DIFFERENTIAL SCHEMES AND DIFFERENTIAL ALGEBRAIC VARIETIES

DMITRY TRUSHIN

Department of Mechanics and Mathematics Moscow State University

October 2010

Dmitry Trushin ()

Differential schemes

October, 2010 1 / 21

1 The differential spectrum of the ring of global sections

2 Differential integral dependence

1 The differential spectrum of the ring of global sections

2 Differential integral dependence

3 Differential catenarity

Ring = commutative, associative, and with an identity

 $\begin{array}{l} \mathsf{Ring} = \mathsf{commutative, associative, and with an identity} \\ \Delta\text{-ring} = \mathsf{ring} + \Delta = \{\delta_1, \ldots, \delta_m\} \quad \delta_i \delta_j = \delta_j \delta_i \end{array}$

Ring = commutative, associative, and with an identity Δ -ring = ring + Δ = { $\delta_1, \ldots, \delta_m$ } $\delta_i \delta_j = \delta_j \delta_i$ $X = \text{Spec}^{\Delta} R$

Differential spectrum

Ring = commutative, associative, and with an identity Δ -ring = ring + Δ = { $\delta_1, \ldots, \delta_m$ } $\delta_i \delta_j = \delta_j \delta_i$ $X = \text{Spec}^{\Delta} R$

Construction

$$\begin{aligned} \mathcal{O}_R(U) &= \textit{regular functions in } U \\ \widehat{R} &= \mathcal{O}_R(X) \quad \widehat{X} = \text{Spec}^{\Delta} \, \widehat{R} \\ \iota \colon R \to \widehat{R} \quad \iota^* \colon \widehat{X} \to X \end{aligned}$$

- **∢ /⊒ ▶ ∢ 글 ▶ ∢**

Differential spectrum

Ring = commutative, associative, and with an identity Δ -ring = ring + Δ = { $\delta_1, \ldots, \delta_m$ } $\delta_i \delta_j = \delta_j \delta_i$ $X = \text{Spec}^{\Delta} R$

Construction

$$\begin{aligned} \mathcal{O}_R(U) &= \textit{regular functions in } U \\ \widehat{R} &= \mathcal{O}_R(X) \quad \widehat{X} = \text{Spec}^{\Delta} \, \widehat{R} \\ \iota \colon R \to \widehat{R} \quad \iota^* \colon \widehat{X} \to X \end{aligned}$$

Conjecture

$$\iota^* \colon \widehat{X} \to X$$
 is a homeomorphism

Construction

$$\begin{aligned} \mathcal{O}'_{R}(U) &= \textit{regular functions in } U \\ \widehat{R}' &= \mathcal{O}'_{R}(X) \quad \widehat{X}' &= \text{Spec}^{\Delta} \, \widehat{R}' \\ \iota_{r} \colon R \to \widehat{R}' \quad \iota_{r}^{*} \colon \widehat{X}' \to X \end{aligned}$$

・ロト ・日下 ・ 日下

Construction

$$\begin{aligned} \mathcal{O}'_{R}(U) &= \textit{regular functions in } U \\ \widehat{R}' &= \mathcal{O}'_{R}(X) \quad \widehat{X}' &= \text{Spec}^{\Delta} \, \widehat{R}' \\ \iota_{r} \colon R \to \widehat{R}' \quad \iota_{r}^{*} \colon \widehat{X}' \to X \end{aligned}$$

Theorem

$\iota_r \colon R \to D \subseteq \widehat{R}'$. Then $\iota_r^* \colon \operatorname{Spec}^{\Delta} D \to \operatorname{Spec}^{\Delta} R$ is a homeomorphism.

Construction

$$\begin{aligned} \mathcal{O}'_{R}(U) &= \textit{regular functions in } U \\ \widehat{R}' &= \mathcal{O}'_{R}(X) \quad \widehat{X}' &= \text{Spec}^{\Delta} \, \widehat{R}' \\ \iota_{r} \colon R \to \widehat{R}' \quad \iota_{r}^{*} \colon \widehat{X}' \to X \end{aligned}$$

Theorem

$$\iota_r \colon R \to D \subseteq \widehat{R}'$$
. Then $\iota_r^* \colon \operatorname{Spec}^{\Delta} D \to \operatorname{Spec}^{\Delta} R$ is a homeomorphism.

Corollary

The mapping $\iota_r^* \colon \widehat{X}' \to X$ is a homeomorphism.

・ロト ・ 日 ト ・ 目 ト ・

Definition (Keigher ring)

 $I \subseteq R$ is a Δ -ideal $\Rightarrow r(I)$ is a Δ -ideal.

Definition (Keigher ring)

 $I \subseteq R$ is a Δ -ideal $\Rightarrow r(I)$ is a Δ -ideal.

R is a Ritt algebra $(\mathbb{Q} \subseteq R) \Rightarrow R$ is a Keigher ring.

Definition (Keigher ring)

 $I \subseteq R$ is a Δ -ideal $\Rightarrow r(I)$ is a Δ -ideal.

R is a Ritt algebra $(\mathbb{Q} \subseteq R) \Rightarrow R$ is a Keigher ring.

Theorem

R is a Keigher ring, $\iota \colon R \to D \subseteq \widehat{R}$. Then

$$\iota^* \colon \operatorname{Spec}^{\Delta} D \to \operatorname{Spec}^{\Delta} R$$

is a homeomorphism.

Definition (Keigher ring)

 $I \subseteq R$ is a Δ -ideal $\Rightarrow r(I)$ is a Δ -ideal.

R is a Ritt algebra $(\mathbb{Q} \subseteq R) \Rightarrow R$ is a Keigher ring.

Theorem

R is a Keigher ring, $\iota \colon R \to D \subseteq \widehat{R}$. Then

$$\iota^* \colon \operatorname{Spec}^{\Delta} D \to \operatorname{Spec}^{\Delta} R$$

is a homeomorphism.

Corollary

R is a Keigher ring. Then

$$\iota^* \colon \widehat{X} \to X$$

is a homeomorphism.

Dmitry Trushin ()

Iterative derivations

Definition

Let
$$\delta = {\delta^k}_{k \ge 0}$$
, $\delta_k \colon R \to R$:
1) $\delta^0(x) = x$
2) $\delta^k(a+b) = \delta^k(a) + \delta^k(b)$
3) $\delta^k(ab) = \sum_{\mu+\nu=k} \delta^{\mu}(a) \delta^{\nu}(b)$
4) $\delta^k \delta^m = {k+m \choose k} \delta^{k+m}$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Iterative derivations

Definition

Let
$$\delta = \{\delta^k\}_{k \ge 0}$$
, $\delta_k \colon R \to R$:
1) $\delta^0(x) = x$
2) $\delta^k(a+b) = \delta^k(a) + \delta^k(b)$
3) $\delta^k(ab) = \sum_{\mu+\nu=k} \delta^\mu(a) \delta^\nu(b)$
4) $\delta^k \delta^m = \binom{k+m}{k} \delta^{k+m}$

Construction

$$\begin{aligned} \mathcal{O}_{R}(U) &= regular \ functions \ in \ U \\ \widehat{R} &= \mathcal{O}_{R}(X) \quad \widehat{X} = \operatorname{Spec}^{\Delta} \widehat{R} \\ \iota \colon R \to \widehat{R} \quad \iota^{*} \colon \widehat{X} \to X \end{aligned}$$

• • • • • • • • • • • •

-

Iterative derivations

Definition

Let
$$\delta = \{\delta^k\}_{k \ge 0}$$
, $\delta_k \colon R \to R$:
1) $\delta^0(x) = x$
2) $\delta^k(a+b) = \delta^k(a) + \delta^k(b)$
3) $\delta^k(ab) = \sum_{\mu+\nu=k} \delta^\mu(a) \delta^\nu(b)$
4) $\delta^k \delta^m = \binom{k+m}{k} \delta^{k+m}$

Construction

$$\begin{aligned} \mathcal{O}_R(U) &= regular \ functions \ in \ U\\ \widehat{R} &= \mathcal{O}_R(X) \quad \widehat{X} = \operatorname{Spec}^{\Delta} \widehat{R}\\ \iota \colon R \to \widehat{R} \quad \iota^* \colon \widehat{X} \to X \end{aligned}$$

Theorem

The mapping
$$\iota^*\colon \widehat{X} o X$$
 is a homeomorphism.

Dmitry Trushin ()

October, 2010 7 / 21

Question

Does \mathcal{O}_R coincide with $\mathcal{O}_{\widehat{R}}$?

Dmitry Trushin ()

Question

Does \mathcal{O}_R coincide with $\mathcal{O}_{\widehat{R}}$?

 $\mathcal{O}_{\widehat{R},\widehat{\mathfrak{p}}}$ may contain more nilpotent elements than $\mathcal{O}_{R,\mathfrak{p}}$

Question

Does \mathcal{O}_R coincide with $\mathcal{O}_{\widehat{R}}$?

 $\mathcal{O}_{\widehat{R},\widehat{\mathfrak{p}}}$ may contain more nilpotent elements than $\mathcal{O}_{R,\mathfrak{p}}$

Fact

If *R* is reduced. Then $\mathcal{O}_R = \mathcal{O}_{\widehat{R}}$.

The differential spectrum of the ring of global sections

2 Differential integral dependence

Properties of the integral dependence in commutative case: (Integral dependence = ID)

- $\textbf{0} \quad \text{Noether's normalization} \Rightarrow \text{ID appears often}$
- ID has simple geometric behavior
- ID describes universally closed morphisms of affine schemes (complete affine varieties)

Properties of the integral dependence in commutative case: (Integral dependence = ID)

- $\textbf{0} \quad \text{Noether's normalization} \Rightarrow \text{ID appears often}$
- ID has simple geometric behavior
- ID describes universally closed morphisms of affine schemes (complete affine varieties)

We are seeking **universally closed** morphisms of affine Δ -schemes

Properties of the integral dependence in commutative case: (Integral dependence = ID)

- $\textcircled{0} \quad \text{Noether's normalization} \Rightarrow \text{ID appears often}$
- ID has simple geometric behavior
- ID describes universally closed morphisms of affine schemes (complete affine varieties)

We are seeking **universally closed** morphisms of affine Δ -schemes

From now all differential rings are **Ritt algebras** ($\mathbb{Q} \subseteq R$)

Let K be a field and $A, B \subseteq K$ be local rings with maximal ideals $\mathfrak{m}, \mathfrak{n}$

Let K be a field and $A, B \subseteq K$ be local rings with maximal ideals $\mathfrak{m}, \mathfrak{n}$

Definition

B dominates *A*: $A \leq B$ iff $A \subseteq B$ and $\mathfrak{n} \cap A = \mathfrak{m}$

Let K be a field and $A, B \subseteq K$ be local rings with maximal ideals $\mathfrak{m}, \mathfrak{n}$

Definition

B dominates *A*: $A \leq B$ iff $A \subseteq B$ and $\mathfrak{n} \cap A = \mathfrak{m}$

Fact (Valuation ring)

Let $A \subseteq K$. The following condition are equivalent:

- $\forall x \neq 0$ either $x \in A$ or $x^{-1} \in A$ (or both)
- A is a maximal element with respect to \leq

Let K be a field and $A, B \subseteq K$ be local rings with maximal ideals $\mathfrak{m}, \mathfrak{n}$

Definition

B dominates A: $A \leq B$ iff $A \subseteq B$ and $\mathfrak{n} \cap A = \mathfrak{m}$

Fact (Valuation ring)

Let $A \subseteq K$. The following condition are equivalent:

- $\forall x \neq 0$ either $x \in A$ or $x^{-1} \in A$ (or both)
- A is a maximal element with respect to \leq

Let $A \subseteq B$ be integral domains and K = Q(B).

Let K be a field and $A, B \subseteq K$ be local rings with maximal ideals $\mathfrak{m}, \mathfrak{n}$

Definition

B dominates A: $A \leq B$ iff $A \subseteq B$ and $\mathfrak{n} \cap A = \mathfrak{m}$

Fact (Valuation ring)

Let $A \subseteq K$. The following condition are equivalent:

• $\forall x \neq 0$ either $x \in A$ or $x^{-1} \in A$ (or both)

• A is a maximal element with respect to \leq

Let $A \subseteq B$ be integral domains and K = Q(B).

Fact

B is integral over *A* iff $B \subseteq \bigcap A_{\alpha}$, where A_{α} are all valuation rings in *K* containing *A*.

(日) (周) (三) (三)

The notion of differential valuation ring.

Definition

- A ⊆ K is an extremal ring if A is a maximal local Δ-ring with respect to ≤ and m is differential
- $A \subseteq K$ is Δ -valuation if $\exists L \supseteq K$ and extremal $A' \subseteq L$ such that $A = A' \cap K$

The notion of differential valuation ring.

Definition

- A ⊆ K is an extremal ring if A is a maximal local Δ-ring with respect to ≤ and m is differential
- $A \subseteq K$ is Δ -valuation if $\exists L \supseteq K$ and extremal $A' \subseteq L$ such that $A = A' \cap K$

The notion of differential integral dependence.

Definition

- $A \subseteq B$ is Δ -integral if $B \subseteq A'$ whenever $A \subseteq A'$ and A' is a Δ -valuation ring
- $A \to B$ is Δ -integral if $\forall \mathfrak{p} \subseteq B$, $A/\mathfrak{p}^c \subseteq B/\mathfrak{p}$ is Δ -integral

Theorem

Let $f: A \rightarrow B$ be Δ -integral. Then

- **1** $\mathfrak{b} \subseteq B$, $a = \mathfrak{b}^c \Rightarrow A/\mathfrak{a} \to B/\mathfrak{b}$ is Δ -integral.
- **2** $S \subseteq A \Rightarrow S^{-1}A \rightarrow S^{-1}B$ is Δ -integral.
- **3** A, B, C are D-algebras $\Rightarrow A \otimes_D C \rightarrow B \otimes_D C$ is Δ -integral.
- f^* : Spec^{Δ} $B \rightarrow$ Spec^{Δ} A/ker f is surjective.
- **•** The going up property holds for f.
- f^* : Spec^{Δ} $B \rightarrow$ Spec^{Δ} A/ is closed.

Theorem

Let $f: A \rightarrow B$ be Δ -integral. Then

- **1** $\mathfrak{b} \subseteq B$, $a = \mathfrak{b}^c \Rightarrow A/\mathfrak{a} \to B/\mathfrak{b}$ is Δ -integral.
- **2** $S \subseteq A \Rightarrow S^{-1}A \rightarrow S^{-1}B$ is Δ -integral.
- **3** A, B, C are D-algebras $\Rightarrow A \otimes_D C \rightarrow B \otimes_D C$ is Δ -integral.
- f^* : Spec^{Δ} $B \rightarrow$ Spec^{Δ} A/ker f is surjective.
- S The going up property holds for f.

•
$$f^*$$
: Spec ^{Δ} $B \rightarrow$ Spec ^{Δ} $A/$ is closed.

Theorem

 $f: A \to B \text{ is } \Delta\text{-integral iff}$ $\forall A\text{-algebra } C : (f \otimes 1)^* \colon \operatorname{Spec}^{\Delta} B \otimes_A C \to \operatorname{Spec}^{\Delta} C \text{ is closed.}$

(日) (同) (三) (三)

Reduced Δ -rings \Rightarrow Reduced Δ -schemes \Rightarrow Fiber products exist

 $\begin{array}{l} \mbox{Reduced Δ-rings$} \Rightarrow \mbox{Reduced Δ-schemes$} \Rightarrow \mbox{Fiber products exist} \\ \mbox{Fiber products of affine Δ-schemes$} \Leftrightarrow \mbox{Tensor products} + \mbox{quotient by the} \\ \mbox{nilradical} \end{array}$

 $\begin{array}{l} \mbox{Reduced Δ-rings$} \Rightarrow \mbox{Reduced Δ-schemes$} \Rightarrow \mbox{Fiber products exist} \\ \mbox{Fiber products of affine Δ-schemes$} \Leftrightarrow \mbox{Tensor products} + \mbox{quotient by the} \\ \mbox{nilradical} \end{array}$

Definition (Universally closed morphism)

Let X, Y be reduced Δ -schemes. The morphism $X \to Y$ is universally closed if $\forall Z \to Y$ the mapping $X \times_Y Z \to Z$ is closed.

 $\begin{array}{l} \mbox{Reduced Δ-rings$} \Rightarrow \mbox{Reduced Δ-schemes$} \Rightarrow \mbox{Fiber products exist} \\ \mbox{Fiber products of affine Δ-schemes$} \Leftrightarrow \mbox{Tensor products} + \mbox{quotient by the} \\ \mbox{nilradical} \end{array}$

Definition (Universally closed morphism)

Let X, Y be reduced Δ -schemes. The morphism $X \to Y$ is universally closed if $\forall Z \to Y$ the mapping $X \times_Y Z \to Z$ is closed.

Theorem

Let $A \to B$ be reduced Δ -rings. Then $\operatorname{Spec}^{\Delta} B \to \operatorname{Spec}^{\Delta} A$ is universally closed iff $A \to B$ is Δ -integral.

Examples

A $\Delta\text{-integral}$ extension of a field need not be a field

Examples

A Δ -integral extension of a field need not be a field

Example

- C(t), t' = 1
- z = 1/t
- $C \subset C[z]_{(z)} \subset C(t)$

Then $C[z]_{(z)}$ is Δ -integral closure of C in C(t).

Examples

A Δ -integral extension of a field need not be a field

Example

- C(t), t' = 1
- z = 1/t
- $C \subset C[z]_{(z)} \subset C(t)$

Then $C[z]_{(z)}$ is Δ -integral closure of C in C(t).

Theorem

- $C \subset L$, trdeg_C L = 1
- $\forall c \in C \Rightarrow c' = 0$
- $A_i \subset L$ are valuation rings such that \mathfrak{m}_i are differential

Then \overline{C} is either C or $\cap_i A_i$.

Image: Image:

Let K be a differentially closed field

Let K be a differentially closed field

Definition (Complete differential algebraic variety)

X is complete if $\forall Y$ the mapping $X \times Y \to Y$ is closed.

Let K be a differentially closed field

Definition (Complete differential algebraic variety)

X is complete if $\forall Y$ the mapping $X \times Y \to Y$ is closed.

Example

• $X \subseteq K$ is given by $z' + z^2 = 0$.

• *R* is the ring of regular function of *X*

Then X is complete and R is Δ -integral over K.

Let K be a differentially closed field

Definition (Complete differential algebraic variety)

X is complete if $\forall Y$ the mapping $X \times Y \to Y$ is closed.

Example

- $X \subseteq K$ is given by $z' + z^2 = 0$.
- *R* is the ring of regular function of *X*

Then X is complete and R is Δ -integral over K.

 $\label{eq:Kolchin} \ensuremath{\mathsf{Kolchin}}\xspace \Rightarrow \ensuremath{\mathsf{differentially complete}}\xspace = \ensuremath{\mathsf{Complete}}\xspace \\ \ensuremath{\mathsf{differential algebraic varieties}}\xspace \\ \ensuremath{\mathsf{Kolchin}}\xspace \\ \ensuremath{\mathsf{differential algebraic varieties}}\xspace \\ \ensuremath{\mathsf{Kolchin}}\xspace \\ \ensuremath{\mathsf{differential algebraic varieties}}\xspace \\ \ensuremath{\mathsf{Kolchin}}\xspace \\ \ensuremath{\mathsf{Kolchin}}\xspace \\ \ensuremath{\mathsf{differential algebraic varieties}}\xspace \\ \ensuremath{\mathsf{differential algebraic varieties}}\xspace \\ \ensuremath{\mathsf{Kolchin}}\xspace \\ \ensuremath{\mathsf{Kolchin}}\xspace \\ \ensuremath{\mathsf{differential varieties}}\xspace \\ \ensuremath{\mathsf{differential varieties}}\xspace \\ \ensuremath{\mathsf{differential varieties}}\xspace \\ \ensuremath{\mathsf{Kolchin}}\xspace \\ \ensuremath{\mathsf{differential varieties}}\xspace \\ \ensuremath{\mathsf{differential varieties}}\xspac$

Let K be a differentially closed field

Definition (Complete differential algebraic variety)

X is complete if $\forall Y$ the mapping $X \times Y \to Y$ is closed.

Example

- $X \subseteq K$ is given by $z' + z^2 = 0$.
- *R* is the ring of regular function of *X*

Then X is complete and R is Δ -integral over K.

 $\label{eq:Kolchin} \ensuremath{\mathsf{Kolchin}}\xspace \Rightarrow \ensuremath{\mathsf{differentially complete}}\xspace = \ensuremath{\mathsf{Complete}}\xspace \ensuremath{\mathsf{complete}$

Example (Kolchin)

If $C \subseteq K$ is a constant subfield. Then the constant projective space \mathbb{P}^1_C is differentially complete.

Dmitry Trushin ()

The differential spectrum of the ring of global sections

2 Differential integral dependence

K is a Δ -field $\forall B \ B = S^{-1}K\{x_1, \ldots, x_n\}$

Image: A matrix and A matrix

3

$$K$$
 is a Δ -field $\forall B \ B = S^{-1}K\{x_1, \ldots, x_n\}$

Definition (Gap)

For $\mathfrak{p} \subseteq \mathfrak{q} \subseteq B$ one defines $\mu(\mathfrak{p},\mathfrak{q}) \in \mathbb{Z}$. $\mu(\mathfrak{p},\mathfrak{q}) \leqslant m$, where $|\Delta| = m$.

$$K$$
 is a Δ -field $\forall B \ B = S^{-1}K\{x_1, \ldots, x_n\}$

Definition (Gap)

For $\mathfrak{p} \subseteq \mathfrak{q} \subseteq B$ one defines $\mu(\mathfrak{p},\mathfrak{q}) \in \mathbb{Z}$. $\mu(\mathfrak{p},\mathfrak{q}) \leqslant m$, where $|\Delta| = m$.

Definition

• dim^{$$\Delta$$} B = sup{k | $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_k, \ \mu(\mathfrak{p}_i, \mathfrak{p}_{i+1}) = m$ }

• ht
$$^{\Delta}\mathfrak{p} = \operatorname{\mathsf{dim}}^{\Delta}B_{\mathfrak{p}}$$

•
$$\operatorname{coht}^{\Delta} \mathfrak{p} = \operatorname{dim}^{\Delta} B/\mathfrak{p}$$

K is a
$$\Delta$$
-field $\forall B \ B = S^{-1}K\{x_1, \ldots, x_n\}$

Definition (Gap)

For $\mathfrak{p} \subseteq \mathfrak{q} \subseteq B$ one defines $\mu(\mathfrak{p},\mathfrak{q}) \in \mathbb{Z}$. $\mu(\mathfrak{p},\mathfrak{q}) \leqslant m$, where $|\Delta| = m$.

Definition

• dim^{$$\Delta$$} B = sup{k | $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_k, \ \mu(\mathfrak{p}_i, \mathfrak{p}_{i+1}) = m$]

•
$$ht^{\Delta} \mathfrak{p} = dim^{\Delta} B_{\mathfrak{p}}$$

•
$$\operatorname{coht}^{\Delta} \mathfrak{p} = \operatorname{dim}^{\Delta} B/\mathfrak{p}$$

Theorem (Johnson)

 $\operatorname{coht}^{\Delta} \mathfrak{p} = \operatorname{dim}^{\Delta} B/\mathfrak{p} = \operatorname{trdeg}^{\Delta}_{\kappa} B.$

Conjecture

B is differentially catenary:

 $\forall \mathfrak{p} \subseteq \mathfrak{q} \text{ and } \forall \text{ saturated chain } \mathfrak{p} = \mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_k = \mathfrak{q} \text{ we have } k = \operatorname{ht}^{\Delta}(\mathfrak{q}/\mathfrak{p}) = \operatorname{dim}^{\Delta} B/\mathfrak{p} - \operatorname{dim}^{\Delta} B/\mathfrak{q}.$

Conjecture

B is differentially catenary:

 $\forall \mathfrak{p} \subseteq \mathfrak{q} \text{ and } \forall \text{ saturated chain } \mathfrak{p} = \mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_k = \mathfrak{q} \text{ we have } k = \mathsf{ht}^{\Delta}(\mathfrak{q}/\mathfrak{p}) = \dim^{\Delta} B/\mathfrak{p} - \dim^{\Delta} B/\mathfrak{q}.$

Conjecture

For every
$$\mathfrak{p}$$
 we have $ht^{\Delta}\mathfrak{p} \ge \dim^{\Delta} B - \dim^{\Delta} B/\mathfrak{p}$.

Conjecture

B is differentially catenary:

 $\forall \mathfrak{p} \subseteq \mathfrak{q} \text{ and } \forall \text{ saturated chain } \mathfrak{p} = \mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_k = \mathfrak{q} \text{ we have } k = \mathsf{ht}^{\Delta}(\mathfrak{q}/\mathfrak{p}) = \dim^{\Delta} B/\mathfrak{p} - \dim^{\Delta} B/\mathfrak{q}.$

Conjecture

For every
$$\mathfrak{p}$$
 we have $ht^{\Delta}\mathfrak{p} \ge \dim^{\Delta} B - \dim^{\Delta} B/\mathfrak{p}$.

Theorem (Rosenfield)

If \mathfrak{p} is regular with respect to some ranking. Then the inequality holds.

Johnson (1977) \Rightarrow The notion of regular prime ideal

Image: A matrix and A matrix

3

Regular points

Johnson (1977) \Rightarrow The notion of regular prime ideal

- $B = K\{x_1, \dots, x_n\}$ and $\mathfrak{p} \subseteq B$
- $A = B_{\mathfrak{p}}$ and $\mathfrak{m} \subseteq A$
- $G_{\mathfrak{m}}(A) = \bigoplus_{k \ge 0} \mathfrak{m}^k / \mathfrak{m}^{k+1}$
- $K_{\mathfrak{m}} = A/\mathfrak{m}$
- $S_K(V)$ is the symmetric algebra on V over K

Regular points

Johnson (1977) \Rightarrow The notion of regular prime ideal

- $B = K\{x_1, \dots, x_n\}$ and $\mathfrak{p} \subseteq B$
- $A = B_{\mathfrak{p}}$ and $\mathfrak{m} \subseteq A$
- $G_{\mathfrak{m}}(A) = \bigoplus_{k \ge 0} \mathfrak{m}^k / \mathfrak{m}^{k+1}$
- $K_{\mathfrak{m}} = A/\mathfrak{m}$
- $S_{\mathcal{K}}(V)$ is the symmetric algebra on V over \mathcal{K}

Theorem (Johnson)

- $\mathfrak p$ is regular with respect to some ranking $\Rightarrow \mathfrak p$ is regular
- \mathfrak{p} is regular then $G_{\mathfrak{m}}(A) = S_{K_{\mathfrak{m}}}(\mathfrak{m}/\mathfrak{m}^2)$
- B is reduced \Rightarrow The set of all regular primes is open and not empty

Completions and Catenarity

Theorem

If $G_{\mathfrak{m}}(A) = S_{\mathcal{K}_{\mathfrak{m}}}(\mathfrak{m}/\mathfrak{m}^2)$ holds. Then the inequality

$$\operatorname{ht}^{\Delta}\mathfrak{p} \geqslant \operatorname{dim}^{\Delta} A - \operatorname{dim}^{\Delta} A/\mathfrak{p}$$

holds.

.

Theorem

If $G_{\mathfrak{m}}(A) = S_{\mathcal{K}_{\mathfrak{m}}}(\mathfrak{m}/\mathfrak{m}^2)$ holds. Then the inequality

$$\mathsf{ht}^\Delta\,\mathfrak{p}\geqslant \mathsf{dim}^\Delta\,A-\mathsf{dim}^\Delta\,A/\mathfrak{p}$$

holds.

Fact

If
$$G_{\mathfrak{m}}(A) = S_{\mathcal{K}_{\mathfrak{m}}}(\mathfrak{m}/\mathfrak{m}^2)$$
 holds. Then $\widehat{A} = \mathcal{K}_{\mathfrak{m}}[[\mathfrak{m}/\mathfrak{m}^2]]$

.

Theorem

If $G_{\mathfrak{m}}(A) = S_{\mathcal{K}_{\mathfrak{m}}}(\mathfrak{m}/\mathfrak{m}^2)$ holds. Then the inequality

$$\mathsf{ht}^\Delta\,\mathfrak{p} \geqslant \dim^\Delta A - \dim^\Delta A/\mathfrak{p}$$

holds.

Fact

If
$$G_{\mathfrak{m}}(A) = S_{\mathcal{K}_{\mathfrak{m}}}(\mathfrak{m}/\mathfrak{m}^2)$$
 holds. Then $\widehat{A} = \mathcal{K}_{\mathfrak{m}}[[\mathfrak{m}/\mathfrak{m}^2]]$

$$K\{y_1,\ldots,y_k\} \longrightarrow A \longrightarrow \widehat{A}$$

.

æ