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Abstract Aiming at reducing the computer numeri-
cally controlled (CNC) machining vibration and in-
creasing machining quality, an interpolation method
for parametric tool paths with confined jounce, jerk,
acceleration, and speed is proposed. An accelera-
tion/deceleration profile with confined jounce, jerk,
acceleration, and speed is proposed, and it is shown
that this profile is time optimal to change the speed
from one value to another under the given constraints.
For a given parametric tool path, the velocity function
is obtained by first computing the critical points of
the tool path where the radius of curvature reaches
extremal values, then determining the feasible maximal
speeds at the critical points, and finally using the jounce
confined acceleration/deceleration profile to connect
the speeds at the adjacent critical points. A vibration
experiment is conducted, which shows that vibration of
the CNC machine decreases significantly for motions
under confined jounce than that under confined accel-
eration and jerk. Simulation for two real CNC models
are given to show the feasibility of the method.
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1 Introduction

Interpolation algorithms, which control how the com-
puter numerically controlled (CNC) machine tool
moves along the machining path, is one of the im-
portant factors in high speed and high precision CNC
machining. In particular, proper kinematic controls
and interpolation algorithms are essential to reduce
vibration and achieve high-precision CNC machining
[12]. An interpolation algorithm in the CNC controller
usually consists of two phases: velocity planning and
parameter computation. Let C(u) u ∈ [0, 1] be the ma-
chining path. The phase to determine the velocity
function v(u) along C(u) is called velocity planning.
When the velocity function v(u) is known, the phase
of sampling or computing the next interpolation point
at parametric value ui+1 = ui + �u during one sampling
period is called parameter computation.

A key factor to compute the velocity function dur-
ing velocity planning is to choose an acceleration/
deceleration (AD) profile. An AD profile is the pro-
cedure to use different acceleration and deceleration
modes to change the speed from one value to another
under certain constraints.

The simplest AD profile is the linear AD profile,
where the acceleration and speed are bounded or
confined. Using a linear AD profile for each axis,
Borow [2], Shiller et al. [13], and Farouki and Timar
[14] presented a time-optimal velocity planning method
for a parametric path. Zhang et al. simplified the
method in [14] for quadratic B-splines and realized real-
time machining on an industrial CNC machine [21].
Yuan, Zhang et al. presented a time-optimal velocity
planning method with confined acceleration and chord
error [18, 20].
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In a linear AD profile, the acceleration can change
instantaneously from its maximal value A to −A, re-
sulting in large vibration of the CNC machine and
decreasing the machining quality. A better AD profile
is the S-shape profile, where the jerk is confined. The
S-shape AD profile is widely used in velocity planning
[3, 6, 8–11, 15, 19] to generate motion with confined
jerk. Another method to obtain velocity functions with
confined jerk is to use trigonometric function profiles
[7]. Comparing to the S-shape profile, the acceleration
function obtained with trigonometric function profiles
is not differentiable. It also does not have the time-
optimal property of the S-shape profile similar to The-
orem 2.5 in this paper.

The S-shape AD profile increases the smoothness of
the velocity function. However, the jerk can jump from
its maximal value to its minimal value. Since change of
the jerk reflects the non-smooth change of acceleration,
the profile could still result in vibration and decrease
machining quality. Gai et al. [5] used an average filter to
improve the S-shape AD profile to obtain a continuous
jerk in some extent. But this method fails to guarantee
the continuity of acceleration and is not time optimal.

A natural way to obtain smoother velocity functions
is to use confined jounce. Let F be the driving force of
the CNC servo and Fc the combined cutting force and
friction force. Denote the mass of the axes to be m and
let j be jerk. Differentiate j to obtain

d2(F − Fc)

d2t
= m

dj
dt

= ms, (1)

where s is called the jounce or snap, which reflects the
instantaneous change of jerk. If the jounce is confined,
a motion with continuous jerk, differentiable accel-
eration, and C2 velocity will be obtained. The main
contribution of this paper is to design and investigate
an AD profile with confined jounce and to present an
interpolation algorithm for parametric tool paths based
on the jounce confined AD profile.

The key component of the AD profile is a seven-
period acceleration profile to increase the speed from
one value to another. The whole AD profile first uses a
seven-period acceleration profile to increase the speed
from the initial value to its maximal value, then stays at
the maximal value for a while, and finally uses a seven-
period deceleration profile to decrease the speed from
its maximal value to the end value. This paper analyzes
the properties of the AD profile in detail and prove that
this profile is time optimal to change the speed from
one value to another under the given constraints.

For a curved tool path given by a set of parametric
equations, the sensitive corner approach similar to that
used in [7, 17] is used to compute its velocity function.

Firstly, the critical points of the tool path, where the
radius of curvature reaches extremal values, are com-
puted. From these extremal values and a given sam-
pling period, the maximal speeds that can be reached in
these critical points are determined. Secondly, a back-
tracking procedure is used to check the reachability of
the maximal speeds at each pair of neighboring critical
points, that is, whether it is possible to change the
maximal speed at one critical point to the maximal
speed at the next critical point within the given tool
path length. In the unreachable case, the speeds at the
critical points are adjusted to make them reachable.
Finally, between each pair of critical points, use the
jounce confined AD profile to bridge their speeds, and
the final velocity function is the combination of these
AD profiles.

A vibration test experiment is carried out to com-
pare AD profiles with confined acceleration, jerk, and
jounce, which shows that the AD profile with confined
jounce indeed can be used to reduce the vibration of
the CNC machine tools and hence is useful to improve
CNC machining quality. Furthermore, simulation re-
sults are given for two CNC models to show the fea-
sibility of the proposed method.

The rest of this paper is organized as follows: In
Section 2, the seven-period AD profile with confined
jounce is designed and analyzed. In Section 3, the
interpolation algorithm for parametric tool paths is
proposed. In Section 4, experimental and simulation
results are given. In Section 5, the paper is concluded.

2 An AD profile with confined jounce, jerk,
acceleration, and speed

In this section, an AD profile for the speed to change
from a start value vs to an end value ve within a distance
dm and under confined jounce will be presented. The
profile is time optimal under the given conditions. Since
the obtained velocity function has confined jounce, it is
C2 continuous.

2.1 A seven-period acceleration profile

In this section, a seven-period acceleration profile to
increase the speed from zero to a given value vm > 0
is introduced. The profile will serve as a basic step of
our AD profile to be presented in Section 2.4.

The seven-period acceleration profile is given in
Fig. 1, where the horizontal axis is time t. The profile
is used to increase the speed from zero to vm > 0 in
seven periods as marked in the figure. If the speed is
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Fig. 1 Jounce (s), jerk (j), acceleration (a), and speed (v)

decreased from vm to zero, then the reverse procedure
can be used.

Make the basic assumption that the jounce is bounded
by a given value Sm:

|s(t)| ≤ Sm. (2)

At the start and end points, the acceleration and jerk
are made to be zero, in order to form C2 continuous
velocity function with similar velocity profiles. That is

as = ae = 0; js = je = 0.

As shown in Fig. 1, the first period with duration t1
is used to increase the jerk from zero to its maximal
value jm with the maximal jounce Sm. In the second
period with duration t2, the jerk has constant value jm
and the acceleration is further increased. In the third
period with duration t1, the minimal jounce is used to
decrease the jerk from jm to zero and at the same time
to increase the acceleration to its maximal value am.
The fourth period with duration t3 and with a constant
acceleration am is used to further increase the speed.
The last three periods are anti-symmetric with respect
to the first three periods, which are used to increase the
speed to its maximal value vm and at the same time to
decrease the acceleration from am to zero. The whole
procedure lasts tm = 4t1 + 2t2 + t3. It is clear that the
seven-period acceleration profile is “bang-bang” in the

sense that at any time, at least one of the quantities
v(t), a(t), j(t), s(t) reaches its boundary value.

The seven-period profile is uniquely determined by
the three parameters (t1, t2, t3) and the maximal jounce
Sm. Therefore, the triplet (t1, t2, t3) is used to represent
such a profile. After a triplet (t1, t2, t3) is given, it is easy
to obtain the expressions for v0(t), a(t), j(t), s(t), (t ∈
[0, tm]), which can be found in Eqs. 28 to 31 in the
“Appendix” of this paper. It is clear that these expres-
sions have the following form:

s(t) = 6m0

j(t) = 6m0t + 2m1

a(t) = 3m0t2 + 2m1t + m2

v0(t) = m0t3 + m1t2 + m2t + m3

where mi are constants depending on Sm; s(t) is piece-
wise constant with three values 0, Sm, −Sm; j(t) is piece-
wise linear; a(t) is the integration of j(t) about t and is
C1 piecewise linear or quadratic polynomials in t; and
v(t) is the integration of a(t) about t and is C2 contin-
uous piecewise linear, quadratic, or cubic polynomials
in t.

From Fig. 1 and the formulas 28 to 31, the maximal
values jm, am, vm for j(t), a(t), v0(t) can be, respectively,
obtained:

jm = Smt1, (3)

am = Sm(t1t2 + t2
1), (4)

vm = 2Smt3
1 + Smt1t2

2 + 3Smt2
1t2 + Smt1t2t3 + Smt2

1t3 (5)

where Sm is from Eq. 2. As mentioned above, jm is
reached at t = t1, am is reached at t = 2t1 + t2, and vm is
reached at t = tm = 4t1 + 2t2 + t3. The distance needed
for the procedure can be computed as follows:

dm = 4Smt4
1 + 8Smt3

1t2 + Smt1t3
2 + 5Smt2

1t2
2

+ 9
2

Smt2
1t2t3 + 3

2
Smt1t2

2t3

+ 1
2

Smt1t2t2
3 + 3Smt3

1t3 + 1
2

Smt2
1t2

3

= vm

2
(4t1 + 2t2 + t3). (6)

Now, suppose that the starting speed is vs and the
end speed is ve. From Eq. 5,

ve = vs + 2Smt3
1 + Smt1t2t3 + Smt1t2

2 + 3Smt2
1t2 + Smt2

1t3.

(7)
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Furthermore, it is easy to show that the distance of
finishing the seven-period process is

dmin = 4Smt4
1 + 8Smt3

1t2 + Smt1t3
2 + 5Smt2

1t2
2

+ 9
2

Smt2
1t2t3 + 3

2
Smt1t2

2t3 + 1
2

Smt1t2t2
3

+ 3Smt3
1t3 + 1

2
Smt2

1t2
3 + vs(4t1 + 2t2 + t3) (8)

= vs + ve

2
(4t1 + 2t2 + t3) = vs + ve

2
tm. (9)

2.2 The acceleration profile for the speed to increase
from vs to ve

This section will determine how to use the seven-period
acceleration profile to increase the speed from vs to ve

when the basic parameters of the CNC machine are
given. It will be shown that the acceleration procedure
is time optimal.

Three basic parameters of the CNC machine will
be considered: the maximal jounce Sm, the maximal
jerk Jm, and the maximal acceleration Am. So, the
constraints are

|a(t)| ≤ Am, | j(t)| ≤ Jm, |s(t)| ≤ Sm. (10)

Since the seven-period acceleration profile is used, the
initial conditions are

as = a(0) = ae = a(tm) = 0; js = j(0) = je = j(tm) = 0.

(11)

Without loss of generality, assume that vs ≤ ve.
The purpose of this section is to determine a seven-

period acceleration profile to increase the speed from
vs to ve under the constraints 10 and 11. The distance
needed for the acceleration procedure is also given. But
the constraint on the distance is not considered in this
section. As mentioned before, to determine the seven-
period acceleration profile, one just needs to determine
(t1, t2, t3).

Firstly, check whether t2 = 0 based on the values of
Sm, Jm, Am. From Eqs. 3 and 4,

Smam = Sm jmt2 + j2m. (12)

Three cases are considered. If Jm
2 > Sm Am, then the

jerk cannot reach Jm and t2 must be zero. Assume the
contrary, from Eq. 12, J2

m + Smt2 Jm = Smam. Since 0 ≤
am ≤ Am, t2 = (Smam − J2

m)/(Sm Jm) must be negative,
which is impossible. As a consequence, t2 = 0.

If Jm
2 = Sm Am, j reaches Jm at t1 = Jm/Sm and t2 =

0. When t = 2t1, the acceleration reaches Am.

If Jm
2 < Sm Am and under the assumption that there

exist no constraints on the final speed and the distance,
then from Eqs. 3 and 12, the jerk reaches Jm at t1 =
Jm/Sm, the acceleration reaches Am at t = 2t1 + t2, and
t2 = (Sm Am − J2

m)/(Sm Jm) > 0. Of course, if there exist
constraints on the final speed vm, then t2 might be zero,
which will be discussed later.

Summarize the above analysis as the following
proposition:

Proposition 2.1

1. If Jm
2 ≥ Sm Am, then t2 = 0. In this case, the

jerk j cannot reach the maximal value Jm unless the
equal sign holds.

2. If Jm
2 < Sm Am and there exist no other constraints,

then the jerk reaches Jm at t1 = Jm/Sm, the acceler-
ation reaches Am at t = 2t1 + t2, and t2 = (Sm Am −
J2

m)/(Sm Jm) > 0.

In the above analysis, the constraint raised from the
final speed vm is not considered. Now consider how
to increase the speed from zero to vm with the seven-
period acceleration profile by taking into account of vm.
Two cases are considered due to Proposition 2.1.

Case 1. Jm
2 ≥ Sm Am. By Proposition 2.1, t2 = 0. If the

acceleration reaches Am, then from Eq. 4 t1 =√
Am/Sm. Let

v0 = 2Smt3
1 = 2Sm

(
Am

Sm

) 3
2

.

Then (t1, t2, t3) can be determined as follows:

Case 1.1 If vm > v0, then a(t) reaches Am at

t = 2t1 = 2
√

Am
Sm

. In order to reach
vm, there exists a constant acceler-
ation phase t3 which can be com-
puted from Eq. 5 as follows:

t3 = vm − 2Smt3
1

Smt2
1

= vm − 2Smt3
1

Am

= vm − v0

Am
> 0, (13)

where t1 =
√

Am
Sm

.
For i = 1, 2, 3, introduce the sym-
bol t̂i = + if ti �= 0 and t̂i = − if ti =
0. Then use (t̂1, t̂2, t̂3) to denote the
shape of the seven-period acceler-
ation profile. In case 1.1, the accel-
eration profile is (+, −, +) which is
shown in Fig. 2c.
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Case 1.2 If vm ≤ 2Sm( Am
Sm

)
3
2 , then the ac-

celeration will not reach Am un-
less the equality holds. Assume
the contrary, from Eq. 13, t3 will
be negative, which is impossible.
Therefore, t3 = 0 and t1 will be de-
termined by vm with formula 5:
t1 = 3

√
vm

2Sm
. Then, the acceleration

profile is (+, −, −, ) which is shown
in Fig. 2d.

Case 2. Jm
2 < Sm Am. By Proposition 2.1, if the jerk

reaches Jm, then t1 = Jm/Sm, and if the ac-
celeration reaches Am, then t2 = (Sm Am −
J2

m)/(Sm Jm). Under the above-mentioned
conditions, set

v1 = 2Smt3
1 = 2J3

m

S2
m

.

v2 = 2Smt3
1 + Smt1t2

2 + 3Smt2
1t2

= Am(Sm Am + J2
m)

Sm Jm
.

Then (t1, t2, t3) can be determined as follows:

Case 2.1 If vm > v2, then both the jerk and
the acceleration reach their maxi-
mal values and t3 �= 0 can be com-
puted from Eq. 5 as follows:

t3 = vm − v2

Am
= vm

Am
−

(
Jm

Sm
+ Am

Jm

)
.

The acceleration profile is (+,+,+)

which is shown in Fig. 2a.
Case 2.2 If v1 < vm ≤ v2, then t3 = 0, the

jerk can reach Jm, and a(t) cannot
reach Am unless vm = v2. Further-
more, t2 is determined by vm from
Eq. 5 with the following formula:

t2 =
√

t2
1 + 4vm

Jm
− 3t1

2

=
√

J3
m + 4vmS2

m − 3J
3
2
m

2Sm
√

Jm

The acceleration profile is (+,+,−)

which is shown in Fig. 2b.
Case 2.3 If vm ≤ v1, then neither the jerk

(unless vm = v1) nor the accelera-
tion reaches their maximal values
and t2 = t3 = 0. Furthermore, t1 is
determined by vm from Eq. 5 as
follows:

t1 = 3

√
vm

2Sm
.

The acceleration profile is (+,−,−)

which is shown in Fig. 2d.

Based on the above analysis, the algorithm to in-
crease the speed from vs to ve with the seven-period

t

j

0
t3

t1t1

t1t1

j

0
t1t1

t1t1

t2

t1 t

j

0
t3

t1 t1
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a

t

t2

t1

j

0
t1 t1

t2t1

b

c d

t

(+,  +,  +) (+,  +,  -)

(+,  -,  -)(+,  -,  +)

Fig. 2 a–d Jerk functions for all possible acceleration profiles
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Algorithm 2.2 PRO_VV(vs,ve)
Input: Parameters Sm, Jm, Am in Eq. 10, the start speed vs and end speed ve.
Output: The parameters (t1, t2, t3) of the seven-period acceleration profile.

1. Let v∗ = |ve − vs|. If Jm
2 ≥ Sm Am, then go to step 2; else go to step 3.

2. Compute t1, t2, t3 by the following formulas and output (t1, t2, t3).⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1 =
√

Am

Sm
, t2 = 0, t3 = v∗ − 2Smt3

1

Am
, if v∗ > 2Sm(

Am

Sm
)

3
2

,

t1 = 3

√
v∗

2Sm
, t2 = 0, t3 = 0, if v∗ ≤ 2Sm(

Am

Sm
)

3
2

3. Compute t1, t2, t3 by the following formulas and output (t1, t2, t3):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 = Jm

Sm
, t2 = Am − J2

m
Sm

Jm
, t3 = v∗ − (2Smt3

1 + 3Smt2
1t2 + Smt1t2

2)

Am
, if v∗ >

A2
m

Jm
+ Am Jm

Sm
,

t1 = Jm

Sm
, t2 =

√
t2
1 + 4v∗

Jm
− 3t1

2
, t3 = 0, if

2J3
m

S2
m

< v∗ ≤ A2
m

Jm
+ Am Jm

Sm
,

t1 = 3

√
v∗

2Sm
, t2 = 0, t3 = 0, if v∗ ≤ 2J3

m

S2
m

acceleration profile can be given. If vs > ve, a decrease
profile can be designed similarly. Also assume that the
distance is long enough for the procedure to carry out.
The constraints on the distance will be considered in
Section 2.4.

Using the notation ( t̂1, t̂2, t̂3 ), Algorithm PRO_VV
can be summarized as the flowchart in Fig. 3.

It is clear that the selections of the parameters
t1, t2, t3 are not unique. For instance, in case 1, we
can increase the jerk to a value jm < Jm and then
include a constant jerk part t2 > 0. Also, in case 2,
if mode (+, +, +) fails, it seems that both (+, +, −)

and (+, −, +) can be chosen. The following theorem
will show that our choosing method for the parameters
leads to a time-optimal solution to the problem. The
proof of the theorem can be found in “Appendix” of
this paper.

Theorem 2.3 Algorithm PRO_VV is a time-optimal
procedure to increase the speed from vs to ve under the
constraints 10 and 11.

2.3 The acceleration profile with initial speed vs

and distance dm

In this section, an acceleration profile will be given to
compute the maximal speed that can be reached with a
start speed vs and a given distance dm.

Similar to Section 2.2, we need to compute the
parameters (t1, t2, t3) for the seven-period acceleration
profile by considering two cases.

Case 1. Jm
2 ≥ Sm Am. By Proposition 2.1, t2 = 0. If the

acceleration reaches Am, then from Eq. 4 t1 =√
Am/Sm. Let

d0 = 4Smt4
1 + 4vst1 = 4

A2
m

Sm
+ 4vs

√
Am

Sm
. (14)

( , , )+ − +

3

2
m m mJ S A≥

* | |e sv v v= −

( , , )+ − − * 32 /m mv J S≤

(+,+,+)

(+,+,−)

Y

Y

N

N

Y

N

Y

N

3* 2 /m m mv S A S> 2
* m m m

m m

A A J
v

J S
> +

Fig. 3 Flowchart for Algorithm PRO_VV
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Then (t1, t2, t3) can be determined as follows:

Case 1.1 If dm > d0, then Am is reachable
and t1 = √

Am/Sm. Furthermore,
there exists a constant acceleration
period t3 �= 0. From Eq. 9, t3 can be
computed by solving the following
quadratic equation in t3:

dm = 4Smt4
1 + 3Smt3

1t3 + 1
2

Smt2
1t2

3

+ vs(4t1 + t3). (15)

It is easy to show that the above
equation has a unique positive so-
lution due to the fact dm > d0. The
acceleration profile is (+, −, +)

which is shown in Fig. 2c.
Case 1.2 If dm ≤ d0, then Am is not reach-

able (unless dm = d0) and t3 = 0.
Furthermore, t1 is determined by
dm based on Eq. 9 by solving the
following equation in t1:

dm = 4Smt4
1 + 4vst1. (16)

The acceleration profile is (+,−,−)

which is shown in Fig. 2d.

Case 2. Jm
2 < Sm Am. By Proposition 2.1, if the jerk

reaches Jm, then t1 = Jm/Sm, and if the accel-
eration reaches Am, then t2 = (Sm Am − J2

m)/

(Sm Jm). Under the above-mentioned condi-
tions, set

d1 = 4Smt4
1 + 4vst1 = 4

J4
m

S3
m

+ 4vs
Jm

Sm

d2 = 4Smt4
1 + 8Smt3

1t2 + Smt1t3
2

+ 5Smt2
1t2

2 + vs(4t1 + 2t2)

= Am

(
Am

Jm
+ Jm

Sm

)2

+ 2vs

(
Am

Jm
+ Jm

Sm

)
.

(17)

Then (t1, t2, t3) can be determined as follows:

Case 2.1 If dm > d2, then both the jerk
and acceleration can reach their
maximal values and the constant
acceleration phase t3 �= 0 which
can be computed by solving the
quadratic equation 9 in t3. The
acceleration profile is (+, +, +)

which is shown in Fig. 2a.

Case 2.2 If d1 < dm ≤ d2, then the jerk can
reach Jm and the acceleration
cannot reach Am unless dm = d2.
Therefore, the stage of constant
acceleration t3 = 0 and t2 is deter-
mined from Eq. 9 with dm by solv-
ing the quadratic equation in t2

dm = 4Smt4
1 + 8Smt3

1t2 + Smt1t3
2

+ 5Smt2
1t2

2 + +vs(4t1 + 2t2).

The acceleration profile is (+,+,−)

which is shown in Fig. 2b.
Case 2.3 If dm ≤ d1, then neither the jerk

(unless dm = d1) nor the acceler-
ation reaches their maximal value
and t2 = t3 = 0. Further, t1 is de-
termined from Eq. 9 with dm by
solving the equation: dm = 4Smt4

1 +
4vst1. The acceleration profile is
(+, −, −) which is shown in Fig. 2d.

Algorithm 2.4 PRO_VD(vs,dm)
Input: Parameters Sm, Jm, Am in Eq. 10, the start
speed vs, and a distance dm.
Output: The parameters (t1, t2, t3) of the seven-period
acceleration profile.

1. If Jm
2 ≥ Sm Am, then go to step 2; else go to step 3.

2. Let t2 = 0 and d0 be given by Eq. 14. If dm > d0, set
t1 = √

Am/Sm and compute t3 with Eq. 15; other-
wise, set t3 = 0 and compute t1 with Eq. 16. Output
(t1, t2, t3).

3. Let d1 and d2 be given in Eq. 17.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 = Jm

Sm
, t2 = Am − J2

m
Sm

Jm
,

solve Eq. 9 to find t3, if dm > d2

t1 = Jm

Sm
, t3 = 0,

solve Eq. 9 to find t2, if d1 < dm ≤ d2

t2 = t3 = 0, solve Eq. 9 to find t1, if dm ≤ d1

Output (t1, t2, t3).

Based on the above analysis, we give the algorithm
to determine the end speed with a start speed vs and a
distance dm. Again, the output of the algorithm is the
parameters (t1, t2, t3), with which the end speed ve can
be computed with Eq. 7 and the speed function v(t) can
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be computed as v(t) = vs + v0(t) where v0(t) is defined
in Eq. 31.

Similar to Theorem 2.3, it can be shown that the
algorithm is optimal in that it can give the maximal
end speed when using the seven-period acceleration
profile.

Theorem 2.5 Algorithm PRO_VD outputs the maximal
speed that can be reached with the start speed vs and the
distance dm with the seven-period acceleration prof ile.

Algorithm PRO_VD(vs,dm) can be modified easily
to compute the minimal speed that can be reached from
vs within distance dm.

2.4 The AD profile with confined jounce, jerk,
acceleration, and speed

With the preparations given in Sections 2.2 and 2.3,
now a complete AD profile can be given to change
the speed from vs to ve with distance dm and under
the given jounce, jerk, acceleration, and speed bounds.
As shown in Fig. 4, the AD profile consists of three
phases composed by 15 periods. Firstly, the speed is
increased from the start speed vs to the maximal speed
Vm with a seven-period acceleration profile; secondly,
the speed keeps the constant value Vm; and thirdly, the
speed decreases from Vm to the end speed ve with a
seven-period deceleration profile. Let (t1, t2, t3) be the
parameters for the seven-period acceleration profile in
the first phase, t4 the time for the constant speed phase,
and (t5, t6, t7) the parameters for the seven-period de-
celeration profile in the third phase. Then the AD
profile can be uniquely determined by the seven pa-
rameters (t1, t2, t3, t4, t5, t6, t7) and its velocity function
can be computed with formula 18. Due to the initial

t 1

t 1t 2t 1

t 3t 1t 2

t

j

0

t 6t 4 t 5

t7

t 5

t5 t 5t 6

Fig. 4 Jerk function for 15-period AD profile

conditions 11 of the seven-period profile, the velocity
function of the AD profile is C2 continuous.

v̄(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vs + v0(t), v0(t) is from
Eq. 31 with (t1, t2, t3), t ∈ [0, tm1]

Vm, t ∈ [tm1, tm1 + t4]
Vm − v0(t − tm1 − t4), v0(t)

is from Eq. 31
with (t5, t6, t7), t ∈ [tm1 + t4, tm]

(18)

where tm1 = 4t1 + 2t2 + t3, tm2 = 4t5 + 2t6 + t7, tm =
tm1 + t4 + tm2 . From Eq. 9, the distance for the AD
profile is

d = (vs + Vm)tm1

2
+ t4Vm + (ve + Vm)tm2

2
. (19)

First, a brief introduction to the algorithm is given.
Without loss of generality, assume vs ≤ ve. Firstly,
check the reachability of ve from vs within distance dm.
The minimal distance dmin for accelerating from vs to ve

can be determined using Algorithm PRO_VV(vs, ve).
If dm ≥ dmin, then ve is reachable; otherwise, the algo-
rithm terminates.

Now suppose ve is reachable. Algorithms PRO_VV
(vs, Vm) and PRO_VV(ve, Vm) can be used to compute
the minimal distances di and dd for the speed to increase
from vs to Vm and to decrease from Vm to ve. If di +
dd ≤ dm, then Vm is reachable and there is a phase of
constant speed Vm.

If di + dd > dm, then Vm is not reachable and one
needs to compute the practical reachable maximal
speed vm. The speed vm can be computed by solving
a set of algebraic equations. But due to the compli-
cated selection procedure for the parameters ti, i =
1, 2, 3, 5, 6, 7, this approach is not practical. Instead, an
iteration procedure will be used to compute vm. Set
v0 = Vm, v1 = ve, and v2 = (v0 + v1)/2. Then compute
the distances di and dd for the speed to increase from
vs to v2 and to decrease from v2 to ve. If di + dd ≤ dm,
then v2 is reachable and set v0 = max{v0, v1}, v1 = v2.
Otherwise, v2 is unreachable and set v1 = min{v0, v1},
v0 = v2. Repeat the above bisection procedure until
|di0 + dd0 − dm| is smaller than a given precision and
use the last computed value of v2 as vm.

With the above analysis, the algorithm to find the
AD profile is given below.

Based on Theorems 2.3 and 2.5, it can be shown that
the above algorithm is time optimal.

Theorem 2.6 Algorithm PRO_AD outputs a time-
optimal procedure for the speed to change from vs to ve

with distance dm under the constraints 10 and 11.
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Algorithm 2.5 PRO_AD(vs, ve, dm)
Input: Parameters Sm, Jm, Am, Vm, the start speed vs,
the end speed ve, and the distance dm.
Output: The speed ve is unreachable, or the parameters
(t1, t2, t3, t4, t5, t6, t7) for the AD profile.

1. Compute (t1, t2, t3) with Algorithm PRO_VV(vs,

ve). Set dmin to be the distance computed with
formula 9 and (t1, t2, t3). If dmin > dm, then ve is
unreachable and the algorithm terminates.

2. Let (t1, t2, t3) and (t5, t6, t7) be the outputs of Algo-
rithm PRO_VV(vs, Vm) and Algorithm PRO_VV
(ve, Vm), respectively, and di and dd the distances
for the speed to increase from vs to Vm and to
decrease from Vm to ve computed with formula 9.

3. If di + dd ≤ dm, then Vm is reachable. Com-
pute t4 = (dm − di − dd)/Vm. Outputs (t1, t2, t3, t4,
t5, t6, t7).

4. Now di + dd > dm and Vm is unreachable. Set t4 =
0, v0 = Vm, v1 = ve, ε = 10−4.

a. Set v2 = (v0 + v1)/2.
b. Let (t1, t2, t3) and (t5, t6, t7) be the outputs

of Algorithms PRO_VV(vs, v2) and PRO_VV
(ve, v2), respectively, and di and dd the dis-
tances for the speed to increase from vs to v2

and to decrease from v2 to ve computed with
formula 9.

c. If |di + dd − dm| < ε, outputs (t1, t2, t3, t4, t5,
t6, t7).

d. If di + dd ≤ dm, then v2 is reachable. Let v0 =
max{v0, v1}, v1 = v2. Go to step (a).

e. Now di + dd > dm and v2 is unreachable. Let
v1 = min{v0, v1}, v0 = v2. Go to step (a).

3 Interpolation of parametric tool path
with confined jounce

In this section, an interpolation method along a para-
metric tool path with confined jounce, jerk, accelera-
tion, and speed will be proposed.

The algorithm works as follows: Firstly, by a
transversal of the tool path, the critical points of the
too path, where the radius of curvature reaches local
extremal values, are obtained. Due to the relation be-
tween the chord error and speed, the maximal machin-
ing speed also reaches local extremal values at these
points, which are called limit speeds. Secondly, by a
backtracking algorithm, the limit speeds of the critical
points are adjusted to make them reachable. Finally,
Algorithm PRO_VV or Algorithm PRO_AD is used

to interpolate a segment of the tool path between two
adjacent critical points.

3.1 Critical points on the tool path

This section will show how to compute the points on
the tool path where the limit machining speed reaches
local extremal values. Let the tool path be a kth-order
B-spline curve with expression

C(u) = {x(u), y(u), z(u)} =
n∑

i=0

Qi Ni,k(u), 0 � u � 1

(20)

where Qi (i = 0, 1, . . . , n) are the n + 1 control points,
Ni,k(u) are the basis functions of kth-order B-splines
based on the knot vector T = {t0, t1, . . . , tn+k+1}, and u is
the parameter. Note that other parametric curves such
as NURBS can be treated similarly.

Denote the parametric speed of C(u) to be

σ(u) = ds
du

= |C′(u)|,

where ′ is the derivative w.r.t. u. The curvature and
radius of curvature are defined to be

κ(u) = |C′(u) × C′′(u)|
σ(u)3 , ρ(u) = 1

k(u)
. (21)

It is well-known that at a point u = u0 of the tool path
C(u), the interpolation speed is limited by the given
chord error δ. Expanding C(u) in the neighborhood
of C(u0) with the following Taylor formula:

C(u0 + �u) = C(u0) + a0�u + 1
2
κ0b0(�u)2

+1
6
(−κ2

0 a0 + κ̇0b0 + κ0τ0c0 + ε)(�u)3,

(22)

where κ0, τ0 are the curvature and torsion, respectively,
a0, b0, c0 are the values of tangential vector a, the
principal normal vector b, the binormal vector c at
u = u0, and ε is a tiny quantity.

According to Eq. 22, when using line segments to
approximate the spline curve, the second-order residual
term is only related with the curvature and the third-
order term is related with the torsion. Therefore, a
circle whose radius is ρ(u0) can approximate the curve
locally. The contour error of the interpolation is limited
by the chord error δ which is caused by approximating
the real curve using the short line segment within one
sampling period.
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Let δ be the chord error bound and �u the maximal
possible increase of the parameter u without violating
the chord error bound. Thus, the following well-known
relationship is obtained [18]:

�L(u) = |C(u)C(u + �u)| ≈ √
8ρδ.

Let T be the sampling period. So the maximal possible
speed at point C(u) constrained by the chord error
bound is

vlim(u) = �L(u)/T = √
8ρ(u)δ/T. (23)

The speed vlim(u) is called the limit speed at point C(u).
According to Eq. 23, vlim(u) has the same extremal

points with the radius of curvature function ρ(u), which
has the same extremal points with the curvature func-
tion κ(u) by Eq. 21. These extremal points are called
critical points of the tool path. The extremal points
of vlim(u) can be computed by solving the following
algebraic equations in u for each piece of the curve
C(u).

κ(u)′ = 0. (24)

Furthermore, if the continuity of the spline at the con-
nection point is less than C2, then these points need to
be treated as critical points and the minimal value of the
limit speeds of the two curve segments at the connect
point is taken as the limit speed.

The extremal points can also be computed in a
discrete way as follows: First make a traversal of the
curve C(u), u ∈ [0, 1] with the speed vlim(u) and a given
sampling period T to find interpolation points u0 =
0, u1, . . . , un = 1. Then we may find the extremal points
from the values vlim(ui). Based on the above analysis,
the following algorithm is given to compute the ex-
tremal points.

Algorithm 3.1 CR_PTS(C(u), u ∈ [0, 1])
Input: B-spline curve C(u), u ∈ [0, 1], the sampling pe-
riod T, the maximal speed Vm of the CNC machining.
Output: Parametric values of the critical points ui, i =
0, . . . , N.

1. Use Algorithm 3.5 with inputs C(u), u ∈ [0, 1] and
vlim(u), u ∈ [0, 1] (step size at u = u0 can be found
as �L = min(vlim(u0), Vm)T) to find the interpola-
tion points ū0 = 0, ū1, . . . , ūm = 1.

2. Select the parameters ūk correspond to the ex-
tremal points. That is, the ūk satisfying

(vlim(ūk) − vlim(ūk−1))(vlim(ūk) − vlim(ūk+1)) ≥ 0.

Denote these parameters as u1, . . . , uN−1. Output
u0 = 0, u1, . . . , uN−1,uN = 1.

Remark 3.2 When the parametric curve is simple, the
extremal points can be found by directly solving Eq. 24.
For parametric curves with high degrees, use Algorithm
3.1 to compute the extremal points.

Let C(ui), i = 0, . . . , N be the points found with the
above algorithm. If the limit speed vlim(u) achieves a
local minimal (maximal) value at ui, then ui is called a
minimal (maximal) critical point. If the curve C(u) is at
least second-order differentiable, minimal and maximal
critical points occur alternatively.

3.2 Reachability test

The limit speeds at the critical points might not be
reachable due to the constraints of distance between
two adjacent critical points. It is necessary to check
reachability of the speeds at two adjacent critical points
and adjust the unreachable speeds to make them
reachable.

Consider the reachability from point C(uk) with limit
speed vk to C(uk+1) with limit speed v̂k+1. Let Lk be the
length of the curve segment C(u), u ∈ [uk, uk+1]. With
Algorithm PRO_VD(vk, Lk), compute the maximal
speed v+ that can be reached from vk within distance Lk

and the minimal speed v− that can be reached from vk

within distance Lk. If v− ≤ v̂k+1 ≤ v+, then vk+1 = v̂k+1

is reachable. If v̂k+1 > v+, then vk cannot increase to
v̂k+1 and set vk+1 = v+. If v− > v̂k+1, then vk cannot
decrease to vk+1 = v̂k+1, and it is necessary to do a
backtracking by checking the reachability starting from
point uk+1 in the backward direction.

Based on the above analysis, the reachability test and
adjustment algorithm is given below.

Let C(ui), i = 0, . . . , N be the critical points. After
the adjustments, the speeds at certain critical points
are decreased and the property of alternating minimal
and maximal speeds is not true anymore. So delete
some of the critical points to make the speed alterna-
tively minimal and maximal again. That is, a point ui

is removed if (vi − vi−1)(vi − vi+1) < 0. Note that this
strategy enhances the interpolation speed.

3.3 Interpolation with confined jounce

In this section, an algorithm will be given to achieve
interpolation with confined jounce, jerk, acceleration,
and speed. And the chord error is kept as small as pos-
sible. As usual, the interpolation procedure is divided
into two phases: the velocity planning phase to find the
velocity function and the parameter computing phase
to find the interpolation points.
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Algorithm 3.3 REACH(ui, i = 0, . . . , N)
Input: Critical points ui, i = 0, . . . , N of the tool path
C(u) assuming u0 = 0 and uN = 1. The sampling period
T and the maximal speed Vm of the CNC machining.
Output: Reachable speeds vk, i = 0, . . . , N at the criti-
cal points.

1. Set i = 0, v0 = 0, vN = 0.
2. If i = N, then terminate the algorithm; otherwise,

let Li be the length of the curve segment C(u), u ∈
[ui, ui+1].

3. Using Algorithm PRO_VD(vi, Li) to compute the
maximal speed v+ and minimal speed v− that can
be reached from vi with distance Li.

4. If i + 1 = N, then set v̂i+1 = 0; else set v̂i+1 =
min{vlim(ui+1), Vm}, where vlim is defined in Eq. 23.

5. If v− ≤ v̂i+1 ≤ v+, then v̂i+1 is reachable, set vi+1 =
v̂i+1, i = i + 1, go to step 2.

6. If v̂i+1 > v+, then set vi+1 = v+, i = i + 1, go to step
2.

7. If v̂i+1 < v−, then set vi+1 = v̂i+1, i = i + 1, j = i and
execute the following backtracking steps.

(a) Using Algorithm PRO_VD(v j, L j−1) to com-
pute the maximal speed v∗ that can be
reached from v j with distance L j−1.

(b) If v j−1 ≤ v∗, then from v j−1 to v j is reachable.
Go to step 2.

(c) If v j−1 > v∗, then from v j−1 to v j is not reach-
able. Set v j−1 = v∗, j = j − 1, and if j ≥ 2,
then go to step (a); else go to step 2.

First, consider the velocity planning phase. Let
C(ui), i = 0, . . . , N be the critical points of the tool path
C(u). Then, from point C(ui) to C(ui+1), the limit speed
is either monotonously increasing or monotonously de-
creasing. As a consequence, Algorithm PRO_VV can
be used to interpolate the tool path segments between
two adjacent critical points.

Let v(t), t ∈ [0, tm] be the speed function obtained
with Algorithm PRO_VV(vi, vi+1), dm computed with
Eq. 9, and Li the length of the curve segment C(u), u ∈
[ui, ui+1]. Then v̄(t) = v( tdm

Li
), t ∈ [0, tm Li

dm
] is a speed

function which increases the speed from vi to vi+1. Since
the distance for this procedure is Li, v̄(t) interpolates
the curve segment C(u), u ∈ [ui, ui+1]. Note that be-
tween two adjacent critical points, v̄(t) and the velocity
limit curve vlim(u) are both monotone and are equal at
the end points. Then, the chord error is approximately
kept within the give bound. Due to the initial condi-
tions 11 of the seven-period profile, the speed function
thus obtained is C2 continuous.

If the maximal speed Vm is reached at certain critical
point, the above algorithm does not use the full power
of the machine. Let us explain this in detail. Suppose
the vlim(ui) < Vm and vlim(ui+1) > Vm and there is a
u∗ ∈ (ui, ui+1) such that the limit speed at each point in
[u∗, ui+1] is larger than Vm. Then the above algorithm
cannot reach Vm at any point in [u∗, ui+1). In gen-
eral, to find u∗ is computationally costs. A simple and
improved idea is to use Algorithm PRO_AD instead
of Algorithm PRO_VV. If vi < Vm and v j = Vm, j =
i + 1, . . . , i + s, then Algorithm PRO_AD is used to
interpolate C(u), u ∈ [ui, ui+s+1]. Notice that Algorithm
PRO_AD will find an approximate value u∗ after which
the maximal speed Vm will be used.

Based on the above analysis, the following velocity
planning algorithm with confined jounce is given.

After the velocity function is obtained, the parame-
ter values of the interpolation points need to be com-
puted. Suppose the curve segment to be interpolated
is C(u), u ∈ [u1, u2] and a velocity function v̄(t), t ∈
[0, tm] is obtained with Algorithm VP_CJ. Let T be the
sampling period. Then the speed at the interpolation
points can be obtained as v j = max(v̄(T · j), 0.1) for j =
0, 1, . . .. Note that we need to take 0.1 as the minimal
interpolation velocity to ensure that the cutter can start
to move at the beginning of a spline curve.

Suppose that the current parameter value is u0 which
corresponds to the interpolation speed v j. To find the
next parametric value u0 + �u, first compute the step
size

�L = v jT ≈ |C(u0)C(u0 + �u)|,
where T is the sampling period. Because the interpola-
tion distance �L in one period can be approximately
treated as the arc length, the approximate relationship
between two adjacent parameters about arc distance
is [4, 16]

�u = �L
σ(u0)

− C′(u0) · C′′(u0)�L2

2σ(u0)4 + o(�L2). (25)

Since �L is a small quantity, from Eq. 25, we can
compute �u with the first-order Taylor approximation

�u = �L
σ(u0)

(26)

or with the second-order Taylor approximation

�u = �L
σ(u0)

− D�L2

2σ(u0)4 (27)

where D = ( dx
du

d2x
du2 + dy

du
d2 y
du2 + dz

du
d2z
du2 )u=u0 . If the approxi-

mation fails, then use Newton’s iterative method or the
dichotomy to find u0 + �u.
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Algorithm 3.4 VP_CJ(C(u), u ∈ [0, 1])
Input: B-spline curve C(u), u ∈ [0, 1] as the tool path,
the parameters Sm, Jm, Am, Vm, T, and the chord error
bound δ.
Output: A velocity function for the tool path, which
satisfies the constraints.

1. s = 1, u1 = 0, k = 1.
2. Use Algorithm CR_PTS(C(u), u ∈ [0, 1]) to com-

pute the critical points ûi, i = 1, . . . , p.
3. Use Algorithm REACH(ûi, i = 1, . . . , p) to com-

pute the reachable speeds vi, i = 1 . . . , p, at these
points.

4. If vk+1 < Vm, go to step 5; else go to step 6.
5. Interpolation with Algorithm PRO_VV.

(a) Use Algorithm PRO_VV(vk, vk+1) to find
(t1, t2, t3).

(b) Let v0(t) be the speed function in Eq. 31 deter-
mined with parameters (t1, t2, t3), tm = 4t1 +
2t2 + t3, and dm computed with Eq. 9. If vk ≤
vk+1, the velocity function is v(t) = vk + v0(t);
else the velocity function is v(t) = vk − v0(t).

(c) Let L be the length of the curve segment
C(u), u ∈ [uk, uk+1].

(d) Let t̄m = tm L
dm

and set v̄(t) = v( tdm
L ), t ∈ [0, t̄m]

to be the velocity function for the curve seg-
ment C(u), u ∈ [uk, uk+1].

(e) Set k = k + 1 and go to step 4.

6. Interpolation with Algorithm PRO_AD.

(a) Let w be the largest number satisfying vk+ j =
Vm, j = 1, . . . , w.

(b) Let L be the length of the curve segment
C(u), u ∈ [uk, uk+w+1].

(c) Use Algorithm PRO_AD(vk, vk+w+1, L) to
find (t1, t2, t3, t4, t5, t6, t7).

(d) Let dc = (4t1 + 2t2 + t3)(vk + Vm)/2 + Vmt4 +
(4t5 + 2t6 + t7)(vk+w+1 + Vm)/2 be the dis-
tance of the AD profile from Eq. 19.

(e) Let v(t) be the speed function computed with
Eq. 18 with parameters (t1, t2, t3, t4, t5, t6, t7).

(f) Let tm = 4t1 + 2t2 + t3 + t4 + 4t5 + 2t6 + t7
and t̄m = tm L

dc
. Set v̄(t) = v( dct

L ), t ∈ [0, t̄m] to
be the velocity function for the curve segment
C(u), u ∈ [uk, uk+w+1].

(g) Set k = k + w + 1 and go to step 4.

Based on the above analysis, the following algorithm
to compute the next interpolation point is given.

In most cases, formula 27 gives a nice approximation
and the iterative methods are not needed.

Algorithm 3.5 NEXT_U(C(u), u0, �L)
Input: B-spline curve C(u) u ∈ [0, 1], the current para-
meter u0, and the next step size �L.
Output: The next interpolation parameter un.

1. Compute the second-order approximate �u with
Eq. 27.

2. If �u > 0, set un = u0 + �u and return un.
3. If �u < 0, then use Newton iterative method to

find the next parametric value.

(a) Construct the following objective function in u

f (u) = (x(u) − x(u0))
2 + (y(u) − y(u0))

2

+ (z(u) − z(u0))
2 − �L2.

(b) Use Newton’s iterative method to find the
next interpolation parametric value with ini-
tial value u = u0 + �L

σ(u0)
(first-order approxima-

tion)

u∗ = u − f (u)

f ′
(u)

.

(c) If f (u∗) > ε, u∗ < u0, or u∗ � u0, then the
method fails, where ε is a given tiny positive
number; otherwise, set un = u∗ and return un.

4. If the Newton method fails, then use the dichotomy
to compute a solution un of f (u) = 0 in (u0, ur),
where ur = u0 + k �L

σ(u0)
and k is the smallest natural

number such that f (ur) > 0. Return un.

Remark 3.6 The proposed method can be implemented
in CNC controllers in the following way: Firstly, the ve-
locity functions are computed off-line with Algorithm
VP_CJ. Then the velocity functions are used as parts of
the input to the CNC controllers to achieve real-time
interpolation. Of course, the CNC controller must be
modified to accept the new G codes. This strategy is
adopted by many existing work such as [6, 18, 19, 21].
In particular, industrial CNC machining is realized in
[18, 21] using this approach. The idea of the above
approach is to use a pretreatment to add the velocity
function to the G codes and then use the new G codes
for CNC machining.

3.4 An illustrative example

An example is used to illustrate the algorithm. The
tool path in Fig. 5a is a planar quadratic B-spline
(x(u), y(u)), u ∈ [0, 1] with C1 continuity and consisting
of six pieces of quadratic curve segments. Use the fol-
lowing parameters: Vm = 50 mm/s, Am = 1,500 mm/s2,
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(b) The velocity (mm/s)

(c) The acceleration (mm/s2) (d) The jerk (mm/s3)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

20

30

40

50

60

u

ve
lo

ci
ty

 (
m

m
/s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

−1000

−2000

2000

u

ac
ce

le
ra

ti
on

 (
m

m
/s

2 )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3
x 105

u

je
rk

 (
m

m
/s

3 )

0 0.2 0.4 0.6 0.8 1

0

−1

−2

1

2 x 10 
8

jo
un

ce
 (

m
m

/s
4 )

ch
or

d 
er

ro
r 

(μ
m

)

(e) The jounce (mm/s4) (f) Chord error (μm)
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Fig. 5 Velocity, acceleration, jerk, jounce, and chord error func-
tions of a quadratic spline. The horizontal axis is the parameter
u for the tool path in b–f. a A quadratic B-spline in the y–z
plane. b The velocity (millimeters per second). c The acceleration

(millimeters per square second). d The jerk (millimeters per cubic
second). e The jounce (millimeters per quartic second). f Chord
error (micrometers)

Jm = 2 × 105 mm/s3, Sm = 2 × 108 mm/s4, T = 1 ms,
and δ = 0.2 μm.

Firstly, compute the critical points of the B-spline
curve with Algorithm CR_PTS, and the parameter val-
ues ui of the critical points are given in the first column
of Table 1. The y- and z-coordinates of critical points
are listed, respectively, in the second and third columns.
vi = vlim(ui) is listed in the fourth column. At u = 0, the
velocity is set to be 0.1 mm/s to ensure that cutter can
move at the beginning. In step 3, check the reachability
of the limit speeds vlim(ui) at the critical points using
Algorithm REACH, and the adjusted velocity is shown
in the fifth column of Table 1. Note that the speeds at
u = 0.7208, 0.8354, 0.9069, 0.9438 are obtained by the
backtracking step of Algorithm REACH due to the
final speed at u = 1.0.

The speed function obtained is shown in Fig. 5b. Its
acceleration, jerk, and jounce are shown in Fig. 5c–
e, respectively. From Fig. 5b–e, it is not difficult to
see that either the jounce, jerk, acceleration, or the
velocity reaches their maximal values except in I1 =
[0, 0.1407]. By the results proved in Section 3, this
means that the velocity is time-optimal except in I1.
In the parameter interval I1, the tool path length L is
larger than the length dm of the seven-period profile
to increase the speed from zero to the limit speed
at u = 0.1407 in step 6(d) of Algorithm VP_CJ. As
a consequence, the velocity function over I1 is not
time optimal. Figure 5f gives the theoretic chord error
under the planned velocity and the sampling period T,
which is less than the given bound δ for all parameter
values.
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Table 1 Information of critical points (unit for speed: millimeters
per second)

ui y(ui) (mm) z(ui) (mm) vi Adjusted vi

0 47.62 −2.39 49.654 0.1
0.1407 48.2112 −2.06188 32.3387 32.3387
0.2303 48.6154 −2.13848 93.2816 38.124
0.4017 49.4231 −2.40066 91.7538 50
0.4724 49.7656 −2.47271 92.0354 50
0.6071 50.3573 −2.69218 47.2607 47.2607
0.7208 50.7513 −3.04704 140.729 41.2157
0.8354 51.1049 −3.46825 48.4228 31.1962
0.9069 51.3000 −3.75227 51.5066 24.8385
0.9438 51.4077 −3.88634 23.9501 22.9357
1.0000 51.66 −3.98 31.4245 0.1

The velocity of the key point given by Algorithm
REACH can be improved. Before doing the reacha-
bility test, delete some useless key points according
to whether its velocity is constrained by the others.
Precisely, if the velocity of parameter ui is v(ui), then
from this point, under a given length l, the velocity
is limited. So use an acceleration profile from the
start point (ui, v(ui)), with j(ui) = a(ui) = 0, from a for-
ward velocity function v+(t) or v+(u). Check whether
v+(ui+1) < v(ui+1). If v+(ui+1) < v(ui+1) and v+(ui+1) <

Vm, then the key point (ui+1, v(ui+1)) can be deleted
since the final velocity at ui+1 will never exceed v(ui+1).
Finally, use the renewed key points to do the velocity
planning.

By this improved method, the selected critical points
and new velocities are given in Table 2. The key points
u = 0.2303, u = 0.8354, and u = 0.9069 are deleted ac-
cording to the above rule. The velocity functions of
the improved method and Algorithm 3.4 are given in
Fig. 6, which shows that the velocity function obtained
with the improved method is better than the previous
one.
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Fig. 6 Red one velocity function of Algorithm 3.4. Blue one
velocity function of the improved method

4 Experimental results

In this section, experimental results will be presented.
The first experiment shows that confined jounce indeed
can be used to reduce vibration of the CNC machine
tools. The second experiment shows the feasibility of
the interpolation method by simulating two real CNC
machining models.

4.1 Vibration test

In this section, we will compare three AD profiles
with confined acceleration, confined jerk, and confined
jounce in a CNC machine to show that confined jounce
indeed can be used to reduce vibration comparing to
confined jerk and acceleration.

The equipment used to test vibration is LMS
SCADAS3 which is a fast signal acquisition and analy-
sis system, including hardware and software compo-
nents. The hardware component consists of sensors,
exciters, data acquisition tools, and a laptop PC. The
software component can be used for real-time signal
acquisition, calculation, analysis, display, record, and

Table 2 Information of
critical points with the
improved method (unit for
speed: millimeters per
second)

ui y(ui) (mm) z(ui) (mm) vi Selected Adjusted vi

or deleted

0 47.62 −2.39 49.654 Selected 0.1
0.1407 48.2112 −2.06188 32.3387 Selected 32.3387
0.2303 48.6154 −2.13848 93.2816 Deleted −
0.4017 49.4231 −2.40066 91.7538 Selected 50
0.4724 49.7656 −2.47271 92.0354 Selected 50
0.6071 50.3573 −2.69218 47.2607 Selected 47.2607
0.7208 50.7513 −3.04704 140.729 Selected 50
0.8354 51.1049 −3.46825 48.4228 Deleted −
0.9069 51.3000 −3.75227 51.5066 Deleted −
0.9438 51.4077 −3.88634 23.9501 Selected 22.9357
1.0000 51.66 −3.98 31.4245 Selected 0.1
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Fig. 7 The CNC machine and the sensor attached on the machine

output. Figure 7 shows the LMS SCADAS3 sensor
attached to a CNC machine.

In the vibration test, the tool path is a line segment
of 100 mm, and the CNC machine tool will idly move
along the line segment. Three AD profiles are used, re-
spectively, to generate the velocity function: the linear
AD profile with confined acceleration, the S-spate AD
profile with confined jerk, and the AD profile with
confined jounce introduced in this paper. The maximal
speed Vm, acceleration Am, jerk Jm, jounce Sm, and the
machining time t are given in Table 3. The three veloc-
ity functions are shown in the right-hand side of Fig. 8.

The sampling time of LMS SCADAS3 is 1 s, and the
sampling frequency is 4,096 Hz. Since the machining
time is about 2 s, we record the signals from machining
the first half of the line segment only. The vibration
frequency spectrum diagrams of the three tests are
given in the left-hand side of Fig. 8, where the vertical
axis is the vibration intensity whose unit is grams per
hertz and g is the gravitational acceleration, and the
unit of horizontal axis is hertz. The spectrum diagram
gives the distribution of the intensity of the vibration
at difference frequencies. For instance, from Fig. 8a,
the strongest vibration with intensity 0.016 g/Hz occurs
when the machine tool vibrates at frequency 980 Hz.

From Fig. 8, one can see that for confined accel-
eration, the maximal vibration is 0.016 g/Hz, and the
machine vibrates relatively strong (>0.004 g/Hz) in
the frequency intervals [0, 200] and [820, 1,450]. For
confined jerk, the maximal vibration is 0.0145 g/Hz, and
the machine vibrates relatively strong (>0.004 g/Hz)

in the frequency intervals [0, 180] and [850, 1,430]. For
confined jerk, the maximal vibration is 0.008 g/Hz, and
the machine vibrates relatively strong (>0.004 g/Hz) in
the frequency intervals [0, 180] and [870, 1,220]. It is
very clear that in the case of confined jerk, the machine
vibrates significantly less than that of confined acceler-
ation, and in the case of confined jounce, the machine
vibrates significantly less than that of confined jerk.

From Table 3, the machining times for confined
acceleration, confined jerk, and confined jounce are
2.051, 2.101, 2.201 s, respectively. Comparing to the
confined acceleration and confined jerk, the machining
time with confined jounce increases about 7.3% and
4.8%, respectively.

In summary, using confined jounce, with the loss of
not much machining time, we can reduce the vibration
significantly comparing with confined acceleration and
confined jerk. It is known that the machining quality is
affected by many factors, and vibration of the machin-
ing tool is certainly one of the important factors. We
choose to test vibration instead of machining quality
directly for the following reason: By running the CNC
machine tool idle, the affect of the adopted AD profile
on the vibration becomes more significant and from
which we can see more clearly the difference of the
three AD profiles.

4.2 Simulation results on two CNC machining models

In this section, simulation results on two CNC machin-
ing models will be presented to show the feasibility of
the interpolation algorithm. All the computations are
carried out using C language on a PC with Windows
XP, a 2.13-GHz CPU, and 1.98-GB memory.

The first model is the “vase” shown in Fig. 9a. The
vase is a CNC model consisting of more than 116,000
G01 codes with total tool path length of 46.67 m. Its
B-spline representation consists of more than 42,000
quadratic curve segments [21]. The G01 codes and
the spline representation of the model can be found
in http://www.mmrc.iss.ac.cn/˜xgao/cnc/vase.html. The
tool path of the vase fluctuates violently making
optimal speed velocity planning difficult. The spline
curve in Fig. 5 is from this model.

The second model is one piece of blade in the “im-
peller” shown in Fig. 9b, which is a cubic B-spline
with C2 continuity and consisting of 394 cubic curve

Table 3 Parameters of tests
(a), (b), (c) and the
interpolation time

Test Sm (mm/s4) Jm (mm/s3) Am (mm/s2) Vm (mm/s) d (mm) t (s)

(a) − − 1,000 50 100 2.051
(b) − 20,000 1,000 50 100 2.101
(c) 200,000 20,000 1,000 50 100 2.201
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(a) Vibration frequency spectrum and velocity of motion profile  under confined acceleration 

(b) Vibration frequency spectrum and velocity of motion profile under confined jerk

(c) Vibration frequency spectrum and velocity of motion profile under confined jounce
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Fig. 8 The vibration frequency spectrum diagrams and the cor-
responding velocity functions. a Vibration frequency spectrum
and velocity of motion profile under confined acceleration.

b Vibration frequency spectrum and velocity of motion profile
under confined jerk. c Vibration frequency spectrum and velocity
of motion profile under confined jounce

segments [21]. The total tool path length of the blade
is 3.167 m. The G01 codes and the spline representa-
tion of the model can be found in http://www.mmrc.
iss.ac.cn/˜ xgao/cnc/blade.html. Note that this is a five-
axis model: (x(u), y(u), z(u), A(u), C(u)) u ∈ [0, 1]. For
simplicity, the velocity for the (x, y, z) tool path is
planned with the method introduced in this paper and
the parameter values ui thus obtained are used to com-
pute the angular interpolation positions (A(ui), C(ui)).

In both experiments, the following parameters are
used: Vm = 200 mm/s, T = 1 ms, δ = 0.2 μm, and Sm,
Jm and Am are taken different values for comparison,
which are shown in Table 4. Note that in our method,
the speed decreases to zero at the connection points of
two splines. This could be further improved using the
method given in [7].

Tables 4 and 5 give the machining timings for the
“vase” model and the “impeller” model under different
bounds of acceleration, jerk, and jounce. Tables 6 and 7
give the times needed to compute the velocity function
and the interpolation points for the “vase” and “im-
peller” models, respectively. In Tables 6 and 7, “tV” and
“tP” denote the times to compute the velocity function
and the interpolation points, respectively.

From Tables 6 and 7, we can see that the computa-
tion time of the algorithm is much less than the ma-
chining time. As mentioned in Remark 3.6, the velocity
function is computed off-line and the interpolation
points are computed in real time. For the “vase” model
and the “impeller” model, the times to compute the
interpolation point are 13–18% and 5–8% of the ma-
chining times, indicating that the algorithm is feasible
for real-time implementation.
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Fig. 9 Two CNC machining
models. a The vase model.
b The impeller model

(a) The vase model (b) The impeller model

Table 4 The machining times
of “vase” model under
different constraints

The unit for Sm is millimeters
per quartic second

Am Jm = 5 × 105 mm/s3 Jm = 2 × 105 mm/s3

(mm/s2) Sm = 2 × 108 (min) Sm = 1 × 108 (min) Sm = 2 × 108 (min) Sm = 1 × 108 (min)

1,000 25.1167 26.3298 26.4793 27.2322
2,000 22.3648 23.5293 24.0420 24.8345
3,000 21.4223 23.1568 23.4963 24.2998
6,000 20.7693 22.5608 23.2368 24.0440

Table 5 The machining time
of “impeller” model under
different constraints

The unit for Sm is millimeters
per quartic second

Am Jm = 5 × 105 mm/s3 Jm = 2 × 105 mm/s3

(mm/s2) Sm = 2 × 108 (min) Sm = 1 × 108 (min) Sm = 2 × 108 (min) Sm = 1 × 108 (min)

1,000 0.5757 0.5816 0.5830 0.5856
2,000 0.4583 0.4647 0.4704 0.4759
3,000 0.3982 0.4153 0.4259 0.4297
6,000 0.3549 0.3650 0.3997 0.4037

Table 6 Time to compute velocity functions (tV) and interpolation points (tP) for “vase” model

Am Jm = 5 × 105 mm/s3 Jm = 2 × 105 mm/s3

(mm/s2) Sm = 2 × 108 Sm = 1 × 108 Sm = 2 × 108 Sm = 1 × 108

tV (s) tP (s) tV (s) tP (s) tV (s) tP (s) tV (s) tP (s)

1,000 117.06 205.42 119.03 207.40 120.59 210.21 120.37 211.36
2,000 131.98 207.93 135.73 208.08 136.08 209.04 141.16 217.21
3,000 139.59 204.47 143.06 209.28 142.20 210.98 143.45 210.13
6,000 143.34 204.05 147.91 208.89 142.57 206.69 147.32 211.80

The unit for Sm is millimeters per quartic second

Table 7 Time to compute velocity functions (tV) and interpolation points (tP) for “impeller” model

Am Jm = 5 × 105 mm/s3 Jm = 2 × 105mm/s3

(mm/s2) Sm = 2 × 108 Sm = 1 × 108 Sm = 2 × 108 Sm = 1 × 108

tV (s) tP (s) tV (s) tP (s) tV (s) tP (s) tV (s) tP (s)

1,000 0.594 1.844 0.609 1.813 0.690 1.716 0.638 1.800
2,000 0.702 1.735 0.595 1.827 0.598 1.855 0.530 1.907
3,000 0.658 1.779 0.671 1.767 0.629 1.855 0.592 1.876
6,000 0.577 1.798 0.595 1.795 0.549 1.888 0.591 1.877

The unit for Sm is millimeters per quartic second
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5 Conclusion

In this paper, an acceleration/deceleration profile with
confined jounce, jerk, acceleration, and speed is de-
signed, and its properties are studied. In particular, it
is shown that the profile is time optimal to change
the speed from one value to another under the given
constraints. Based on the jounce confined accelera-
tion/deceleration profile, an interpolation method for
parametric tool paths is given. The idea is to com-
pute the maximal speeds at the critical points of the
tool path where the radius of curvature reaches ex-
tremal values and to use the jounce confined accel-
eration/deceleration profile to connect the speeds of
two adjacent critical points. The final velocity function
has C2 continuity. A vibration test is given to show
that comparing with confined acceleration and jerk,
the motion profile under confined jounce can reduce
vibration more effectively.

In most existing work on interpolation, the friction
force and the cutting force in Eq. 1 are assumed to
be independent of the velocity. An interesting problem
is to plan the velocity by assuming the existence of

certain relation between the cutting force and the ve-
locity. Another problem is to plan the velocity under
confined chord error and confined jounce in each axis
as done in [14, 18, 19] in simpler cases such as confined
acceleration or confined jerk.
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Appendix

In this appendix, the seven-period acceleration profile
and the proof of its time-optimal property are given.

Formulas for the seven-period acceleration profile

Assume that initial velocity vs = 0. The following for-
mulas are the expressions of the jounce s(t), jerk
j(t), acceleration a(t), and speed v(t), t ∈ [0, tm] for the
seven-period acceleration profile in Fig. 1.

s(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sm, 0 ≤ t < t1,

0, t1 ≤ t < t1 + t2,

−Sm, t1 + d2 ≤ t < 2t1 + t2,

0, 2t1 + t2 ≤ t < 2t1 + t2 + t3,

−Sm, 2t1 + t2 + t3 ≤ t < 3t1 + t2 + t3,

0, 3t1 + t2 + t3 ≤ t < 3t1 + 2t2 + t3,

Sm, 3t1 + 2t2 + t3 ≤ t < 4t1 + 2t2 + t3

(28)

j(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Smt, 0 ≤ t < t1,

Smt1, t1 ≤ t < t1 + t2,

Sm(2t1 + t2 − t), t1 + t2 ≤ t < 2t1 + t2,

0, 2t1 + t2 ≤ t < 2t1 + t2 + t3,

Sm(2t1 + t2 + t3 − t), 2t1 + t2 + t3 ≤ t < 3t1 + t2 + t3,

−Smt1, 3t1 + t2 + t3 ≤ t < 3t1 + 2t2 + t3,

Sm(t − 4t1 − 2t2 − t3), 3t1 + 2t2 + t3 ≤ t < 4t1 + 2t2 + t3

(29)

a(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 Smt2, 0 ≤ t < t1,

Smt1t − 1
2 Smt2

1, t1 ≤ t < t1 + t2,

− 1
2 Sm(2t1 + t2 − t)2 + Sm(t1t2 + t2

1), t1 + t2 ≤ t < 2t1 + t2,

Sm(t1t2 + t2
1), 2t1 + t2 ≤ t < 2t1 + t2 + t3,

Sm(t1t2 + t2
1) − 1

2 Sm(2t1 + t2 + t3 − t)2, 2t1 + t2 + t3 ≤ t < 3t1 + t2 + t3,

2Smt1t2 + 7
2 Smt2

1 + Smt1t3 − Smt1t, 3t1 + t2 + t3 ≤ t < 3t1 + 2t2 + t3,
1
2 Sm(t − 4t1 − 2t2 − t3)2, 3t1 + 2t2 + t3 ≤ t < 4t1 + 2t2 + t3

(30)
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v0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6 Smt3, 0 ≤ t < t1,
1
2 (t − t1)2Smt1 + 1

2 (t − t1)Smt2
1 + 1

6 Smt3
1, t1 ≤ t < t1 + t2,

1
3 Smt3

1 + 1
2 Smt2

1t2 − Smt2
1t + 1

2 Smt1t2
2 − Smt1t2t

+Smt1t2 + 1
6 Smt3

2 − 1
2 Smt2

2t + 1
2 Smt2t2 − 1

6 Smt3, t1 + t2 ≤ t < 2t1 + t2,

−Smt3
1 − 3

2 Smt2
1t2 − 1

2 Smt1t2
2 + Smt1t2t + Smt2

1t,

2t1 + t2 ≤ t < 2t1 + t2 + t3,

Sm(t1t2 + t2
1)(t − 2t1 − t2 − t3) + 1

6 Sm(2t1 + t2 + t3 − t)3

+Smt3
1 + 3

2 Smt2
1t2 + 1

2 Smt1t2
2 + Smt1t2t3 + Smt2

1t3,

2t1 + t2 + t3 ≤ t < 3t1 + t2 + t3,

2Smt1t2t + 7
2 Smt2

1t + Smt1t3t − 1
2 Smt1t2 − 4Smt2

1t2
−Smt1t3

2 − Smt1t2t3 − 25
6 Smt3

1 − 5
2 Smt2

1t3 − 1
2 Smt1t2

3,

3t1 + t2 + t3 ≤ t < 3t1 + 2t2 + t3,

− 26
3 Smt3

1 + 4Smt1t3t − 7Smt1t2t3 + 8Smt1t2t + 2Smt2t3t

−7Smt1t2
2 + 8Smt2

1t − 2Smt1t2 − 13Smt2
1t2 − 7Smt2

1t3
−2Smt1t2

3 − Smt2t2 − 1
2 Smt3t2 + 2Smt2

2t + 1
2 Smt2

3t

−2Smt2
2t3 − Smt2t2

3 + 1
6 Smt3 − 4

3 Smt3
2 − 1

6 Smt3
3

3t1 + 2t2 + t3 ≤ t < 4t1 + 2t2 + t3
2Smt3

1 + Smt1t2t3 + Smt1t2
2 + 3Smt2

1t2 + Smt2
1t3, 4t1 + 2t2 + t3 ≤ t.

(31)

Proof for Theorem 2.3

In order to prove Theorem 2.3, the following result is
needed.

Theorem A.1 (Birkhoff and Rota [1], pp. 24–26)
Let y, z be solutions of the following dif ferential
equations

y′ = F(x, y), z′ = G(x, z),

respectively, where F(x, y) ≤ G(x, y), a ≤ x ≤ b, and
F or G satisf ies Lipschitz’s condition. If y(a) = z(a),
then y(x) ≤ z(x) for any x ∈ [a, b ].

Proof of Theorem 2.3 First of all, prove the seven-
period jerk profile is time optimal. Denote by v(t), t ∈
[0, tm] the velocity curve of the seven-period jerk
profile, where tm = 4 ∗ t1 + 2 ∗ t2 + t3, and denote by
j(t), a(t) its corresponding jerk and acceleration. Claim
that for any other velocity curve v∗(t), t ∈ [0, t∗] which
satisfies the constraints 10 and 11, t∗ ≥ tm. Also, denote
by j∗(t), a∗(t), s∗(t) the jerk and acceleration and jounce
of v∗(t), respectively. Assume on the contrary, there
exists a t4 ∈ [0, t∗], such that v(t4) < v∗(t4) (especially
take t4 = t∗). Show that this t4 does not exist for t4 ∈
[0, tm].

Case 1, t4 �∈ [0, t1 + t2]. Since for t ∈ [0, t1 + t2], j(t) ≥
j∗(t), then a(t) ≥ a∗(t) and v(t) ≥ v∗(t).

Case 2, t4 �∈ (t1 + t2, 2 ∗ t1 + t2]. If this is not the
case, then there exists a t5 ∈ (t1 + t2, t4] such that
a(t5) < a∗(t5). Claim that j(t5) ≤ j∗(t5). If this is not
the case, that is j(t5) > j∗(t5). Then, by Theorem A.1,
j(t) = j(t5) + ∫ t5

t Smdts > j∗(t) + ∫ t5
t s∗(ts)dts = j∗(t) for

t ∈ [t1 + t2, t5]. Then a(t5) < a∗(t5) is impossible by case
1. Let t6 = 2 ∗ t1 + t2 − t5, then by Theorem A.1, j∗(t) =
j∗(t5) − ∫ t

t5
s∗(ts)dts ≥ j(t), for t ∈ [t5, t5 + t6]. Then, by

Theorem A.1,

a∗(t5 + t6) = a∗(t5) + ∫ t5+t6
t5

j∗(t)dt

≥ a∗(t5) + ∫ t5+t6
t5

j(t)dt

> a(t5) + ∫ t5+t6
t5

j(t)dt

> Am

This contradicts to the constraint 10.
Case 3, t4 �∈ (2 ∗ t1 + t2, 2 ∗ t1 + t2 + t3]. If this is not

the case, there exists a t5 ∈ [0, 2 ∗ t1 + t2) such that
a(t5) < a∗(t5). This is impossible by the discussion in
cases 1 and 2.

Case 4, t4 �∈ (2 ∗ t1 + t2 + t3, tm). Denote v̄∗(t) by

v̄∗(t) =
{

0, t ∈ [0, tm − t∗)
v∗(t + t∗ − tm), t ∈ [tm − t∗, tm]
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Similar to the cases 1, 2, 3, for t ∈ [2 ∗ t1 + t2, tm],
from the −t direction, v(t) uses the extremal decel-
eration capability to decrease its velocity. So, v(t) ≤
v̄∗(t), t ∈ [2 ∗ t1 + t2, tm]. Since v(t) is monotone, let t5 =
2 ∗ t1 + t2 + t∗ − tm ∈ [0, 2 ∗ t1 + t2], then v(t5) < v(t5 +
tm − t∗) ≤ v̄∗(t5 + tm − t∗) = v∗(t5). This contradicts to
cases 1 and 2.

The time-optimal properties of other type accelera-
tion profile can be proved in a similar way by adding
the different constraints. So far, it has been proved that
Algorithm PRO_VV is a time-optimal procedure to
increase the speed from vs to ve under the constraints
10 and 11.

It needs to be proved that the selections of concrete
jerk profiles given in Section 2 are reasonable. For sim-
plicity, consider only the transitions from (+, +, +) to
(+, +, −) or (+, −, +) and from (+, +, −) to (+, −, −)

or (+, −, +). Without loss of generality, let vs = 0.
First, it is obvious to find that (+, +, +) is the most

optimal profile if feasible. But on condition of J2
m <

Sm Am, if ve <
A2

m
Jm

+ Am Jm
Sm

, then ve is not large enough
for profile (+, +, +) and the profile transition should be
considered. If profile (+, −, +) is adopted, then t2 = 0
and t3 > 0, jm ≤ Jm <

√
Sm Am.

Obviously t1 = jm
Sm

. By Eq. 8, ve is of the following
form:

ve = 2Smt3
1 + Smt1t2t3 + Smt1t2

2 + 3Smt2
1t2 + Smt2

1t3

= 2Smt3
1 + Smt2

1t3,

so t3 = ve Sm
j2m

− 2 jm
Sm

and the time of profile (+, −, +) is

t(+,−,+) = t( jm) = ve Sm
j2m

+ 2 jm
Sm

. So according to the value

of ve, when ve <
A2

m
Jm

+ Am Jm
Sm

, there are two cases to be
discussed.

Case a: ve >
2J3

m
S2

m
. Since t( jm) is monotonically de-

creasing on interval jm ∈ (0, (veS2
m)

1
3 ] and

jm ≤ Jm < (
ve S2

m
2 )

1
3 , t( jm) ≥ ve Sm

J2
m

+ 2Jm
Sm

. It is

easy to find that ve Sm
J2

m
+ 2Jm

Sm
> Jm

Sm
+

√
J2

m
S2

m
+ 4ve

Jm
=

t(+,+,−). So t(+,−,+) > t(+,+,−). The time of
profile (+, +, −) is less than that of profile
(+, −, +).

Case b: ve ≤ 2J3
m

S2
m

. In this case, profile (+, +, −) is
invalid; otherwise, jm exceeds Jm. Now
show that the time of profile (+, −, −) is
less than that of profile (+, −, +). If profile
(+, −, +) is adopted, then t1 = jm

Sm
and t2 = 0

and t3 = ve Sm
j2m

− 2 jm
Sm

> 0. So jm < (
ve S2

m
2 )

1
3 .

Denote by t( jm) = 4 ∗ t1 + t3 the total
acceleration time with maximal jerk jm. Since

t( jm) is monotonically decreasing on in-
terval jm ∈ (0, (veS2

m)
1
3 ], t(+,−,+) = t( jm) >

t(( ve S2
m

2 )
1
3 ) = 4( ve

2Sm
)

1
3 = t(+,−,−). So the time of

profile (+, −, −) is less than that of profile
(+, −, +).

Thus, the optimality of profile transition in Algo-
rithm PRO_VV has been proved. Other cases can be
proved similarly. Now Theorem 2.3 is proved. �


If the acceleration profile is symmetric, then time
optimal means the distance to accelerate vs to ve is the
shortest one since the distance is d = vs+ve

2 t∗, where t∗ is
the total acceleration time.
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