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Collision and intersection detection of surfaces is an important problem in computer
graphics and robotic engineering. A key idea of our paper is to use the bracket method
to derive the necessary and sufficient conditions for the collision of two ruled surfaces.
Then the numerical intersection curve can be characterized. The cases for two bounded
ruled surfaces are also discussed.
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1. Introduction

Detecting collision of geometric objects has very important application in computer graphics, robotic engineering and
computer animation. Some researchers have realized and studied the problem. Boyse (1979) discussed the detection of in-
tersections among objects in fixed positions and collisions among objects moving along specified trajectories. Moore and
Wilhelms (1988) divided the problem to a kinematic problem and a dynamic one. An algorithm for detecting intersection
between n spheres was presented in Hopcroft et al. (1983). For high precision, the determining conditions for the relation-
ship of geometric models are studied. For an instance, Wang et al. (2001) gave an algebraic condition for the separation of
two ellipsoids.

The bracket can be defined as an algebraic tool to represent projective invariants symbolically (Hodge and Kromann,
1953). In this paper, we give the necessary and sufficient conditions for positional relationship of two space lines and
two space line segments by bracket method. The representation with brackets offers a simple description for geometric
relationship. That is to say, we can directly judge the intersection or the separation according the symbolic formula given in
this paper. An advantage of our method is avoiding the redundant discussion and increasing the performance efficiency.

Rational ruled surfaces are an important class of algebraic surfaces which is widely used in computer aided geometry
design. According to Chen (2003) and Li et al. (2008), people can find a simplified parametrization from a given ruled
surface. In further considerations, it is necessary to determine the geometric relationship of two surfaces, including collision
detection and intersection curve analysis. Heo et al. (1999) discussed the intersection of two parametric ruled surfaces,
their idea is straightforward but the computation is a little complicated. Fioravanti et al. (2006) gave a way to compute the
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intersection by implicitizing one ruled surface and the topology analysis of a planar curve. The implicitization of the surface
was based on the resultant and greatest common division (GCD) computations.

As an application of the bracket method, this paper discusses the positional relationship of two ruled surfaces. Based on
some results on lines and line segments, we present the conditions for the collision of two ruled surfaces. We also give a
characterization of intersection expressions with two parameters. Some conditions we obtain are similar to that in Heo et al.
(1999), since we focus on the same problem. However, we simplify the analysis by dividing the intersection into two parts:
overlapping rule lines and ordinary intersection points. And we need not to consider the degenerate cases which were
discussed in Heo et al. (1999). The degree of the intersection expression is also decreased by setting certain specialized
auxiliary points. Once the expression of the intersection is given, we can compute the numerical intersection using the
typical process in Fioravanti et al. (2006) and we take a new algorithm for planar curves topology analysis from Cheng et
al. (2009). But we do not need the implicitization process based on resultant and GCD computations as in Fioravanti et al.
(2006). Furthermore, we discuss the conditions for collision of two ruled surface segments. This situation has more practical
applications and the methods in Heo et al. (1999), Fioravanti et al. (2006) cannot be generalized to cover this problem
easily. We reduce the collision detection to solving real solutions of a semi-algebraic system (SAS). If the time parameter is
included, we can find the time interval of collision by solving SAS and quantifier elimination.

The rest of this paper is organized as follows. In Section 2, some notations and preliminaries are introduced. In Section 3,
we give the conditions for characterizing positional relationship of two lines and line segments. In Section 4, we discuss
the conditions for the intersection of two ruled surfaces and compute the numerical intersection. In Section 5, collision
detection of two ruled surface segments are discussed. In Section 6, we summarize the paper.

2. Preliminaries

In this section, we introduce the notations needed in our discussion. Let R[u] be the ring of polynomials in u over the
field of real numbers, and R[u]4 the set of column vectors of size four whose entries belong to R[u]. A rational ruled surface
is defined as a bi-degree (n,1) tensor product rational surface:

(x, y, z)T = P(u, s) = P1(u)(1 − s) + P2(u)s, (2.1)

where Pi(u), i = 1,2, are rational curves, called the directrices of P(u, s), and P1 �= P2. We assume that the rational
parametrization (2.1) is nontrivial, that is, it defines a surface f (x, y, z) = 0.

For a fixed u = u0, P(u0, s) = P1(u0)(1 − s) + P2(u0)s is a ruling line of the ruled surface. If another ruled surface
Q(v, t) = Q1(v)(1 − t) + Q 2(v)t in the form of (2.1) intersects with P(u, s), then there exist u0 and v0 such that two ruling
lines P(u0, s) and Q(v0, t) are intersected. Then the problem of computing intersection of two ruled surfaces is reduced to
that of two moving lines.

We will apply the bracket method to analyze the intersection of lines effectively.

Definition 1. In Rn , n + 1 points x1, . . . ,xn+1 with the coordinates form xi = (xi1, . . . , xin) for i = 1, . . . ,n + 1, the bracket
[x1 . . . xn+1] is defined as follows:

[x1 . . . xn+1] =

∣∣∣∣∣∣∣∣∣∣

x11 . . . x(n+1)1

...
. . .

...

x1n . . . x(n+1)n

1 . . . 1

∣∣∣∣∣∣∣∣∣∣
.

If the number of the points is m + 1 < n + 1, then they will determine a hyperplane with dimension less than m + 1. In
this situation, we will define the bracket of these points in a hyperplane of dimension m.

Definition 2. For a hyperplane H ⊂ Rn , let its dimension be m, where m < n. Then there exist an n × n orthogonal matrix
O H and a vector tH ∈ Rn , for any m + 1 points x1, . . . ,xm+1 ∈ H with the coordinates form xi = (xi1, . . . , xin)T where
i = 1, . . . ,m + 1, such that

O H

⎛
⎜⎝

x11 . . . x(m+1)1

...
. . .

...

x1n . . . x(m+1)n

⎞
⎟⎠ + (tH , . . . , tH ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
11 . . . x′

(m+1)1

...
. . .

...

x′
1m . . . x′

(m+1)m

0 · · · 0
...

. . .
...

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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In this case, the bracket [x1 . . . xm+1] is defined as follows:

[x1 . . . xm+1] =

∣∣∣∣∣∣∣∣∣∣

x′
11 . . . x′

(m+1)1

...
. . .

...

x′
1m . . . x′

(m+1)m

1 . . . 1

∣∣∣∣∣∣∣∣∣∣
.

As well known, for any n + 1 points x1, . . . ,xn+1 ∈ Rn and their convex polytope Q(x1, . . . ,xn+1) in Rn , the determinant
|x̄1, . . . , x̄n+1| = n!V (Q) where V (Q) is the signed volume of Q and x̄i = (xi1, . . . , xin,1)T is the homogeneous form of xi .
Then det(x̄1, . . . , x̄n+1) = 0 if and only if x1, . . . ,xn+1 lie in a hyperplane of dimension less than n.

In Definition 2, the bracket is defined as the signed volume of the transformed points in Rn . Since the transformation
determined by O H and tH is a rigid transformation, the absolute value of volume is unchanged under this transformation.
It means that the bracket gives the signed volume of their convex polytope can only change its sign with the different
selection of O H and tH . Notice that, any linearly independent points x1, . . . ,xn define a hyperplane H passing through
these points. Then we can give the following lemma.

Lemma 1. A point xn+1 ∈ Rn is on H if and only if [x1 . . . xnxn+1] = 0. For two points xn+1 and xn+2 ∈ Rn not on H, [x1 . . . xnxn+1]
and [x1 . . . xnxn+2] have a different sign when xn+1 and xn+2 are in the different half space divided by H, otherwise, they have the
same sign.

That is to say, the position relationships do not depend on the selection of O H , tH . Furthermore, for any points
x1, . . . ,xn , let their hyperplane passing through them be H . Once x1, . . . ,xn are selected and their permutation σ is given,
[xσ(1) . . . xσ(n)xn+1] and [xσ(1) . . . xσ(n)xn+2] have the same sign if xn+1 and xn+2 are in the same half space divided by H ,
and vice versa.

Definition 3. We define a sign function

δ : R → {−1,0,1},
a → aδ

where aδ is the sign value of a.

Since the problem is focused in R3, throughout the paper we assume that a = (ax,ay,az)
T ∈ R3 and its homogeneous

form is ā = (ax,ay,az,1)T . By Definition 1 of bracket, the following lemma is true.

Lemma 2. [p1p2q1q2] = 0 if and only if p1,p2,q1 and q2 are coplanar.

By Definition 2, generally, one need to find the transformation matrices O H and T H . The following two lemmas give
alternative methods to compute their brackets in R3 respectively, which can avoid transforming the coordinates from R3 to
R2 or R.

Lemma 3. For any a,b, c ∈ R3 not collinear and a point d not on the plane abc, we have

[abc] = 1/hd[abcd],
where hd is the signed distance from point d to plane abc.

Proof. Since a,b, c are not linear, one has [abc] �= 0. By Definition 2, under some matrices O H and tH , the transformed
coordinates of points a,b, c are (a′

x,a′
y,0)T , (b′

x,b′
y,0)T and (c′

x, c′
y,0)T . Then

[abc] =
∣∣∣∣∣∣

a′
x b′

x c′
x

a′
y b′

y c′
y

1 1 1

∣∣∣∣∣∣ = 2Sabc,

where Sabc is the signed area of the triangle composing of points a,b and c. And one has |Sabc| = ‖(b − a) × (c − a)‖. On
the other hand,

[abcd] =

∣∣∣∣∣∣∣∣∣

ax bx cx dx

ay by c y dy

az bz cz dz

1 1 1 1

∣∣∣∣∣∣∣∣∣
= 6V abcd,
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where V abcd is the signed volume of the tetrahedron composing of points a,b, c,d. Since V abcd = 1
3 hd Sabc , where hd is the

signed distance from point d to plane abc. Obviously,

[abc] = 1

hd
[abcd]. �

Actually, if [abc] = 0, then a,b, c are collinear. We define hd to be the signed distance of an orthogonal line segment
from point d to line abc. Use the notation above, we have Sabc = 0 and V abcd = 0, hence the lemma is still true with the
same formula.

Lemma 4. If [p1p2q1] and [p1p2q2] are zeros simultaneously, then for any a,b ∈ {p1,p2,q1,q2},

[ab] = 1

λ(a,b)

(∑
(au − bu)

)δ|a − b|, u ∈ {x, y, z},

where λ is the direction sign function of two points. Letting the orientation of vector −−−→p2p1 to be positive, we have λ(p1,p2) = (p1x +
p1y + p1z − p2x − p2y − p2z)

δ . Otherwise, λ(p1,p2) = (p2x + p2y + p2z − p1x − p1y − p1z)
δ .

Proof. From [p1p2q1] = [p1p2q2] = 0 and hence [p1p2q1q2] = 0, we know that the four points pi,qi, i = 1,2, are collinear.
According to the definition of bracket, [ab] is the directional distance between a and b. In other words,

[ab] = 1

λ(a,b)

( ∑
u∈{x,y,z}

(au − bu)

)δ

|a − b|. �

3. Brackets for lines and line segments

In application of engineering, curves and surfaces in three-dimensional Euclid space are of particular interest. In this
section, we use the bracket algebra method to characterize the position relationship of two lines and two line segments
respectively.

3.1. Two space lines

Let P and Q be two space lines defined by p1,p2 and q1,q2 respectively. Then we have the following lemmas.

Lemma 5. Two space lines P and Q have only one intersection point if and only if [p1p2q1q2] = 0 and [p1p2q1] �= [p1p2q2].

Proof. By Lemma 2, the two lines are coplanar. Note that [p1p2q1] = [p1p2q2] if and only if P and Q are parallel or overlap
each other. The conclusion follows. �
Lemma 6. Two space lines P and Q overlap with each other if and only if [p1p2q2] = [p1p2q1] = 0.

Proof. The lemma follows from the linear independence of three vectors. �
Theorem 1. Two space lines P and Q intersect if and only if either [p1p2q1q2] = 0 with [p1p2q1] �= [p1p2q2], or, [p1p2q1] =
[p1p2q2] = 0.

Proof. It can be summarized by Lemma 5 and Lemma 6. �
From Theorem 1, we get the following formula of the intersection points.

Theorem 2. Suppose that two space lines P and Q intersect. If [p1p2q1] �= [p1p2q2], then they have only one intersection point i of
the form

i = [p1p2q2]q1 − [p1p2q1]q2

[p1p2q2] − [p1p2q1] .

Otherwise if [p1p2q1] = [p1p2q2] = 0, then the intersection is the line P .
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Proof. In R3, for the plane H defined by p1,p2,q1,q2, by Definition 2, there exist a 3 × 3 orthogonal matrix O H and a
3 × 3 matrix tH , such that

O H

⎛
⎝

p1x p2x q1x

p1y p2y q1y

p1z p2z q1z

⎞
⎠ + (tH , tH , tH ) =

⎛
⎝

p′
1x p′

2x q′
1x

p′
1y p′

2y q′
1y

0 0 0

⎞
⎠ .

Since [p1p2q1q2] = 0, we have O H (q2x,q2y,q2z)
T + tH = (q′

2x,q′
2y,0)T . In H ⊂ R2, Let p′

1 = (p′
1x, p′

1y)
T , p′

2 = (p′
2x, p′

2y)
T ,

q′
1 = (q′

1x,q′
1y)

T , q′
2 = (q′

2x,q′
2y)

T . By Grassmann–Cayley algebra (Hodge, 1952), the intersection point i′ of p′
1p′

2 and q′
1q′

2
can be regarded as the wedge product of p′

1p′
2 and q′

1q′
2:

i′ = p′
1p′

2 ∧ q′
1q′

2.

Expand the above expression with Shuffle Formula (Li and Wu, 2003), we have

i′ = [p′
1p′

2q′
2]q′

1 − [p′
1p′

2q′
1]q′

2

[p′
1p′

2q′
2] − [p′

1p′
2q′

1]
. (3.1)

Notice that

[p1p2q1] = δ1(O H )
[
p′

1p′
2q′

1

]
, [p1p2q2] = δ2(O H )

[
p′

1p′
2q′

2

]
,

where δ1(O H ) and δ2(O H ) are sign functions with value −1 or 1 determined by O H .
If q1 and q2 are (not) in the same half plane divided by p1p2, then q′

1 and q′
2 are (not) in the same half plane divided

by p′
1p′

2 with the rigid transformation defined by O H and tH . Assume that [p1p2q1] and [p1p2q2] are nonzero, according to
Lemma 1, δ1(O H ) = δ2(O H ). It means that we can rewrite the intersection formula (3.1) as

i′ = [p1p2q2]q′
1 − [p1p2q1]q′

2

[p1p2q2] − [p1p2q1] .

Since

O H q1 + tH =
(

q′
1

0

)
, O H q2 + tH =

(
q′

2

0

)
,

we have

O H i + tH =
(

i′

0

)
.

It follows that the intersection formula i can be obtained. And it is the trivial case for one of [p1p2q1] and [p1p2q2] is
zero. �
3.2. Line segments

We now consider the geometric relationship of the two space line segments bounded by p1,p2 and q1,q2 respectively.

Lemma 7. If [p1p2q1q2] �= 0, line segments p1p2 and q1q2 are separated.

Lemma 8. If [p1p2q1q2] = 0, [p1p2q1] and [p1p2q2] are not both zeros, then line segments p1p2 and q1q2 are separated if and only
if

[p1q1q2]δ[p2q1q2]δ = 1 or [q1p1p2]δ[q2p1p2]δ = 1.

Proof. Clearly, line segments p1p2 and q1q2 are coplanar. They are separated if and only if points p1 and p2 are on the
same side of line segment q1q2, or, points q1 and q2 are on the same side of line segment p1p2. The latter condition is
equivalent to [p1q1q2]δ[p2q1q2]δ = 1, or, [q1p1p2]δ[q2p1p2]δ = 1, respectively. �
Lemma 9. If [p1p2q1] and [p1p2q2] are zeros simultaneously, line segments p1p2 and q1q2 are separated if and only if

∣∣[p1q1]δ + [p1q2]δ + [p2q1]δ + [p2q2]δ
∣∣ = 4.
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Table 1
Intersection of line segments.

The necessary and sufficient condition The overlap line segment

|[p1q1]| + |[q1q2]| + |[q2p2]| = |[p1p2]|
or q1q2

|[p1q2]| + |[q2q1]| + |[q1p2]| = |[p1p2]|
|[q1p1]| + |[p1p2]| + |[p2q2]| = |[q1q2]|

or p1p2

|[q1p2]| + |[p2p1]| + |[p1q2]| = |[q1q2]|
|[p2q1]| + |[q1p1]| + |[p1q2]| = |[p2q2]| p1q1

|[p2q2]| + |[q2p1]| + |[p1q1]| = |[p2q1]| p1q2

|[p1q1]| + |[q1p2]| + |[p2q2]| = |[p1q2]| p2q1

|[p1q2]| + |[q2p2]| + |[p2q1]| = |[p1q1]| p2q2

Proof. Clearly, line segments p1p2 and q1q2 are collinear. Then they are separated if and only if the four brackets: [p1q1],
[p1q2], [p2q1], and [p2q2] have the same sign value. Thus, the equality |[p1q1]δ +[p1q2]δ +[p2q1]δ +[p2q2]δ | = 4 holds. �

Conversely, we give the conditions for two line segments to intersect with each other.

Lemma 10. The two line segments intersect at a point if and only if [p1p2q1q2] = 0, [p1p2q1] �= [p1p2q2], [p1q1q2]δ[p2q1q2]δ ∈
{0,−1} and [q1p1p2]δ[q2p1p2]δ ∈ {0,−1}.

Lemma 11. The two line segments overlap if and only if [p1p2q1q2] = 0, [p1p2q1] = [p1p2q2] = 0 and |[p1q1]δ + [p1q2]δ +
[p2q1]δ + [p2q2]δ | < 4.

We can now consider intersection of two line segments.

Theorem 3. Suppose that line segments p1p2 and q1q2 intersect. If [p1p2q1] �= [p1p2q2], then they have only one intersection point

[p1p2q2]q1 − [p1p2q1]q2

[p1p2q2] − [p1p2q1] .

One can find that Theorem 3 is similar to Theorem 2 in intersection formula but different with intersection conditions.

Theorem 4. Suppose that line segments p1p2 and q1q2 intersect. If [p1p2q1] = [p1p2q2] = 0, then their intersection are listed in
Table 1.

Proof. Obviously, p1, p2, q1 and q2 are collinear. Without loss of the generality, we only discuss the case in which the
intersection is a line segment q1q2. We see that q1 and q2 are all inside the line segment p1p2 in this case, which indicates
|[p1q1]|+|[q1q2]|+|[q2p2]| = |[p1p2]| or |[p1q2]|+|[q2q1]|+|[q1p2]| = |[p1p2]|. The other cases can be proved similarly. �

Bracket method provides a mathematical formulation for geometric relationship. This leads to useful symbolic conditions
in determining the intersections of two line segments. The given formulas can be easily used and checked in programs,
furthermore, they also simplify computations by bringing algebra to bear on geometry.

4. Collision detection and intersection curve

Now we apply the results in previous sections in the collision detection for two ruled surfaces.

4.1. Condition for collision

Consider the two ruled surfaces mentioned in Section 2:

P(u, s) = P1(u)(1 − s) + P2(u)s,

Q(v, t) = Q1(v)(1 − t) + Q 2(v)t. (4.1)

Then (4.1) can be regarded as two moving lines defined by {P1(u),P2(u)} and {Q1(v),Q 2(v)} with parameters u and v
respectively. According to the discussion in Section 3, �(u, v) = [P1(u)P2(u)Q1(v)Q 2(v)] having real solutions is the nec-
essary condition for the two surfaces to intersect. Here Pi and Q i should be column vectors, for brevity, we write them in
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row form in the following paper without the transposing mark. Under this condition, the two moving lines intersect with
each other in two cases. Firstly, the intersection has overlapping lines. Then there exist real number pairs (u, v) such that
�1(u, v) = 0 and �2(u, v) = 0, where

�1 = [
P1(u)P2(u)Q1(v)

]
and �2 = [

P1(u)P2(u)Q 2(v)
]
.

Similarly, we set �3 = [P1Q1Q 2] and �4 = [P2Q1Q 2]. Secondly, there exist real number pairs (u, v) such that the intersec-
tion curve consisting of the ordinary intersection points of two lines, that is, �1(u, v) �= �2(u, v). According to Theorem 1,
we have

Theorem 5. Two ruled surfaces (4.1) have real intersection if and only if the following two sets are not both empty,

S1 = {
(u, v) ∈ R2

∣∣ �1(u, v) = �2(u, v) = 0
}
,

S2 = {
(u, v) ∈ R2

∣∣ �(u, v) = 0, �1(u, v) �= �2(u, v)
}
.

In Theorem 5, S1 and S2 correspond to the overlapping intersection and the ordinary intersection respectively.
The bracket �1(u, v) of three points may be complicated. But we can use Lemma 3 to simplify this problem by com-

puting �̃1 = [P1P2Q1D] where D is a point not on the plane P1P2Q1. Since the plane has two parameters, it is difficult
or impossible to fix a constant point always not in the plane with parameters. Alternatively, we can fix four non-coplanar
constant points Di, i = 1, . . . ,4, then these points cannot be coplanar with P1,P2 and Q 2 simultaneously. And it is not
difficult to prove the following proposition.

Proposition 1. Let �̃1,i = [P1P2Q1Di], then �1(u, v) = 0 if and only if �̃1,i(u, v) = 0, i = 1, . . . ,4.

Similarly, �2(u, v) = 0 if and only if �̃2,i = 0, i = 1, . . . ,4, where �̃2,i = [P1P2Q 2Di]. In the computation, we select
four non-coplanar constant points in homogeneous form D̄1 = (0,0,0,1)T , D̄2 = (0,0,1,0)T , D̄3 = (0,1,0,0)T and D̄4 =
(1,0,0,0)T . Then [abcD] = det(ā, b̄, c̄, D̄), where a,b, c ∈ {P1,P2,Q1,Q 2}.

4.2. Numerical intersection curve

Finding numerical intersection curves is a necessary task in computer aided design and computer numerical control. It
has been proved in Heo et al. (1999) that if two ruled surfaces overlap in a two-dimensional subset, then each of them
must be a plane or a quadric. Here, we assume that the intersection is not a two-dimensional subset, which means that S1
has only finite elements.

According to the above discussion, we divide the intersection into two parts. One part consists of the overlap lines
P1(u)(1 − s) + P2(u)s, u ∈ S1. Another part consists of ordinary intersection points, by Theorem 2, the intersection is

1

�2 − �1
(�2Q1 − �1Q 2), (u, v) ∈ S2. (4.2)

In numerical computation, by Proposition 1, �i can be replaced by the simpler expressions �̃i,k for i = 1,2 and k ∈
{1,2,3,4}. We give an example to illustrate the process.

Example 1. Consider two ruled surfaces

P(u, s) = P1(u)(1 − s) + P2(u)s,

Q(v, t) = Q1(v)(1 − t) + Q 2(v)t,

where

P1 =
(

1 − u2

1 + u2
,

2u

1 + u2
,1

)
, P2 =

(
2(1 − u2)

1 + u2
,

4u

1 + u2
,2

)
,

Q1 =
(

1 − v2

1 + v2
,

2v

1 + v2
,1

)
, Q 2 =

(
1 − v2

1 + v2
,

2v

1 + v2
+ 1,2

)
.

P is a cone and Q is cylinder (see Fig. 1), and there is a generator missing in each parametrization, corresponding to
the limits u → ∞ and v → ∞, respectively. One can compute the condition functions �, �2

1 and �2
2, here |�1|, |�2| are

computed by the formula ‖(b − a) × (c − a)‖. We then give the numerator of condition equations, denoted by Numer(·),
since their denominators are positive definite. Then
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Fig. 1. A cone and a cylinder. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Numer(�) = −2(−1 + u)(v − 1)(v − u),

Numer
(
�2

1

) = (
2u2 v2 + v2 + 2uv + 2 + u2)(v − u)2,

and Numer(�2
2) = 8u4 v + 11u4 + 3v4u4 + 18v2u4 + 8v3u4 − 16u3 v2 − 8vu3 − 24u3 v3 − 4u3 − 12u3 v4 + 4u2 v2 + 14v4u2 +

14u2 − 12u − 24uv − 8uv3 − 4uv4 − 16uv2 + 3 + 8v + 11v4 + 8v3 + 18v2.

Consider S1, it is now the real intersection points of two planar curves Numer(�2
1) = 0 and Numer(�2

2) = 0. S1 can only
have finite real points by our assumption of the two ruled surfaces do not overlap in a two-dimensional subset. Actually, one
can find that S1 = {(1,1)} using resultant computation. On the other hand, by Proposition 1, we can decrease the equation
degrees in S1. Compute {�̃1,i}4

i=1 and get their numerators as {0, −(2(uv − 1))(v − u), (2(v − u))(u + v),−(2(uv + 1))(v −
u)}. Similarly, the numerators of {�̃2,i}4

i=1 are {0, 1 + v2 + u2 + u2 v2 − 4u − 4uv2 + 2v + 2vu2, 3v2 − u2 v2 + 1 − 3u2, (1 +
v)(−2uv + vu2 − v + u2 − 1 + 2u)}. The same set S1 = {(1,1)} can be computed from the polynomial system with much
lower degree.

Up to now, we find the overlapping intersection lines are

P1(1)(1 − s) + P2(1)s = (0, s + 1, s + 1),

which is the tangent line of the two ruled surfaces (the black line in Fig. 1).
Another part of ordinary intersection points is given by (4.2). Here, to obtain the intersection expression with lower de-

gree, we replace {�1,�2} by {�̃13, �̃23} which is the simplest nonzero pair of {�̃1k, �̃2k}, k = 1 . . . 4. Then the intersection
curve is

I(u, v) = 1

�̃23 − �̃13
(�̃23Q1 − �̃13Q2), (u, v) ∈ S2,

=
(

− (v − 1)(1 + v)

(1 + v2)
,

2(v − 1)(v + u2)

(−1 + u)(1 + u)(1 + v2)
,

(1 + u2)(v − 1)(1 + v)

(−1 + u)(1 + u)(1 + v2)

)
, (u, v) ∈ S2,

where

�̃13 = 2(v − u)(v + u)

(1 + u2)(1 + v2)
, �̃23 = 3v2 − u2 v2 + 1 − 3u2

(1 + u2)(1 + v2)
.

Considering the parameter set S2, we have

S2 = {
(u, v)

∣∣ �(u, v) = 0, �1(u, v) �= �2(u, v)
}

= {
(u, v)

∣∣ �(u, v) = 0
} \ {

(u, v)
∣∣ �1(u, v) = �2(u, v)

}
= {

(u, v)
∣∣ (1, v), (v, v), (u,1)

} \ {
(u, v)

∣∣ (1, v)
}

= {
(u, v)

∣∣ (v, v), (u,1)
} \ {

(u, v)
∣∣ (1,1)

}
.

Substitute two topology set of S2 into I(u, v) to get

I1(v) =
(

− v2 − 1

1 + v2
,

2v

1 + v2
,1

)
, I2(u) = (0,0,0).

Then I1 is a circle intersection curve (see Fig. 1, red circle without the points (0,1,1) included in the overlap segments)
and I2 is apex of the cone (see Fig. 1, blue point).
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Fig. 2. Two cylinders. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

This example is also illustrated by Heo et al. and Fioravanti et al. The degree of the intersection expression in Heo et
al. (1999) is (3,2) w.r.t. (u, v), while ours is (2,2). After substituting Q into the implicit equation of P, the (v, t)-plane
curve implicit equation G(v, t) = t(1 + v2)(v − 1) = 0 is proposed in Fioravanti et al. (2006). The line t = 0 corresponds
to the points in the intersection circle. The line v = 1 corresponds to the common generator of the cone and the cylin-
der.

Considering in the preimage (u, v)-space, �1(u, v) = 0 and �2(u, v) = 0 define two planar curves. Then for the intersec-
tion of overlapping lines, we can compute S1 by finding numerical real intersection points of these two planar curves. But
if �1(u, v) = �2(u, v), then the situation is a degenerated case mentioned in Heo et al. (1999) and the general procedure
proposed there does not apply to this case. The following example shows that we can deal with this case by Proposi-
tion 1.

Example 2. Considering the two cylinders in Fig. 2 as

P(u, s) =
(

1 − u2

1 + u2
,

2u

1 + u2
,0

)
(1 − s) +

(
1 − u2

1 + u2
,

2u

1 + u2
,1

)
s,

Q(v, t) =
(

1 − v2

1 + v2
− 1,

2v

1 + v2
,0

)
(1 − t) +

(
1 − v2

1 + v2
− 1,

2v

1 + v2
,1

)
t.

Then we have � ≡ 0 and

Numer
(
�2

1

) = Numer
(
�2

2

) = v2u2 + 9v2 − 8uv + 1 + u2.

Obviously, S2 = ∅ and that means two cylinders only have overlap lines if they intersect. But it is not obviously to determine
the real solutions of

S1 = {
(u, v)

∣∣ v2u2 + 9v2 − 8uv + 1 + u2 = 0
}
.

Fortunately, using Proposition 1, it is simple to compute S1 from the real set formed by �̃1,i(u, v) = 0 and �̃2,i(u, v) = 0,
i.e., S1 = {(u, v) | −2v(1 − u2 + 2uv) = 0, −2(uv − 1)(−u + v) = 0, 1 + 3v2 − u2 + v2u2 = 0, 0 ≡ 0}. Solving this system,
we obtain S1 = {(√3,

√
3/3),−(

√
3,

√
3/3)} (corresponding to the two overlap intersection lines (red) in Fig. 2).

In Fioravanti et al. (2006), the implicit equation and the parameter planar equation are computed as x2 + y2 = 1 and
G(v, t) = v4 − 2v2 − 3 = 0, while v = ±√

3 are corresponding to a generator common to both cylinders.

There are two main steps in computing the intersection curves consisting of ordinary intersection points. Firstly, we give
the topology graph G of S2 which is based on the previous work (Gonzalez-Vega and Necula, 2002; Cheng et al., 2009) of
determining the topology of planar curves. We refer to compute the topology graph of S2 using the method in Cheng et al.
(2009) by removing �1(u, v) − �2(u, v) = 0 from �(u, v) = 0. Secondly, we give the numerical points of the intersection
corresponding to G . This process is similar to computing the intersection curve of a parametric surface and an implicit
surface (Fioravanti et al., 2006), but we do not need to implicitize the ruled surfaces. Finally, we summarize our process as
an algorithm.
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Fig. 3. Numerical intersection curve of two ruled surfaces.

Algorithm 1 (Numerical intersection algorithm).
Input: Ruled surfaces P(u, s) and Q(v, t).
Output: Their numerical intersections.
Steps:

1. Compute �(u, v),�1(u, v) and �2(u, v).
2. Compute the two intersection parts:

overlap lines P(u, s), u ∈ S1 and output these lines;
intersection curves 1

�2−�1
(�2Q1 − �1Q 2), (u, v) ∈ S2.

3. Determine the topology graph G of S2.
4. Output numerical curve intersection according to G .

In the numerical intersection algorithm, we replace �1(u, v) and �2(u, v) by several lower degree functions �̃1i(u, v)

and �̃2i(u, v) respectively. And actually, in the computation, we always represent the intersection with

1

�̃2k − �̃1k
(�̃2kQ1 − �̃1kQ 2), (u, v) ∈ S2,

where �̃1k(u, v) and �̃2k(u, v) are not both zeros. It is also simpler to find the real solutions of �̃1,i(u, v) = �̃2,i(u, v) =
0, i = 1, . . . ,4.

Example 3. Here we give another example concisely. The two ruled surfaces (Fioravanti et al., 2006) are given as

P(u, s) =
(

s + 1,−−s + u2s − 60 + 60u2

60(1 + u2)
,

u(s + 60)

30(1 + u2)

)
,

Q(v, t) = (−vt/10 + v,−vt − 6v3 + 11v2 − 6v + v4, t).

Then the condition functions can be found and the only the numerator is given Numer(�) = 295 − 295u2 + 1800v3 +
1800v3u2 − 3300v2 − 3300u2 v2 + 590vu + 1805v + 1795vu2 − 300v4 − 300v4u2 + 6v4u − 11v3u + 16uv2 − v5u,

Numer(�1) = v(−1 + v)(v − 2)(v − 3)u,

Numer(�2) = u2 − 12v3u + 22uv2 − 14vu + 2v4u − 1.

Following Algorithm 1, one can get the numerical intersection as the following Fig. 3. In the computation, the process of
steps 3, 4 also has been shown in Fioravanti et al. (2006) similarly.

5. Collision detection with boundary condition

In practice, the collision detection of the surface segments has more application. This problem becomes more difficult
but necessary when the time or position parameters are involved. In this section, we try our method on this problem.

Since a ruled surface is defined as P(u, s) = P0(u)(1 − s) + P1(u)s, the natural boundaries are the directrices P0(u) and
P1(u) if we restrict s ∈ [0,1]. Similarly, Q(v, t) is bounded with t ∈ [0,1]. Then we can regard the ruled surfaces with
boundary as a pencil of line segments. According to Lemma 10, the two ruled surfaces intersect with points if and only if
� = 0,�1 �= �2, �1�2 � 0 and �3�4 � 0. We then write the conditions as a semi-algebraic system (Yang and Xia, 2005):

S1:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(u, v) = 0,

�1(u, v)�2(u, v) � 0,

�3(u, v)�4(u, v) � 0,

�1(u, v) − �2(u, v) �= 0.
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The system S1 has real solutions if and only if the two ruled surfaces collide. Here, �i are the areas with directions
for i = 1, . . . ,4. If their degrees are high, we can replace �i by �̃i j , which gives us semi-algebraic systems

S1 j:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(u, v) = 0,

�̃1 j(u, v)�̃2 j(u, v) � 0,

�̃3 j(u, v)�̃4 j(u, v) � 0,

�̃1 j(u, v) − �̃2 j(u, v) �= 0

for j = 1, . . . ,4. We see that S1 = ⋂4
j=1 S1 j .

In engineering applications, we are interested in moving objects such as arms of the robot. This means that one or two
of ruled surfaces are moving with parameters. In the following example, we will use a procedure tofind in a Maple
package DISCOVERER (Xia, 2007) to solve the SAS with parameters. This package can be downloaded from http://www.is.
pku.edu.cn/~xbc/discoverer.html.

For a given parametric semi-algebraic system S and an integer N , the function tofind(S, [X], [Y], N) is used to deter-
mine the necessary and sufficient conditions on Y such that the number of distinct real solutions X of S equals N with
parameters Y. Here, N can also be replaced by a positive range as [N1, N2]. The output of tofind is a quantifier-free
formula Φ in parameters and border polynomials BP(Y) which means that, provided BP(Y) �= 0, then the necessary and
sufficient condition for S to have exactly N real solutions if Φ holds, assuming the parameters are not on boundary. To con-
sider the parameter on the boundary BP(Y) = 0, one should add the border polynomial as equations to S and call tofind
repeatedly.

Example 4. Let P(u, s; T ) = P1(u; T )(1 − s) + P2(u; T )s, s ∈ [0,1] be a ruled surface segment with a parameter T such that
P move along a parabola, where

P1 =
(

−1,
1 − u2

1 + u2
− T ,

2u

1 + u2
− T 2

)
,

P2 =
(

0,
1 − u2

1 + u2
− T ,

2u

1 + u2
− T 2

)
.

Another ruled surface segment is Q = Q1(v)(1 − t) + Q 2(v)t, t ∈ [0,1], where

Q1 =
(

1 − v2

1 + v2
− 1,

2v

1 + v2
,

1

2

)
,

Q 2 =
(

1 − v2

1 + v2
− 1,

2v

1 + v2
,

3

2

)
.

By tofind(S1, [u, v], [T ],1..infinity), the necessary and sufficient condition for the collision of the two surfaces is

C(P,Q) = {R1 < 0, R2 > 0, R3 < 0, R4 �= 0, R5 �= 0},
where R1 = T + T u2 − 2, R2 = T + T u2 + 2u2, R3 = −4u + 2T 2 + 2T 2u2 + 1 + u2, R4 = −1 + u2 + T + T u2, R5 = −4u +
2T 2 + 2T 2u2 + 3 + 3u2 are border polynomials.

We detect the collision by verifying the condition for any fixed T = T0. Then the problem is reduced to detecting real
roots in a univariate semi-algebraic set. If T = 0, then one can check that u = 1/2 satisfies C(P,Q), which means P and Q
are intersected (see Fig. 4.a). If T = 1, then obviously R3 = 3u2 − 4u + 3 is a definite positive function for u in [0,1]. Hence,
P and Q are separated (Fig. 4.b).

For further consideration, there are two parameters in C(P,Q ) and we will eliminate one by quantifier elimination.
Eliminate u from {R1 < 0, R2 > 0, R3 < 0}, one can obtain the 2T 2 < 1 which is in the interval of the two segments are
intersected, as showed above.

To decide the first instant of collision, we need to consider the situations on boundary, that means these situations occur
with some border polynomials satisfied. Here, the border polynomials are the functions of boundaries. Add R3 = 0 to the
semi-algebraic system and solve it, we can get that the surface segments collided at 2T 2 = 1. They are just the two instants

for the two segments beginning or ending the collision. Actually, P and Q just meet at a point at T =
√

2
2 or T = −

√
2

2 (see
Fig. 5).

There are no other collision situation. Finally, we claim that these two rule surface segments collide at T ∈ [−
√

2
2 ,

√
2

2 ]
and they meet at T = ±

√
2

2 .
In this example, there exist no overlapping line segments in intersections. Hence we need not to consider the overlapping

case.
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Fig. 4. Two cylinder segments.

Fig. 5. Meet instant.

For the overlapping situations, by Lemma 11, the conditions for two ruled surface segments to overlap are �1 = �2 = 0
without [PiP j] > 0, i, j = 1,2, or, �1 = �2 = 0 without [PiP j] < 0, i, j = 1,2. We omit the details here.

When the two surface segments are intersected, it is also necessary to find the intersection curve in some situations.
Based on the discussion in this paper, we can compute the intersection curve by two main parts: determine the intersecting
conditions of parameters by solving SAS and find the intersection curve by Algorithm 1. The following example is given to
illustrate the process.

Example 5. Following Example 4, we set T = 0 which corresponds to an intersection instant. The task is then to compute
the intersection curve of P(u, s) = P(u, s,0) and Q(v, t) with s, t ∈ [0,1].

Similar to Example 1 and by Theorem 2, one can compute the intersection curve expression as
(

−2
v2

1 + v2
,2

v

1 + v2
,−4

vu

(1 + v2)(u − 1)(1 + u)

)
, (u, v) ∈ S2,

where S2 = {(u, v) | (v + vu + u − 1)(vu − v + 1 + u) = 0}\{(u, v) | (1, v)}.
We should consider the restriction of segments s, t ∈ [0,1]. Here, similar to Example 4, we find the conditions of pa-

rameter u and v for the collision are u2 − 4u + 1 � 0 and 3v2 − 1 � 0 respectively. That means the parameters of the
intersections curve should be in

S = S2 ∩ {
(u, v)

∣∣ u2 − 4u + 1 � 0, 3v2 − 1 � 0
}
.

Since the topology of S is not complicated here, we can give the simple expression of the curve as

(
−2

v2

1 + v2
,2

v

1 + v2
,−−1 + v2

1 + v2

)
, v ∈

[
−

√
3

3
,

√
3

3

]
,

which is showed as red curve in Fig. 6.
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Fig. 6. Intersection curve of segments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

6. Conclusion

In this paper, we attempt to apply bracket method to the collision and intersection problem for ruled surfaces, and
propose an efficient and robust intersection algorithm. After solving a semi-algebraic system, we obtain the necessary and
sufficient algebraic conditions for collision detection of two ruled surface segments.

As future work, it is interesting and important to compute the numerical intersection of two ruled surfaces with arbitrary
boundary. For further consideration, some singular points, e.g., cusp points, may be missing by the numerical approximation
method, this leads to another future work: approximate the intersection curve preserving geometric features.
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