Generic Galois groups for q-difference equations

Generic Galois groups for q-difference equations

Lucia Di Vizio

(joint work with Charlotte Hardouin)

Beijing, October 27th, 2010

Generic Galois groups for *q*-difference equations

Generic Galois groups for q-difference equations *a*-difference systems and modules

- q-difference systems and modules
- Overview of Galois theory
- Generic (algebraic) Galois groups
- 4 Comparison theorem
- (5) Prolongation functor
- 6 Comparison theorem
 - Improvements, losses.
- $(\ensuremath{\mathbb{8}})$ Reduction to a finitely generated extension of \mathbb{Q}
 - Main theorem : q root of unity
 - Main theorem : q transcendental
 - Main theorem : q algebraic, not a root of unity () () ()

Generic Galois groups for q-difference equations

Generic Galois groups for *q*-difference equations *q*-difference systems and modules

 \mathbb{C} field of complex numbers, $q \in \mathbb{C} \smallsetminus \{0, 1\}, \ \sigma_q : f(x) \mapsto f(qx)$

q-difference system

Y(qx) = A(x)Y(x) with $A(x) \in Gl_{\nu}(\mathbb{C}(x))$

q-difference module $\mathcal{M} = (M, \Sigma_q)$ over $\mathbb{C}(x)$

 $\begin{array}{ll} M & \mathbb{C}(x) \text{-vector space of dimension } \nu \\ \Sigma_q: M \to M & \sigma_q \text{-semilinear bijection} \end{array}$

Rmk.

Horizontal vectors for $\Sigma_q \leftrightarrow$ solutions of a q-difference system

Generic Galois groups for *q*-difference equations

Generic Galois groups for q-difference equations Overview of Galois theory

If |q|
eq 1 :

 $A(x) \in Gl_{\nu}(\mathbb{C}(x)) \Rightarrow \exists U \in Gl_{\nu}(\mathcal{M}er(\mathbb{C}^*)) \text{ s.t. } U(qx) = A(x)U(x)$ $\rightsquigarrow Y(qx) = A(x)Y(x) \text{ has a fundamental solution in}$ $\mathcal{E}_{q}(x)(U) \subset \mathcal{M}er(\mathbb{C}^*), \text{ with } \mathcal{M}er(\mathbb{C}^*)^{\sigma_q} = \mathcal{E}_{q}$

 \rightsquigarrow algebraic group over the algebraic closure over \mathcal{E}_q

 \rightsquigarrow differential group over the differential closure over \mathcal{E}_q (Hardouin-Singer)

Problem. Large field of definition Groups difficult to calculate and characterize

Generic Galois groups for *q*-difference equations Generic (algebraic) Galois groups

$$\mathcal{M}_{\mathbb{C}(x)} = (M_{\mathbb{C}(x)}, \Sigma_q) = q$$
-difference module/ $\mathbb{C}(x)$

 $Constr(\mathcal{M}_{\mathbb{C}(x)}) = family of q-diff. modules/\mathbb{C}(x) closed w.r.t.$ algebraic constructions

 $\rightsquigarrow Gl(M_{\mathbb{C}(x)})$ naturally acts on $Constr(\mathcal{M}_{\mathbb{C}(x)})$

Generic Galois group

 $Gal(\mathcal{M}_{\mathbb{C}(x)}, \eta_{\mathbb{C}(x)}) = \{ \varphi \in Gl_{\nu}(\mathcal{M}_{\mathbb{C}(x)}) : \varphi \text{ stabilises} \\ \text{every sub-} q\text{-difference module in every object of } Constr(\mathcal{M}_{\mathbb{C}(x)}) \}$

Generic Galois groups for *q*-difference equations

Generic Galois groups for *q*-difference equations Comparison theorem

Theorem.

 $\dim_{\mathbb{C}(x)} Gal(\mathcal{M}_{\mathbb{C}(x)}, \eta_{\mathbb{C}(x)})$ is equal to the transcendence degree of the Picard-Vessiot extension over the algebraic closure of the field \mathcal{E}_q of q-elliptic functions.

RMK The weak Picard-Vessiot extension over \mathcal{E}_q is actually enough (*cf.* Chatdzidakis-Hardouin-Singer).

Generic Galois groups for *q*-difference equations Prolongation functor

 $Constr^{\partial}(\mathcal{M}_{\mathbb{C}(x)}) = family of q-diff. modules/\mathbb{C}(x) closed w.r.t. constructions of differential algebra$

i.e. algebraic constructions plus the prolongation functor F

$F(\mathcal{M}_{\mathbb{C}(x)})$ = extension of $\mathcal{M}_{\mathbb{C}(x)}$ by itself

s.t. if \underline{e} is a basis of $\mathcal{M}_{\mathbb{C}(x)}$ with $\Sigma_q \underline{e} = \underline{e}A(x)$, then there exists a basis $(\underline{e}, \underline{e}')$ of $F(\mathcal{M}_{\mathbb{C}(x)})$ such that $\Sigma_q(\underline{e}, \underline{e}') = (\underline{e}, \underline{e}') \begin{pmatrix} A & \partial(A) \\ 0 & A \end{pmatrix}$

 \rightsquigarrow $Gl(M_{\mathbb{C}(x)})$ naturally acts on $Constr^{\partial}(\mathcal{M}_{\mathbb{C}(x)})$

Generic differential Galois group

 $Gal^{\partial}(\mathcal{M}_{\mathbb{C}(x)}, \eta_{\mathbb{C}(x)}) = \{\varphi \in Gl_{\nu}(\mathcal{M}_{\mathbb{C}(x)}) : \varphi \text{ stabilises}$ every sub-q-difference module in every object of $Constr^{\partial}(\mathcal{M}_{\mathbb{C}(x)})\}$

Generic Galois groups for *q*-difference equations

Generic Galois groups for *q*-difference equations Comparison theorem

Theorem.

diff.dim_{$\mathbb{C}(x)$} Gal^{∂}($\mathcal{M}_{\mathbb{C}(x)}, \eta_{\mathbb{C}(x)}$) is equal to the hypertranscendence degree of the differential Picard-Vessiot extension over the differential closure of the field \mathcal{E}_q of q-elliptic functions.

RMK The weak Picard-Vessiot extension over \mathcal{E}_q is actually enough.

Generic Galois groups for *q*-difference equations

Generic Galois groups for *q*-difference equations Improvements, losses.

To summarize :

We give up

the Galois correspondence.

We keep

the information on the algebraic and differential relations between the solutions.

We gain

- a smaller field of definition ;
- the intrinsic construction of the generic Galois group : no need of Picard-Vessiot theory or of construction of solutions;
- an arithmetic description of the Galois group.

Generic Galois groups for q-difference equations Reduction to a finitely generated extension of $\mathbb Q$

 $\mathcal{M}_{\mathbb{C}(x)} \ q$ -difference module/ $\mathbb{C}(x)$, with $q \in \mathbb{C} \setminus \{0, 1\}$ $\Rightarrow \exists K \subset \mathbb{C}$, finitely generated/ \mathbb{Q} and $\mathcal{M}_{K(x)}$ such that

•
$$\mathcal{M}_{\mathcal{K}(x)} \otimes_{\mathcal{K}(x)} \mathbb{C}(x) \cong \mathcal{M}_{\mathbb{C}(x)}$$

- $Gal(\mathcal{M}_{K(x)}, \eta_{K(x)}) \otimes_{K(x)} \mathbb{C}(x) \cong Gal(\mathcal{M}_{\mathbb{C}(x)}, \eta_{\mathbb{C}(x)})$
- $Gal^{\partial}(\mathcal{M}_{K(x)},\eta_{K(x)})\otimes_{K(x)}\mathbb{C}(x)\cong Gal^{\partial}(\mathcal{M}_{\mathbb{C}(x)},\eta_{\mathbb{C}(x)})$

We can always work on a finitely generated extension K of \mathbb{Q} .

Three cases :

- q root of unity (for Gal(M_{K(x)}, η_{K(x)}) cf. Hendriks, 1996)
- q transcendant
- q algebraic not a root of unity (for Gal(M_{K(x)}, η_{K(x)}), with K number field cf. DV, 2002)

q root of unity of order κ

 \Rightarrow there is only one curvature to take into account : Σ_{a}^{κ}

Theorem

- $Gal(\mathcal{M}_{K(x)}, \eta_{K(x)})$ is the Zariski closure of Σ_q^{κ} .
- $Gal^{\partial}(\mathcal{M}_{\mathcal{K}(x)},\eta_{\mathcal{K}(x)})$ is the Kolchin closure of Σ_q^{κ} .

Generic Galois groups for *q*-difference equations Reduction to a finitely generated extension of Q Main theorem : *q* transcendental

> $\exists k \subset K$ such that K/k(q) finite and k(q)/k transcendental For simplicity, we state the theorem for K = k(q): ϕ_{v} = irreducible factor of a cyclotomic polynomial in k[q]

Theorem

 $Gal(\mathcal{M}_{K(x)}, \eta_{K(x)})$ is the smallest algebraic subgroup of $Gl_{\nu}(\mathcal{M}_{K(x)})$ whose reduction modulo ϕ_{ν} contains $\Sigma_{q}^{\kappa_{\nu}}: \mathcal{M}_{\mathcal{A}} \otimes \mathcal{O}_{K}/\phi_{\nu} \to \mathcal{M}_{\mathcal{A}} \otimes \mathcal{O}_{K}/\phi_{\nu}$, for almost all ν .

Generic Galois groups for *q*-difference equations Reduction to a finitely generated extension of Q Main theorem : *q* transcendental

> $\exists k \subset K$ such that K/k(q) finite and k(q)/k transcendental For simplicity, we state the theorem for K = k(q): $\phi_v =$ irreducible factor of a cyclotomic polynomial in k[q]

Theorem

 $Gal^{\partial}(\mathcal{M}_{K(x)}, \eta_{K(x)})$ is the smallest <u>differential</u> subgroup of $Gl_{\nu}(\mathcal{M}_{K(x)})$ whose reduction modulo ϕ_{ν} contains $\Sigma_{q}^{\kappa_{\nu}}: \mathcal{M}_{\mathcal{A}} \otimes \mathcal{O}_{K}/\phi_{\nu} \to \mathcal{M}_{\mathcal{A}} \otimes \mathcal{O}_{K}/\phi_{\nu}$, for almost all ν .

Generic Galois groups for *q*-difference equations

q algebraic, not a root of unity Q= algebraic closure of \mathbb{Q} in *K*, with ring of integers \mathcal{O}_Q

For simplicity we take $\mathbb{Q} = Q$ $\kappa_p = \text{ order as a root of unity of } q \mod p$ $p^{\ell_p} = \text{ integer power of p s.t. } p^{-\ell_p}(1 - q^{\kappa_p}) \in \mathbb{Z}_p^{\times}$

Theorem

 $Gal(\mathcal{M}_{\mathcal{K}(x)}, \eta_{\mathcal{K}(x)})$ is the smallest algebraic subgroup of $Gl_{\nu}(M_{\mathcal{K}(x)})$ whose reduction modulo p^{ℓ_p} contains $\Sigma_q^{\kappa_p} : M_{\mathcal{A}} \otimes \mathcal{O}_{\mathbb{Q}}/p^{\ell_p} \to M_{\mathcal{A}} \otimes \mathcal{O}_{\mathbb{Q}}/p^{\ell_p}$ for almost all places p.

Generic Galois groups for *q*-difference equations

> q algebraic, not a root of unity Q= algebraic closure of \mathbb{Q} in K, with ring of integers \mathcal{O}_Q

For simplicity we take $\mathbb{Q} = Q$ $\kappa_p = \text{ order as a root of unity of } q \mod p$ $p^{\ell_p} = \text{ integer power of p s.t. } p^{-\ell_p}(1-q^{\kappa_p}) \in \mathbb{Z}_p^{\times}$

Theorem

 $Gal^{\partial}(\mathcal{M}_{\mathcal{K}(x)}, \eta_{\mathcal{K}(x)})$ is the smallest <u>differential</u> subgroup of $Gl_{\nu}(M_{\mathcal{K}(x)})$ whose reduction modulo p^{ℓ_p} contains $\Sigma_q^{\kappa_p}: M_{\mathcal{A}} \otimes \mathcal{O}_{\mathbb{Q}}/p^{\ell_p} \to M_{\mathcal{A}} \otimes \mathcal{O}_{\mathbb{Q}}/p^{\ell_p}$ for almost all places p.

Generic Galois groups for *q*-difference equations

Corollary

 $Gal(\mathcal{M}_{\mathbb{C}(x)}, \eta_{\mathbb{C}(x)})$ and $Gal^{\partial}(\mathcal{M}_{\mathbb{C}(x)}, \eta_{\mathbb{C}(x)})$ can always be characterized by curvature means.

Generic Galois groups for *q*-difference equations

To keep in mind for the applications :

$$Y(qx) = A(x)Y(x)$$
, with $A(x) \in Gl_{\nu}(\mathbb{C}(x))$
 $Y(q^{k}x) = A_{k}(x)Y(x)$, $k \in \mathbb{Z}$, where
 $A_{k}(x) = A(q^{k-1}x) \cdots A(qx)A(x)$, $k > 0$,
 $A_{0} = id$,
 $A_{-k}(x) = A_{k}(q^{-k}x)^{-1}$, $k > 0$.

The generic (differential) Galois group of $(\mathbb{C}(x)^{\nu}, X \mapsto A(x)^{-1}\sigma_q(X))$ is the smallest algebraic (differential) Galois group containing

- if q is transcendent, the specialization of A_{κξ}(x) at q = ξ, for almost all primitive root of unity ξ in an algebraic closure of K, of order κ_ξ.
- if q is algebraic, the reduction of $A_{\kappa_p}(x)$ modulo p^{ℓ_p} for almost all primes p.