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ABSTRACT
In this paper, the concept of sparse differential resultant for
a differentially essential system of differential polynomials is
introduced and its properties are proved. In particular, a
degree bound for the sparse differential resultant is given.
Based on the degree bound, an algorithm to compute the
sparse differential resultant is proposed, which is single ex-
ponential in terms of the order, the number of variables, and
the size of the differentially essential system.
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I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation - Algorithms for differential equations

General Terms
Algorithms, Theory

Keywords
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1. INTRODUCTION
The resultant, which gives conditions for a system of poly-

nomial equations to have common solutions, is a basic con-
cept in algebraic geometry and a powerful tool in elimination
theory [2, 8, 16, 6, 19, 9, 24, 28]. The sparse resultant was
introduced by Gelfand, Kapranov, and Zelevinsky as a gen-
eralization of the usual resultant [13]. Basic properties for
the sparse resultant were given by Sturmfels and co-authors
[23, 28, 29]. A Sylvester style matrix based method to com-
pute sparse resultants was first given by Canny and Emiris
[3, 10]. A determinant representation for the sparse resul-
tant was given by D’Andrea [7].
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The differential resultant for two nonlinear differential
polynomials in one variable was studied by Ritt in [25, p.47].
General differential resultants were defined by Carrà Ferro
using Macaulay’s definition of algebraic resultants [4]. But,
the treatment in [4] is not complete. For instance, the differ-
ential resultant for two generic differential polynomials with
degrees greater than one is always zero if using the definition
in [4]. Differential resultants for linear ordinary differential
polynomials were studied by Rueda and Sendra in [27]. In
[12], a rigorous definition for the differential resultant of n+1
generic differential polynomials in n variables was presented.

A generic differential polynomial with order o and degree
d contains an exponential number of differential monomials
in terms of o and d. Since most of the differential poly-
nomials encountered in practice do not contain all of these
monomials, it is useful to define the sparse differential resul-
tant which can be considered as the differential analog for
the algebraic sparse resultant [7, 10, 13, 28].

In this paper, the concept of sparse differential resultant
for a differentially essential system consisting of n + 1 dif-
ferential polynomials in n differential variables is introduced
and its properties similar to that of the Sylvester resultant
are proved. In particular, we give a degree bound for the
sparse differential resultant, which also leads to a degree
bound for the differential resultant. Based on the degree
bound, we give an algorithm to compute the sparse differen-
tial resultant. The complexity of the algorithm in the worst
case is single exponential of the form O(n3.376(s+1)O(n)(m+

1)O(ns2l)), where s, m, n, and l are the order, the degree, the
number of variables, and the size of the differentially essen-
tial system respectively. The sparseness is reflected in the
quantity l.

In principle, the sparse differential resultant can be com-
puted with any differential elimination method, and in par-
ticular with the change of order algorithms given by Boulier-
Lemaire-Maza [1] and Golubitsky-Kondratieva-Ovchinnikov
[14]. The differentially essential system already forms a tri-
angular set when considering their constant coefficients as
leading variables, and the sparse differential resultant is the
first element of the characteristic set of the prime ideal gen-
erated by the differentially essential system under a different
special ranking. Therefore, the change of order strategy pro-
posed in [1, 14] can be used. In our case, due to the special
structure of the differentially essential system, we can give
specific bounds for the order and degree needed to compute
the resultant, which allows us to reduce the problem to lin-
ear algebra directly and give explicit complexity bounds.

As preparations for the main results of the paper, we prove



several properties about the degrees of the elimination ideal
and the generalized Chow form in the algebraic case, which
are also interesting themselves.

The rest of the paper is organized as follows. In Section 2,
we prove some preliminary results. In Section 3, we define
the sparse differential resultant and give its properties. And
in Section 4, we present an algorithm to compute the sparse
differential resultant. In Section 5, we conclude the paper
by proposing several problems for future research.

2. DEGREE OF ELIMINATION IDEAL AND
GENERALIZED CHOW FORM

In this section, we will prove several properties about the
degrees of elimination ideals and generalized Chow forms in
the algebraic case, which will be used later in the paper.
These properties are also interesting themselves.

2.1 Degree of elimination ideal
Let P be a polynomial in K[X] where X = {x1, . . . , xn}.

We use deg(P ) to denote the total degree of P . Let I be
a prime algebraic ideal in K[X] with dimension d. We use
deg(I) to denote the degree of I, which is defined to be
the number of solutions of the zero dimensional prime ideal
(I,L1, . . . ,Ld), where Li = ui0 +

∑n
j=1 uijxj (i = 1, . . . , d)

are d generic primes [17]. That is,

deg(I) = |V(I,L1, . . . ,Ld)|. (1)

Clearly, deg(I) = deg(I,L1, . . . ,Li) for i = 1, . . . , d. deg(I)
is also equal to the maximal number of intersection points
of V(I) with d hyperplanes under the condition that the
number of these points is finite [18]. That is,

deg(I) = max{|V(I) ∩H1 ∩ · · · ∩Hd| : Hi are affine

hyperplanes with |V(I) ∩H1 ∩ · · · ∩Hd| < ∞} (2)

The relation between the degree of an ideal and that of its
elimination ideal is give by the following result.

Theorem 2.1 Let I be a prime ideal in K[X] and Ik = I ∩
K[x1, . . . , xk] for any 1 ≤ k ≤ n. Then deg(Ik) ≤ deg(I).

Proof: Suppose dim(I) = d and dim(Ik) = d1. Two cases
are considered:

Case (a): d1 = d. Let Pi = ui0 + ui1x1 + · · ·+ uikxk (i =
1, . . . , d). Denote u = {uij : i = 1, . . . , d; j = 0, . . . , k}.
Then by [17, Theorem 1, p. 54], J = (Ik,P1, . . . ,Pd) is a
prime ideal of dimension zero in K(u)[x1, . . . , xk] and has
the same degree as Ik. We claim that

1) (I,P1, . . . ,Pd) ∩K(u)[x1, . . . , xk] = J .

2) (I,P1, . . . ,Pd) is a 0-dimensional prime ideal.
To prove 1), it suffices to show that whenever f is in the

left ideal, f belongs to J . Without loss of generality, sup-
pose f ∈ K[u][x1, . . . , xk]. Then there exist hl, qi ∈ K[u][X]

and gl ∈ I such that f =
∑

l hlgl +
∑d

i=1 qiPi. Substi-

tuting ui0 = −∑k
j=1 uikxk into the above equality, we get

f̄ =
∑

l h̄lgl ∈ Ik and f ≡ f̄ mod(P1, . . . ,Pd). So, f ∈ J .
To prove 2), suppose (ξ1, . . . , ξn) is a generic point of I.

Denote U0 = {u10, . . . , ud0}. Then J0 = (I,P1, . . . ,Pd) ⊆
K(u\U0)[X, U0] is a prime ideal of dimension d with a generic

point (ξ1, . . . , ξn,−∑k
j=1 u1jξj , . . . ,−∑k

j=1 udjξj). Since

d1 = d, there exist d elements in {ξ1, . . . ,ξk} algebraically in-
dependent over K. So by [16, p.168-169], J0∩K(u\U0)[U0] =
(0) and 2) follows.

Since J and (I,P1, . . . ,Pd) are zero dimensional ideals,
by [30, Proposition 9, p.7], deg(J ) ≤ deg(I,P1, . . . ,Pd). So
by (2), deg(I) ≥ |V(I,P1, . . . ,Pd)| ≥ deg(J ) = deg(Ik).

Case (b): d1 < d. Let Li = ui0 + ui1x1 + · · ·+ uinxn (i =
1, . . . , d − d1). By [17, Theorem 1, p. 54], J = (I,L1, . . . ,
Ld−d1) ⊆ K(u)[X] is a prime ideal of dimension d1 and
deg(J ) = deg(I), where u = {uij : i = 1, . . . , d − d1; j =
0, . . . , n}. Let Jk = J ∩ K(u)[x1, . . . , xk]. We claim that
Jk = (Ik) in K(u)[x1, . . . , xk]. Of course, Jk ⊇ (Ik). Since
both Jk and (Ik) are prime ideals and dim((Ik)) = d1, it
suffices to prove that dim(Jk) = d1.

Let J0 = (I,L1, . . . ,Ld−d1) ⊆ K(u\U0)[X, U0] with U0 =
{u10, . . . , ud−d1,0}. Suppose {x1, . . . , xd1} is a parametric
set of Ik. Similarly to the procedure of proving 2) in case
(a), we can show that J0 ∩K(u\U0)[x1, . . . , xd1 , U0] = (0),
and Jk ∩K(u)[x1, . . . , xd1 ] = (0) follows. So dim(Jk) = d1.

Since dim(Jk) = dim(J ), by case (a), we have deg(Jk) ≤
deg(J ) = deg(I). And due to the fact that deg(Jk) =
deg((Ik)) = deg(Ik), deg(Ik) ≤ deg(I) follows. 2

In this article, we will use the following result.

Lemma 2.2 [22, Proposition 1] Let F1, . . . , Fm ∈ K[X] be
polynomials generating an ideal I of dimension r. Suppose
deg(F1) ≥ · · · ≥ deg(Fm) and let D :=

∏n−r
i=1 deg(Fi). Then

deg(I) ≤ D.

2.2 Degree of algebraic generalized Chow form
Let I be a prime ideal in K[X] with dimension d,

Pi = ui0 +
∑

1≤α1+···+αn≤mi

ui,α1...αnxα1
1 · · ·xαn

n (i = 0, . . . , d)

generic polynomials of degree mi, and ui the vector of coef-
ficients of Pi. Philippon [24] proved that

(I,P0, . . . ,Pd) ∩K[u0, . . . ,ud] = (G(u0, . . . ,ud)) (3)

is a prime principal ideal and G(u0, . . . ,ud) is defined to be
the generalized Chow form of I, denoted by G(I).

In this section, we will give the degree of the generalized
Chow form in terms of the degrees of I and that of Pi by
proving Theorem 2.4.

At first, we will give another description of the degree for
a prime ideal. In (3), when Pi become generic primes

Li = vi0 +

n∑
j=1

vijxj(i = 0, 1, . . . , d),

the generalized Chow form becomes the usual Chow form,
denoted by Chow(I). That is

(I,L0, . . . ,Ld) ∩K[v0, . . . ,vd] = (Chow(I)) (4)

where vi is the set of coefficients of Li. A basic property of
Chow forms is that [17] for each i between 0 and d,

deg(I) = degvi
Chow(I). (5)

In the following lemma, we will give the degree of an ideal
intersected by a generic primal. To prove the lemma, we
apply the following Bezout inequality (see [15] or [18]): Let
V, W be affine algebraic varieties. Then

deg(V ∩W ) ≤ deg(V ) · deg(W ). (6)



Lemma 2.3 Let I be a prime ideal in K[X] with dim(I) =
d > 0 and P a generic polynomial. Then deg(I, P ) =
deg(P ) · deg(I).

Proof: Firstly, we prove the lemma holds for d = 1. Let
v be the vector of coefficients of P , m = deg(P ), and
J = (I, P ) ⊂ K(v)[X]. Then by [17, p. 110], J is a
prime algebraic ideal of dimension zero. Let L0 be a generic
prime with u0 the vector of coefficients. By (4), (J ,L0) ∩
K(v)[u0] = (Chow(J )). Here, we choose Chow(J ) to be
an irreducible polynomial in K[v,u0]. From (5), we have
deg(J ) = degu0

Chow(J ).
Let M = (I,L0) ⊂ K(u0)[X]. Then M is a prime ideal

of dimension zero with deg(M) = deg(I). And (M, P ) ∩
K(u0)[v] = (G(M)) where G(M) ∈ K[v,u0] is irreducible.
Clearly, G(M) = c · Chow(J ) for some c ∈ K∗ and G(M)
can be factored as

G(M) = A(u0)

deg(I)∏
τ=1

P (ξτ ),

where ξτ are all the elements of V(M) and A(u0) is an ex-
traneous factor lying in K[u0]. Now, specialize P to Lm

1

where L1 = u10 +
∑n

i=1 u1ixi is a generic prime. Then we

have G(M) = A(u0)
∏deg(I)

τ=1 Lm
1 (ξτ ) and deg(G(M),u0) =

deg(J ). Since Chow(I) = B(u0)
∏deg(I)

τ=1 L1(ξτ ) for some

B ∈ K[u0] is irreducible and G(M) ∈ K[u0,u1], there ex-

ists g ∈ K[u0]
∗ such that G(M) = g · (Chow(I))m. So,

deg(G(M),u0) ≥ m · deg(Chow(I),u0) = m · deg(I). And
by Bézout inequality (6), deg(I, P ) ≤ deg(I) · deg(P ), so
deg(I, P ) = deg(I) · deg(P ).

For the case d > 1, let L1, . . . ,Ld−1 be generic primes,
then I1 = (I,L1, . . . ,Ld−1) is a prime ideal of dimension
one and deg(I1) = deg(I). By the case d = 1, deg(I1, P ) =
deg(I1) · deg(P ). So deg(I, P ) = deg(I, P,L1, . . . ,Ld−1) =
deg(I1, P ) = deg(I1) · deg(P ) = deg(I) · deg(P ). 2

The following result generalizes Lemma 1.8 in [24].

Theorem 2.4 Let G(u0, . . . ,ud) be the generalized Chow
form of a prime ideal I of dimension d w.r.t. P0, . . . ,Pd.
Then G is of degree deg(I)

∏
j 6=i

deg(Pj) in each set ui.

Proof: It suffices to prove the result for i = 0.

If d = 0, then G(u0) =
∏deg(I)

τ=1 P0(ξτ ), where ξτ ∈ V(I).
Clearly, deg(G,u0) = deg(I).

We consider the case d > 0. Let J0 = (I,P1, . . . ,Pd) ⊂
K[u1, . . . ,ud,X] and J = (J0) ⊂ K(u1, . . . ,ud)[x1, . . . , xn].
Then J is a prime ideal of dimension zero and by Lemma 2.3,
deg(J ) = deg(I)

∏d
i=1 deg(Pi). We claim that G(u0, . . . ,ud)

is also the generalized Chow form of J , hence deg(G,u0) =

deg(J ) = deg(I)
∏d

i=1 deg(Pi). Since G(u0, . . . ,ud) is the
generalized Chow form of I, we have (I,P0, . . . ,Pd)∩K[u0,
. . . ,ud] = (G(u0, . . . ,ud)) = (J0,P0) ∩ K[u0, . . . ,ud]. Let
G1(u0, . . . ,ud) ∈ K[u0, . . . ,ud] be the generalized Chow
form of J and irreducible. Then (J ,P0)∩K(u1, . . . ,ud)[u0]
= (G1). So G ∈ (G1). But G, G1 are irreducible polynomi-
als in K[u0, . . . ,ud], so G = c · G1 for some c ∈ K∗ and G
is the generalized Chow form of J . 2

3. SPARSE DIFFERENTIAL RESULTANT
In this section, we define the sparse differential resultant

and prove its basic properties.

3.1 Definition of sparse differential resultant
Let F be an ordinary differential field and F{Y} the ring

of differential polynomials in the differential indeterminates
Y = {y1, . . . , yn}. For any element e ∈ F{Y}, we use e(k) =

δke to represent the k-th derivative of e and e[k] to denote the
set {e(i) : i = 0, . . . , k}. Details about differential algebra
can be found in [20, 26].

The following theorem presents an important property on
differential specialization, which will be used later.

Theorem 3.1 [12, Theorem 2.14] Let {u1, . . . , ur} be a set
of differential indeterminates, and Pi(U,Y) ∈ F{U,Y} (i =
1, . . . , m) differential polynomials in the differential inde-
terminates U = (u1, . . . , ur) and Y = (y1, . . . , yn). Let
Y0 = (y0

1 , y0
2 , . . . , y0

n), where y0
i are in some differential ex-

tension field of F . If Pi(U,Y0) (i = 1, . . . , m) are differen-
tially dependent over F〈U〉, then for any specialization U to
U0 in F , Pi(U0,Y0) (i = 1, . . . , m) are differentially depen-
dent over F .

To define the sparse differential resultant, consider n + 1
differential polynomials with differential indeterminates as
coefficients

Pi = ui0 +

li∑

k=1

uikMik (i = 0, . . . , n) (7)

where Mik = (Y[si])αik is a monomial in {y1, . . . , yn, . . . ,

y
(si)
1 , . . . , y

(si)
n } with exponent vector αik and |αik| ≥ 1. The

set of exponent vectors Si = {0̄, αik : k = 1, . . . , li} is called
the support of Pi, where 0̄ is the exponent vector for the
constant term. The number |Si| = li + 1 is called the size of
Pi. Note that si is the order of Pi and an exponent vector
of Pi contains n(si + 1) elements.

Denote u = {uik : i = 0, . . . , n; k = 1, . . . , li}. Let
η1, . . . , ηn be n elements which are differentially indepen-
dent over Q〈u〉 and denote η = (η1, . . . , ηn), where Q is the
field of rational numbers. Let

ζi = −
li∑

k=1

uik(η[si])αik (i = 0, . . . , n). (8)

Denote the differential transcendence degree by d.tr.deg.
Then, we have

Lemma 3.2 d.tr.degQ〈u〉〈ζ0, . . . , ζn〉/Q〈u〉 = n if and only
if there exist n monomials Mriki (i = 1, . . . , n) in (7) such

that ri 6= rj for i 6= j and Mriki(η) = (η[sri
])αriki are dif-

ferentially independent over Q〈u〉.

Proof: “ ⇐ ” Without loss of generality, we assume ri =
i (i = 1, . . . , n) and Miki(η) (i = 1, . . . , n) are differentially
independent. It suffices to prove that ζ1, . . . , ζn are differ-
entially independent over Q〈u〉. Suppose the contrary, i.e.
ζ1, . . . , ζn are differentially dependent. Now specialize uij to
−δiki . By Theorem 3.1 and (8), Miki(η) (i = 1, . . . , n) are
differentially dependent, which is a contradiction.

“ ⇒ ” Suppose the contrary, i.e., Mriki(η) (i = 1, . . . , n)
are differentially dependent for any n different ri and ki =
1, . . . , lri . Since each ζri is a linear combination of Mriki(η)
(ki = 1, . . . , lri), ζr1 , . . . , ζrn are differentially dependent,
contradicting that d.tr.degQ〈u〉〈ζ0, . . . , ζn〉/Q〈u〉 = n. 2



Definition 3.3 A set of differential polynomials of form (7)
satisfying the condition in Lemma 3.2 is called a differen-
tially essential system.

A differential polynomial f of form (7) is called quasi-
generic [12] if for each 1 ≤ i ≤ n, f contains at least one
monomial in F{yi} \ F . Clearly, n + 1 quasi-generic differ-
ential polynomials form a differentially essential system.

Now let [P0, . . . ,Pn] be the differential ideal generated by
Pi in Q〈u〉{Y, u00, . . . , un0}. Then it is a prime differential
ideal with a generic point (η1, . . . , ηn, ζ0, . . . , ζn) and of di-
mension n. Clearly, I = [P0, . . . ,Pn] ∩ Q〈u〉{u00, . . . , un0}
is a prime differential ideal with a generic point (ζ0, . . . , ζn).
As a consequence of Lemma 3.2, we have

Corollary 3.4 I is of codimension one if and only if {P0,
. . . ,Pn} is a differentially essential system.

Now suppose {P0, . . . ,Pn} is a differentially essential sys-
tem. Since I is of codimension one, then by [26, line 14,
p. 45], there exists an irreducible differential polynomial
R(u; u00, . . . , un0) ∈ Q〈u〉{u00, . . . , un0} such that

[P0, . . . ,Pn] ∩Q〈u〉{u00, . . . , un0} = sat(R) (9)

where sat(R) is the saturation ideal of R. More explic-
itly, sat(R) is the whole set of differential polynomials hav-
ing zero pseudo-remainders w.r.t. R under any ranking
endowed on u00, . . . , un0. And by clearing denominators
when necessary, we suppose R ∈ Q{u; u00, . . . , un0} is ir-
reducible and also denoted by R(u; u00, . . . , un0). Let ui =
(ui0, ui1, . . . , uili) be the vector of coefficients of Pi and de-
note R(u0, . . . ,un) = R(u; u00, . . . , un0). Now we give the
definition of sparse differential resultant as follows:

Definition 3.5 R(u0, . . . ,un) ∈ Q{u0, . . . ,un} in (9) is
defined to be the sparse differential resultant of the differ-
entially essential system P0, . . . ,Pn.

Example 3.6 For n = 2, let P0 = u00+u01y1y2, P1 = u10+
u01y

′
1y
′
2, and P2 = u20 +u21y

′
1y2. Using differential elimina-

tion algorithms [5], we can show that P1,P2,P3 form a differ-
entially essential system and their sparse differential resul-
tant is R = −u11u

2
20u

2
01−u01u00u

2
21u10 +u01u11u20u21u

′
00−

u11u20u00u21u
′
01.

The following properties can be proved easily.

1. When all Pi become generic differential polynomials of
the form Pi = ui0 +

∑
1≤|α|≤mi

ui,α(Y[si])α, the sparse

differential resultant is the differential resultant de-
fined in [12].

2. R is the vanishing polynomial of (ζ0, . . . , ζn) with min-
imal order in each ui0. Since R ∈ Q{u; u00, . . . , un0}
is irreducible, ord(R,ui) = ord(R, ui0).

3. Suppose ord(R,ui) = hi ≥ 0 and denote o =
∑n

i=0 hi.
Given a vector (q0, . . . , qn) ∈ Nn+1 with

∑n
i=0 qi =

q, if q < o, then there is no polynomial P in sat(R)
with ord(P,ui) = qi. And R is the unique irreducible
polynomial in sat(R) with total order q = o up to some
a ∈ Q. This property will be used in our algorithm to
search for the sparse differential resultant.

Remark 3.7 It is not easy to define the sparse differential

resultant as the algebraic sparse resultant of P(k)
i considered

as polynomials in y
(j)
i . The reason is that it is difficult to

check whether the supports of Pi and P(k)
i satisfy the condi-

tions for the existence of the algebraic sparse resultant [29].

Furthermore, the coefficients of P(k)
i are not generic.

3.2 Properties of sparse differential resultant
Following Kolchin [21], we introduce the concept of differ-

entially homogenous polynomials.

Definition 3.8 A differential polynomial p ∈ F{y0, . . . , yn}
is called differentially homogenous of degree m if for a new
differential indeterminate λ, we have p(λy0, λy1 . . . , λyn) =
λmp(y0, y1, . . . , yn).

The differential analog of Euler’s theorem related to ho-
mogenous polynomials is valid.

Theorem 3.9 [21] f ∈ F{y0, y1, . . . , yn} is differentially
homogenous of degree m if and only if

n∑
j=0

∑

k∈N

(
k + r

r

)
y
(k)
j

∂f(y0, . . . , yn)

∂y
(k+r)
j

=

{
mf r = 0
0 r 6= 0

Sparse differential resultants have the following property.

Theorem 3.10 The sparse differential resultant is differ-
entially homogenous in each ui which is the coefficient set
of Pi.

Proof: Similar to the proof of [12, Theorem 4.16], we can
show that R satisfies the conditions of Theorem 3.9 for each
ui. The proof is omitted due to the page limit. 2

Continue from Example 3.6. In this example, R is differ-
entially homogenous of degree 2 in u0, of degree 1 in u1 and
of degree 2 in u2 respectively.

In the following, we prove formulas for sparse differential
resultants, which are similar to the Poisson type formulas for
Chow forms and algebraic resultants [23]. Denote ord(R,ui)
by hi (i = 0, . . . , n). We have the following theorem.

Theorem 3.11 Let R(u0, . . . ,un) be the sparse differential

resultant of P0, . . . ,Pn. Let deg(R, u
(h0)
00 ) = t0. Then there

exist ξτk for τ = 1, . . . , t0 and k = 1, . . . , l0 such that

R = A

t0∏
τ=1

(u00 +

l0∑

k=1

u0kξτk)(h0), (10)

where A is a polynomial in F [u
[h0]
0 , . . . ,u

[hn]
n \u(h0)

00 ].

Proof: Now consider R as a polynomial in u
(h0)
00 with coeffi-

cients in Q0 = Q(∪n
l=0u

[hl]
l \ {u(h0)

00 }). Then, in an algebraic
extension field of Q0, we have

R = A

t0∏
τ=1

(u
(h0)
00 − zτ )

where t0 = deg(R, u
(h0)
00 ). Note that zτ is an algebraic root of

R(u
(h0)
00 ) = 0 and a derivative for zτ can be naturally defined



to make F〈zτ 〉 a differential field. From R(u; ζ0, . . . , ζn) = 0,

if we differentiate this equality w.r.t. u
(h0)
0k , then we have

∂R

∂u
(h0)
0k

+
∂R

∂ζ
(h0)
0

(−η[s0])α0k = 0 (11)

where ∂R

∂u
(h0)
0k

and ∂R

∂ζ
(h0)
0

are obtained by substituting ui0 by

ζi in ∂R

∂u
(h0)
0k

and ∂R

∂u
(h0)
00

respectively.

Now multiply equation (11) by u0k and for k from 1 to l0
add all of the equations obtained together, then we get

∂R

∂ζ
(h0)
0

ζ0 +

l0∑

k=1

u0k
∂R

∂u
(h0)
0k

= 0 (12)

Thus, the polynomial G1 = u00
∂R

∂u
(h0)
00

+
∑l0

k=1 u0k
∂R

∂u
(h0)
0k

vanishes at (u00, . . . , un0) = (ζ0, . . . , ζn). Since ord(G1) ≤
ord(R) and deg(G1) = deg(R), there exists some a ∈ F
such that G1 = aR. Setting u

(h0)
00 = zτ in both sides of

G1, we have u00Rτ0 +
∑l0

k=1 u0kRτk = 0, where Rτk =
∂R

∂u
(h0)
0k

∣∣
u
(h0)
00 =zτ

. Since R is irreducible as an algebraic poly-

nomial in u
(h0)
00 , Rτ0 6= 0. Denote ξτk = Rτk/Rτ0. Thus,

u00 +
∑l0

k=1 u0kξτk = 0 under the condition u
(h0)
00 = zτ .

Consequently, zτ = −(
l0∑

k=1

u0kξτk)(h0) and (10) follows. 2

If P0 contains the linear terms yi (i = 1, . . . , n), then the
above result can be strengthened as follows.

Theorem 3.12 Suppose P0 has the form

P0 = u00 +

n∑
i=1

u0iyi +

l0∑
i=n+1

u0i(Y[s0])α0i . (13)

Then there exist ξτk (τ = 1, . . . , t0; k = 1, . . . , n) such that

R = A

t0∏
τ=1

(
u00 +

n∑
i=1

u0iξτi +

l0∑
i=n+1

u0i

(
ξ[s0]

τ

)α0i

)(h0)

= A

t0∏
τ=1

P0(ξτ )(h0), where ξτ = (ξτ1, . . . , ξτn).

Moreover, ξτ (τ = 1, . . . , t0) lies on P1, . . . ,Pn.

Proof: For the first part, from Theorem 3.11, it remains

to show that for i = n + 1 to l0, ξτi =
(
ξ
[s0]
τ

)α0i . From

equation (11), we have ηj = ∂R

∂u
(h0)
0j

/
∂R

∂ζ
(h0)
0

and (η[s0])α0i =

∂R

∂u
(h0)
0i

/
∂R

∂ζ
(h0)
0

. If (Y[s0])α0i =
∏n

j=1

∏s0
k=0

(
y
(k)
j

)(α0i)jk , then

n∏
j=1

s0∏

k=0

(
(

∂R

∂u
(h0)
0j

/ ∂R

∂ζ
(h0)
0

)(k))(α0i)jk =
∂R

∂u
(h0)
0i

/ ∂R

∂ζ
(h0)
0

.

It follows that
n∏

j=1

s0∏

k=0

(
(

∂R

∂u
(h0)
0j

/ ∂R

∂u
(h0)
00

)(k))(α0i)jk − ∂R

∂u
(h0)
0i

/ ∂R

∂u
(h0)
00

vanishes at (u00, . . . , un0) = (ζ0, . . . , ζn). Since there exists
some a ∈ N, such that Gi =

( ∂R

∂u
(h0)
00

)a( n∏

j=1

s0∏

k=0

(
(

∂R

∂u
(h0)
0j

/ ∂R

∂u
(h0)
00

)(k))(α0i)jk −
∂R

∂u
(h0)
0i

/ ∂R

∂u
(h0)
00

)

is a polynomial in Q{u0, . . . ,un}, Gi ∈ sat(R). Now sub-

stituting u
(h0+h)
00 = z

(h)
τ for h ≥ 0 into Gi, we obtain that

ξτi =
∏n

j=1

∏s0
k=0

(
(ξτj)

(k)
)(α0i)jk = (ξ

[s0]
τ )α0i .

The proof of the second assertion is based on generalized
differential Chow form introduced in [12] and is omitted. 2

As in algebra, the sparse differential resultant gives a nec-
essary condition for a system of differential polynomials to
have common solutions, as shown by the following theorem.

Theorem 3.13 Let P0, . . . ,Pn be a differentially essential
system of the form (7) and R(u0, . . . ,un) be their sparse
differential resultant. Denote ord(R,ui) = hi and SR =

∂R

∂u
(h0)
00

. Suppose that when ui (i = 0, . . . , n) are specialized

to sets vi which are elements in an extension field of F , Pi

are specialized to Pi (i = 0, . . . , n). If Pi = 0(i = 0, . . . , n)
have a common solution, then R(v0, . . . ,vn) = 0. Moreover,
if SR(v0, . . . ,vn) 6= 0, in the case that Pi = 0(i = 0, . . . , n)
have a common solution ξ, then for each k, we have

(
(ξ)[s0])α0k =

∂R

∂u
(h0)
0k

(v0, . . . ,vn)
/
SR(v0, . . . ,vn). (14)

Proof: Since R(u0, . . . ,un) ∈ [P0, . . . ,Pn], R(v0, . . . ,vn) ∈
[P0, . . . ,Pn]. So if Pi = 0 (i = 0, . . . , n) have a common
solution, then R(v0, . . . ,vn) should be zero.

From equation (11), it is clear that the polynomial ∂R

∂u
(h0)
0k

+

SR · (−Y[s0])α0k ∈ [P0, . . . ,Pn]. Thus, if ξ is a common so-
lution of Pi = 0, then the polynomial ∂R

∂u
(h0)
0k

(v0, . . . ,vn) +

SR(v0, . . . ,vn) · (−Y[s0])α0k vanishes at ξ. So (14) follows.
2

Again, if P0 contains the linear terms yi (i = 1, . . . , n),
then the above result can be strengthened as follows.

Corollary 3.14 Suppose P0 has the form (13). If R(v0, . . . ,
vn) = 0 and SR(v0, . . . ,vn) 6= 0, then Pi = 0 have a com-
mon solution.

Proof: From the proof of the above theorem, we know that
for k from 1 to n,

Ak =
∂R

∂u
(h0)
0k

+
∂R

∂u
(h0)
00

(−yk) ∈ [P0, . . . ,Pn].

Clearly, Ak is linear in yk. Suppose the differential remain-
der of Pi w.r.t. A1, . . . , An in order to eliminate y1, . . . , yn

is gi, then Sa
RPi ≡ gi, mod [A1, . . . , An] for a ∈ N. Thus,

gi ∈ [P0, . . . ,Pn]∩Q〈u〉{u00, . . . , un0} = sat(R). So we have
Sb

RPi ≡ 0mod [A1, . . . , An, R] for some b ∈ N. Now special-
ize ui to vi for i = 0, . . . , n, then we have

Sb
R(v0, . . . ,vn) · Pi ≡ 0mod [A1, . . . , An]. (15)

Let ξk = ∂R

∂u
(h0)
0k

(v0, . . . ,vn)
/
SR(v0, . . . ,vn) (k = 1, . . . , n),

and denote ξ = (ξ1, . . . , ξn). Then from equation (15),
Pi(ξ) = 0. So, ξ is a common solution of P0, . . . ,Pn. 2

4. AN ALGORITHM TO COMPUTE SPARSE
DIFFERENTIAL RESULTANT

In this section, we give an algorithm to compute the sparse
differential resultant with single exponential complexity.



4.1 Degree bounds for sparse differential re-
sultants

In this section, we give an upper bound for the degree
and order of the sparse differential resultant, which will be
crucial to our algorithm to compute the sparse resultant.

Theorem 4.1 Let P0, . . . ,Pn be a differentially essential sys-
tem of form (7) with ord(Pi) = si and deg(Pi,Y) = mi. Let
R(u0, . . . ,un) be the sparse differential resultant of Pi (i =
0, . . . , n). Suppose ord(R,ui) = hi for each i. We have

1) hi ≤ s− si for i = 0, . . . , n where s =
∑n

i=0 si.

2) R can be written as a linear combination of Pi and their
derivatives up to order hi. Precisely,

R(u0, . . . ,un) =

n∑
i=0

hi∑

k=0

GikP(k)
i (16)

for some Gik ∈ Q[u
[h0]
0 , . . . ,u

[hn]
n ,Y[h]] where

h = maxi{hi + si}.
3) deg(R) ≤ ∏n

i=0(mi + 1)hi+1 ≤ (m + 1)ns+n+1, where
m = maxi{mi}.

Proof: 1) Let θi = − ∑
1≤|α|≤mi

uiα(η[si])α (i = 0, . . . , n) where

η = (η1, . . . , ηn) is the generic point of the zero differential

ideal [0], and Wi = ui0 +
∑

1≤|α|≤mi

uiα(Y[si])α is a generic

polynomial of order si and degree mi. Then from the prop-
erty of differential resultants ([12, Theorem 1.3.]), we know
the minimal polynomial of (θ0, . . . , θn) is of order s − si in
each ui0. Now specialize all the uiα such that θi are special-
ized to the corresponding ζi. By the procedures in the proof
of Theorem 3.1, we can obtain a nonzero differential poly-
nomial vanishing at (ζ0, . . . , ζn) with order not greater than
s−si in each variable ui0. Since R is the minimal polynomial
of (ζ0, . . . , ζn), ord(R,ui) = ord(R, ui0) ≤ s− si.

2) Substituting ui0 by Pi −
li∑

k=1

uik(Y[si])αik in the poly-

nomial R(u; u00, . . . , un0) for i = 0, . . . , n, we get

R(u; u00, . . . , un0)

= R(u;P0 −
l0∑

k=1

u0k(Y[s0])α0k , . . . ,Pn −
ln∑

k=1

unk(Y[sn])αnk )

=
∑n

i=0

∑hi
k=0 GikP(k)

i + T (u,Y)

for Gik ∈ Q{∪n
i=0ui,Y} and T = R(u;−

l0∑
k=1

u0k(Y[s0])α0k ,

. . . ,−
ln∑

k=1

unk(Y[sn])αnk ) ∈ [P0, . . . ,Pn] ∩ Q〈u〉{Y}. Since

[P0, . . . ,Pn]∩Q〈u〉{Y} = [0], T = 0 and 2) is proved. More-

over, (P[h0]
0 , . . . ,P[hn]

n )∩Q[u
[h0]
0 , . . . ,u

[hn]
n ] = (R(u0, . . . ,un)).

3) Let J0 = (P[h0]
0 , . . . ,P[hn]

n ) ⊂ Q[u
[h0]
0 , . . . ,u

[hn]
n , Ỹ] where

Ỹ are the yi and their derivatives appearing in P[h0]
0 , . . . ,P[hn]

n .

By Lemma 2.2, deg(J0) ≤
∏n

i=0

∏hi
j=0 deg(Pi,Y ∪ ui) =∏n

i=0(mi + 1)hi+1 and (R) = J0 ∩ Q[u
[h0]
0 , . . . ,u

[hn]
n ] is the

elimination ideal of J0. Thus, by Theorem 2.1,

deg(R) ≤ deg(J0) ≤
n∏

i=0

(mi + 1)hi+1. (17)

Together with 1), 3) is proved. 2

The following theorem gives an upper bound for degrees
of differential resultants, the proof of which is not valid for
sparse differential resultants. In the following result, when
we estimate the degree of R, only the degrees of Pi in Y are
considered, while in Theorem 4.1, the degrees of Pi in both
Y and uik are considered.

Theorem 4.2 Let Fi (i = 0, . . . , n) be generic differential
polynomials in Y = {y1, . . . , yn} with order si, degree mi =
deg(Pi,Y), and s =

∑n
i=0 si. Let R(u0, . . . ,un) be the dif-

ferential resultant of F0, . . . , Fn. Then we have deg(R,uk) ≤
s−sk+1

mk

∏n
i=0 ms−si+1

i for each k = 0, . . . , n.

Proof: Without loss of generality, we consider k = 0.
By [12, Theorem 6.8], ord(R,ui) = s − si for each i and

R ∈ (F
[s−s0]
0 , . . . , F

[s−sn]
n ) ⊂ Q[Y[s], u

[s−s0]
0 , . . . ,u

[s−sn]
n ].

Let Ia = (F
[s−s1]
1 , . . . , F

[s−sn]
n ) ⊂ Q(ũ)[Y[s]], where ũ =

∪n
i=1u

[s−si]
i . Clearly, Ia is a prime ideal of dimension s−s0.

Let P0, . . . ,Ps−s0 be independent generic polynomials of
degree m0 in Y[s] with vi coefficients of Pi. Denote ṽ =
∪s−s0

i=0 vi\{vi0} where vi0 is the constant term of Pi.
Suppose η is a generic point of Ia. Let ζi = −Pi(η) + vi0

and ζi = −F
(i)
0 (η) + u

(i)
00 (i = 0, . . . , s − s0). Clearly, ζi

and ζi are free of vi0 and u
(i)
00 respectively. Let G(v0, . . . ,

vs−s0) = G(ṽ; v00, . . . , vs−s0,0) ∈ Q[ũ;v0, . . . ,vs−s0 ] be the
generalized Chow form of Ia. Then G(ṽ; v00, . . . , vs−s0,0)
is the vanishing polynomial of (ζ0, . . . , ζs−s0) over Q(ũ, ṽ).

Now specialize vi to the corresponding coefficients of F
(i)
0 .

Then ζi are specialized to ζi. By [16, p.168-169], there exists

a nonzero polynomial H(u
[s−s0]
0 \u[s−s0]

00 ; u00, . . . , u
(s−s0)
00 ) ∈

Q[u
[s−s0]
0 , . . . ,u

[s−sn]
n ] such that

1) H(u
[s−s0]
0 \u[s−s0]

00 ; ζ0, . . . , ζs−s0) = 0 and
2) deg(H) ≤ deg(G).

So H ∈ (F
[s−s0]
0 , . . . , F

[s−sn]
n ) ∩ Q[u

[s−s0]
0 , . . . ,u

[s−sn]
n ] =

(R). Thus, deg(R,u
[s−s0]
0 ) ≤ deg(H,u

[s−s0]
0 ) ≤ deg(G(v0,

. . . ,vs−s0)). By Theorem 2.4, deg(G,vi) = deg(Ia)ms−s0
0

for each i. Since Ia is generated by (F
[s−s1]
1 , . . . , F

[s−sn]
n )

in Q(ũ)[Y[s]], deg(Ia) ≤ ∏n
i=1 ms−si+1

i by Lemma 2.2. So,

deg(R,u0) ≤ s−s0+1
m0

∏n
i=0 ms−si+1

i . 2

4.2 Algorithm
If a polynomial R is the linear combination of some known

polynomials Fi(i = 1, . . . , s), that is R =
∑s

i=1 HiFi, then
a general idea to estimate the computational complexity of
R is to estimate the upper bounds of the degrees of R and
HiFi and to use linear algebra to find the coefficients of R.

For sparse differential resultant, we already gave its de-
gree in Theorem 4.1. Now we will give the degrees of the
expressions in the linear combination.

Theorem 4.3 Let P0, . . . ,Pn be a differentially essential sys-
tem with order si and degree mi respectively. Denote s =∑n

i=0 si, m = maxn
i=0{mi}. Let R(u0, . . . ,un) be the sparse

differential resultant of P0, . . . ,Pn with ord(R,ui) = hi for

each i. Then we have deg(GikP(k)
i ) ≤ (m + 1)deg(R) ≤

(m + 1)ns+n+2 in formula (16).

Proof: By Theorem 4.1 and its proof, R can be written as

R(u0, . . . ,un) =
∑n

i=0

∑hi
k=0 GikP(k)

i .



To estimate the degree of GikP(k)
i , we need only to con-

sider every monomial M(u; u00, . . . , un0) in R(u0, . . . ,un).

Consider one monomial M = uγ ∏n
i=0

∏hi
k=0(u

(k)
i0 )dik with

|γ| = d and d +
∑n

i=0

∑hi
k=0 dik ≤ deg(R), where uγ repre-

sents a monomial in u and their derivatives with exponent
vector γ. Using the substitution in the proof of Theorem 4.1,
we have

M = uγ
n∏

i=0

hi∏

k=0

((
Pi −

li∑
j=1

uij(Y[si])αij

)(k)
)dik

.

When expanded, every term has total degree bounded by

d +
∑n

i=0

∑hi
k=0(mi + 1)dik in u

[h0]
0 , . . . ,u

[hn]
n and Y[h] with

h = max{hi + si}. Since d +
∑n

i=0

∑hi
k=0(mi + 1)dik ≤

(m + 1)(d +
∑n

i=0

∑hi
k=0 dik) ≤ (m + 1)deg(R), applying

Theorem 4.1, the theorem is proved. 2

For a given system f0, . . . , fn ∈ F{y1, . . . , yn}, let vi be
the set of coefficients of fi and P(fi) the differential poly-
nomial of the form (7) with the same support as fi. When
P(fi) form a differentially essential system, let R(u0, . . . ,un)
be their sparse differential resultant. Then R(v0, . . . ,vn) is
defined to be the sparse differential resultant of fi. The
following result gives an effective differential Nullstellensatz
under certain conditions.

Corollary 4.4 Let f0, . . . , fn ∈ F{y1, . . . , yn} have no com-
mon solutions with ord(fi) = si, s =

∑n
i=0 si, and deg(fi) ≤

m. If the sparse differential resultant of f0, . . . , fn is nonzero,

then there exist Hij ∈ F{y1, . . . , yn} s.t.
∑n

i=0

∑s−si
j=0 Hijf

(j)
i

= 1 and deg(Hijf
(j)
i ) ≤ (m + 1)ns+n+2.

Proof: The hypothesis implies that P(fi) form a differen-
tially essential system. Clearly, R(u0, . . . ,un) has the prop-
erty stated in Theorem 4.3, where ui are coefficients of P(fi).
The result follows directly from Theorem 4.3 by specializing
ui to the coefficients of fi. 2

Now, we give an algorithm SDResultant to compute
sparse differential resultants. The algorithm works adap-
tively by searching R with an order vector (h0, . . . , hn) ∈
Nn+1 with hi ≤ s−si by Theorem 4.1. Denote o =

∑n
i=0 hi.

We start with o = 0. And for this o, choose one vector
(h0, . . . , hn) at a time. For this (h0, . . . , hn), we search for
R from degree D = 1. If we cannot find an R with such a
degree, then we repeat the procedure with degree D +1 un-
til D >

∏n
i=0(mi + 1)hi+1. In that case, we choose another

(h0, . . . , hn) with
∑n

i=0 hi = o. But if for all (h0, . . . , hn)
with hi ≤ s− si and

∑n
i=0 hi = o, R cannot be found, then

we repeat the procedure with o + 1. In this way, we need
only to handle problems with the real size and need not go
to the upper bound in most cases.

Theorem 4.5 Algorithm SDResultant computes sparse
differential resultants with at most O(n3.376(s + 1)O(n)(m +

1)O(nls2)) Q-arithmetic operations.

Proof: In each loop of Step 3, the complexity of the algo-
rithm is clearly dominated by Step 3.1.2., where we need
to solve a system of linear equations P = 0 over Q in
c0 and cij . It is easy to show that |c0| =

(
D+L−1

L−1

)
and

|cij | =
(
(m+1)D−mi−1+L+n(h+1)

L+n(h+1)

)
, where L =

∑n
i=0(hi +

1)(li + 1). Then P = 0 is a linear equation system with

Algorithm 1 — SDResultant(P0, . . . ,Pn)

Input: A differentially essential system P0, . . . ,Pn.
Output: The sparse differential resultant of P0, . . . ,Pn.

1. For i = 0, . . . , n, set si = ord(Pi), mi = deg(Pi,Y),
ui = coeff(Pi) and |ui| = li + 1.

2. Set R = 0, o = 0, s =
∑n

i=0 si, m = maxi{mi}.
3. While R = 0 do

3.1. For each vector (h0, . . . , hn) ∈ Nn+1 with
∑n

i=0 hi

= o and hi ≤ s− si do
3.1.1. U = ∪n

i=0u
[hi]
i , h = maxi{hi + si}, D = 1.

3.1.2. While R = 0 and D ≤ ∏n
i=0(mi + 1)hi+1 do

3.1.2.1. Set R0 to be a homogenous GPol of
degree D in U .

3.1.2.2. Set c0 = coeff(R0, U).
3.1.2.3. Set Hij(i = 0, . . . , n; j = 0, . . . , hi) to be

GPols of degree (m+1)D−mi−1 in Y[h], U .

3.1.2.4. Set cij = coeff(Hij ,Y[h] ∪ U).
3.1.2.5. Set P to be the set of coefficients of

R0(u0, . . . ,un) − ∑n
i=0

∑hi
j=0 HijP(j)

i as an

algebraic polynomial in Y[h], U .
3.1.2.6. Solve the linear equation P = 0 in

variables c0 and cij .
3.1.2.7. If c0 has a nonzero solution, then substi-

tute it into R0 to get R and go to Step 4.,
else R = 0.

3.1.2.8. D:=D+1.
3.2. o:=o+1.

4. Return R.

/*/ GPol stands for generic ordinary polynomial.

/*/ coeff(P, V ) returns the set of coefficients of P as an
ordinary polynomial in variables V .

N =
(

D+L−1
L−1

)
+

∑n
i=0(hi +1)

(
(m+1)D−mi−1+L+n(h+1)

L+n(h+1)

)
vari-

ables and M =
(
(m+1)D+L+n(h+1)

L+n(h+1)

)
equations. To solve it,

we need at most (max{M, N})ω arithmetic operations over
Q, where ω is the matrix multiplication exponent and the
currently best known ω is 2.376.

The iteration in Step 3.1.2. may go through 1 to di =∏n
i=0(mi + 1)hi+1 ≤ (m + 1)ns+n+1, and the iteration in

Step 3.1. at most will repeat
∏n

i=0(s− si + 1) ≤ (s + 1)n+1

times. And by Theorem 4.1, Step 3 may loop from o = 0 to
ns. The whole algorithm needs at most

∑ns
o=0

∑
hi≤s−si∑

i hi=o

∑di
D=1

(
max{M, N})2.376

≤ O(n3.376(s + 1)O(n)(m + 1)O(nls2))

arithmetic operations over Q. In the above inequalities, we
assume that (m + 1)ns+n+2 ≥ ls + n(s + 1) and use the fact
that l ≥ (n + 1)2, where l =

∑n
i=0(li + 1). Our complexity

assumes an O(1)-complexity cost for all field operations over
Q. Thus, the complexity follows. 2

Remark 4.6 Algorithm SDResultant can be improved by
using a better search strategy. If D is not big enough, in-
stead of checking D + 1, we can check 2D. Repeating this
procedure, we may find a k such that 2k ≤ deg(R) ≤ 2k+1.
We then bisecting the interval [2k, q2k+1] again to find the
proper degree for R. This will lead to a better complexity,
which is still single exponential.



5. CONCLUSION AND PROBLEM
In this paper, the sparse differential resultant is defined

and its basic properties are proved. In particular, degree
bounds for the sparse differential resultant and the usual dif-
ferential resultant are given. Based on these degree bounds,
we propose a single exponential algorithm to compute the
sparse differential resultant.

In the algebraic case, there exists a necessary and suffi-
cient condition for the existence of sparse resultants in terms
of the supports [29]. It is interesting to find such a condition
for sparse differential resultants.

It is useful to represent the sparse resultant as the quotient
of two determinants, as done in [7] in the algebraic case. In
the differential case, we do not have such formulas, even in
the simplest case of the resultant for two generic differential
polynomials in one variable. The treatment in [4] is not
complete. For instance, let f, g be two generic differential
polynomials in one variable y with order one and degree
two. Then, the differential resultant for f, g defined in [4] is
zero, because all elements in the first column of the matrix
M(δ, n, m) in [4, p.543] are zero. Furthermore, it is not easy
to fix the problem.

The degree of the algebraic sparse resultant is equal to the
mixed volume of certain polytopes generated by the supports
of the polynomials [23] or [13, p.255]. A similar degree bound
is desirable for the sparse differential resultant.

There exist very efficient algorithms to compute the alge-
braic sparse resultants ([10, 11]). How to apply the princi-
ples behind these algorithms to compute sparse differential
resultants is an important problem.
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