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Introduction

Computing integrals is a common task in many areas of science, antiderivatives are one
way to accomplish this. The problem of integration in finite terms can be stated as
follows. Given a differential field (F, D) and f ∈ F , compute g in some elementary
extension of (F, D) such that Dg = f if such a g exists.

This problem has been solved for various classes of fields F . For rational functions
(C(x), d

dx
) such a g always exists and algorithms to compute it are known already for a long

time. In 1969 Risch [3] published an algorithm that solves this problem when (F, D) is a
transcendental elementary extension of (C(x), d

dx
). Later this has been extended towards

integrands being Liouvillian functions by Singer et. al. [4] via the use of regular log-
explicit extensions of (C(x), d

dx
). Our algorithm extends this to handling transcendental

Liouvillian extensions (F, D) of (C, 0) directly without the need to embed them into log-
explicit extensions. For example, this means that

∫
(z − x)xz−1e−x dx = xze−x can be

computed without including log(x) in the differential field.

Problem overview

Given (F, D) a transcendental Liouvillian extension of its subfield of constants C and
f0, . . . , fm ∈ F , compute (a basis of) all linear combinations f ∈ spanC{f0, . . . , fm} that
have an elementary integral over F together with corresponding g’s such that Dg = f .

We present a decision procedure for this parametric problem. The algorithm follows
the general recursive structure of its precursors proceeding through the transcendental
extensions one by one. Integrands from F =: K(t) are reduced to integrands from the
differential subfield K. Then a refined version of Liouville’s theorem has to be proven for
reducing the question of having an elementary integral over F to having an elementary
integral over K. A special case is already implicitly contained in [4]. When dealing with
non-elementary extensions this naturally leads to a parametric version of the problem of
integration in finite terms even when we started with just one single integrand.

This refinement is crucial to obtain a decision procedure for Liouvillian extensions. Also
Bronstein [1] presented generalizations of parts of Risch’s algorithm to certain types of
non-elementary extensions, but he did not consider the appropriate parametric versions
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needed. So, for example, with the results given there one does not find the integral∫
(x + 1)2

x log(x)
+ li(x) dx = (x + 2)li(x) + log(log(x)).

Considering the parametric problem is not merely a side-effect, but is also useful in its own
right. Definite integrals can not only be computed via the evaluation of antiderivatives. If
the integral depends on a parameter one can try to compute linear difference/differential
equations that are satisfied by the parameter integral even when no antiderivative of

the integrand is available. E.g. for I(x) =
∫ π/2

0
(1 − x sin(t))rdt one obtains the ODE

2(x− 1)xI ′′(x) + ((3− 2r)x− 2)I ′(x)− rI(x) = 0; r = 1
2

gives the elliptic integral E(x).

Algorithm

In what follows our algorithm is compared to the previous algorithms in more detail. In
some sense the algorithm can be viewed as unification of the algorithms presented in [4,
Theorem A1] and [1]: On the one hand it is a decision procedure for parametric integra-
tion over transcendental Liouvillian extensions and also decides the auxiliary parametric
logarithmic derivative problem. On the other hand it minimizes the computations done in
algebraic extensions and tries to avoid factorization into irreducibles as much as possible.

In addition to what has been mentioned so far the main improvement compared to the
other algorithms is the following. In order to determine the necessary restrictions for
the linear combinations of the integrands [4] relies on irreducible factorization of the de-
nominator over some algebraically extended coefficient domain. The algorithm for the
single-integrand case from [1] – a generalization of [2] – avoids unnecessary algebraic
extensions and complete factorization, but does not carry over to the parametric case.
However, reformulating the Rothstein-Trager resultant appropriately we obtained an al-
gorithm with the desired properties, relying on the extended euclidean algorithm.

The last phase of one step in the recursion mentioned above consists of bounding the de-
gree of the remaining part and solving for the coefficients, which requires solving auxiliary
problems such as the parametric logarithmic derivative problem and the Risch differential
equation. Here the parametric logarithmic derivative heuristic from [1] has been turned
into a decision procedure along the idea sketched in [3].

References

[1] Manuel Bronstein, Symbolic Integration I – Transcendental Functions, 2nd ed.,
Springer, 2005.

[2] Daniel Lazard, Renaud Rioboo, Integration of Rational Functions: Rational Com-
putation of the Logarithmic Part, J. Symbolic Computation 9, pp. 113–115, 1990

[3] Robert H. Risch, The problem of integration in finite terms, Trans. Amer. Math.
Soc. 139, pp. 167–189, 1969

[4] Michael F. Singer, B. David Saunders, Bob F. Caviness, An Extension of Liouville’s
Theorem on Integration in Finite Terms, SIAM J. Comput. 14, pp. 966–990, 1985

2


