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1. Introduction

A basic idea to deal with a system of algebraic or differential equations is to decompose its zero
set into the union of the zero sets of algebraic or differential equations in certain triangular form,
or to decompose the radical ideal generated by these equations into the intersection of prime or
radical ideals represented by their characteristic sets. The theory of the characteristic set method was
established by Ritt in the 1930s (Ritt, 1950). The method was further extended by Kolchin, Rosenfeld,
Seidenberg and other people (Kolchin, 1973; Rosenfeld, 1959; Seidenberg, 1956). But, studies of the
algorithmic aspect of the characteristic set method was in stagnation for quite a long time, until
Wu’s work appeared in the late 1970s. Since then, theories and algorithms of the characteristic set
methods were revived. In Wu (1978, 1987, 1984), Wu introduced methods to decompose the zero set
of a finitely generated polynomial or differential polynomial system into the union of quasi varieties
represented by triangular sets. Aubry et al., Kalkbrener, Lazard, Zhang-Yang proposed decomposition
methods without using the factorization of polynomials over algebraic extension fields (Aubry et al.,
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1999; Kalkbrener, 1993; Lazard, 1991; Yang et al., 1996). The decomposition into simple systems
was proposed by Wang (2000). The decomposition into unmixed varieties was proposed by Bouziane
et al. and Gao-Chou (Bouziane et al., 2001; Gao and Chou, 1993). The concepts of invertibility, first
introduced by Lazard (1991), was studied in detail by Kandry-Rody et al. and played an important
rule in Bouziane et al. (2001). Efficient algorithms for decomposing differential polynomial systems
were proposed in Boulier et al. (1995), Chou and Gao (1993), Hubert (2000), Li and Wang (1999), and
Reid (1991). Lazard’s Lemma plays an essential rule in Boulier et al. (1995). On the complexity issues,
Gallo and Mishra gave an upper bound for the degrees of the polynomials in the characteristic set of
an ideal (Gallo and Mishra, 1991). Dahan and Schost (2004) proved that the height of the triangular set
for a zero dimensional variety could be linear with respect to the height of the variety, which shows
that triangular sets provide an efficient representation tool for varieties.

The notion of characteristic set (or basic set as named in Ritt and Doob (1933)) for difference
polynomial systems was also proposed by Ritt (Ritt and Doob, 1933). The general theory of difference
algebra was established mainly by Cohn and his students (Cohn, 1965). Cohn also introduced the
theory of characteristic sequence, which plays an important rule in theoretical studies, but is not
an algorithm in the general case (Cohn, 1965, 1948). More recently, elimination algorithms for
linear difference or differential-difference operators are extensively studied (Chyzak and Salvy, 1998;
Mansfield and Szanto, 2002; Takayama, 1990; van der Hoeven, 1996). But, we are not aware of the
existence of a zero decomposition algorithm for non-linear difference polynomial systems based on
the characteristic set method.

In this paper, we will establish a characteristic set method for non-linear ordinary difference
polynomial systems. We show that this method can be used to solve some important problems
in difference algebra, such as the intrinsic description of reflexive prime ideals, the perfect ideal
membership problem, finding the dimension and order of prime ideals, and automated proof of
theorems about difference polynomials. The major difference between the differential case and the
difference case, is that the differentiation of a differential polynomial is always linear in its leading
variable and this property is no longer true in the difference case. This makes some of the key tools
used in the algebraic and differential cases no longer available in the difference case. For instance,
Rosenfeld’s lemma and Lazard’s lemma are not true in the difference case. As a consequence, we need
to introduce new concepts and to develop new techniques.

We first consider the following question: “Let 4 be a difference ascending chain. Under what
condition is 4 a characteristic set of its saturation ideal?" In the algebraic case, Aubry et al. proved
that a sufficient and necessary condition for this to be valid is that 4 be regular (Aubry et al., 1999).
This result is extended to the differential cases by Kandry-Rody et al. (Bouziane et al., 2001). In order
to solve this problem in the difference case, we introduce two new properties for difference ascending
chains. First, the concept of coherent ascending chain is introduced. In the differential case, coherent
conditions are needed only in the partial differential case. But, in the difference case, this property is
needed, even in the ordinary difference case. We prove that any element of the saturation ideal of a
coherent ascending chain has a normal representation. Second, we introduce the concept of regular
difference ascending chains. With these concepts, we proved that a difference ascending chain « is a
characteristic set of its saturation ideal iff, 4 is coherent and regular.

Anew type of strong irreducibility is introduced. We prove that a sufficient and necessary condition
for an ascending chain + to be the characteristic set of a reflexive prime ideal is that 4 be coherent and
strong irreducible. In Cohn (1965), Cohn also gave a necessary and sufficient condition for a reflexive
prime ideal in terms of characteristic sequences. The condition given in this paper is intrinsic, that is,
it only involves properties of the ascending chain itself, while the one in Cohn (1965) does not have
this property. We also show that the dimension and order of a reflexive prime ideal can be obtained
directly from its characteristic set.

There is no direct method to check whether an ascending chain is regular. In order to develop an
algorithm, we give a constructive criterion for the regularity test. This new criterion is called proper
irreducibility. We proved that if an ascending chain is proper irreducible, then it is a regular chain and
its saturation ideal has at least one solution over an extension field.

Based on the properties of ascending chains, we propose an algorithm which can be used to
decompose the zero set of a finitely generated difference polynomials set into the union of the zero
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sets of the saturation ideals of coherent and proper irreducible ascending chains. As applications of
the decomposition algorithm, we could solve the perfect ideal membership problem for difference
polynomial systems and prove theorems which can be represented by difference polynomials
automatically. This method to check the perfect ideal membership problem is different from the
one proposed in Cohn (1965). The algorithm is implemented in Maple and is used to prove certain
difference identities.

The rest of this paper is organized as follows. In Section 2, we introduce some notations and
preliminary results. In Section 3, the concepts of coherent and regular ascending chains are introduced.
In Section 4, the concepts of strong and proper irreducible ascending chains are introduced. In
Section 5, the algorithm of zero decomposition is introduced. In Section 6, conclusions are presented.

2. Preliminaries

We will introduce the notions and preliminary properties needed in this paper. Details on these
concepts can be found in Cohn (1965) and Ritt and Doob (1933).

2.1. Difference fields, difference polynomials, and difference ideals

A difference field ¥ is a field with a unitary operation § satisfying: for any a,b € ¥, 8(a + b) =
da + &b, 6(ab) = d8a - 8b, and 6a = 0 iff a = 0. Here, § is called the transforming operator of . If
a € F,8ais called the transform of a. If §~'a is defined for all a € %, we say that # is inversive. Every
difference field has an inversive closure (Cohn, 1965). In this paper, all difference fields are assumed
to be inversive and of characteristic zero.

As an example, let X = O(x) be the set of rational functions in variable x and with rational numbers
as coefficients. Let § be the mapping: 6f(x) = f(x + 1),f € X. Then, X is a difference field with
transforming operator §. This is an inversive field. In all the examples in this paper, X is assumed to
be this difference field.

Let Y = {y1,¥2,...,Yn} be indeterminants. Then R = XKX{Y} is called an n-fold difference
polynomial ring over K. Any difference polynomial P (abbr. r-pol) in the ring K {Y} is an ordinary
polynomial in variables (Skyj (k =0,1,2,...,j = 1,...,n). For convenience, we also denote Skyj
by y;j(x + k).

Let P € X{Y}. The class of P, denoted by cls(P), is the least p such thatP € K{y;...,y,}.IfP € X,
we set cIs(P) = 0. The order of P w.r.t. y;, denoted by ord(P, y;), is the largest j such that y;(x + j)
appears in P. When y; does not occur in P, we set ord(P, y;) = 0.If cIs(P) = p and ord(P, y,) = q, we
called y, the leading variable and y, (x + q) the lead of P, denoted as lvar(P) and lead(P), respectively.
The leading coefficient of P as a univariate polynomial in lead(P) is called the initial of P, and is denoted
as init(P).

An r-pol Py has higher rank than an r-pol P,, denoted as P; > P, if

(i) cls(P;) > cls(Py), or

(ii) ¢ = cls(Pq) = cls(P;) and ord(Pq, y.) > ord(P,, y.)

(iii) ¢ = cls(Py) = cls(Py), o = ord(Pq,y,) = ord(P,, y.), and deg(Pq, y.(x + 0)) > deg(P,,
Ye(x +0)).

If no one has higher rank than the other for two r-pols, they are said to have the same rank, denoted
as P; ~ P,. We use P; > P, to denote the fact that either P; > P, or P; ~ P,. It is easy to see that > is
a total order on R.

An n-tuple over X is of the forma = (ay, ..., a,), where the g; are selected from some difference
extension field of K. Let P € KX{Y}. To substitute an n-tuple a into P means to replace each of the
yi(x+j) occurring in P with 8/a;. Let P be a set of r-pols in K {Y}. An n-tuple over X is called a solution
of the equation set P = 0 if the result of substituting the n-tuple into each r-pol of P is zero. Let

Zero(P) = {n-tuples n, s.t. P(n) = 0, VP € P}.
It is easy to check that Zero(P) = Zero(§P). For instance, let P = y(x + 1)y(x) + y(x + 1) — y(x). Then

y= x+1W is a solution of P = 0, where c(x) is any function satisfying c(x + 1) = c(x).
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A difference ideal is a subset T of R = K {Y}, which is an algebraic ideal in R and is closed under 4.
Let P be a set of elements of R. The difference ideal generated by P is denoted by [P]. Obviously, [P]
is the set of all linear combinations of the r-pols in P and their transforms. The (ordinary or algebraic)
ideal generated by P is denoted as (). A difference ideal I is called reflexive if for an r-pol P, §P € I
implies P € 1. A difference ideal T is called perfect if the presence in I of a product of powers of
transforms of an r-pol P implies P € I. The perfect difference ideal generated by P is denoted as
{P}. A perfect ideal is always reflexive. It is clear that Zero(P) = @ iff 1 € {P}. A difference ideal T is
called a prime ideal if for r-pols P and Q, PQ € IimpliesP € TorQ € 1.

2.2. Difference ascending chains

Let Py,P, be two r-pols and lead(P;) = y,(x 4+ q) with p > 0. P, is said to be reduced w.r.t. Py if
deg(P,, yp(x+q+1)) < deg(Py, yp(x+ q)) for any nonnegative integer i. If P; € X and nonzero, then
P, is not reduced w.r.t. P;.

A finite sequence of nonzero r-pols A = Ay, ..., A, is called an ascending chain, or simply a chain,
ifeitherp =1orp > 1,0 < cIs(A;), A; < Aj, and Aj is reduced w.r.t. A; for 1 <i < j < p. A is called
trivial if cls(A;) = 0.

Example 2.1. Let P; = y(x + 1)2 —y?(x) + 1, P, = y(x + 2) + y(x + 1) € X{y}. Since P; < P,
deg(P,, y(x + 1)) < deg(Py, y(x + 1)) and deg(P,, y(x + 2)) < deg(Py, y(x + 1)), P, is reduced w.r.t.
P;. Hence, Py, P, is a chain.

From this example, we can see that even in ordinary difference case, a chain could contain more
than one r-pol in the same leading variable. This is different from the differential case.

Let 4 be a chain and I, the set of all products of powers of the initials of the r-pols in + and their
transforms. The saturation ideal of 4 is defined as follows

sat(A) = sat(A) = {P € K{Y}| 3] € I4,s.t.JP € [A]}.

Note that I 4 is closed under transforming and multiplication. Then sat(+4) is a difference ideal.
Let 8B be an algebraic chain and I3 the set of products of powers of initials of the polynomials in
B. Then we define

asat(B) = (B) : Ig = {P € X[Y]|3T] € Ig,s.t.JP € (B)}.

Achain A = Ay, ..., A, is said to be of higher rank than another chain 8 = By, ..., B;, denoted as
A4 > B, if one of the following conditions holds:

()30 < j < min{p, s}, such that Vi < j, A; ~ B; and A; > B;, or

(ii)s > pand A; ~ B; fori < p.

If no one has higher rank than the other for two chains, they have the same rank, and is denoted as
A ~ B. A1 = Ay means either A; > A, or A7 ~ Ay. It is easy to see that > is a total order on the
difference chain set.

Lemma 2.1 (Ritt and Doob, 1933). Let A; be a sequence of chains satisfying
A=Ay == A > L.

Then, there is an index iy such that for any i > ig, A; ~ Aj,.

Let IP be a set of r-pols. It is possible to form chains with r-pols in P. Among all those chains, by the
above lemma, there are some which have a lowest rank. Any chain in P with the lowest rank is called
a characteristic set of P.

An r-pol is said to be reduced w.r.t. a chain if it is reduced to every r-pol in the chain. The following
result is evident from the definitions.

Lemma2.2. A C P is a characteristic set of P iff, there is no nonzero r-pol in P which is reduced
W.r.t. A.
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rprem(G, P). Input: G, P € X{Y}. Output: an r-pol R which is the pseudo remainder of G w.r.t. P.

Lemma 2.3 (Ritt and Doob, 1933). If A is a characteristic set of P and 4’ a characteristic set of P U {P}
for an r-pol P, then we have A4 > A'. Moreover, if P is reduced with respect to A4, we have A > A’

The difference pseudo-division is defined as follows.

p := cls(P);
If p = 0orord(G, yp) < ord(P, yp) then return G;
else

R:=G;

for i from ord(G, y,) — ord(P, y,) to 0 by -1 do
R := prem(R, §'P, y,(x + ord(P. y,) + 1)): /| (*)
If R=0 then return(0) ;
return(R);
end;
In (*), prem(P, Q, v) is the pseudo-remainder of P w.r.t Q in variable v, where the variables y; and
their transforms are treated as independent algebraic variables.
From the above algorithm, it is easy to check that

Lemma 2.4. Let R = rprem(G, P), lead(P) = y,(x + q)(p > 0), h = ord(G, yp), andk = h —q > 0.
Then R is reduced w.r.t. P and we have the remainder formula

JG=Qi8"P + Q8" 'P+ -+ + Q1P +R,

whereR,Q; (i = 1,...,k+ 1) arer-polsand ] = Hf;o(s" init(P))% for non-negative integers s;. Note
that] < P.

We define the pseudo-remainder of an r-pol P w.r.t. a chain A = Ay, ..., A, recursively as
rprem(P, 4) =rprem( rprem(P, Ap), Ay, ..., Ap—1) and rprem(P, {}) = P. As a direct consequence
of Lemma 2.4, we have

Lemma 2.5. Let P, A be as above. Then thereisa] € 1, with] < P such that JP = R mod [4] and R is
reduced w.r.t A.

3. Coherent and regular difference chains

3.1. Invertibility of algebraic polynomials

We will introduce some notations and results about invertibility of algebraic polynomials w.r.t. an
algebraic chain.

A sequence of polynomials A = Ay, ..., An in K[x1, ..., x,] is called a triangular set if cls(A;) <
cls(Ay) < --- < cls(Ap). Lety; be the leading variable of A;, Y = {y1, ..., yp}and U = {x4, ..., x,}\ Y.
U and Y are called the parameter set and the leading variable set of A respectively. We can denote
Klx1,...,x,] as K[U, Y]. A polynomial P is said to be invertible w.r.t. A if either P € KX[U] or
(P,Aq,...,As) N K[U] # {0} where lvar(P) = Ivar(As). + is called regular if the initials of A; are
invertible w.r.t. 4.

Theorem 3.1 (Aubry et al.,, 1999, Bouziane et al., 2001). Let A be a triangular set. Then A is a
characteristic set of (A) : 14 iff, A is regular.

Lemma 3.1 (Bouziane et al., 2001). A polynomial P is not invertible w.r.t. a regular triangular set A iff,
there is a nonzero Q in K[U, Y] such that PQ € (+) and Q is reduced w.r.t. A.

Lemma 3.2 (Wu, 1984). Let A be an irreducible algebraic triangular set with parameters U, leading
variables Y, and a generic point n. Then, asat(+A) is a prime ideal of dimension |U| and for any polynomial
Q, the following facts are equivalent.
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e Q isinvertible w.r.t. A.

e prem(Q, ) # 0, or equivalently Q & (A) : I4.

e Q(n) #0.

eresl(Q,A) #* 0. Let A = Ay, ...,An resl(Q, 4) is defined as follows: resl(Q, A) =
resl(resl(P, Ap, lvar(An)), A1, ..., An_1) andresl(Q, {}) = Q.

3.2. Extension of a chain

For any chain +, after a proper renaming of the variables, we could write it as the following form.

A11(U,y1), ..., A1 (U, y1)
A = (m

Ap,](Uay]a "'7yp)a "~7Ap,kp([Uay'la "'7yp)

where lvar(A;;) = y;and U = {uy, ..., ug} such that p + g = n. Let 0;; = ord(4; ;, y;). U is called the
parameter set of 4 and dim(«) = |U| is called the dimension of 4. Denote

P(A) ={yix+)D1<i<p,0=<j=<o0;;—1} (2)
and call ord(A) = |P(A)| = f’zl 0¢i,1) the order of A.
Let A be a chain of form (1) and hy, ..., h,; (m < p) nonnegative integers. The extension of A,
denoted as A, ... ny), 1S the following sequence of r-pols
A1, 8A1 1, ..., 80127 A A S o Ary, BTk s 5’;170”‘1/‘\1,k1,
ey ) (3)
Am.]v aAm,h ceey 80m,2_0m.1_]Am’1, Am,z, ey Am,kmv (SAm,km, ey (Shm_om’kmAm,km
where fli is defined as follows: fzm = max{hm, Omk,} + l,and fori = m—-1,...,1, 0, =
max{order of y;(x) appears in Aiy1.1, 6Ait1.1, - - - (Shm“’m,kmAm,km}, fl,’ = max{h;, 0;, 0;;} + 1. For a
chain 4 and an r-pol P, let
A" = A0
Ap = ‘A’(Ol‘d(P,y]),...,OI‘d(P.yp))' (4)
With these notations, it is clear that
rprem(P, A) = prem(P, p) (5)

where the variables and their transforms in prem(P, 4p) are treated as independent variables. The
following fact is clearly true.

Lemma 3.3. Use the notations in (3).

o Foreach i, there exist at least two r-pols in Ap with y; as leading variable. )
o Letej = MaXacn, ford A, up}h, V=1{8";|1<j<¢q0<i<ehZ={y|1<j<m0=

treated as independent variables.
o The parameters of Aw, ... n,) 0 a triangular set are VU £ (A).

3.3. Coherent chains

Note that in Example 2.1, we have §P; — (y(x + 2) + y(x + 1))P, = 1,i.e. 1 € [Py, P;]. This fact
leads to the following concept.
Let A = Ay, ...,An be achain and o; = ord(A;, lvar(4;)), i=1,...,m.Forany 1 <i <j <m,if
cls(Aj) = cls(A)) =t let
Ajj = prem(8% Ay, Aj, Y (x + 0))) (6)

otherwise, let A; = 0. If rprem(4;;, A) = prem(4;;, A*) = 0, we call A a coherent chain.
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Let A = Ay, ..., A be a chain. A linear combination C = Zij Q,j(Sin is called normal if 8/A; in
the expression are distinct elements in A, n,) for some nonnegative integers hy, ..., hp. In other

words, C € (Any,...hy)-
Lemma 3.4. Let A = Ay, ...,An be a coherent chain, cls(A;)) = cls(4) = t,i < j,and o; =
ord(A;, Ivar(A)), i = 1,...,m. Then, there is a] € I, satisfying ] < A;j such that | - §%7°A; =

0 mod (A*).

Proof. Let A; = prem(8%~%A;, A;, y:(x+0;)), [; = init(4;). Then, there is a nonnegative integer v such
thatl’ - 5%97%A; = QAj+ A;;. Since + is coherent, prem(4;;, A*) = 0. Now, the result is a consequence
of the remainder formula for the algebraic pseudo-remainder. |

,,,,, 1) and I; > ord(A; o;, yi). Then 3] € L4«

Lemma 3.5. Let + be a coherent chain of form (1), P € (A,
s.t.] <8P andJSP € (eA(ll+l ,,,,, lp—H))-

Proof. Let A, .. 1 = Bi1.. o Bigs o Bps oo B, with lvar(B;;) = y;. Then we have P =
Zi,j P,',jB,',j and 6P = Zi,j SP,‘JSB,'_]'. Since Bi,ci (S] A(lp.--,lp) and l,' > ord(Ai,oi,yi), (SBI',C,' must be in
Al +1,...Ip+1)- FOTj < ¢;, 0B; j is either in »A, 1) or fall in the situation considered in Lemma 3.4. This
proves the Lemma. |

.....

Lemma 3.6. Let 4 be a coherent chain of form (1), A € 4, and m a non-negative integer. Then, there is a
J € 1 suchthat] < §™A and ] - §™A has a normal representation.

Proof. Let f; = ord(6™A, y;), ¢ = cls(A). We divide the proof into three cases. First, if ™A € A, ),
the result is obvious. Second, if there exists a B € « such that ord(B,y.) = ord(§™A,y.), then
this is Lemma 3.4. Third, if there exists a B € # with a higher lead than that of A and an integer
g > 0 such that ord(6%B, y.) = ord(§™A, y.). It is clear that g < m. We will prove the lemma by
induction on m. We already proved the case for m = 0. Now, suppose that the lemma is correct for
m = 1,...,k — 1and we will prove the case for m = k. By Lemma 3.4, there is a J; € I, such that
lead(J;) < lead(6™#A) and

Ji-8"#A = 0mod (A,....h))-
Perform g transformations, we have
(Sgh . (SmA = 0 mod (5g=A(h1 ,,,,, hc))'

Each element in 68 A, ..,
lead(J,) < lead(6™A) and

he) Must satisfy the induction hypothesis. Then, there is a J, € I, such that

The condition lead(J) < lead(6™A) is clearly valid. |
As a direct consequence of Lemma 3.6, we now have the main property of a coherent chain.

Theorem 3.2. If A = A1, ..., A; is a coherent chain, forany P = ) Qlj(SfAi, thereis a] € I, such that
J - P has a normal representation, and | < max{&A;}.

3.4. Regular chains

Let 4 be a chain of form (1) and P an r-pol. P is said to be invertible w.r.t. 4 if it is invertible w.r.t.
p when P and ~p are treated as algebraic polynomials.

Let A = A4, ..., Ap be a difference chain and I; = init(A;). + is said to be (difference) regular if (Silj
is invertible w.r.t. 4 for any non-negative integer i and 1 < j < m, or equivalently, every ] € I, is
invertible w.r.t. 4.

Lemma 3.7. Let 4 be a characteristic set of an ideal I. If an r-pol P is invertible w.r.t A, then P & I.

Proof. Let U be the parameter set of ». Since P is invertible w.r.t 4, there exist an r-pol Q and a
nonzero N € KX{U} such that QP = N mod[4]. If P € I, then N € I. Since N is reduced w.r.t 4, by
Lemma 2.2 N = 0, a contradiction. |
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Lemma 3.8. If a chain 4 of form (1) is the characteristic set of sat(A), then for any integers h; > 0,
ny) 1S a regular algebraic triangular set.

Proof. By Theorem 3.1, we need only to prove that 8 = 4, ...r,) i the characteristic set of asat(3).
Let X be the set of all the Biyj =< &'y, such that 8"y, occurs in 8. Then 8 C KX[X]. If 8 is not the
characteristic set of asat(8), then there isa P € asat(8) N K [X] which is reduced w.r.t. 8 and is not
zero. By Lemma 3.3, P does not contain 8'y; which is of higher rank than those in X. As a consequence,
P is also reduced w.r.t. 4. Since P € asat(8B) C sat(+A) and « is the characteristic set of sat(A), P
must be zero, a contradiction. |

The following result shows that a coherent and regular chain is regular.

Lemma 3.9. Let 4 be a coherent and regular chain, and R an r-pol reduced w.r.t. 4. If R € sat(+), then
R=0.

Proof. Let A = Ay,...,An. Since R € sat(A), thereisa] € I, such that]-R = Omod][A].
Since A is regular, J is invertible w.r.t. -+, i.e. there is an r-pol ] and a nonzero N € X[V] such that

J-J = N mod [4] where V is the set of parameters of A* as an algebraic triangular set (see Lemma 3.3).
Hence, NR =] -] - R = 0mod [4]. Or equivalently,

N-R= Ryu8"A,. (7)

Since s is coherent, by Theorem 3.2, there is aT € I4 such thatTNR has a normal representation in
[+4], where lead(J) < max{lead(§"A,)} in (7). That is

J-N-R=>" QoA 8)

where, each §/A; has a different lead. If the leads of §/4; in (8) are of lower rank than that of %A, in
(7), we already reduce the rank of §“A, in (7). Otherwise, assume y(x + q) = max{lead(&’A;)} and
lead(89A;,)) = yx(x+q). Let us assume Aj, = I,y (x+s)%0 +R;,. Then, §0A;, = 801;yj (x+q)%0 +80R;,.

Substituting yi (x-+q)% by — % in (8), the left hand side keeps unchanged since lead(J) < yi(x+q),
{0]

N is free of yx(x + q), and R is reduced w.r.t. »4. In the right hand side, the SfOAiO becomes zero, i.e. the
max{lead(8A;)} decreases. Clearing denominators of the substituted formula of (8), we obtain a new
equation:

@05) TN -R=_ Q;¥A. 9)

In the right hand side of (9), the lead of §/A; with highest rank is less than y,(x + ) and (8°I;))" - J is
invertible w.r.t. 4 and wit rank lower than that of y,(x + q). Repeating the process starting from the
proof, we will finally obtain a nonzero N € X[V], such that N - R = 0. Then R = 0. By Lemma 2.2, A
is the characteristic set of sat(+4). |

The above lemma is a difference version of the Rosenfeld Lemma (Rosenfeld, 1959). The condition
in this lemma is stronger than that used in the differential Rosenfeld Lemma. The conclusion is also
stronger. The following example shows that the Rosenfeld Lemma (Rosenfeld, 1959) is not valid in the
difference case.

Example 3.1. Let A = {y;(x + 1)> — 1, (y; — 1)y3 + 1}. A is coherent and y;(x + 1) + 1 is reduced
w.rt. 4. y1(x + 1) + 1 € sat(4), because (§(y; — 1))(y1(x + 1) + 1) = y;(x + 1)?> — 1. On the other
hand, y;(x + 1) + 1 ¢ asat(A).

The following is the key property for a regular and coherent chain.

Theorem 3.3. A chain A is the characteristic set of sat(A) iff + is coherent and regular.
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Proof. If 4 is coherent and regular, then by Lemma 3.9, 4 is a characteristic set of sat(A). Conversely,
let A = Ay, ..., Ay be a characteristic set of sat(A) and I; = init(4;). Forany 1 < i < j < p, let
R = rprem(4Aj, 4) where Aj; is defined in (6). Then, R is in sat(A) and is reduced w.r.t. A. Since A
is the characteristic set of sat(A), R = 0. Then, + is coherent. To prove that + is regular, for any
i>0,1<j< m,weneed to prove that P = Silj is invertible w.r.t. A. Assume this is not true. By
definition, P is not invertible w.r.t. 4Ap when they are treated as algebraic equations. By Lemma 3.8,
Jp is a regular algebraic chain. By Lemma 3.1, there is a nonzero Q which is reduced w.r.t. Ap (and
hence 4) such that PQ = (Sile € (Ap) C [A]. Then Q € sat(A) and Q is reduced w.r.t. 4. Since A
is the characteristic set of sat(A), this is impossible. Hence, P = (Silj is invertible w.r.t. 4 and +4 is
regular. |

We have the following normal representation for the saturation ideal of a coherent and regular
chain.

Theorem 3.4. If 4 is a coherent and regular chain of form (1), then

sat(A) = | ) (@sat(Am,...n))-
h1>0,...,hp>0

Proof. It is easy to see that sat(4) D U (asat(Ag,
h1>0,...,hm >0
coherent and regular, by Theorem 3.3, 4 is the characteristic set of sat(+), and hence rprem(P, 4A) =
prem(P, A7) = 0.That is P € asat(#p). Hence sat(4) C U asat(A,...np))- |
h1>0,....,hm>0

ny)). Let P € sat(4). Since 4 is

.....

4. Proper and strong irreducible chains

Note that there is no direct method to check wether a given chain is difference regular, since we
need to check that all possible transforms of the initials are invertible. In this section, we will give a
constructive criterion for a chain to be difference regular.

4.1. Proper irreducible chains

An r-pol P is called effective in variable y; if y;(x) occurs in P. P is called effective if P is effective in
its leading variable.
A chain 4 of the form (1) is said to be proper irreducible if

e A™ as defined in (4) is an algebraic irreducible triangular set; and

e Forc = 1,...,p, A is effective and Ac,l is irreducible in KX (n._1)[yc(x), ..., yc(x + f;)], where
fe = ord(Ac1,Ye), Be = A* N K{U,y1, ..., ¥} (Bo = 0), n. is a generic point for the algebraic
irreducible chain 8B, and A, ; is obtained by substituting 7._; into A. ;.

The following result is a key property of proper irreducible chains, which gives a constructive
criterion to check whether a given chain is regular.

Theorem 4.1. A coherent and proper irreducible chain is regular.

Proof. Let A = A4, ..., An and [; = init(4;). Since A" is an irreducible algebraic triangular set, by
Lemma 3.2, I; are invertible w.r.t. 4* and hence invertible w.r.t. 4. By Lemma 4.2, all §I; are invertible
w.I.t. A ]

We need to prove several lemmas.

Lemma 4.1. Use the notations in the definition of proper irreducible chains. Let A be proper irreducible,
and P an r-pol satisfying 1 < ord(P, y;) < f;. Then P is algebraic invertible w.r.t. A™*.
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Proof. This lemma only involves algebraic properties. Hence all statements should be understood to
be algebraic. We prove the lemma by induction on p. By Lemma 3.7, we need to prove resl(P, A*) # 0.
Ifp = 1,P € X[V, y1(x + 1),...,y1(x + f1)], where V is the set of §'u; occurring in P and A*.
Variable y;(x 4 f1) must occur in P effectively. Otherwise P is already invertible w.r.t. A*. Note that
the lead of any r-pol in 4 other than A; ; is of higher rank than y;(x + f;). Then R = resl(P, A*) =
resl(P, A1,1,y1(x + f1)). If R = 0, then A; 1|P, since A4 ; is irreducible. This is impossible, since y1(x)
occurs in A 1 («A is effective) but not in P. Now, suppose that the result is true for 1,...,p — 1.
We are going to show that it is also true for p. By the induction hypothesis, we may assume that
resl(P, 8,_1) # 0.Since A is proper irreducible, 8,_ is an algebraic irreducible triangular set. For any
polynomial Q, let Q be obtained from Q by substituting U, y; with n,_. Substituting n,_; into P and
Ap.1 we get two polynomials inP e KMypx+1), ..., yp(x+fp)] and;\w e KMyp®), ..., ypx+
fp)] Since resl(P, 8p—1) # 0, P # 0. Furthermore, Ap 1 involves y, (x) effectively. This is because A, -
is reduced w.r.t. 8,_1, and hence by Lemma 3.2, the term containing y,(x) does not vanish after the
substitution. Let R = resl(P, A 1, ¥p(x + f)). We will show that R # 0. Since +4 is proper irreducible,
Ap.l is an irreducible polynomial. IfR = 0, then ;\p,] |I3, which is impossible, since y,,(x) occurs in ;\p,l
effectively but not in P. Since 8,_1 is irreducible, by Lemma 3.2, R # 0is equivalent to the fact that R
is invertible w.r.t. 8,_;. Therefore, P is invertible w.r.t. A*. |

The following result is a key lemma for proper and strong irreducible chains.

Lemma 4.2. Let A be a coherent and proper irreducible chain of the form (1). If P is invertible w.r.t. A,
then 8P is invertible w.r.t. A.

Proof. Let f; = ord(A; 1, y;), V the parameter set of the algebraic triangular set #4p, and Y the leading
variables of Ap. By Lemma 3.3, V is also the parameter set of A*. Since P is invertible w.r.t. 4, there are
P e X[V, Y] and a nonzero N € X[V] such that P-P = Nmod (+Ap). Performing the transforming
operator on the above formula, we have

8P -8P — 8N = Z Q48A. (10)

AeAp

If ord(P, y;) > ord(A;y,, y;) for all i, by Lemma 3.5, there is a] € I 4+ such that
J8P - 8P = JSg mod (Asp). (11)

If ord(P, y;) < ord(A;y,y:) for some i, we may assume that for A in (10), ord(A, y;) < ord(A;;, ¥i)-
Similar to Lemma 3.5, we can also find a] € I 4+ such that (11) is true.

Since J is a product of powers of initials of A* and A* is irreducible, by Lemma 3.2, it is invertible
w.r.t. A*. Note that §N satisfies 1 < 6N < f;. Then, by Lemma 4.1, §N is also invertible w.r.t. A*. Then,
J8N is invertible w.r.t. A*. As a consequence, there is a T and a nonzero R € X[V] such that

T -JSN = Rmod (A*) = R mod (Asp).
The last equality is valid because A* C Asp. Hence,
T-J8P-8P=T-J 8N = Rmod (ssp).
That is, §P is invertible w.r.t. 4. |

Example 4.1. This example explains why A, 1 has to be effective in the definition of proper irreducible
chains. Let A = Ay, Ay, where Ay = y1(x + 1) — y1(X), A2, = y2(x + 1) — y1(x). Then A satisfies
all the properties in the definition of proper irreducible chains except that A, is not effective. Let
P =A; — A1 = §(y2(x) — y1(x)). It is easy to check that Q = y,(x) — y1(x) is invertible w.r.t 4,
but §Q is not, which implies that Lemma 4.2 is not true without this assumption.
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4.2. Consistence of proper irreducible chains

In order to obtain a complete algorithm for difference polynomial systems, we need to show that a
coherent and proper irreducible chain + is consistent, or equivalently, Zero(sat(A)) is not empty. The
proof of Theorem 4.2 uses the theory of difference kernels established by Cohn (1965). It can also be
considered as an extension of some of the results obtained by Cohn about one irreducible difference
polynomial to proper irreducible chains.

Leta; = (ai1,...,ain),i = 0, ..., 1 be n-tuples, where qg; ; are elements from an extension field
of K. A difference kernel of lengthr, R = X (ao, a1, . .., a;), over the difference field X is an algebraic
field extension of X such that the difference operator § of X can be extended to a field isomorphism
from KX (ag,...,a,-1) to X(ay,...,a;) and §a; = a;1,i=0,...,r — 1.

Theorem 4.2. Let A be a coherent and proper irreducible chain. Then Zero(sat(A)) # @, or equivalently,
1 ¢ {sat(A)}.
Proof. Let A be of form (1). Denote A* as follows

A" =B11,..., B, By, ..oy Bpg,

where lvar(B;j) = yi. Let o; = ord(Bi,yi),i = 1,...,p, € = MaXaca* 1j<q {01d(A, 1))}, Up =
ul1<j<q0<i<elU={8yl1<j<gqgl<i<e+1,Y={8yl1<j<p0=<
i<o—1}andY; = {Siyj|1 <j=<p 1=<i<oj}.ThenVy = Uy U Yoand V; = Uy U Y, have the
same number of elements. Since + is proper irreducible, 4A* is an irreducible algebraic triangular set
when §'uj and 8'y; are treated as independent variables. Hence, I = sat(A*) is a prime ideal in K[V],
where V = Uy UYoU{8%y1, ..., 8%yp}. Letn = (a.(l), ﬁj(l)) be a generic zero of this prime ideal. Then
Sy = oei(j), Sly; = ,B,-@ annul every polynomial in 4* but not their initials.

We will construct a difference kernel of length one. Now,‘let ag and a; be obtained from Vy and V;4
by replacing &'u; and 8'y; with the corresponding ozj(’) and ,Bj('). The kernel is X (aq, a1). The difference

operator § introduces a map from X (ap) to K (a;) as follows § (aj(i)) = aj(i“) and 6(;3;“) = ﬂj(i+1).
We will prove that § introduces an isomorphism between X (ag) and X (ay). Let

30 = A* — {Bl,q’ e »Bp,cp}s £1 = {(SA'A S £0}

From the definition of 4%, the orders of y, in B; j € By are not exceeding o, — 1. As a consequence, ag
is a generic zero of the algebraic prime ideal Iy with 8By as a characteristic set.

Note that §8y = 87 and dap; = a;, by the nature of the difference operator, 8, is an irreducible
triangular set in K [V;] and a; is a generic zero of the prime ideal I; with 8, as a characteristic set.
We will show that I] = (:B]) : 131 =1IN K[Vl] Let ti = ord(B,;l), U* = Up U Uy, Y* = Yo U Y;.
Since each B; ; is effective, we can choose U* and {y;j|1 < i < p, 1 <j < t;} as the parametric set of
I N X[U*, Y*]. Then the number of parameters in I; is the same as that of I N K[V1]. I; has the same
number of parameters as Iy. Hence I; also has the same number of parameters as I N K[V1]. Since
these two prime ideals Iy and I N K [V] have the same parameter set and I; C I N K[V1], we have
I; = 1N K[Vq]. Since §Iy — I is an isomorphism between two prime ideals, § K (ap) — K (a;)isa
field isomorphism. As a consequence, X (ag, a;) is a difference kernel over X.

By Lemma V on page 156 of Cohn (1965), the kernel K (agp, a;) has a principal realization
corresponding to a series of kernels X (ag, a1), KX (ag, a1, a2), . ... We will show that i is a zero of
sat(+). From the construction of the kernel, for any A € A*, we have A(Y) = A(n) = 0. Hence, v
is a zero of the polynomials in A* but does not annul any initials of A*. Then for any A € 4, nisa
zero of 8¥A for any k, since 8 is an isomorphism. Also, 5 does not annul any J € I,. As a consequence,
n € Zero(sat(A)). |

The following example, due to Cohn through private communication, shows that a coherent and
regular chain could have no solutions.

Example4.2. Let Ay = y2 + 1,A; = y1i(x + 1) —y1,As = y3 + 1,Ay = y2(x + 1) + y5, and
A = {A1, Ay, A3, As}. A is coherent and regular. But # is not proper irreducible, since A; — A; =
2 —¥1)(¥2 +y1). We have Zero(sat(4A)) = Zero(+) = Zero(A U {y, —y1HUZ(AU{y, —y1}) = 0.
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4.3. Characteristic sets of reflexive prime ideals

The following example shows that for a coherent and proper irreducible chain +4, sat(+4) does not
necessarily need to be a perfect or prime ideal. It also shows that Lazard’s lemma cannot be generalized
to the difference case.

Example 4.3. LetA = y% + 1and A = A. Then » is coherent and proper irreducible over X = O(x).
We will show that sat(.4) = [A] is not a perfect ideal. SA — A = PQ whereP = y;(x + 1) —y1,Q =
y1(x + 1) + y1. If [A] is a perfect ideal, from PQ € [A], we have

P5Q8(PSQ) = P5%Q5(PQ) € [A].

Hence, P6Q € [A]. By Theorem 4.1, + is a regular chain and rprem(P§Q,A) = 0. But, a direct
computation shows that rprem(P§Q, +) # 0, a contradiction.

In order to describe prime ideals with chains, we introduce the following concept. A proper
irreducible chain .4 is called strong irreducible if for any nonnegative integers h;, Ax,,...h,) is an
irreducible algebraic triangular set.

ey

Theorem 4.3. Let A be a coherent and strong irreducible chain of form (1). Then, sat(A) is a reflexive
prime ideal whose dimension is dim(+A) and whose relative order w.r.t. U is ord ().

Proof. Let P, Q be two r-pols such that PQ € sat(A). By Theorem 3.4, there exist nonnegative integers
hi, ..., hp such that PQ € D = (Awm;,..hp)) * Lag, . hp) 1S an
irreducible algebraic triangular set and hence D is a prime ideal. We thus have P € DorQ € D.In other
words, P € sat(A) or Q € sat(A). Hence, sat(A) is a prime ideal. We still need to show that sat(A) is
reflexive, that is, if SP € sat(A) then P € sat(A). Suppose P ¢ sat(A). By Theorem 3.4, P & (Ap) : L4,.
Since ~p is an irreducible algebraic triangular set, P must be invertible w.r.t. 4p. As a consequence, P
is invertible w.r.t. 4. By Lemmas 3.7 and 4.2, §P is invertible w.r.t. 4 and hence 6P ¢ sat(A), which
contradicts the fact P € sat(A). We proved that sat(.4) is a reflexive prime ideal.

We will prove that U is a complete parameter set of sat(.4), that is sat(4) N K{U} = {0} and
sat(4) N K{U,y;} # {0} for every i. By Theorems 4.1 and 3.3, + is a characteristic set of sat(.4).
Then, sat(4A) N KX{U} = @, since every non-zero r-pol in sat(4A) N K {U} is reduced w.r.t to + and
hence must be zero. If there exists an i, such that sat(4) N KX{U, y;} = {0}, let h = |P(A)| (see (2))
and C = Ao,...0.n.0....0, Where h is at the i-th place. Let Y’ and U’ be the set of all y;(x + j) and uy(x;)
occurringin € and Y’ = Y'U£L (4). By Lemma 3.2, asat(C) is a prime ideal of dimension dim(A) = hin
K (U)[Y"]. On the other hand, asat(C) N K (U)[yio, - - - » ¥i.n] C sat(A)NK (U )[Wio, - - -, Yin] = {0}.
From this, we have dim(asat(C)) > h+ 1, a contradiction. This proves that U is a complete parameter
set of sat(.4). Then, by Theorem IV on page 127 of Cohn (1965), dim(sat(-4)) = dim(4).

The relative order of sat(-4) w.r.t. U is defined to be the number of y;(x + h) which are algebraically
independent module sat(+4) in KX (U){Y} (page 128 of Cohn (1965)). By Lemma 3.3, this is just
the dimension of the algebraic prime ideal asat(4*) in KX (U){Y}, which is |#(4)| = ord(«4) by
Lemma 3.2. |

Conversely, not every characteristic set of a reflexive prime ideal is strong irreducible. For instance,
a characteristic set of [y, (x + 1) 4+ y;(x)] under the variable order y; < y, is not effective and hence
not strong irreducible. But, we have the following result.

Theorem 4.4. Let I be a reflexive prime ideal. We may choose a proper order of variables such that among
the characteristic sets of I under this variable order, there exists one A which is coherent, strong irreducible,
and I = sat(A).

Proof. By Lemma 4.3, for any characteristic set 4 of I, we have I = sat(A). By Theorem 3.3, # is
coherent.

Assume that + is of the form (1). Since [ is a prime ideal, we may choose A; 1 to be irreducible. For
c=1,...,p, let B, = A* N K{U,y1,...,Yc} (Bo = ¥) and n, a generic point for the algebraic
irreducible triangular set B.. Since I is prime, we may choose 4 such that A.; is an irreducible
polynomial in K (9c—1)[Yc (X), ..., Yc(x + f.)], where f. = ord(Ac. 1, y.). It is obvious that the u; and y;
in (1) satisfy the conditions in Lemma 4.5.
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We will show that there exist r-pols P; € X{U,y;},i = 1,...,p satisfying the conditions of
Lemma 4.5 where U = {uy, ..., ug}.

Since I is a prime ideal, there exists a non-zero P; € I; = I N K{U, y;} which is of lowest order
in y; and lowest total degree. P; must be an irreducible r-pol. We will prove that P; is effective in y;
by induction. If P; is not effective in y;, we may assume that P, is effective in one of the u;, say u;.
Otherwise, P is not effective in all the variables P; and hence P; = §Q; for some r-pol Q;. Since
I is reflexive, Q; € I, which contradicts the fact that P; has the lowest order in y;. Suppose that
P;,j = 1,...,i — 1is effective in y; and P; is not effective in y;. Similar to the case of i = 1, we
may assume that P; is effective in one of the u;, say u;. We may exchange u; and y; and treat y; as
a parameter and u; as the leading variable of P;. We choose V = {u,, ..., uq, y;} as the parameter
set. Let Pj’,j =1,...,i— 1be the irreducible r-pols which have the lowest rank and total degree in
I'N X{V,y;} and P/ the irreducible r-pol which has the lowest rank and total degree in I N K{V, u;}.
We will show that Pj/, 1 <j < iiseffective in y; and P/ is effective in u;.

First, P/ is effective in u;. Otherwise, we choose a characteristic set 8 of I N K{V, u;} under the
variable order u, < -+ < uy < y; < u;y. Write P; as an r-pol in u; (x):

P; = Z qul(x)j.
j

By Lemma 4.4, 8p, is an irreducible triangular set and u;(x) does not occur in any polynomial in
8. Then, by Lemma 3.2, prem(P;, 8p;) = 0 implies prem(Qx, Bp,) = 0 and hence Q; € I which
contradicts the fact the P; has the lowest total degree.

Second, for any j, 1 < j < i, we will show that Pj’ is effective in y;. Otherwise, we choose the
characteristic set 8’ of I N K {uy, ..., Ug, ¥i, u1, y;} under the variable orderu, < --- < uy < y; <
¥j < uq. Then, by Lemma 4.4, J‘S’,’,j is an irreducible triangular set. Since Pj’ does not contain y;(x), y;(x)

does not occur in each polynomial in £,’,j. Write P; as a polynomial in y;(x):
P=) Q"
k

Then by Lemma 3.2, prem(P;, i:’,’,j) = 0 implies prem(Qy, £,’Jj) = 0 and hence Q; € I, which
contradicts the fact the P; has the lowest total degree.

In this way, we have selected the P; satisfying the conditions in Lemma 4.5. By Lemma 4.5, 4 is
effective. Together with Lemma 4.4, we know that «# is strong irreducible. |

Lemma 4.3. Let I be a reflexive prime difference ideal, 4 its characteristic set. Then I = sat(A).

Proof. It is clear that I C sat(A). Let P € sat(+). Then, thereisa] € I, such that JP € [A] C I. By
Theorem 3.3 and Lemma 3.7, ] is invertible w.r.t. 4 and hence not in I. Since I is a prime ideal, P € I.

Lemma 4.4. Let | be a reflexive prime difference ideal, A its characteristic set. Then for any nonnegative
integers hy, A,....n,) is algebraic irreducible.

Proof. Otherwise, we have nonnegative integers hy, ..., h, such that Ag, ny i a reducible
algebraic triangular set. By definition, there exist r-pols P and Q which are reduced w.r.t. A, n,)
and with order not higher than those r-pols in A, ..., hp) such that PQ € A, ) C sat(A) = I.
From this we have P € [ or Q € I, which is impossible since P and Q are reduced w.r.t. A. |

,,,,,

Lemma 4.5. Let I be a reflexive prime difference ideal in K{uq,...,uq, y1,...,Yp} such that I N
K{ug, ..., uq} = {0}, foreachy;, I; = I N K{uy, ..., uq, yi} # {0}, and P; € I; a non-zero irreducible
r-pol of lowest order in y; and of lowest total degree. If P; is effective in y; then a characteristic set of I under
the variable order u; < y; <y, < --- <y, is effective.
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Proof. Assume that the characteristic set of I is of form (1). We need only to show that A, ; is effective
in y.. Assume that there is a ¢ such that A, ; is not effective. Write P. as a polynomial in y.(x):

P. = Z Qin(X)i.

Since P, has the lowest order in y., we have ord(P.,y.) = ord(Ac 1,Yc). As a consequence, when
computing prem(P., #Ap,.), all Ac;, i > 1 are not needed. By Lemma 4.4, 4p, is an irreducible algebraic
triangular set and y.(x) does not occur in A ;. Then by Lemma 3.2, prem(P,, Ap.) = 0 implies
prem(Qy, #4p.) = 0 and hence Q, € I which contradicts the fact the P. has the lowest total degree. |

5. A zero decomposition algorithm

We will give an algorithm to decompose the zero set of a finitely generated r-pol systems into the
union of zero sets of regular and proper irreducible chains.

5.1. Effective characteristic sets

Note that an r-pol is called effective if it is effective in its leading variable. A set of r-pols P is called
effective if any r-pol in PP is effective.

Lemma 5.1. Let P be a finite set of r-pols in KX{y1,...,ys} and k;,i = 1, ..., n integers. By a proper
transformation of variables z;(x 4+ k;) = y;(x), there is a set of r-pols P € K{z1, ..., z,} which is effective
and there is a one to one correspondence between the solutions of P and PP.

Proof. First, let us divide P into Py, ..., P, according to their classes. Let h; be the largest one among
the lowest orders of P € P; iny; (denoted by lord(P, y;)). Now the transformation of variables is y;(x) =
zi(x+hiz1+---+hy),i=1,...,n—1andy,(x) = z,(x). Under such a transformation, anr-pol P € P;
becomes P. It is easy to see lord(13, zj) = lord(P, y)) +hjy1+---+hy > lord(P, y)) + hip1 +- - - +h, =
lord(IS, zj),forj = 1,...,i— 1. Since X is inversive, we get an effective r-pol p = s-lordézp
K{z1,...,z,}. We obtain a set of effective r-pols P from P. Ifa = (aq, ..., a,), a; € F is a solution of
PP. Then in the inversive closure of F, let b; = §~("i+1++M)g, 1 < i < nand b, = a,. We can check
thatbh = (by, ..., b,) is a solution of . On the other hand, for any solutionb = (by, ..., b,) of P. Let
a; = shmit+hp, 1 <i < nanda, = b, We getasolutiona = (ay, ...,a,) of P. |

We have the following procedure to find a set of effective r-pols.

Effective(P) Input: a finite set of r-pols P. Output: variables transformation y;(x) = z;(x + k;) and a
set of effective r-pols P.

Begin B
hi:=0,i=1,...,m;P:={};
For P in P do

ifi := cls(P) then h; := max(h;, lord(P, y;));
T:={yix) =z&x+hjp 1+ ---+hy,i=1,...,n}
P := subs(T, P); (Do a variable change as in Lemma 5.1)
For P in P do
let k := cls(P);
P:=pu(s-lordeaop),
return(T, P);
end.
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Example 5.1. Let

i+ D) Fxy1(0), y1 0y (x 4+ 3) + ya(x 4 2),
T2+ 4D + Y1)y (x + 1), y3(x + 3) +y2(0)ys(x + 1)

Thenhy =0, hy = max{2, 1} = 2, h3 = 1L.Letz;(x+2+1) = y1(x), Z2(x+ 1) = y2(x), zZ3(X) = y3(x).
Then

P = z1x+4) +x21(x+ 3),z1(x + 3)zo(x + 4) + z,(x + 3),
T |2+ 5) +z21(x+3)z2(x + 2), z3(x + 3) + 2 (x + Dzz(x + 1)

Hence P = {z;(x+ 1) + (x — 3)z1(0), Z1(0) 22 (x + 1) + 22(x), (X + 3) + 21 (X + D22 (x), z3(x + 2) +
73(X)z3(x)}. Note that each r-pol in P is effective.
It is easy to verify the following properties.

Lemma 5.2. Under the variable transformation y;(x) = z(x + k),i = 1, n, r-pols Ay, Az, P,Q
and chains A, A, in KX{y1, ..., Yn} become the r- polsA1,A2, P, Q and chalns Al, ,A,z in K{z1,...,zn}
respectively. Then, we have A1 < A, Al < Ay AL < Ay = A < Ay, and Zero(P) =
Zero(Q) <= Zero(P) = Zero(Q).

Lemma 5.3. A finite set P of r-pols becomes P by the effective algorithm, the variable transformation is
T={yi(x) = z(x+ k;),i = 1, ..., n}. If A is a characteristic set of P, A becomes 4 under the variable
transformation T. Let A be a characterzstlc set of P. Then A > A

Proof. By Lemma 5.2, A is a chain in K{z1, ..., zx} If A is effective, 4 C P. Hence, it has a higher
or equal rank than that of A. Otherwise, there is an A; € 4 which is not effective, that is, there is an
A € P, t > 0, such that 8'A; = A;. It is clear that A; < A;. Hence #4 > . |

ECharSet(P) Input: a finite set P of r-pols. Output: a variable transformation y;(x) = zi(x + k;), i =
1,..., n, P = Effective(P), and an effective chain 8 which is a characteristic set of P.

Begin
[T, ﬂI;] = Effective(P), 8 = { };
Whlle P #{}do
P =ther- pols in P which are reduced w.r.t. B;
B = BU {one of r-pols with the lowest rank in IP};
return(T, ﬁI;, B)
end.

5.2. A zero decomposition algorithm for difference polynomial systems

A chain A is called a Wu characteristic set of a set P of r-pols if A4 C [P] and for all P € P,
rprem(P, 4) = 0.

Lemma 5.4. Let P be a finite set of r-pols, A = A1, . .., A a Wu characteristic set of P, I; = init(4;), and
J =TI, Ii. Then

Zero(P) = Zero(sat(4)) |_J UL, Zero(P U 4 U {I}})
Zero(P) = Zero(4/]) U UL Zero(P U 4 U {I}}).

Proof. This is a direct consequence of the remainder formula in Lemma 2.5. |
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ECohWuCharSet(P) Input: a finite set P of r-pols. Output: a variable transformation T = {y;(x) =
zi(x+k;),i=1,...,n},an effective r-pol set P’, and a coherent and effective chain 4 C P’ such that

o Zero(P') = Zero([@’) where P = Effective(P) under T.
e Forany P € P/, we have rprem(P, ) = 0. Hence, 4 is a Wu characteristic set of P’

The following algorithm is a modification of a standard algorithm to compute the Wu characteristic
set of a finite polynomials set (Wu, 1984).
Begin
P’ :=P,R := P, T = lis the identity variable transformation;
whileR # { } do
[T, P, A] := ECharSet(P');
R := {rprem(f, B) [f € A(4)} \ {0};
R :=R U {rprem(P, 4) |P € P’} \ {0};
P =P UR;
T =T o T; (compositions of variable transformation))
return(T, P’, A)
end.
In Algorithm ECohWuCharSet(P), A() is the set of A r-pols defined in (6). The r-pols in R are
reduced w.r.t. A by Lemma 2.5. By Lemmas 2.3, 5.2 and 5.3, the rank of « is decreasing after each
iteration. Then by Lemma 2.1, the algorithm terminates.

Lemma 5.5. Let 4 be a Wu characteristic set of a finite set P. If A* is not an algebraic irreducible triangular
set, then we can find Py, P, . .., P, which are reduced w.r.t. A and some initials I; of 4 such that

Zero(P) = U, Zero(P, P;) U UiZero(P, I).

Proof. Denote B = A* = By, ..., Bp. Since A" is not irreducible, by Lemma 3 in Section 4.5 of Wu
(1984), there are Py, . . ., P, which are reduced w.r.t. A* such that
k+1

p
P=[]r"Pr. .. =" QB
i=1 i=1
where [; is the initial of B;. Since 4 is a Wu characteristic set of P, P € [P]. Then Zero(P) =
Zero(P U {P}) = U Zero(P, P;) | J U;Zero(P, I}). |
Now, we can give the Ritt-Wu zero decomposition algorithm.

RittWuDec(P) Input: a finite set P of r-pols. Output: Either Zero(’) = ¢, or a sequence of variable
transformations T; = {yj(x) = z;(x + k;),j = 1,...,t} and a sequence of coherent and proper
irreducible difference chains A; C K{zi1,...,zin},i =1, ..., t such that

Zero(P) = UZero(sat(,fii))
i=1

where P and Ai in KX{zy,...,z,} are obtained from P and +; under the variable transformation
T={yjx) =z(x+k),j=1,...,n}, where kj = max{k;,i=1,...,t}.

Begin
[T, P, A] :=ECohCharSet(P);
If 4 is trivial then return{};
If 4 is proper irreducible then
return({[+, T]} | UiRittWuDec(P' U A U {I;}));
else by Lemma 5.5, we can find P;,i = 1, ..., hand
return(URittWuDec(P' U {F;}) | U;RittWuDec(P’ U {I;}));
end.
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Proof of the correctness of the Algorithm. In algorithm ECohCharSet, since Zero(P') = Zero(IfD)
and A C P, it is clear that if » is trivial Zero(P) = @. Note that « is already coherent. If 4 is
proper irreducible, then we have an output. The correctness of the return value is due to Lemma 5.4
and the fact Zero(P') = Zero(IAP’). If A is not proper irreducible, the correctness of the return
value is due to Lemma 5.5. In all the recursive cases, the added r-pols I; or P; are reduced w.r.t to
. Then by Lemmas 2.3, 5.2 and 5.3, the rank of A obtained from RittWuDec(P’ U 4 U {I;}) or
RittWuDec(P’ U 4 U {P;}) has lower rank. Then by Lemma 2.1, the algorithm terminates. Note that
for each +;, we have a variable transformation T; to ensure that «4; is effective. In order to obtain a
decomposition for P, we need to have a “maximal” variable transformation such that all +; can be
represented explicitly in terms of these variables. |

Example 5.2. Let

P = (ix+ 1) —y1(®)° — 01 x+ 1) +y:1(0)
Py = (1(x+3) —y1(x + 1) xy2(x + 1) + G1(x + 2) — y1(2) * y2(%).
RittWuDec(P,) returns {P;}. RittWuDec(P;, P;) returns two chains:

Py, y1(x +2) — y1(x)
Pi,y1(x+2) = 2y1(x + 1) +y1(x) — 1, P3

where P3 = 2y1(x+1) —2y1(x) +3)y2(x+ 1) + 2y1(x+ 1) — 2y1(x) + 1)y, (x). There is no variables
transformations.

As an application of Ritt—-Wu'’s zero decomposition algorithm, we can solve the membership problem
of perfect difference ideals.

Theorem 5.1. Let P be a finite set of r-pols in K {y1, ..., yn} and the Ritt—-Wu zero decomposition of P is
{[A1,T1], ..., [k, T¢l}. Then Zero(P) = P iffk = 0.

Proof. By Lemma 5.1, P = 0 has solutions iff P = 0 has solutions under a variable transformation.
Now the result is a direct consequence of Theorem 4.2. |

The membership problem of perfect difference ideals can be solved as follows. An r-pol Q € {P} iff
Zero(P U {Qz + 1}) = @ where z is a new variable. Now the problem can be solved with Theorem 5.1.

5.3. Automated proving of certain difference identities

If a sequence of numbers {f;},>0 satisfies a linear homogenous r-pol equation whose coefficients
are algebraic polynomials, it can be regarded as a solution of an r-pol equation under certain initial
values. If the order of the r-pol is k and the initial of the r-pol is not zero, we need only to verify
that fo, f1, ..., fu_1 are zero in order to show that for all i, fi = 0. Algorithms to prove identities of
this type can be found, for instance, in Chyzak and Salvy (1998), Mallinger (1996), Takayama (1990)
and Zeilberger (1990). Since Ritt-Wu'’s zero decomposition algorithm proposed in this paper provides
an elimination tool for non-linear difference equations, it is possible to prove identities for number
sequences defined by non-linear difference equations. We use two examples to show how to prove
difference identities with Ritt—-Wu’s zero decomposition algorithm, given below.

The first example is about Gauss’ hypergeometric function which can be regarded as a power series
solution to the hypergeometric equation

z(l—2)w" +[r—(a+b+ Dz]w' — abw = 0.
It is denoted as F(a, b, ; z) = ZSO ¢z, where ¢, satisfies
nm+1Dn+r)cp —(m+ay(n+b)c, =0, ¢o=1.
To prove

(r—1)F(a,b,r —1;z) —aF(a+ 1,b,1;z) — (r —a— 1)F(a,b,r;z) =0, (12)
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letusdenoteF(a, b, r—1;2z) = Zgo axz*. Then ay satisfies (n+1)(n+r —1)a, 41 — (n+a)(n+b)a, =
0,a0 = 1.Denote F(a+1,b,1;2) = Zg° biz*. Then, by, satisfies (n+ 1) (n+ )by — (n+a+ 1 (n+
b)b, = 0, by = 1. With these notations, identity (12) becomes

Z((r —Day—ab, — (r —a — l)ck)zk =0.
k=0

That is, we need to show: Vk, (r — 1)ay —aby — (r —a — 1)c, = 0. Let

Py =+ 1D)n+r—Dan — (n+a)(n+ b)ay,
P, = (n+1)(n+ )by — (n+a+ 1)(n+ b)by,,
Py = (n+ 1)(n+ r)cppr — (n+ a)(n + b)cy,
Py =h,— (r—1)a, —ab, — (r —a— 1)c,).

Using RittEuDec under the variable order h, < a, < b, < ¢, (in our implementation, the command is
RittWuDec([P1, Py, P3, P4], [hy, ay, by, c;1)), we obtain a trivial chain and a coherent proper irreducible
chain whose first r-pol is:

Ai=b+14+nm+bn+1+a(n+a)h,—2n+r)(n+1) b+ 1+n)
xM+1+a)hp1+M+2)(n+ 1) M+r+1) (+71) hpya.

Since P; are linear, h, satisfies the difference equation A; = 0 of order two. We need only to verify
that hy = hy = 0, then h,, = 0 for any n. It is clear that hy = (r — 1)ag — abg — (r —a — 1)cp =
r—1)—a—(r—a—1)=0,hy =@ —1)a; —ab; — (r —a — 1)c; = 0. We proved the identity.

The second example is to prove the Cassini identity concerning Fibonacci numbers. The Fibonacci
number F, satisfies

Fpy2 —Fip1—F, =0, Fp=0, F =1
We will prove the Cassini identity:
FopoFn —Fry = (D", n=0,1,2,....

The number sequence (—1)" can be represented by difference relations a, . 1 +a, = 0 with initial value
ap = 1.Let Py = Fyyp — Fyp1 — Fo, Py = hy — (FugoFn — FnzH + ay), P3 = an41 + ay. Using RittEuDec
to {P;, P,, P3} under the variable order h,, < a, < F,, we obtain a coherent proper irreducible chain:

hoi1 + hny Guyt + Qn, FaFogr + Fy® — hy — Fog1® + @, Fapz — Fapr — Foe

From the computation procedure, we know that C = h,;1 + h, is a linear combination of Py, P,,
and P; and their transformations. Then h,, satisfies C = 0. Since hg = FFy — Ff +a = 0,
h,, = 0 for any n. Cassini’s identity is proved. In Mallinger (1996), a difference equation of order three
hyys — 2 hpyo — 2 hpy1 + hy, is obtained with linear algebraic tools. In Chyzak and Salvy (1998), the
same difference equation as the one in this paper is obtained with an elimination procedure over Ore
algebras.

6. Conclusion

In this paper, we developed a characteristic set method for nonlinear ordinary difference
polynomial systems. The method could be used to decompose the zero set of a finitely generated
difference polynomial system into the union of the zero sets of coherent and proper irreducible chains.
We further proved that a coherent and proper irreducible chain has the following nice properties: it
is the characteristic set of its saturation ideal and it has at least one solution. These two properties
make it possible to solve the membership problem for perfect difference ideals and to prove difference
identities.

We also established several basic properties of difference chains. In particular, we proved that
a chain is the characteristic set of its saturation ideal iff, it is coherent and regular; a chain is the
characteristic set of a reflexive prime ideal iff, it is coherent and strong irreducible. This last criterion
gives an intrinsic criterion for a chain to be the characteristic set for a reflexive prime ideal.
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