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Abstract This paper presents a criterion for testing the irreducibility of a polynomial over an algebraic

extension field. Using this criterion and the characteristic set method, the authors give a criterion for

testing whether certain difference ascending chains are strong irreducible, and as a consequence, whether

the saturation ideals of these ascending chains are prime ideals.
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1 Introduction

The characteristic set method is a fundamental tool for studying systems of algebraic or
algebraic differential equations[1−12]. The basic idea of the method is to privilege systems which
have been put in a special “triangular form”, also called an ascending chain or simply a chain.
The zero-set of any systems of polynomials or differential polynomials may be decomposed into
the union of the zero-sets of chains, and the properties of the solution set of a chain are much
easier to study than that of the general equation system.

The notion of characteristic sets for difference polynomial systems was proposed by Ritt and
Doob[13]. In the classical book[8], Ritt listed the development of difference algebra as one of the
six major problems for future study. The general theory of difference algebra was established by
Cohn[14]. Ritt used the characteristic set as the main tool in differential algebra[8]. Due to the
intrinsic difficulty of developing difference characteristic set methods, Cohn used the difference
kernel as the main tool in his theory. The characteristic set methods for difference polynomial
systems were developed only very recently[15−18].

In the characteristic set method, prime ideals are described with so-called strong irreducible
ascending chains[15]. But, it is still an open problem to decide whether a chain is strong
irreducible. There exist no such decision methods except for the trivial case of linear ascending
chains.

In this paper, we give a direct criterion for the irreducibility of a polynomial over the
algebraic extension field. Using this criterion, we present a criterion for testing whether certain
difference chains are strong irreducible. As a consequence, we give a criterion for testing whether
a class of difference ideals are prime.

The paper is organized as follows. In Section 2, we give a direct criterion for the irreducibility
of a polynomial over an extension field. In Section 3, we present the criterion for testing whether
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a difference ideal sat(P ) is prime when P is an irreducible difference polynomial. A more general
result for the strong irreducibility of difference ascending chains is given in Section 4. And in
Section 5, we conclude the paper.

2 Preliminary Results

In this section, we will prove several results about the irreducibility of polynomials which
will be used later in this paper.

2.1 An Irreducibility Criterion for a Polynomial over an Extension Field

Let F be a field with characteristic zero and G a finite field extension of F . In this section,
we give a simple criterion to decide whether an irreducible univariate polynomial in F [x] is still
irreducible in G[x].

We suppose that G is an algebraic extension of F . Let

d = [G : F ]

be the extension degree of G w.r.t. F . The following results are known.
Lemma 1[14] Let F, G, H be fields such that F ⊆ G ⊆ H. Then
(a) [H : F ] = [H : G][G : F ].
(b) If Φ is a set of elements of H, then [G(Φ) : F (Φ)] ≤ [G : F ]. And equality holds if Φ is

an algebraically independent set over G.
The following result is Gauss’s lemma in one variable case, and these results can be gener-

alized to the multi-variable case.
Lemma 2 If R is a unique factorization domain (UFD) and f(x) and g(x) are both primitive

polynomials in R[x], then so is f(x)g(x). Let R be a UFD and F its field of fractions. If a
polynomial f(x) in R[x] is reducible in F [x], then it is reducible in R[x].

We can give the following criterion to test whether an irreducible polynomial is still irre-
ducible over an extension field.

Lemma 3 Use the notations introduced above. Let P (x) be an irreducible polynomial
in F [x]. If the greatest common divisor of n = deg(P ) and d = [G : F ] is one, that is,
GCD(n, d) = 1, then P is irreducible over G.

Proof Let α be a root of P . Since the characteristic of F is zero and G is an algebraic
extension of F , we know that there exists a β such that G = F (β).

By Lemma 1(a), we have

[G(α) : F ] = [F (α, β) : F ] = [F (α, β) : F (α)][F (α) : F ] = n[F (α, β) : F (α)]

and
[G(α) : F ] = [F (α, β) : F ] = [F (α, β) : F (β)][F (β) : F ] = d[F (α, β) : F (β)].

Therefore,
n[F (α, β) : F (α)] = d[F (α, β) : F (β)].

Since GCD(n, d) = 1, we have n|[F (α, β) : F (β)]. By Lemma 1(b), 1 ≤ [F (α, β) : F (β)] ≤
[F (α) : F ] = n, which implies n = [F (α, β) : F (β)] = [G(α) : G]. Hence, P is irreducible
over G.

According to the proof of Lemma 3 and Gauss’s lemma, we can extend Lemma 3 to the
following form.
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Lemma 4 Let F be a field with characteristic zero, G a finite extension of F , (α1, α2, · · · ,
αm) a transcendental basis of G w.r.t. F , and d = [G : F (α1, α2, · · · , αm)]. For an irreducible
polynomial P (x) in F [x], if GCD(d, deg(P, x)) = 1, then P (x) is still irreducible in G[x].

2.2 Irreducible Triangular Set

We will introduce some notations about algebraic triangular sets. Details about these no-
tations can be found in [3, 19].

A finite sequence of nonzero polynomials A = A1, A2, · · · , Ap is called a triangular set, if
either p = 1 and A1 6= 0 or 0 < cls(A1) < cls(A2) < · · · < cls(Ap). A is called trivial if
cls(A1) = 0. If A is nontrivial, we call

deg(A) =
p∏

i=1

deg(Ai, lvar(Ai))

the degree of A.
Let A = A1, A2, · · · , Am be a nontrivial triangular set in F [x1, x2, · · · , xn]. Let yi be the

leading variable of Ai, Y = {y1, y2, · · · , yp} and U = {x1, x2, · · · , xn} \ Y = {u1, u2, · · · , uq}.
U is called the parameter set of A. We denote F [x1, x2, · · · , xn] as F [U, Y ].

A polynomial f is said to be invertible w.r.t. A if either f ∈ F [U ] or (f,A1, A2, · · · , As) ∩
F [U ] 6= {0}, where lvar(f) = lvar(As).

A is called regular if the initials of Ai are invertible w.r.t. A. We denote by IA the initial
product of A. We denote by asat(A) the algebraic saturation ideal:

asat(A) = (A) : I∞A = {P |∃s ∈ N, s.t. Is
AP ∈ (A)}.

A is called irreducible if A is a regular triangular set and Ai is an irreducible polynomial
in yi modulo asat(A1, A2, · · · , Ai−1). It is known that if A is irreducible, then asat(A) is a
prime ideal.

Lemma 5 Use above notations. Let A be an irreducible algebraic triangular set with
Ai ∈ F [U, Y ]. Let K0 = F (u0, u1, · · · , uq), then

[K0[y1, y2, · · · , yp]/asat(A) : K0] = deg(A). (1)

Proof Since A is an irreducible algebraic triangular set, asat(A) is a zero dimensional prime
ideal over K0. We know that K0[y1, y2, · · · , yp]/asat(A) is an algebraic extension field of K0.
Let (β1, β2, · · · , βp) be a generic zero of asat(A). By the definition of irreducible triangular
set, Ai is the definition polynomial of βi over K0(β1, β2, · · · , βi−1), i = 1, 2, · · · , p. Then,
we have [K0[y1, y2, · · · , yp]/asat(A) : K0] = [K0(β1, β2, · · · , βp) : K0] = [K0(β1, β2, · · · , βp) :
K0(β1, β2, · · · , βp−1)] ∗ · · · ∗ [K0(β1) : K0] =

∏p
i=1 deg(Ai) = deg(A).

3 Strong Irreducibility of a Single Difference Polynomial

In this section, we will give a criterion to decide whether a difference polynomial is strong
irreducible and as a consequence whether its saturation ideal is prime.

A difference field F is a field with a homomorphism δ satisfying: for any a, b ∈ F, δ(a+ b) =
δa + δb, δ(ab) = δa · δb, and δa = 0 if and only if a = 0. Here, δ is called the transforming
operator of F. If a ∈ F, δa is called the transform of a. δna = δ(δn−1a) is known as the nth
transform. If δ−1a is defined for all a ∈ F, we say that F is inversive. Every difference field has
an inversive closure[14].
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As an example, let K = C(x) be the set of rational functions in variable x defined on the
complex plane. Let δ be the mapping: δ|C = id and δf(x) = f(x + 1), f ∈ K. Then K is a
difference field with transforming operator δ. This is an inversive difference field.

In this paper, all difference fields are assumed to be inversive and with characteristic zero.
K could be the field of rational numbers or the field of rational functions Q(x).

Let y be an indeterminate, and K{y} the difference polynomial ring. We denote z0 = y, zi =
δiy. Then, K{y} = K[z0, z1, · · · ].

A difference ideal is a subset I of K{y}, which is an algebraic ideal in K{y} and is closed
under transforming. A difference ideal I is called reflexive if for any difference polynomial P ,
δP ∈ I implies P ∈ I. Let P be a set of elements of K{y}. The difference ideal generated by P is
denoted by [P]. Obviously, [P] is the set of all linear combinations of the difference polynomials
in P and their transforms. The (ordinary or algebraic) ideal generated by P is denoted as (P).
A difference ideal I is called perfect if the presence in I of a product of powers of transforms of
a difference polynomial P implies P ∈ I. The perfect difference ideal generated by P is denoted
as {P}. A perfect ideal is always reflexive. A difference ideal I is called a prime ideal if for
difference polynomials P and Q, PQ ∈ I implies P ∈ I or Q ∈ I.

A difference polynomial P ∈ K{y} \K can be written as the following form:

P = ad(z0, z1, · · · , zm−1)zd
m + · · ·+ a0(z0, z1, · · · , zm−1) ∈ K{y},

where d = deg(P, zm) > 0. The order of P is m. We denote by IP the set of products of
powers ad and its transformations. For convenience, let P0 = P, Pi = δPi−1, i = 1, 2, · · · . Then
(P0, P1, · · · , Pk) is a triangular set when the zi are considered as algebraic indeterminates.

Use the notation above. We denote by sat(P ) the saturation ideal of P .

sat(P ) = [P ] : IP .

We say that P is strong irreducible if deg(P, z0) 6= 0 and for any integer l, (P, P1, 2, · · · , Pl)
is an irreducible triangular set.

The following result proved in [15] gives the relation between prime ideals and strong irre-
ducible polynomials.

Theorem 1 If P is strong irreducible, then sat(P ) is a reflexive prime ideal.
The following example shows that for an irreducible polynomial P , P is not necessarily

strong irreducible.
Example 1 Let K = Q, P = z2

1 + z2
0 + 1. Then P is irreducible in K{y}. Moreover, as an

algebraic polynomial in Q[z0, z1], it is irreducible over the complex field (absolutely irreducible).
But, sat(P ) is not prime, since P1 − P = (z2 − z0)(z2 + z0).

An open problem in difference algebra is how to decide whether a difference polynomial is
strong irreducible.

A natural way to solve the above problem is to ask: whether we can find an l such that if
(P0, P1, 2, · · · , Pl) is an irreducible triangular set, then P is strong irreducible. The following
example shows that it is impossible to find such an l which only depends on the order and
degree of P .

Example 2 Let F = Q(x) be the field of rational functions and δx = x + 1. Let P =
z4 − 4xz2 − 2kz2 + k2 be a polynomial with order 0 and degree 4. We will show that for any
i < k, P0 = P, P1, 2, · · · , Pi is an irreducible triangular set and P0, P1, 2, · · · , Pk is reducible.

From [14],
√

x,
√

x + 1,
√

x + 2, · · · is successive quadratic extension of F . In other words,
if we denote by Ki = F (

√
x,
√

x + 1, · · · ,
√

x + i), then [Ki : Ki−1] = 2 for i = 1, 2, · · · . By
computing the resolvent[17], we can show that

√
x +

√
x + k is the primitive element of

√
x
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and
√

x + k for each k = 1, 2, · · · . Then a generic zero of P is
√

x+
√

x + k. And a generic zero
of P1 = δ(P ) is

√
x + 1 +

√
x + k + 1, and so on. Let θi =

√
x + i +

√
x + k + i, i = 0, 1, 2, · · · .

By theorem 3 of page 4 in [14], we have

[F (θi) : F ] ≥ [F (θi,
√

x,
√

x + 1, · · · ,
√

x + i− 1) : Ki−1]
= [Ki : Ki−1][F (

√
x + i,

√
x + k + i,

√
x,
√

x + 1, · · · ,
√

x + i− 1) : Ki]
≥ 2[Ki+k : Ki+k−1] = 4,

hence [F (θi) : F ] = 4. Similarly, we can show that [F (θ0, θ1, · · · , θi) : F ] = 4i+1 for i < k,
hence F (θ0, θ1, · · · , θi) is a quartic extension of F (θ0, θ1, · · · , θi−1) for i < k. As a conse-
quence, P0, P1, · · · , Pi form an irreducible triangular set for i < k. Since [F (θ0, θ1, · · · , θk) :
F (θ0, θ1, · · · , θk−1)] = [Ki+k : Kx+2k−1] = 2, we know that Pk can be factored modulo the
algebraic prime ideal asat(P0, P1, · · · , Pk−1), which is

Pk = −z2
0 − 4x− 2k

k2
((z0z

2
k + kzk + z2

0zk − kz0) ∗ (z0z
2
k − z2

0zk − kzk − kz0)− z2
kP ).

The following theorem gives a simple criterion to decide whether P is strong irreducible.
Theorem 2 Let P = P (z0, z1, · · · , zm),m ≥ 1 be an irreducible difference polynomial in

K{y}, deg(P, zm) = d, deg(P, z0) = s 6= 0 and GCD(s, d) = 1. Then sat(P ) is a reflexive prime
ideal.

Proof By Theorem 1, we know that if P is strong irreducible, then sat(P ) is a reflexive
prime ideal. Thus, all we need to show is that (P0, P1, · · · , Pn) is an irreducible triangular set
for any n ∈ N.

We will prove a stronger conclusion that (P0, P1, · · · , Pn) is an irreducible triangular set
under the variable ordering z0 < z1 < · · · < zm+n and (Pn, Pn−1, · · · , P0) is an irreducible
triangular set under the variable ordering zm+n < zm+n−1 < · · · < z0. When we use the
notation (Pn, Pn−1, · · · , P0), we always assume that the ordering of the variables is zm+n <
zm+n−1 < · · · < z0.

We will prove that by induction on n. For n = 0, the conclusion is true since P is irreducible.
Assume that the conclusion is true for n = k > 0. Then, we need to prove the following results:

1) Pk+1 is irreducible modulo the irreducible triangular set (P0, P1, · · · , Pk), or equivalently,
the algebraic prime ideal asat(P0, P1, · · · , Pk).

2) P0 is irreducible modulo the irreducible triangular set (Pk+1, Pk · · · , P1), or equivalently,
the algebraic prime ideal asat(Pk+1, Pk · · · , P1).

Let α = (α0, α1, α2, · · · , αm+k) be a generic zero of asat(P0, P1, · · · , Pk). By [15], for any
polynomial R(zk+1, · · · , zm+k), R is invertible w.r.t. (P0, P1, · · · , Pk). Then αk+1, · · · , αm+k

form a transcendental basis of the generic zero α. Now, we can treat (zk+1, · · · , zm+k) as the
parameters of the triangular set. By the assumption, we know that P̃ = (Pk, Pk−1, · · · , P0) is
also an irreducible triangular set. Then, deg(Pk+1, zm+k+1) = d and by Lemma 5, K(α) can be
treated as an extension of K(αk+1, · · · , αm+k) with extension degree sk+1. Since GCD(d, s) = 1,
GCD(d, sk+1) = 1, by Lemma 3, Pk+1 is irreducible modulo P̃ , or equivalently, asat(P̃ ).

Now, in order to prove (1), we need to show asat(P̃ ) = asat(P0, P1, · · · , Pk). Since (P0, P1,

· · · , Pk) and P̃ are both irreducible triangular sets, by Lemma 4.1 of [15], the initial prod-
uct of P̃ is invertible w.r.t. the irreducible set (P0, P1, · · · , Pk), we know that asat(P̃ ) ⊆
asat(P0, P1, · · · , Pk). Since both of the ideals are prime with the same dimension, asat(P0, P1,
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· · · , Pk) = asat(P̃ ). Now, we have proved conclusion (1) that Pk+1 is irreducible modulo asat(P0,
P1, · · · , Pk).

Since (Pk, Pk−1 · · · , P0) is an irreducible triangular set by the assumption, and δ is an
isomorphism, we know that (Pk+1, Pk · · · , P1) is also an irreducible triangular set under the
ordering zm+k+1 < zm+k < · · · < z1.

Similarly, for conclusion (2), since asat(Pk+1, Pk · · · , P1) = asat(P1, 2, · · · , Pk+1). Let β =
(β1, β2, · · · , βm+k+1) be a generic zero of asat(P1, P2, · · · , Pk+1). We can treat β1, β2, · · · , βm as
the transcendental basis of β. The field extension degree is [K(β) : K(β1, β2, · · · , βm)] = dk+1.
Since deg(P0, z0) = s, GCD(dk+1, s) = 1, by Lemma 3, P0 is irreducible modulo the irreducible
triangular set (Pk+1, Pk · · · , P1).

Using this criterion, we can easily decide whether the saturation ideal of certain difference
polynomial P is prime.

Example 3 Let K = Q{u}, P = u3z3
1 + u3

1z
4
0 . It is easy to decide that P is irreducible

over Q{u}, since deg(P, z1) = 3 and deg(P, z0) = 4. By Theorem 2, we know that sat(P ) is a
reflexive prime difference ideal.

4 Strong Irreducibility of Difference Triangular Set

Now, we are ready to give a more general result about the strong irreducibility of a difference
ascending chain.

Let y1, y2, · · · , yn be indeterminates. Then R = K{y1, y2, · · · , yn} is called an n-fold poly-
nomial difference ring over K. Any difference polynomial P in the ring K{y1, y2, · · · , yn} is an
ordinary polynomial in variables δkyj(k = 0, 1, 2, · · · , j = 1, 2, · · · , n). For convenience, we also
denote δkyj by yj,k.

Let P ∈ K{y1, y2, · · · , yn}. The class of P , denoted by cls(P ), is the least p such that
P ∈ K{y1, y2, · · · , yp}. If P ∈ K, we set cls(P ) = 0. The order of P w.r.t. yi, denoted by
ord(P, yi), is the largest j such that yi,j appears in P . When yi does not occur in P , we set
ord(P, yi) = 0. If cls(P ) = p and ord(P, yp) = q, we called yp the leading variable and yp,q

the lead of P , denoted as lvar(P ) and ld(P ), respectively. The leading coefficient of P as a
univariate polynomial in ld(P ) is called the initial of P , and is denoted as I(P ) or IP .

A difference polynomial P1 has higher rank than a difference polynomial P2, denoted as
P1 >rank P2, if

i) cls(P1) > cls(P2), or
ii) c = cls(P1) = cls(P2) and ord(P1, yc) > ord(P2, yc)
iii) c = cls(P1) = cls(P2), o = ord(P1, yc) = ord(P2, yc) and deg(P1, yc,o) > deg(P2, yc,o).
Let P1 and P2 be two polynomials and ld(f1) = xc,o. P2 is said to be reduced w.r.t. P1 if

deg(P2, xc,o+i) < deg(P1, xc,o)) for any nonnegative integer i.
A finite sequence of nonzero r-pols A = A1, A2, · · · , Ap is called an ascending chain, or

simply a chain, if one of the two following conditions holds:
i) p = 1 and A1 6= 0, or
ii) cls(A1) > 0, Ai ≺ Aj , and Aj is reduced w.r.t. Ai for 1 ≤ i < j ≤ p.
A is called trivial if cls(A1) = 0.
Let A be a chain and IA the set of all products of powers of the initials and their transforms

of the polynomials in A. The saturation ideal of A is defined as follows

sat(A) = {f ∈ K{x1, x2, · · · , xn} | ∃g ∈ IA, s.t. gf ∈ [A]}.
The concept of coherent and strong irreducible chain is introduced in [15], which has the

following property.
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Theorem 3 Let A be a coherent and strong irreducible chain. Then sat(A) is a reflexive
prime ideal.

Let A = P (1), P (2), · · · , P (n) be an irreducible triangular set, and P (i) ∈ K{yi}, 1 ≤
i ≤ n. The order of P (1), P (2), · · · , P (n) are pi > 0, 1 ≤ i ≤ n, respectively. Let di =
deg(P (i), δpiyi), 1 ≤ i ≤ n, si = deg(P (i), yi), 1 ≤ i ≤ n. For convenience, let P

(i)
j = δjP (i), 1 ≤

i ≤ n.
Using the above notations, we have the following theorem.
Theorem 4 If si 6= 0, 1 ≤ i ≤ n, and there exist mi ∈ {di, si}, 1 ≤ i ≤ n, such that

m0 = 1,m1,m2, · · · ,mk−1, dk, sk are pairwise coprime for k = 1, 2, · · · , n, then sat(A) is a
reflexive prime ideal.

Proof We prove that by induction on n. When n = 1, the conclusion is true by Theorem 2.
Moreover, by Lemma 4, when we consider the irreducibility of polynomials over an extension
field, we can ignore the transcendental extension. By the proof of Theorem 2 we can treat the
related field extension as a successive extension of degree m1. Assume that the conclusion is
true for n = k > 1, then we need to show that it is true when n = k + 1.

Since there exist mi ∈ {di, si}, 1 ≤ i ≤ k, such that they are coprime for each other. Then,
we consider the following extension of the triangular set:

P
(1)
0 = P (1), P

(1)
1 , · · · , P

(1)
r1 ,

P
(2)
0 = P (2), P

(2)
1 , · · · , P

(2)
r2 ,

...
P

(k)
0 = P (k), P

(k)
1 , · · · , P

(k)
rk ,

P
(k+1)
0 = P (k+1), P

(k+1)
1 , · · · , P

(k+1)
rk+1 .

(2)

We denote by At the extended triangular set of the first t rows in (2). Then, we select a suitable
variable ordering according to the selection of mi ∈ {di, si}, more precisely, the ordering of Ak

can be explained as follows, if mi = di, we do not change the natural ordering of Ak, if mi = si,
we change the part of variable ordering of yi as δl+1yi < δlyi for l ≥ 0. Similar to the proof
of Theorem 2, Ak can still form an irreducible triangular set. By Lemma 5, we can treat the
extension field of the above irreducible triangular set Ak as an algebraic extension with the
degree qk =

∏k
i=1 mri+1

i . Then, according to the definition of strong irreducible chain, we
need to show that (P (k+1)

0 = P (k+1), P
(k+1)
1 , · · · , P

(k+1)
rk+1 ) is irreducible modulo the irreducible

triangular set Ak. We can prove that by induction on rk+1.
When rk+1 = 0, by Lemma 4, the conclusion is true since GCD(qk, dk+1)=GCD(qk, sk+1)=

1. Assume the conclusion is also true for rk+1 = t. Similar to the proof of Theorem 2, we can
treat (Ak, P (k+1), P

(k+1)
1 , · · · , P

(k+1)
t ) as an irreducible triangular set under the natural ordering

and (Ak, P
(k+1)
t , · · · , P

(k+1)
1 , P (k+1)) as an irreducible triangular set under the variable ordering

y1 < y1,1 < · · · < y2 < · · · < yk < · · · < yk+1,s+t < · · · < yk+1,0, where s = ord(P (k+1), yk+1).
Then, by treating the transcendental variables as parameters, the field extension of the irre-
ducible triangular sets are algebraic extension with degree qk ∗ dt+1

k+1 and qk ∗ st+1
k+1, respectively.

Since GCD(dk+1, qk ∗ st+1
k+1) = 1 and GCD(sk+1, qk ∗ dt+1

k+1) = 1, by Lemma 4, we know that

(Ak, P (k+1), P
(k+1)
1 , · · · , P

(k+1)
t+1 ) and (Ak, P

(k+1)
t+1 , · · · , P

(k+1)
1 , P (k+1)) are irreducible triangu-

lar sets. Then, we know that Ak+1 is an algebraic triangular set. Moreover, we can treat the
extension of Ak+1 as an algebraic extension of degree qk ∗ d

rk+1+1
k+1 or qk ∗ s

rk+1+1
k+1 .

Hence, we have proved that (P (1), P (2), · · · , P (n)) is a strong irreducible triangular set.
Then, sat(P (1), P (2), · · · , P (n)) is a reflexive prime ideal by Theorem 3.

The following corollary is obviously true by the above proof.
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Corollary 1 Let A be a difference triangular set of the following form:

A =





A1,1, A1,2, · · · , A1,p1 ,
A2,1, A2,2, · · · , A2,p2 ,

...
Am,1, Am,2, · · · , Am,pm

.

(3)

The leading variables of the polynomial in each row are yi, 1 ≤ i ≤ m.
Let D = deg(A). Let P be an irreducible polynomial in a new indeterminate z with order

o. Let d = deg(P, zo), s = deg(P, z) 6= 0. If A is a coherent and strong irreducible triangular
set and D, d, s are pair wise coprime, then A ∪ {P} is also a coherent and strong irreducible
triangular set.

5 Conclusion

Deciding whether a difference ideal is prime is an open problem in difference algebra. Using
the notations and results presented in [15, 18], this problem can be reduced to deciding whether
a difference ascending chain is strong irreducible. In this paper, we give criteria to decide
whether certain difference ascending chains are strong irreducible, and hence give criteria to
test whether certain difference ideals are prime. It is still an interesting and open problem to
decide whether a general difference chain is strong irreducible.
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