Q1) ∪ {I + 1} ∪ prem(Q2, Q1).
P1 = (Q \ {Q}) ∪ {IU + U + I} ∪ A.
P∗ = P∗ ∪ {P1}.

2.4 If A 6= ∅, do
Set A∗ = A∗ ∪ {A}.

3 Return A∗.

Theorem 4.1 Algorithm TDZDT is correct and to obtain each chain Ai in step 2.3, we
need O(nl) polynomial multiplications, where l = |P|.

Proof Consider the set Q of polynomials in the algorithm. Q1 ⊂ Q is the set of polynomials
with the highest class and Q = Ixc+U ∈ Q1 a polynomial whose initial is of the lowest ordering.
If I = 1, then, for P = I1xc +U1 ∈ Q1, we have P1 = prem(P,Q) = P +I1Q. As a consequence,
Zero({Q, P}) = Zero({Q,P1}). Therefore, we have

Zero(Q) = Zero((Q \Q1) ∪ {Q}) ∪ prem(Q1, Q)).

If I 6= 1, by (2) and (4), we can split the zero set of Q as two disjoint parts:

Zero(Q) = Zero(Q ∪ {I + 1}) ∪ Zero(Q ∪ {I})
= Zero((Q \ {Q}) ∪ {Q1, I + 1}) ∪ Zero((Q \ {Q}) ∪ {I, U}) (19)
= Zero((Q \ {Q}) ∪ {Q1, I + 1}) ∪ Zero((Q \ {Q}) ∪ {IU + U + I}), (20)

where Q1 = xc + U . Equation (20) comes from (2). The first part can be treated similarly to
the case of I = 1 and the second part will be treated recursively with algorithm TDZDT. This
proves that if Ai, i = 1, 2, · · · , s, are the output of the algorithm, then Zero(P) =

⋃
i

Zero(Ai).

CHARACTERISTIC SET METHOD FOR BOOLEAN EQUATIONS 201

The termination of the algorithm can be proved in two steps. First, we will show the
termination for the inner loop (step 2.3), that is, for each finite polynomial set Q, the algorithm
will terminate. After each iteration of the loop, the polynomial Q will be added to A and the
highest class of the polynomials in Q will be reduced. Hence, this loop will end and give a chain
A. Second, we need to show the termination for the outer loop (step 2). For a polynomial set P,
we assign an index (cn, cn−1, · · · , c1), where ci is the number of polynomials in P and with class
i. In the algorithm, there are essentially two cases where new polynomial sets are generated.
In the first case, we replace Q with Q′ = (Q \ Q1) ∪ {Q} ∪ prem(Q1, Q). In the second case,
we add Q′′ = (Q \ {Q}) ∪ {IU + U + I} to P∗. It is clear that the index of Q′ or Q′′ is less
than that of Q in the lexicographical ordering in both cases. Due to Dickson’s lemma, a strictly
decreasing sequence of indexes must be finite. This proves the termination of the algorithm.

Finally, we will analyze the complexity of the inner loop of the algorithm (step 2.3), that
is, the complexity to obtain a chain from Q. After each iteration, the highest class of the
polynomials in Q will be reduced at least by one. Then, this loop will execute at most n times.
If I = 1, then the new Q = (Q \ Q1) ∪ prem(Q1, Q) contains at most l − 1 polynomials. If
I 6= 1, the newly generated polynomial set Q = (Q \ {Q}) ∪ {IU + U + I} contains at most
l polynomials. Then, after each iteration, the new Q contains at most l polynomials. In each
iteration, we also need to compute at most l − 1 pseudo-remainders. Since the initial of Q is
1, each pseudo-remainder wrt Q needs one polynomial multiplication. Then, we need to do
l− 1 polynomial multiplications in each iteration. In all, the algorithm needs O(nl) polynomial
multiplications.

Example 4.2 Let P = {x1x2 + x2 + x1 + 1}. Since P contains one polynomial, we have
Q = (x1 + 1)x2 + x1 + 1 = Ix2 + U , and Q1 = x2 + x1 + 1. Then, Zero(P) = Zero(I +
1, Q1) ∪ Zero(I, U) = Zero(x1, Q1) ∪ Zero(x1 + 1, x1 + 1). After simplification, we obtain the
decomposition: Zero(P) = Zero(x1, x2 + 1) ∪ Zero(x1 + 1) and |Zero(P)| = 20 + 21 = 3.

Although the number of polynomial multiplications needed in the algorithm is small, the
degree and the size of the polynomials could increase very fast due to the multiplication of
polynomials. We adopt the following strategy to reduce the degree of the polynomials occurring
in the algorithm. Before doing the pseudo remainders, we reduce the initials of the polynomials
in Q1 in step 2.3.2 of the Algorithm 2 to 1. In that case, the pseudo-remainder needs additions
only: for P = xc + U1 and Q = xc + U2, prem(Q,P) = U1 + U2. As a consequence, degree of
prem(Q,P) is less than or equal to the degrees of P and Q. Based on the above idea, we give
the algorithm TDZDTA.

Theorem 4.3 Algorithm TDZDTA is correct. The algorithm does not need polynomial
multiplications and the degree of all the polynomials occurring in the algorithm is bounded by
max
P∈P

deg(P).

Proof Algorithm 3 is basically Algorithm 2. The only difference is that before doing pseudo-
remainder in step 2.3.7, we reduce the initials of the polynomials in Q1 to 1 with formula
(19). In this case, the pseudo-remainder of two polynomials becomes the addition of the two
polynomials. Then, the algorithm does not need polynomial multiplications. Also, we note that
addition of polynomials does not increase the degree. This proves the theorem.

5 Implementation of the Algorithms

We implemented the algorithms introduced in this paper with C language. In this section,
we discuss several key issues that affect the efficiency of the program.

5.1 Polynomial Size vs Decomposition Branches
There exist two extreme methods to solve a set of Boolean equations.

202 FENGJUAN CHAI · XIAO-SHAN GAO · CHUNMING YUAN

A1 We assign each variable the values of 0 and 1 and test whether the equations are
satisfied. This is basically to compute the truth-table.

A2 Due to (2), a system of equations can be “easily” reduced to one equation. By Corollary
2.2.1, a non-constant polynomial equation must have solutions which can be found easily if such
a polynomial is given.

Table 3 Algorithm 3–TDZDTA(P)

Input: A finite set of polynomials P.
Output: A sequence of monic chains Ai such that Zero(P) =

⋃
i

Zero(Ai) and

Zero(Ai) ∩ Zero(Aj) = ∅.
1 Set P∗ = {P}, A∗ = ∅.
2 While P∗ 6= ∅ do

2.1 Choose a Q from P∗. P∗ = P∗ \ {Q}.
2.2 Set A = ∅.
2.3 While Q 6= ∅ do

2.3.1 If 1 ∈ Q, Zero(Q) = ∅. Set Q = A = ∅ and goto step 2.4.
2.3.2 Let Q1 ⊂ Q be the polynomials with the highest class.
2.3.3 Let Q2 = ∅, P1 = Q \Q1.
2.3.4 While Q1 6= ∅ do

Let Q = Ixc + U ∈ Q1, Q1 = Q1 \ {Q}.
P2 = P1 ∪Q1 ∪Q2 ∪ {I, U}.
P∗ = P∗ ∪ {P2}.
Q2 = Q2 ∪ {xc + U}, P1 = P1 ∪ {I + 1}.

2.3.5 Let Q = xc + U ∈ Q2.
2.3.6 A = A ∪ {Q}.
2.3.7 Q = P1 ∪ prem(Q2, Q).

2.4 If A 6= ∅, do
Set A∗ = A∗ ∪ {A}.

3 Return A∗.

The problem with approach A1 is that we need to check 2n sets of values. However, to check
whether a set of values is a solution to the equations, we do not need to compute large polyno-
mials. On the other side, in approach A2, we only need to consider one polynomial. However,
this polynomial could be very large. The two extreme cases are of course very inefficient. It
seems that all of the approaches are trying to find an optimized balance point between the size
increase of the polynomials and the number of cases to be checked.

In the case of CS method, each polynomial set P in P∗ (step 2 of Algorithms 1 and 2)
is called a branch. The problem is to find a balance point between the size of polynomials
and the number of branches. For instance, Algorithm 3 does not increase the degree of the
polynomials and will generally produce polynomials of small sizes, but it will produce more
branches. On the other hand, Algorithm 2 produces less branches, but it generally will produce
larger polynomials than Algorithm 3. In our implementation, we adopt the following Balance
Principle Between Sizes and Branches:

Try to produce as few branches as possible under the constraint that the memory of the
computers is sufficiently used.

According to our experiments, the size of the polynomials can be effectively controlled by
using the splitting formula (19) and different types of chains introduced in Subsection 3.5.
The main problem is branch control. Here are several possible ways to reduce the number of
branches.

CHARACTERISTIC SET METHOD FOR BOOLEAN EQUATIONS 203

S1 The following strategy can be used to reduce the number of branches without increasing
the size of the polynomials. For a polynomial set P, we select a polynomial of the form xc + U ,
where U is a monomial not involving xc and replace xc in P by U . This process does not change
the zero set of P. Experiments show that most of branches have no solutions and this strategy
can be used to detect the emptiness in an early stage in many cases.

S2 When adding a new polynomial, say the product of initials I =
s∏

i=1

Ii, to a polynomial

set P, we use the following procedure to split the zero set as several disjoint ones

Zero(I) = Zero(I1) ∪ Zero(I2, I1 + 1) ∪ · · · ∪ Zero(Is, Is+1 + 1, · · · , I1 + 1).

When combining with strategy S1, this strategy can simplify the decomposition procedure
significantly.

S3 A well-known strategy to simplify the problem is to select one or several variables, say
xc, which occur most often in P and consider Pxc=0 and Pxc=1, respectively.

For a specific problem, we will use one or several of the above strategies together to increase
the efficiency.

5.2 Using Shared Zero-Suppressed Binary Decision Diagram (SZDD) to
Save Space Usage

We may encounter large space problem in two cases. First, a single polynomial produced
in the algorithms can be large. Second, for some problems, the algorithm can produce a large
number of branches.

nx2

¡¡ª @@Rnx1

¡¡ª @
@R

0 1

nx1

¡¡ª @
@R

0 1

(a) P1 = x2x1 + x1

nx2

¡¡ª @
@Rnx1 1

¡¡ª @
@R

0 1

(b) P2 = x2 + x1

nx2

@
@R

@
@R

nx2

©©©©¼
¢

¢
¢

¢
¢®

nx1

¡¡ª @
@R

0 1

(c) SZDD for {P1, P2}
Figure 1 SZDD for a polynomial set

The classic method of SZDD can be used to solve this problem[21]. Briefly speaking, for a
set of polynomials P, we can represent P as an SZDD in three steps.

• For each P ∈ P, let P = Ixc + U such that c = cls(P) and I = init(P). We use a tree to
represent P , where xc is the root, I is the right child, and U is the left child. Continue
the above procedure for I and U recursively. This representation is called a recursive
representation of P . In Fig. 1, (a) and (b) are recursive representations of P1 and P2,
respectively.

• In the recursive representation of P , we share all the equivalent sub-graphs. The obtained
representation is called the ZDD of P .

• For all polynomials in P, we unite their ZDDs into one graph with the ZDDs of polynomials
in P sharing their equivalent sub-graphs. In Fig. 1(c), we give the SZDD of {P1, P2}.

As shown in Table 7, using SZDD to represent Boolean polynomials can speed up the
program significantly. ZDD representations are used to speed up the computation of Gröbner
bases in [4].

204 FENGJUAN CHAI · XIAO-SHAN GAO · CHUNMING YUAN

6 Cryptanalysis of a Class of Stream Ciphers with CS Method

6.1 Nonlinear Filter Generators

Stream ciphers are an important class of encryption algorithm[29]. In this paper, we consider
stream ciphers based on the linear feedback shift register (LFSR).

An LFSR of length L can be simply considered as a sequence of L numbers (c1, c2, · · · , cL)
from F2 such that cL 6= 0 . For an initial state S0 = (s0, s1, · · · , sL−1) ∈ FL

2 , we can use the
given LFSR to produce an infinite sequence satisfying

si = c1si−1 + c2si−2 + · · ·+ cLsi−L, i = L,L + 1, · · · . (21)

A key property of an LFSR is that if the related feedback polynomial P (x) = cLxL+cL−1x
L−1+

· · ·+ c1x− 1 is primitive, then the sequence (21) has period 2L − 1[29].
Let m0,m1, · · · be the plaintext digits. We may use the sequence (21) as key-stream to

generate the ciphertext digits

ci = mi ⊕ si, i = 0, 1, · · · ,
where ⊕ is the XOR function. Decryption is defined by mi = ci ⊕ si.

For a given sequence sj of sufficient length, the Berlekamp-Massey algorithm may be used
to recover the ci in polynomial time[29]. Then, to use sj as the key-stream is not secure. An
often used technique to enhance the security of an LFSR is to add a nonlinear filter to the
LFSR. Let f(x1, x2, · · · , xm) be a polynomial in R2 with m variables. We assume that m ≤ L.
Then, we can use f and the sequence (21) to generate a new sequence as follows:

zi = f(si−m, si−m+1, · · · , si−1), i = m,m + 1, · · · . (22)

A combination of an LFSR and a nonlinear polynomial f is called a nonlinear filter generator
(NFG). The sequence (22) can be used as the key-stream.

The filter functions used in this paper are from [8,30]:

• CanFil 1, x1x2x3 + x1x4 + x2x5 + x3

• CanFil 2, x1x2x3 + x1x2x4 + x1x2x5 + x1x4 + x2x5 + x3 + x4 + x5

• CanFil 3, x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x4 + x5

• CanFil 4, x1x2x3 + x1x4x5 + x2x3 + x1

• CanFil 5, x2x3x4x5 + x2x3 + x1

• CanFil 6, x1x2x3x5 + x2x3 + x4

• CanFil 7, x1x2x3 + x2x3x4 + x2x3x5 + x1 + x2 + x3

• CanFil 8, x1x2x3 + x2x3x6 + x1x2 + x3x4 + x5x6 + x4 + x5

• CanFil 9, x2x4x5x7+x2x5x6x7+x3x4x6x7+x1x2x4x7+x1x3x4x7+x1x3x6x7+x1x4x5x7+
x1x2x5x7+x1x2x6x7+x1x4x6x7+x3x4x5x7+x2x4x6x7+x3x5x6x7+x1x3x5x7+x1x2x3x7+
x3x4x5+x3x4x7+x3x6x7+x5x6x7+x2x6x7+x1x4x6+x1x5x7+x2x4x5+x2x3x7+x1x2x7+
x1x4x5 +x6x7 +x4x6 +x4x7 +x5x7 +x2x5 +x3x4 +x3x5 +x1x4 +x2x7 +x6 +x5 +x2 +x1

• CanFil 10, x1x2x3 + x2x3x4 + x2x3x5 + x6x7 + x3 + x2 + x1

CHARACTERISTIC SET METHOD FOR BOOLEAN EQUATIONS 205

Table 4 Solving Equations (23) with NFG Canfil6 using Algorithm DMZDT

L= 40 60 81 100 128

#sols= 2 4 8 16 128

chain 1.49 0.12 1.52 4.00 5.68
(9) wuchain 1.47 0.79 1.95 18.87 37.46

wchain 0.58 0.29 0.78 0.18 12.40

chain 1.03 0.05 6.56 0.32 1.23
(13) wuchain 0.72 0.12 0.50 3.55 5.34

wchain 0.40 0.19 0.37 3.26 14.36

chain 0.06 0.08 0.17 0.37 2.77
(14) wuchain 0.06 0.06 0.12 0.31 1.13

wchain 0.16 0.23 0.50 2.16 3.81

6.2 Algebraic Attack of Nonlinear Filter Generators with CS Method

By an algebraic attack of the nonlinear filter generator, we mean to recover the initial
state of the LFSR from a certain number of key-stream in (22). Equivalently, we need to find
S0 = (s0, s1, · · · , sL−1) by solving the following equations for given ci, zi, and f ,

zi = f(si−m, si−m+1, · · · , si−1), i = m,m + 1, · · · , m + k, (23)

where k is a positive integer and si satisfy (21). Successful attacks on many kinds of stream
ciphers were reported using the XL method[6−7] and the Gröbner basis method[8].

We use the software package based on our algorithms to solve equation system (23). The
statistic results are given in Tables 4–7. In these tables, L is the length of the LFSR, #sol is
the number of solutions of the equation system. The experiments were done on a PC with a
3.19GHz CPU, 2G memory, and a Linux OS. The running times are given in seconds.

In Table 4, we give the running times of using Algorithm DMZDT to solve Equations (23)
generated with the filter generator GanFil 6. In the experiments, we set k = L− 1 in (23). For
such a system, the number of equations and the number of variables are the same. The purpose
of this experiment is to compare different versions of Algorithm DMZDT. The parameters
“chain”, “wuchain”, and “wchain” mean that we use the chain, the Wu chain, and the weak
chain defined in Subsection 3.5, respectively. The parameter in the first column means that we
use (9), (13), or (14) in the well-ordering principle respectively. We can see that the approaches
based on (14) are generally faster than other approaches. For the three types of chains, no
single approach is better in all cases.

In Table 5, we give the results for solving Equations (23) generated with different NFGs
functions and k = L − 1. The parameters in the first column give the NFGs used in the
computation. The results show that when k = L− 1, the equation system (23) generally does
not have a unique solution and the number of solutions can be large. This means that we
cannot recover the initial state S0 uniquely. The parameter #cs is the number of branches
occurring in the computation process. Notice that #cs is much larger than #sol in most cases
and the ratio (#cs)/(#sol) gives an approximate measure of the effectiveness of the algorithm
on the corresponding problem. In the four cases, the timing is marked with ∗. This means
that polynomials of lower degrees (annihilators) generated with methods introduced in [6–8]
are used to speed up the computation. As a consequence, the number of solutions in these
cases becomes very small. From the results for Canfil6, we can see that Algorithm TDZDT is
generally faster than Algorithm DMZDT.

In order to recover the initial state S0 uniquely, we increase k in (23) to m until the equation
system (23) has a unique solution. The experimental results are given in Table 6, where the

206 FENGJUAN CHAI · XIAO-SHAN GAO · CHUNMING YUAN

Table 5 Cryptanalysis of Nonlinear Filter Generators with TDZDT

L= 40 60 81 100 128

time 0.03 0.04 0.25 0.21 13.11
CanFil1 #sols 30 27 270 180 2340

#cs 246 353 1937 445 1370

time 0.02 0.06 0.03 0.11 0.16
CanFil2 #sols 7 7 6 56 76

#cs 101 721 368 685 586

time 0.02 0.45 218.20 0.44* 1.27*
CanFil3 #sols 36 660 14400 2 1

#cs 95 1911 10590 1060 3725

time 0.03 29.99 1431.16 0.04* 11.53*
CanFil4 #sols 48 6720 38400 2 12

#cs 226 2667 22501 15 17564

time 0.00 0.00 0.00 0.01 0.01
CanFil5 #sols 1 1 1 1 1

#cs 2 2 2 2 2

time 0.00 0.01 0.01 0.03 0.26
CanFil6 #sols 2 4 8 16 128

#cs 7 55 112 124 995

time 0.01 0.02 0.05 0.14 6.71
CanFil7 #sols 1 16 28 144 1360

#cs 47 186 431 395 21815

time 0.01 0.03 0.12 0.21 4.14
CanFil8 #sols 3 1 40 20 200

#cs 76 483 1629 2480 47915

time 1.87* 0.67 1.71 1.90 12.1*
CanFil9 #sols 5 20 6 8 358

#cs 681 958 812 631 13170

time 0.17 0.09 0.08 42.44 13.76
CanFil10 #sols 3 2 5 6 11

#cs 203 721 477 148315 83860

parameter r = m
L . From Table 6, we can obtain two conclusions. First, r varies from 1 to

2.8, which means that we generally need no more than 3L equations in order to find a unique
solution in (23). Second, for the new equation system contains m equations, the running time
is much shorter than that of the equation system with L equations. The reason is that since the
system has a unique solution, the number of branches that need to be checked is much smaller.

In Table 7, we give the running times for four examples using the SZDD and the recur-
sive representations for the polynomials, respectively. These data show that using SZDD can
significantly speed up the program.
7 Conclusions

In this paper, we present several methods to solve nonlinear equation systems over the finite
field F2 based on the idea of CS. Due to the special properties of F2, the given CS methods are
much more efficient and have better properties than the general CS method. In particular, the
well-ordering principle can be executed in a polynomial number of steps and uses a polynomial
number of polynomial multiplications.

We use our methods to solve equations raised from cryptanalysis of stream ciphers based on

CHARACTERISTIC SET METHOD FOR BOOLEAN EQUATIONS 207

Table 6 Find a unique solution with TDZDT

Filters L= 40 60 81 100 128

time 0.04 0.00 0.01 0.05 0.06
CanFil1 r 1.3 1.9 1.9 1.4 1.8

time 0.03 0.05 0.02 0.10 0.07
CanFil2 r 1.1 1.2 1.7 1.4 1.7

time 1.77 0.01 0.29 0.76* 1.27*
CanFil3 r 1.6 1.9 2.0 1.2 1.0

time 0.63 0.01 0.01 0.01* 0.02*
CanFil4 r 1.5 2.8 1.9 1.5 1.4

time 0.00 0.00 0.00 0.01 0.01
CanFil5 r 1 1 1 1 1

time 0.01 0.00 0.01 0.03 0.06
CanFil6 r 1.3 1.8 1.8 1.6 1.8

time 0.01 0.01 0.01 0.07 0.07
CanFil7 r 1 2.0 1.9 1.5 1.7

time 0.02 0.03 0.02 0.23 0.22
CanFil8 r 1.1 1.0 1.9 1.4 1.7

time 4.83* 0.56 1.63 1.93 50.78*
CanFil9 r 1.2 1.7 1.4 1.1 1.7

time 0.17 0.06 0.06 0.10 0.32
CanFil10 r 1.1 1.5 1.5 1.4 1.6

Table 7 The improvements of using SZDD for Algorithm TDZDT

L NFG use SZDD not use SZDD

60 Canfil9 0.55 1018

100 Canfil3 0.76 38

128 Canfil1 13.1 111

128 Canfil4 0.02 36

nonlinear filter generators. Extensive experiments have been done for equation systems with
variables ranging from 40 to 128. The purpose of the experiments is two folds: to compare
different variants of our algorithms and to show that our algorithm can provide an effective tool
for solving equations over F2.

For future work, we need to find better techniques for branch control. We will also try to
give a parallel implementation for the algorithm. A large portion of the results in this paper has
been extended to finite fields in [31]. It is yet to test the practical effectiveness of the method.

References

[1] W. T. Wu, Basic principles of mechanical theorem-proving in elementary geometries, J. Sys. Sci.
& Math. Scis., 1984, 4(3): 207–235.

[2] J. F. Ritt, Differential Algebra, Amer. Math. Soc. Colloquium, Providence, 1950.
[3] X. S. Gao and Y. Luo, A characteristic set method for difference polynomial systems, in Proc.

ICPSS, Paris, 2004, 28–30.
[4] M. Brickenstein and A. Dreyer, PolyBoRi: A framework for Gröbner basis computations with

Boolean polynomials, in Proc. MEGA, Austria, 2007. URL: http: //www.ricam.oeaw.ac.at/
mega2007/electronic/26.pdf.

208 FENGJUAN CHAI · XIAO-SHAN GAO · CHUNMING YUAN

[5] W. Mao and J. Wu, Application of Wu’s method to symbolic model checking, ACM Press, New
York, 2005, Proc. ISSAC’05, 237–244.

[6] N. Courtois, Higher order correlation attacks, XL algorithm, and cryptanalysis of Toyocrypt,
ICISC, LNCS 2587, 182–199, Springer, 2002.

[7] N. Courtois, Algebraic attacks on stream ciphers with linear feedback, EUROCRPYT 2003, LNCS
2656, 345–359, Springer, 2003.

[8] J. C. Faugère and G. Ars, An algebraic cryptanalysis of nonlinear filter generators using Gröbner
bases, TR No. 4739, INRIA, 2003.

[9] S. He and B. Zhang, Solving SAT by algorithm transform of Wu’s method, J. Comput. Sci. and
Tech., 1999, 14(5): 468–480.

[10] S. Smale, Mathematical problems for the next century, Math. Intelligencer, 1998, 20(2): 7–15.
[11] S. Rudeanu, Boolean Functions and Equations, North-Holland, Amsterdam, 1974.
[12] M. Davis and H. Putnam, A computing procedure for quantification theory, J. ACM, 1960, 7(3):

201–215.
[13] R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans. on Com-

puters, 1986, 35(8): 677–691.
[14] Y. Sato and S. Inoue, On the construction of comprehensive boolean Gröbner bases, in Proc.

ASCM 2005, 145–148, World Scientific Press, Singapore.
[15] G. Gallo and B. Mishra, Efficient algorithms and bounds for Wu-Ritt characteristic sets, in Progress

in Mathematics, Birkhauser, Boston, 1991, 94: 119–142.
[16] B. Li, An algorithm to decompose a polynomial ascending set into irreducible ones, Acta Anal.

Funct. Appl., 2005, 7(2): 97–105.
[17] D. Lin and Z. Liu, Some results on theorem proving in geometry over finite fields, in Proc. IS-

SAC’93, ACM Press, New York, 1993, 292–300.
[18] X. Dahan, M. M. Maza, E. Schost, W. Wu, and Y. Xie, Lifting techniques for triangular decom-

positions, in Proc. ISSAC’05, 108–115, ACM Press, New York, 2005.
[19] W. T. Wu, On zeros of algebraic equations-an application of Ritt principle, Chinese Science Bul-

letin, 1986, 31: 1–5.
[20] S. C. Chou and X. S. Gao, Ritt-Wu’s decomposition algorithm and geometry theorem proving, in

Proc. of CADE-10, LNAI 449, 207–220, Springer, 1990.
[21] S. Minto, Zero-sppressed BDDs for set manipulation in combinatorial problems, in Proc. ACM/IEEE

Design Automation, ACM Press, 1993, 272–277.
[22] X. S. Gao, F. Chai, and C. Yuan, A characteristic set method for equation solving in F2 and

applications in cryptanalysis of stream ciphers, MM-Preprints, 2006, 25: 42–56.
[23] W. T. Wu, Some remarks on characeteristic-set formation, MM-Preprints, 1989, 3: 27–29.
[24] H. M. Möller, On decomposing systems of polynomial equations with finitely many solutions, J.

AAECC, 1993, 4(4): 217–230.
[25] S. C. Chou, Mechanical Geometry Theorem Proving, D. Reidel, Dordrecht, 1988.
[26] M. Kalkbrener, A generalized Euclidean algorithm for computing triangular representations of

algebraic varieties, Journal of Symbolic Computation, 1993, 15: 143–167.
[27] D. Kapur and H. K. Wan, Refutational proofs of geometry theorems via characteristic sets, in

Proc. ISSAC’90, ACM Press New York, 1990, 277–284.
[28] D. Wang, An elimination method for polynomial systems, Journal of Symbolic Computation, 1993,

16: 83–114.
[29] A. Menezes, P. van Ooschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press,

1996.
[30] A. Canteaut and E. Filiol, Ciphertext only reconstruction of stream ciphers based on combination

generators, Fast Software Encryption, LNCS 1978, 165–180, Springer, 2000.
[31] X. S. Gao and Z. Huang, A characteristic set method for equation solving in finite fields, MM-

Preprints, 2008, 26: 77–92.

