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s Abramov, Paule and Petkovsek visited formal power
series solutions and basic hypergeometric series
solutions for ¢-difference equations.
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uch bases are called suitable bases.
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iInally, guess the general form of x;. from the pattern.
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hen y(z) = >~ , abi(x) is a formal solution to the equation

(y(z)) = 0

vhen > " cibi(2) is a finite summation, it is a real solution.
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efine L by

L(p(n)) = apr(n)p(n + 1) + (Bn — x)p(n) + p(n —1).
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) r(n) = p(n)/q(n), ¢(n) Is a factor of the numerator of «,,
and p(n — 1) Is a factor of the numerator of ~,.
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) L(1) IS a constant independent of n.
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