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Given f € C*[0,1], find u € C*|0, 1] such that

u’ = f,
u)=u(1)=0

Solution: Green’s operator G: C*[0,1] —» C*[0,1], f— u
Green’s Operator G via Green’s Function g:

1 (x-=1)¢ forx>¢
Gf(x) = L) (&) d €)=
(0= [ oxofede  gxo {f(x_” s
Green’s operator as integro-differential operator:
G = XAX + XBX - AX - BX,

A= [qu(¢) dé, B = flu(f) dé, and X the multiplication operator,
XAX f(x) = x [o£ 1(£) dé
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Integro-Differential Algebras (¥, 9, )
Example: C=(R), 9 usual derivation, [: f— [ f(¢) d¢
Leibniz Rule, Fundamental Theorem of Calculus, Integration by Parts

(.0, ) is an integro-differential algebra if
(F,0) is a differential K-algebra and [ is a K-linear section of 8 =,
i.e. (Jf) = f, such that the differential Baxter axiom

UMU) + [(fa) = (Jfg+1f(Jg')

holds. c. r-r0s, Guo-Keigher '08

o (Exponential) polynomials, holonomic functions
o K[x] or K[[x]] with Q < K usual d and [x¥ = xk+1/(k + 1)

o Hurwitz series (keigher-prichara 00 )2 (@n) - (bn) = (X1, (7) aibn_i)n

5(30,&1,&2,...):(31,32,...) f(ao,a1,...):(0,30,31,...)
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Sections and Multiplicative Projectors
Example: C*(R), [f' = f-f(a),and f - [f' = f(a)

(¥, 0) differential K-algebra and | a K-linear section of o:

o Projectors g=[o0d and E=1-[00
o Submodules constants and initialized “functions”

C =Ker(d) =Ker(s) =Im(e) and 7 =Im([)= = Ker(k)
o Direct sum F=C+71

A section | of  satisfies the differential Baxter axiom
iff e =1 — [ is multiplicative iff 7 = Im([) is an ideal.

“Linear structure and algebra structure fit together”
Differential fields cannot have integral operators
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| section of 4:

Differential Baxter axiom = ([f)([g) = [(f[9) + [(g[f)
&G

(.0, ) integro-differential algebra:

(7, |) Rota-Baxter algebra (of weight zero) sater 6o, Rota 'ss, Guo 02.
Integro-differential algebras are differential Rota-Baxter algebras

Axioms generalize to Rota-Baxter operators with weights
Commutative integro-differential algebras:

Differential Baxter axiom <« ffg= [fg+ [f[ &
Itg'=1tg-Jf'g-(ef)(eg).

From now & commutative and K a field with Q < K
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Ordinary Integro-Differential Algebras

Want to treat boundary problems for ODEs

But also (F = K[x, y].dx. [) integro-differential algebra, C = K[y]

Definition

We call (7,4, [) ordinary if dimx C = 1.

From now on all integro-differential algebras are ordinary

o C=Ker(d) =K

o K[x] < F with x = [1 and Ker(8") = [1,x,...,x"]

o Differential Baxter axiom < Baxter axiom

o E=1-[0: F - K multiplicative functional (character), evaluation
o Solve initial value problems with variation-of-constants formula
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“Integration gives one evaluation for free”

Need more characters (“evaluations”) ¥ — K for boundary problems
Example: C®(R), point evaluations f — f(b)

Fix a set of characters @ C * including &
¥ 0] differential operators over (7, d):
Via normal Forms Y f:3' with multiplication of = fo + f’

Free K-algebra generated by the symbol 9 and the “functions” f € F
modulo the rewrite system (and linearity)

fg — feg|df — fo+0ef

e denotes actionon F,def = f
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Integro-Differential Operators, Construction

Fol0, ] integro-differential operators over (7,4, [) and &

Free K-algebra generated by the symbols d and [,
“functions” f € ¥ and characters ¢ € @ modulo the rewrite system

fg — feg f — fo+def
o oY dp - 0

of = (pef)p |df — 1

Jif = (JeNf=J(Jeh

[fo - f-[(def)—(Eef)E

Jfo = ([ef)e

Proposition

The rewrite system is Noetherian and confluent
(forms a noncommutative Grébner-Shirshov basis). (r-r 0s))




Normal Forms



Normal Forms

Every integro-differential can be uniquely written as a sum

T+ G+ B,




Normal Forms

Every integro-differential can be uniquely written as a sum

T+ G+ B,

where

T=Zf6’

differential



Normal Forms

Every integro-differential can be uniquely written as a sum

T+ G+ B,

where

T=> 1 G=)>f[g

differential integral



Normal Forms

Every integro-differential can be uniquely written as a sum

T+ G+ B,

where
T:Zfai G:fog B:thﬁ’-i—fgojg

differential integral boundary operator



Normal Forms

Every integro-differential can be uniquely written as a sum

T+ G+ B,
where
T=>1 G=>ffg B= ) f¢d +fofg
differential integral boundary operator
Subalgebras

F19] 71J] (¢)



Normal Forms

Every integro-differential can be uniquely written as a sum

T+ G+ B,
where
T=Yto G=>1fg B= ) f¢d +fofg
differential integral boundary operator
Subalgebras
F10] vl (@)

Direct decomposition

Fal0, [1=F[0] + Ff] +(®)
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Integro-differential operators [, []:
@ can express boundary problems and Green’s operators
@ has one-sided inverses = are not Noetherian (acobson 50)
@ has zero divisors, for example dp = 0

@ can be constructed as skew-polynomials for ¥ = K[x] and
@ = {E}, Integro-differential Weyl algebra (r-r-middeke '09)

Implementation in Theorema (Mathematica) via reduction modulo
parametrized noncommutative Grébner-Shirshov basis (r-r-Tec-Buchberger '09)

and in Maple via normal forms (korpora-r-r "10)
@ compute Green'’s operator from a given fundamental system

o multiply boundary problems corresponding to Green’s operators
o lift factorization of differential operators to boundary problems
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¥ {u} differential polynomials over (7, 9):
Polynomial ring in u, u’,u”, ... over ¥
>
B = (Bo.-...Bx) multi-index, ¥ = U0 --- 1, u; ith derivative
All terms built up with
coefficients from ¥, indeterminate u, operations +, -, 0
modulo consequences of corresponding axioms and operations in ¥
Every polynomial is equivalent to a sum 3, f;u® (canonical forms)

Instance of general construction of polynomials in universal algebra
Free product of coefficient algebra and free algebra
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¥ {u} integro-differential polynomials over (7,4, [):
All terms built up with #, u, and operations
Example for (K[x], 9, [):

(duu [(x +3)u) (W [u"?) + [xCu(0)?u” (0)uu [(x® + Bx)uPu? [u,
where u(0) = e(u)
Leibniz rule, section axiom, Baxter axiom, multiplicativity of k,. ..
Every polynomial is equivalent to a sum of terms of the form

fu(0) P [fu [ ... [fur,

where each multi-index and n may be zero.
Not unique (“integration by parts”),

Jfu and fu- [f'u-f(0)u(0)

represent the same polynomial



Canonical Forms for Integro-Differential Polynomials

Canonical Forms: Sum of terms of the form
fu(0)* P [fun [ ... [fu,

where f, fi,...,f, € ¥, a, 5, n may be zero and in every differential
monomial u”’ the highest derivative appears non-linearly.
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Canonical Forms: Sum of terms of the form
fu(0)* P [fu [ ... [faur,

where f, fi,...,fh € ¥, a, 8, n may be zero and in every differential
monomial u”’ the highest derivative appears non-linearly.

Proof by endowing the set of terms with the structure of an
integro-differential algebra

Implementation in Theorema (r-r-Tec-uchberger 10)

Confluence proof for the rewrite rules for integro-differential operators
via a Grdébner-Shirshov basis computation in a suitable algebraic
domain (Tec-R-R-Buchberger ’10)
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o Integro-differential operators: algebraic and algorithmic setting for
boundary problems for LODEs

@ Integro-differential polynomials: first step towards nonlinear
integro-differential equations

o Algebraic systems theory for ordinary integro-differential equations
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Integro-differential algebras: differential algebra + integral operator

Integro-differential operators: algebraic and algorithmic setting for
boundary problems for LODEs

Integro-differential polynomials: first step towards nonlinear
integro-differential equations

Algebraic systems theory for ordinary integro-differential equations
Systems of non-linear integro-differential equations
Partial integro-differential operators

Thank you!



