
Mathematics Mechanization Research Preprints
KLMM, Chinese Academy of Sciences
Vol. 30, 39–56, May 16, 2011 39

Efficient Algorithm for Feedrate Planning and

Smoothing with Confined Chord Error and

Acceleration for Each Axis1)

Ke Zhang, Chun-Ming Yuan, Xiao-Shan Gao
KLMM, Institute of Systems Science, Chinese Academy of Sciences

Abstract. In this paper, an algorithm is proposed to generate a near time-optimal
velocity function with continuous accelerations for feedrate planning along a parametric
tool path for 3-axis CNC machines with a feedrate bound, an acceleration bound for each
axis, and a chord error bound. The algorithm first gives a discrete and computationally
efficient algorithm to find a velocity function under the feedrate, acceleration, and chord
error bounds and a proof is provided to show that this solution is globally time-optimal
under the constraints. Then, a linear programming strategy is proposed to smooth the
velocity curve, which incurs only at a small number of points where the acceleration of
the feedrate function is not continuous. Combining the two steps, our algorithm gives
a near time-optimal solution for the problem. Examples are presented to illustrate the
feasibility of our algorithm.

Keywords. Optimal feedrate planning, chord error, confined acceleration, discrete ve-
locity searching, linear programming, feedrate smoothing.

1. Introduction

The problem of time-optimal feedrate planning along parametric tool paths has received
a significant amount of attention in both the robotics and CNC machining literature. In the
feedrate planning, the acceleration on each axis of the machine must be constrained, because
the torque (or force) capabilities of the axes’ drives are limited. Therefore, the problem is
how to identify the feedrate along a given tool path such that the machining time is minimal
without exceeding the capabilities of the actuators.

Bobrow et al [2], Shiller and Lu [11] gave algorithms to determine the time-optimal mo-
tion for a robot manipulator along a specific path (at least a smooth curve) with acceleration
bounds on x, y, z axes. Farouki and Timar [13, 14] planned the feedrate for CNC machining
with acceleration bounds on x, y, z axes, and gave a piecewise-analytic expression of the op-
timal velocity planning function. They also proposed a method in [3] to generate smoothed
feedrate functions, that incur only finite rates of change of motor torque and remain con-
sistent with the axis acceleration bounds. Following the method in [13, 14], Zhang et al
gave a simplified time-optimal velocity planning method for quadratic B-splines and realized
real-time manufacturing on industrial CNC machines [18]. Yuan and Gao [16] provided a
time-optimal feedrate planning method with tangential acceleration and chord error bounds.

1) Partially supported by a National Key Basic Research Project of China (2011CB302400) and by a
grant from NSFC (60821002).

40 K. Zhang, C.M. Yuan, X.S. Gao

Zhang et al tried to extend the above methods to the case of jerk bounds and gave a greedy
feedrate planning algorithm [17].

All of the methods mentioned above use the velocity limit curve and its switching points
on the u−u̇ phase plane to obtain an optimal solution which is a continuous time-optimal ve-
locity function along a specific path. However, these methods have two disadvantages. First,
the computational expense of these algorithms is high, especially for tool pathes described
by complex parametric functions. Computing the velocity limit curve and the switching
points lead to the solving of high degree equations. Second, the constraints in this scheme
are not easy to be generalized because the acceleration is directly integrated to find closed
form solutions. To overcome these drawbacks, discrete models of the problem have been
proposed and developed.

Luh et al [9] developed an algorithm to schedule the time intervals between each pair
of adjacent knots such that the total traveling time is minimized subject to the physical
constraints on joint velocities, accelerations, and jerks. Cubic spline functions in time t
are used for constructing joint trajectories. The physical constraints can be expressed as
inequality constraints of time intervals. Then it becomes a nonlinear programming problem
with the sum of time intervals as the objective function.

Neuman and Tourassis [10] introduced an inherently discrete-time dynamic model for
robotic manipulators. Tan and Potts [12] used the model [10] in minimum time trajectory
planning. The joint torque constraints, joint jerk and joint velocity constraints are incorpo-
rated into the model. Their nonlinear optimization problem is partially linear which enables
the iterative method of approximate programming to be used in solving the problem. It is
verified numerically that the convergence of the iterative algorithm is quadratic so that the
trajectory planner is computationally efficient.

Altintas and Erkorkmaz [6] presented a quintic spline trajectory generation algorithm
that produces continuous position, velocity, and acceleration profiles with confined tangential
acceleration and jerk. The reference trajectory generated with varying interpolation period
is re-sampled at the servo loop closure period using fifth order polynomials.

Dong et al [4, 5] gave a discrete greedy algorithm for the velocity planning problem
with velocity, acceleration, and jerk bounds on each axis based on a series of single variable
optimization subproblems. The sub-optimization structure makes it easy to deal with any
state-dependent constraints.

Lai et al [8] further proposed a method which can generate velocities with jerk limits as
well as chord error, speed, and acceleration limits. The method uses a discrete model and
satisfies all these constraints by backtracking at each step.

Most of these discrete algorithms adopted nonlinear programming to find the solutions,
which is sensitive to initial values and cannot guarantee to be optimal. In this paper, we
consider the problem of optimal feedrate planning along a smooth parametric tool path ~r(u)
with chord error bound and acceleration limits for all the axes. First, we discretize the path
curve and velocity to construct our discrete model. Then we give a velocity reachability
function to determine if the velocities of two neighboring knots on the path are reachable.
Based on the velocity reachability function, we propose a discrete velocity search algorithm.

The general idea of our algorithm is to search for the maximal velocity under the velocity
limit curve in the forward direction, then search for the maximal velocity under the forward

Algorithm for Feedrate Planning and Smoothing with Constraints 41

velocity in the reverse direction. Here, we need only to compute the values of the velocity
limit curve at the discrete points, which is computationally easy. A proof is followed to show
that the solution of our algorithm is globally optimal under all the constraints.

The algorithm can be considered as a discrete version of the algorithm given in [2, 11, 13].
By using a discrete model, we can find optimal solutions for tool pathes described by any
parametric functions efficiently. We show that the computational complexity of our algorithm
is O(NM) in terms of the number of floating point arithmetic operations, where N is the
number of segments to discrete the tool path and M is the number of intervals to the feedrate.

After that, we adopt a linear programming strategy to adjust the velocities around each
acceleration discontinuity point of the velocity locally to smooth the velocity curve and
maintain a near time-optimal form of the feedrate.

Combining the two steps, our algorithm gives a near time-optimal velocity curve with
continuous acceleration under the given constraints.

The rest of our paper will be organized as follows. Section 2 gives the mathematical
description and theoretical analysis of our feedrate optimization problem. Section 3 gives
the discrete velocity search algorithm. Section 4 proves the optimality of our algorithm.
Section 5 gives the feedrate smoothing strategy. Section 6 gives two simulation examples.
Section 7 concludes the paper.

2. Problem description and analysis

For brevity, we consider a plane parametric curve as the tool path, which has at least C1

continuity:
~r(u) = (x(u), y(u)), 0 ≤ u ≤ 1.

The extension to spatial paths is straightforward. We denote the derivatives with respect to
time t and the parameter u by dots and primes, respectively:

u̇ = du/dt, x′ = dx/du.

In our feedrate planning, the acceleration bound on each axis, the chord error bound,
and the tangential velocity bound of the machine will be considered.

Let σ(u) = |~r′(u)| =
√

x′(u)2 + y′(u)2. Then the tangential velocity along the tool path
is v(u) = σ(u)u̇. Firstly, we consider the bounds on the x and y acceleration components,
which are Ax, Ay. Let q(u) = v2(u). Then the accelerations on the x and y axes are

ax = ẍ = (x′
v

σ
)′

v

σ
=

1
σ

(
x′

σ
)′q +

x′

2σ2
q′

ay = ÿ = (y′
v

σ
)′

v

σ
=

1
σ

(
y′

σ
)′q +

y′

2σ2
q′.

(1)

At each u ∈ [0, 1], the x and y acceleration constraints −Ax ≤ ax ≤ Ax,−Ay ≤ ay ≤ Ay

can be reduced to

−Ax ≤ 1

σ
(
x′

σ
)′q +

x′

2σ2
q′ ≤ Ax

−Ay ≤ 1
σ

(
y′

σ
)′q +

y′

2σ2
q′ ≤ Ay,

(2)

42 K. Zhang, C.M. Yuan, X.S. Gao

which defines the interior of a parallelogram as the set of possible (q, q′) values. Then the
maximal value of q is identified by the right-most vertex of the parallelogram in the (q, q′)
phase plane [13].

Solving equations

1
σ

(
x′

σ
)′q +

x′

2σ2
q′ = αxAx

1
σ

(
y′

σ
)′q +

y′

2σ2
q′ = αyAy,

(3)

where αx = ±1, αy = ±1, we have

q =
αxAxy′ − αyAyx

′

x′′y′ − y′′x′
σ2,

which are the four values of q in the four vertices of the parallelogram. The maximal value
of q at each u ∈ [0, 1] is then easy to obtain. Now we have the x and y axes velocity limit
curve introduced in [2, 11, 13] which is determined by the acceleration constraints on the x
and y axes:

Vxy(u) = σ

√
Ax|y′|+ Ay|x′|
|x′′y′ − y′′x′| (4)

It is called velocity limit curve because the real velocity curve must be smaller that Vxy(u)
at each u.

Secondly, we consider the chord error bound ε. Let the curvature and radius of curvature
of the tool path be

κ(u) =
x′y′′ − y′x′′

σ3(u)
, ρ(u) = 1/|κ(u)|.

In general, the chord error bound is much less than the radius of curvature at each point
on the tool path. By the chord error formula [16, 15], we have

q(u) = v(u)2 ≤ 8ερ(u)− 4ε2

T 2
≈

8ερ(u)
T 2

=
8ε

|κ(u)|T 2

where T is the sampling period. Then the chord error constraint can be transformed to the
centripetal acceleration constraint [16]. Let AN = 8ε/T 2, we have

q(u) = v(u)2 ≤ 8ε

|κ(u)|T 2
⇐⇒ |aN (u)| = |κ(u)|v2(u) ≤ AN .

Based on the above relation, the chord error velocity limit curve is

VN (u) =

√
AN

κ(u)
. (5)

Note that the real velocity curve must also be smaller than or equal to VN (u) for each u.
Together with the tangential velocity bound Vmax, we obtain the velocity limit curve

(abbr. VLC) with all the constraints:

Vlim(u) = min{Vmax, Vxy(u), VN (u)}. (6)

Algorithm for Feedrate Planning and Smoothing with Constraints 43

Fig. 1. Discretization of the parameter and the velocity

Note that a segment of Vlim(u) could be used as the real velocity curve and such a segment
is called feasible. In general, a feasible segment is either Vmax or VN , where the other two
constraints are satisfied. A segment of Vxy is generally not feasible, since in such a case all
the inequalities in (2) become equality which is not possible.

Then our feedrate optimization problem becomes to plan the velocity v(u), such that the
machining time is minimal:

min tf =
∫ 1

0

σ(u)
v(u)

du (7)

under the following constraints:

|ax(u)| ≤ Ax

|ay(u)| ≤ Ay

0 ≤ v(u) ≤ Vlim(u)
v(0) = v(1) = 0.

(8)

3. Discrete velocity search algorithm

We divide the tool path into N segments of parametric length ∆u. The knots are

ui = i∆u, i = 0, . . . , N, (9)

where ∆u = 1/N . We choose an appropriate ∆v to discretize the value of velocity at each
ui. Then the maximal feasible discrete velocity at ui is Vlim(ui) which can be computed with
(6), and the number of intervals for the feasible velocity at ui is

Nv(i) = bVlim(ui)
∆v

c. (10)

Note that we need only to know the values Vlim(ui) of the VLC for the parameter value ui.
In the rest of the section, when we say VLC, we mean this discretized VLC. The velocity at
ui will be chosen in a series of discrete values (see Fig.1):

0,∆v, 2∆v, . . . , Nv(i)∆v.

44 K. Zhang, C.M. Yuan, X.S. Gao

(a) v1 ≥ 0, v2 ≥ 0 (b) v1 ≤ 0, v2 ≤ 0

Fig. 2. Two cases of acceleration profile between two knots

3.1. Velocity reachability
Before presenting the complete algorithm, we need to give a subfunction VR(vs,us, ve,ue)

which decides if two neighboring knots us, ue with their velocities vs, ve are reachable. That
is, whether it is possible to move the tool from point (x(us), y(us)) with initial velocity vs

to point (x(ue), y(ue)) with final velocity ve under the constraints (8).
Firstly, we consider the reachability on each axis. Suppose that the velocity components

(with signs) on an axis (x or y) of two neighboring knots us, ue are v1, v2, respectively, the
projection distance (with sign) on this axis between the two knots is ∆s, and the acceleration
bound of this axis is A. We define a function

vr(v1,∆s, v2, A) =
{

1 if the two knots with their velocities on this axis are reachable;
0 otherwise.

Because the distance between the two neighboring knots is quite small, we simplify the
problem to be only with the acceleration bound of this axis here, which means that Vlim(u)
is not achievable. Minimum-time path traversals generally involve a “Bang-Bang control”
strategy. Then, it is easy to show that there has only two cases of acceleration profile when
v1, v2 have the same signs (see Fig.2).

If v1 and v2 are both nonnegative, the case is shown in Fig.2(a): use A to accelerate and
then −A to decelerate. If v1 and v2 are both less than or equal to 0, the case is shown in
Fig.2(b): use −A first and then A. The distance |∆s| has a lower bound when v1 and v2

have the same signs. Setting t1 or t2 to be 0, the area of the trapezoid on the (t, v) phase
plane in Fig.2 is just the lower bound of |∆s|. The area is easy to compute as |v2

2−v2
1 |

2A . So,

when v1v2 ≥ 0, the two knots are reachable on this axis if and only if |∆s| ≥ |v2
2−v2

1 |
2A .

If v1 and v2 have the opposite signs, it means that there exists a point whose velocity
on this axis is 0 between the two knots. We can obtain the parameter um of this point by
solving x′(u) = 0 or y′(u) = 0 (we use the bisection method between us and ue). Then the
projection distance ∆s is divided into ∆s1 which is the projection distance from us to um,
and ∆s2 which is the projection distance from um to ue. Then, when v1v2 < 0, the two
knots are reachable on this axis if and only if |∆s1| ≥ v2

1
2A and |∆s2| ≥ v2

2
2A .

Algorithm for Feedrate Planning and Smoothing with Constraints 45

Then we have

vr(v1,∆s, v2, A) =

1 v1v2 ≥ 0 and |∆s| ≥ |v2
2−v2

1 |
2A ,

or v1v2 < 0 and |∆s1| ≥ v2
1

2A , |∆s2| ≥ v2
2

2A ;
0 otherwise.

It is clear that two knots with their velocities are reachable if and only if both their
projections on x and y axis are reachable. We have

VR(vs, us, ve, ue) =vr(
x′(us)
σ(us)

vs, x(ue)− x(us),
x′(ue)
σ(ue)

ve, Ax)·

vr(
y′(us)
σ(us)

vs, y(ue)− y(us),
y′(ue)
σ(ue)

ve, Ay).
(11)

3.2. Feedrate planning algorithm
Our algorithm consists of a forward direction pass and a reverse direction pass. During

the forward pass, a trajectory is generated to search for the next maximal feasible velocity
under the VLC at each step; otherwise it will maintain on the VLC. The current maximal
feasible velocity is obtained by computing the velocity reachability function. During the
reverse pass, the maximal feasible preceding velocity under the forward velocity is obtained
at each step; otherwise it will be equal to the forward velocity. Now we state the complete
algorithm below:

Algorithm 1. Discrete velocity search algorithm
Input: ~r(u), Vmax, Ax, Ay, ε, N, ∆v.
Output: the velocity v∗i at each ui, i = 0, . . . , N .

1. Compute the number of velocity intervals Nv(i) at each ui, i = 0, . . . , N with (10).

2. v0 = 0, i = 0.

3. Traverse vi+1 from Nv(i+1)∆v, (Nv(i+1)−1)∆v, . . . , to 0, until VR(vi, ui, vi+1, ui+1) =
1. If vi+1 = 0, set vi+1 = Nv(i + 1)∆v.

4. i = i + 1. If i < N go to step 3, otherwise continue.

5. v∗N = 0,i = N .

6. Traverse v∗i−1 from vi−1, vi−1−∆v, . . . , to 0, until VR(v∗i−1, ui−1, v
∗
i , ui) = 1. If v∗i−1 = 0,

set v∗i−1 = vi−1.

7. i = i− 1. If i > 0 go to step 6, otherwise continue.

8. Output v∗i , i = 0, . . . , N .

We use Fig.3 to illustrate Algorithm 1, where Fig.3(a) shows the forward pass (steps 2-4)
and Fig.3(b) the reverse pass (steps 5-7). In Fig.3(a), the forward velocity curve starts from
(0, 0) and searches for the current maximal feasible velocity under the VLC at each step
in interval (1) in Fig.3. Then it maintains on the VLC in interval (2) because the velocity

46 K. Zhang, C.M. Yuan, X.S. Gao

(a) The forward direction pass (b) The reverse direction pass

Fig. 3. An illustration of Algorithm 1. The horizontal axis is the parameter u of the tool
path. The vertical axis is the tangential velocity.

reachability function has no solution or the velocity is feasible on the VLC. Then the velocity
curve departs from the VLC and searches for the maximal feasible velocity again in interval
(3). Intervals (4) and (5) are similar to intervals (2) and (3) respectively. In Fig.3(b), the
reverse velocity curve starts from point (1, 0) and searches for the maximal feasible preceding
velocity under the forward velocity curve. It updates the forward velocity curve in intervals
(2)(4)(7). Then we obtain the velocity values at each ui.

Now, we discuss how to chose the numbers N and ∆v properly so that the algorithm will
give a valid solution. The number of segments N can be chosen more or less as the number
of interpolation steps along the tool path. It can be estimated as S/(VaveT), where S is an
estimation of the length of the tool path, Vave is an estimation of the average velocity.

The value ∆v can not be too large, otherwise Algorithm 1 may not obtain a solution.
Here we give a limit to ∆v as below. In the forward pass, vi = 0 leads to the bounds of vi+1

from the velocity reachability function:
{
−2Ax|x(ui+1)− x(ui)| ≤ (x′(ui+1)

σ(ui+1) vi+1)2 ≤ 2Ax|x(ui+1)− x(ui)|
−2Ay|y(ui+1)− y(ui)| ≤ (y′(ui+1)

σ(ui+1) vi+1)2 ≤ 2Ay|y(ui+1)− y(ui)|

Then we have

vi+1 ≤ min{ σ(ui+1)
|x′(ui+1)|

√
2Ax|x(ui+1)− x(ui)|, σ(ui+1)

|y′(ui+1)|
√

2Ay|y(ui+1)− y(ui)|} , Va(i + 1)

To make sure that there is a feasible discrete velocity value at each ui+1, ∆v can not be
greater than Va(i + 1) at each ui+1, i = 0, . . . , N − 1. Then we have

∆v ≤ min
1≤i≤N

Va(i) , Va

Together with the similar upper bound Vb in the reverse pass, the limit to ∆v is min{Va, Vb}.
We can choose the value of ∆v to be min{Va, Vb}/100 ∼ min{Va, Vb}/10 in Algorithm 1.

Let M = max0≤i≤N{Nv(i)}. The computational complexity of Algorithm 1 is O(NM)
of arithmetic operations of floating-point calculation since there are twice loop operations in

Algorithm for Feedrate Planning and Smoothing with Constraints 47

the algorithm, and in each step inside the loop we need only to perform a fixed number of
floating point arithmetic operations. A more detailed analysis of Algorithm 1 will be given
in the next section.

4. Time-optimality of the algorithm

In this section, we will prove that the algorithm does obtain a globally time-optimal
solution for problem (7) under constraints (8) as ∆u and ∆v approach to 0.

The method that we use to prove optimality is similar to that used in [2, 11, 13, 16].
The phase plane (u, v) and the VLC are used to construct a solution for the minimum time
control problem. We analyze our algorithm in the same phase plane and then show it is
time-optimal.

Using (2), we can rewrite the x and y acceleration constraints to be the constraints of v′:
{

fx(u, v) ≤ v′ ≤ gx(u, v)
fy(u, v) ≤ v′ ≤ gy(u, v)

(12)

Let f = max{fx, fy}, g = min{gx, gy}. Then the constraints (12) lead to

f(u, v) ≤ v′ ≤ g(u, v), (13)

where f(u, v), g(u, v) are piecewise continuously differentiable functions of u, v. The inequal-
ity (13) shows that v′ has an upper and lower bound at any point on the phase plane (u, v)
under the VLC.

When ∆u and ∆v approach to 0, we can see that step 3 in Algorithm 1 searches for the
current maximal v′ under all the constraints. Although only a finite number of values for
the velocity is found, we could consider a velocity curve v(u) is computed in our proof when
∆u and ∆v approach to 0.

In steps 2-4, the segments of the velocity curve are either under the VLC or equal to
Vlim(u). If the velocity curve segment is under the VLC, it satisfies v′ = g(u, v), which means
that the maximal acceleration Ax or Ay is adopted. If the segment is equal to Vlim(u), there
are two cases: Vlim(u) is a feasible solution in step 3, which means f(u, v) ≤ V ′

lim(u) ≤ g(u, v);
or there has no solution in step 3, which means V ′

lim(u) ≤ f(u, v) ≤ g(u, v). Together with
the two cases, we have V ′

lim(u) ≤ g(u, v) when the velocity curve segment is equal to Vlim(u).
The analysis of steps 5-7 is similar. Step 6 searches for the current minimal v′ with all

the constraints. If the velocity curve segment is under the VLC, it satisfies v′ = f(u, v),
which means that the minimal acceleration −Ax or −Ay is adopted. If the segment is equal
to Vlim(u), it satisfies f(u, v) ≤ V ′

lim(u).
Now it is clear that the complete velocity curve consists of three types of segments (we

use Fig.3(b) to illustrate): the segments which satisfy v′ = g(u, v) (see Fig.3(b) segments
(1)(3)(6)), the segments which satisfy v′ = f(u, v) (see Fig.3(b) segments (2)(4)(7)), and the
feasible segments which are parts of the VLC curve Vlim(u) (see Fig.3(b) segment (5)). If the
velocity curve segment is equal to Vlim(u), it satisfies the x and y acceleration constraints
since it satisfies V ′

lim(u) ≤ g(u, v) and f(u, v) ≤ V ′
lim(u). Then all the segments of the

velocity curve satisfy the x and y acceleration constraints and are under the VLC.

48 K. Zhang, C.M. Yuan, X.S. Gao

Hence, to prove the optimality, we need only to show that the velocity curve given by
Algorithm 1 is higher than any other velocity curve on the phase plane (u, v), which satisfies
constraints (8). In order to prove this, we need the following result.

Comparison Theorem (p.25, [1]): Let y, z be solutions of the following differential equa-
tions

y′ = F (x, y), z′ = G(x, z),

respectively, where F (x, y) ≤ G(x, y), a ≤ x ≤ b, and F or G satisfies Lipschitz’s condition.
If y(a) = z(a), then y(x) ≤ z(x) for any x ∈ [a, b].

Using the comparison theorem, we can prove that the algorithm obtains a globally optimal
solution. Let v̂ be any feasible solution for (8) and v be the solution given by Algorithm 1.

We use Fig.3(b) to illustrate the proof. In segment (1) in Fig.3(b), we have v̂(0) = v(0),
and

v′ = g(u, v), v̂′ ≤ g(u, v̂), u ∈ [0, u1].

g(u, v) satisfies Lipschitz’s condition since it is piecewise continuously differentiable. From
the comparison theorem, we have v̂ ≤ v, u ∈ [0, u1].

In segments (3) and (6) in Fig.3(b), we have v̂(u2) ≤ v(u2), v̂(u5) ≤ v(u5) since v(u2), v(u5)
are on the VLC. We can change the condition y(a) = z(a) to y(a) ≤ z(a) in the comparison
theorem. The result will not change according to the proof of the comparison theorem. Then
we have

v̂ ≤ v, u ∈ [0, u1] ∪ [u2, u3] ∪ [u5, u6].

In segment (7) in Fig.3(b), we have v̂|ũ=0 = v|ũ=0, and

d

dũ
v(1− ũ) = −f(1− ũ, v(1− ũ)),

d

dũ
v̂(1− ũ) ≤ −f(1− ũ, v̂(1− ũ)), ũ ∈ [0, 1− u6]

by making the change of variable ũ = 1−u. −f(1− ũ, v(1− ũ)) satisfies Lipschitz’s condition
since f(u, v) is piecewise continuously differentiable. From the comparison theorem, we have

v̂(1− ũ) ≤ v(1− ũ), ũ ∈ [0, 1− u6],

which is equivalent to v̂ ≤ v, u ∈ [u6, 1].
In segments (2) and (4) in Fig.3(b), the proof is similar to what we have done for segments

(3) and (6). Then we have

v̂ ≤ v, u ∈ [u1, u2] ∪ [u3, u4] ∪ [u6, 1].

Together with v̂ ≤ v, u ∈ [u4, u5], we have v̂ ≤ v, u ∈ [0, 1]. Then from

σ(u)
v(u)

≤ σ(u)
v̂(u)

,

we have ∫ 1

0

σ(u)
v(u)

du ≤
∫ 1

0

σ(u)
v̂(u)

du,

which proves the optimality of our algorithm.

Algorithm for Feedrate Planning and Smoothing with Constraints 49

Fig. 4. Feedrate smoothing around the velocity derivative discontinuity

5. Feedrate smoothing

It is known that the velocity found with Algorithm 1 is a discretization of the velocity
curve found with the methods in [2, 11, 13, 16], which is piecewise differentiable. So its
acceleration profile has discontinuities at a small number of parametric values, which will
cause vibrations and then large contouring errors. From (1), when the parametric tool path
has at least C2 continuity, the acceleration discontinuity points are just the discontinuity
points of v′ (or q′). In this case, one method to reduce vibrations is smoothing the velocity
curve.

In the proof of optimality of Algorithm 1 in section 4, we show that the velocity curve
consists of three parts: the segments which satisfy v′ = g(u, v), the segments which satisfy
v′ = f(u, v), and the segments which are parts of Vlim(u). Then, every discontinuity point
of v′ is either the intersection of any two parts of the above three, or the derivative disconti-
nuity of the VLC. The first kind of discontinuities is easy to find throughout the process of
Algorithm 1. The location of the second kind of discontinuities is not direct. We will deal
with this case later.

First, we consider the case that v′ suddenly decreases at a point. To find these points,
we just need to add steps 1’, 3’ and 6’ after steps 1, 3 and 6 respectively in Algorithm 1:

1’. Initialization: flag(i) = 0, i = 0, . . . , N

3’. If vi < Nv(i)∆v and vi+1 = Nv(i + 1)∆v, set flag(i + 1) = 1.

6’. If v∗i < vi and v∗i−1 = vi−1, set flag(i − 1) = 1; if v∗i−1 < vi−1 and flag(i − 1) = 1, set
flag(i− 1) = 0.

In the forward pass of Algorithm 1, step 3’ marks the points where the velocity segment
satisfying v′ = g(u, v) intersects the VLC with flag(i + 1) = 1 at ui+1. In the reverse pass,
step 6’ marks the points where the velocity segment satisfying v′ = f(u, v) intersects the
forward velocity curve and removes the marks where the forward velocity curve is updated
by the reverse velocity curve.

Suppose flag(k) = 1, that is, v′ suddenly decreases at parametric uk. Choosing an
appropriate small positive integer l, we decrease the velocities computed by Algorithm 1 at

50 K. Zhang, C.M. Yuan, X.S. Gao

parametric uk−l, . . . , uk+l, to obtain a finite rate of change of v′ (or q′) (see Fig.4). With the
approximation of q′ and q′′ by

q′i =
qi − qi−1

∆u
, q′′i =

qi+1 − 2qi + qi−1

∆u2 ,

we solve the following linear programming problem to obtain the new qi:

min
k+l∑

i=k−l

(v∗i
2 − qi) (14)

subject to

0 ≤ qi ≤ v∗i
2, i = k − l, . . . , k + l

−Ax ≤ 1
σ

(
x′

σ
)′(ui)qi +

x′

2σ2∆u
(qi − qi−1) ≤ Ax, i = k − l, . . . , k + l + 1

−Ay ≤ 1
σ

(
y′

σ
)′(ui)qi +

y′

2σ2∆u
(qi − qi−1) ≤ Ay, i = k − l, . . . , k + l + 1

− J ≤ 1
∆u2 (qi+1 − 2qi + qi−1) ≤ J, i = k − l − 1, . . . , k + l + 1

(15)

where v∗i are the velocities computed by Algorithm 1, J is an appropriate limit of q′′.
Note that the second and third constraints in (15) are approximate version of constraints

(2), which guarantee that the acceleration on each axis is confined. The fourth constraint in
(15) can be considered to have a confined jerk approximately, which will lead to continuous
accelerations.

The new velocities at parametric values uk−l, . . . , uk+l satisfy all the original constraints
and have eliminated the discontinuity of q′ at uk in the sense of discrete model.

Usually, the small positive integer l can be predetermined (for example, l = N/100). It
is clear that the above linear programming always has a solution when the q′′ (approximate
jerk) bound J is large enough. Since

|qi+1 − 2qi + qi−1| ≤ |qi+1 − qi|+ |qi − qi−1|, i = k − l − 1, . . . , k + l + 1,

we have

|qi+1 − 2qi + qi−1| ≤ 2 max
i=k−l−2,...,k+l+1

|qi+1 − qi|, i = k − l − 1, . . . , k + l + 1.

So we can choose the initial value of J to be

J =
2

∆u2 max
i=k−l−2,...,k+l+1

|v∗i+1
2 − v∗i

2|.

For this J , the linear programming problem (14) always has solutions. Then we decrease J
step by step and solve the above linear programming problem every time until an acceptable
solution is obtained.

In the case that v′ suddenly increases at uk, which is also easy to find throughout the
process of Algorithm 1 as above, we choose a velocity adjusting interval [uk−l1 , uk+l2] to

Algorithm for Feedrate Planning and Smoothing with Constraints 51

cover this point, the preceding and the next v′ discontinuity point. Then we solve the linear
programming problem above together for the three discontinuities. If the discontinuity is on
the VLC and we do not know where it is, the velocity adjusting interval can be chosen to
cover this VLC segment as well. However, this two cases rarely occur.

The feedrate smoothing with linear programming problem will not increase the com-
plexity of our algorithm since the linear programming problem has efficient polynomial-time
algorithms [7] with complexity O(n3.5), and the dimension of our linear programming prob-
lem n = 2l + 1 ≈ N/50 is quite small compared with N .

6. Simulation results

In this section, we use two examples to illustrate the feasibility of our algorithm. The first
example is used to show that Algorithm 1 can be used to obtain the time-optimal solution
and the complexity of the algorithm is O(NM). The second example, which is often used
as a manufacturing model in the literature, is used to illustrate that our method can obtain
a near time-optimal velocity function with continuous acceleration efficiently.

First, we use an example to illustrate Algorithm 1. The curve in Fig.5 is a quadratic B-
spline consisting of 14 pieces of quadratic curve segments, which has C1 continuity. We
set the tangential velocity and x, y acceleration bounds to be Vmax = 50mm/s,Ax =
2000mm/s2, Ay = 1000mm/s2, respectively. The chord error bound is ε = 1µm and
the sampling period is T = 2ms, which means that the centripetal acceleration bound is
AN = 2000mm/s2.

Table 1. Executing time in seconds of Algorithm 1 with different N and ∆v.

N 100 100 200 200 300 300
∆v (mm/s) 0.02 0.01 0.02 0.01 0.02 0.01
Duration (s) 0.011 0.022 0.021 0.042 0.033 0.064

For discretization, we choose N = 100, 200, 300 and ∆v = 0.01, 0.02mm/s respectively
in this example. The executing time of Algorithm 1 with different N and ∆v are listed in
Table 1. (CPU: Intel Core2 Duo, 2.93GHz; programming software: Microsoft Visual C++
6.0). From the table, we can see that the executing time is approximately proportional to
NM or N

∆V , which validates the O(MN) computational complexity of the algorithm.
In Fig.6(a)(b)(c), the dotted curve is the VLC computed by (6), and the solid ones are

the velocity curves obtained with Algorithm 1 when ∆v = 0.01mm/s and N = 100, 200, 300,
respectively. We can see that the velocity curve obtained with N = 100 is already very
close to the time-optimal solution. On the other hand, the velocity curve is improved when
N becomes larger. For instance, the velocity in Fig.6(b) is larger than that in Fig.6(a) at
u = 0.08 and the velocity in Fig.6(c) is larger than that in Fig.6(b) at u = 0.23.

Fig.6(d) shows the chord error at each parametric u when ∆v = 0.01mm/s,N = 300.
Fig.6(e) and (f) shows the x and y accelerations when ∆v = 0.01mm/s,N = 300, respec-
tively. We can see that it satisfies “Bang-Bang” control, that is, at least one of the constraints
reaches its limit at any time, which also validates that the velocity curve is time-optimal.

52 K. Zhang, C.M. Yuan, X.S. Gao

Fig. 5. A planar quadratic B-spline

(a) Vel. for N = 100,∆v = 0.01mm/s (b) Vel. for N = 200,∆v = 0.01mm/s

(c) Vel. for N = 300,∆v = 0.01mm/s (d) The chord error (µm)

(e) Acceleration on the x-axis (mm/s2) (f) Acceleration on the y-axis (mm/s2)

Fig. 6. The velocity, chord error, and acceleration on each axis. The horizontal axis is the
parameter u of the tool path.

Algorithm for Feedrate Planning and Smoothing with Constraints 53

Fig. 7. A degree 3 NURBS curve and its control points

Now we use another example to demonstrate the feedrate smoothing given in section 5.
The curve in Fig.7 is a degree three NURBS curve with 25 control points. The parameters
of the curve are listed in Table 2. It is a C2 curve since each knot has multiplicity 1.

Table 2. Parameters of a butterfly curve.

Parameters Items
Control points: (50, 85), (40, 70), (30, 90), (10, 100), (0, 90), (10, 50), (30, 50),

(10, 40), (10, 20), (20, 10), (40, 20), (45, 50), (50, 30), (55, 50),
(60, 20), (80, 10), (90, 20), (90, 40), (70, 50), (90, 50), (100, 90),
(90, 100), (70, 90), (60, 70), (50, 85)

Knot vector: 0, 0, 0, 0, 0.08, 0.1, 0.15, 0.2, 0.24, 0.3, 0.33, 0.38, 0.4, 0.42, 0.5,
0.58, 0.6, 0.62, 0.67, 0.7, 0.76, 0.8, 0.85, 0.9, 0.92, 1, 1, 1, 1

Weights: 1, 0.7, 1, 1, 1, 1.5, 1, 1, 0.5, 0.5, 1, 1, 2, 1, 1, 0.5, 0.5, 1, 1, 1.5,
1, 1, 1, 0.7, 1

Degree: 3

We set Vmax = 250mm/s,Ax = 1000mm/s2, Ay = 1000mm/s2, ε = 1µm, T = 2ms,N =
500,∆v = 0.05mm/s, l = 3, and J = (28

∆umm/s)2 in this example.
Fig.8(a) shows the VLC (dotted) and original velocity curve (solid) given by Algorithm

1. There are 16 v′ discontinuity points. Figs.8(b) shows the smoothed velocity curve.
Fig.9(a)(b)(c) shows the chord error, the x and y accelerations of the smoothed velocity
curve, respectively. Comparing Fig.8(a) and Fig.8(b), we can see that the velocity only
changes around the 16 v′ discontinuity points and the amount of changes is not much. Also,
from Fig.9(b) and Fig.9(c), the velocity is approximately “Bang-Bang” control. As a conse-
quence, the final velocity curve is near time-optimal.

54 K. Zhang, C.M. Yuan, X.S. Gao

(a) The VLC and velocity curve (mm/s)

(b) The smoothed velocity curve (mm/s)

Fig. 8. The velocity curve and its smoothing

(a) The chord error (µm)

(b) The acceleration on the x-axis (mm/s2)

(c) The acceleration on the y-axis (mm/s2)

Fig. 9. The chord error and acceleration on each axis

Algorithm for Feedrate Planning and Smoothing with Constraints 55

7. Conclusion

The algorithm proposed in this paper is computationally more efficient than the analytical
solving techniques when the parametric functions for tool path are complex. We avoid
computing the expression of the VLC and switching points. We also need not to integrate
the accelerations. Our discrete velocity search algorithm just need to compute a velocity
reachability function at each step, and the complexity of the algorithm is O(NM) number
of floating-point arithmetic operations.

Comparing with the existing discrete algorithms using nonlinear programming tech-
niques, our algorithm can give time-optimal solution with confined acceleration and chord
error. Using a linear programming scheme to remove the sudden jumps occurring in the
acceleration of the time-optimal feedrate solution, we obtain a near time-optimal solution
with continuous accelerations. Most of the other discrete algorithms which can obtain an op-
timal solution adopted nonlinear programming. It is not easy to control since the nonlinear
programming relies on a feasible initial solution.

References

[1] G. Birkhoff, G.C. Rota. Ordinary differential equations. John Wiley, New York, 1969.
[2] J.E. Bobrow, S. Dubowsky, J.S. Gibson. Time-optimal control of robotic manipulators along

specified paths. Int J Robotics Res, 4(3), 3-17, 1985.
[3] C.L. Boyadjieff, R.T. Farouki, S.D. Timar. Smoothing of time-optimal feedrates for cartesian

CNC machines. Mathematics of Surfaces XI, LNCS 3604, 84C101, Springer Berlin, 2005.
[4] J. Dong, J.A. Stori. A generalized time-optimal bi-directional scan algorithm for constrained

feedrate optimization. ASME Journal of Dynamic Systems, Measurement, and Control, 128,
379-390, 2006.

[5] J. Dong, P.M. Ferreiraa, J.A. Stori. Feedrate optimization with jerk constraints for generating
minimum-time trajectories. International Journal of Machine Tools and Manufacture, 47, 1941-
1955, 2007.

[6] K. Erkorkmaz, Y. Altintas. High speed CNC system design Part I: jerk limited trajectory gener-
ation and quintic spline interpolation. International Journal of Machine Tools and Manufacture,
41, 1323-1345, 2001.

[7] N. Karmarkar. A new polynomial-time algorithm for linear programming. ACM Symposium on
Theory of Computing, New York, 302-311, 1984

[8] J.Y. Lai, K.Y. Lin, S.J. Tseng, W.D. Ueng. On the development of a parametric interpolator
with confined chord error, feedrate, acceleration and jerk Int J Adv Manuf Technol, 37(1-2),
104-121,2008.

[9] C.S. Lin, P.R. Chang, J.Y.S. Luh. Formulation and optimization of cubic polynomial joint tra-
jectories for industrial robots. IEEE Trans Automat Contr, AC-28, 1066-1074, 1983.

[10] C.P. Neuman, V.D. Tourassis. Discrete dynamic robot models. IEEE Trans Syst Man Cybern,
SMC-15(2), 193-204, 1985.

[11] Z. Shiller, H.H. Lu. Robust computation of path constrained time optimal motions. IEEE In-
ternational Conference on Robotics and Automation, Cincinnati, OH, 144-149, 1990.

[12] H.H. Tan, R.B. Potts. Minimum time trajectory planner for the discrete dynamic robot model
with dynamic constraints. IEEE J Robotics Autom, 4, 174-185, 1988.

56 K. Zhang, C.M. Yuan, X.S. Gao

[13] S.D. Timar, R.T. Farouki, T.S. Smith, C.L. Boyadjieff. Algorithms for time-optimal control of
CNC machines along curved tool paths. Robotics and Computer-Integrated Manufacturing, 21,
37-53, 2005.

[14] S.D. Timar, R.T. Farouki. Time-optimal traversal of curved paths by Cartesian CNC machines
under both constant and speed-dependent axis acceleration bounds. Robotics and Computer-
Integrated Manufacturing, 23(2), 563-579, 2007.

[15] S.S. Yeh, P.L. Hsu. Adaptive-feedrate interpolation for parametric curves with a confined chord
error. Computer-Aided Design, 34, 229-237, 2002.

[16] C.M. Yuan, X.S. Gao. Time-optimal interpolation of CNC machines along parametric path with
chord error and tangential acceleration bounds. MM Research Preprints, 29, 165-188, 2010.

[17] K. Zhang, X.S. Gao, H. Li, C.M. Yuan. A greedy algorithm for feedrate planning of CNC
machines along curved tool paths with jerk constraints. MM Research Preprints, 29, 189-205,
2010.

[18] M. Zhang, W. Yan, C.M. Yuan, D. Wang, X.S. Gao. Curve fitting and time-optimal interpolation
on CNC machines. Accepted by Science China, Series E, 2011.

