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Linear differential equations

Solve linear differential equations by means of power series.

2x(x− 1)y′′(x) + (7x− 3)y′(x) + 2y(x) = 0

⇒ y(x) =

∞
∑

k=0

cnx
n

⇒ (n+ 1)(2n+ 3)cn+1 − (n+ 2)(2n+ 1)cn = 0
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Linear differential equations

Solve linear differential equations by means of power series.

2x(x− 1)y′′(x) + (7x− 3)y′(x) + 2y(x) = 0

⇒ y(x) =

∞
∑

k=0

cnx
n

⇒ (n+ 1)(2n+ 3)cn+1 − (n+ 2)(2n+ 1)cn = 0

⇒ y(x) =

∞
∑

n=0

2(n+ 1)

2n+ 1
xn.
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Linear differential equations

Abramov and Petkovsěk considered general polynomial
sequences, especially

y(x) =

∞
∑

k=0

ck(x− a)k.
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Linear differential equations

Abramov and Petkovsěk considered general polynomial
sequences, especially

y(x) =

∞
∑

k=0

ck(x− a)k.

Abramov, Paule and Petkovšek visited formal power
series solutions and basic hypergeometric series
solutions for q-difference equations.

y(x) =

∞
∑

k=0

c(qk)xk.
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Our aim

Given a linear differential/difference equation

L(y(x)) = 0,

find a hypergeometric series solution

y(x) =

∞
∑

k=0

ckbk(x).
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Our aim

Given a linear differential/difference equation

L(y(x)) = 0,

find a hypergeometric series solution

y(x) =

∞
∑

k=0

ckbk(x).

(1− x2)p′′(x)− xp′(x) + n2p(x) = 0

⇒ p(x) =

n
∑

k=0

(−n)k(n)k
(1/2)kk!

(

1− x

2

)k

= 2F1

(

−n, n

1/2

∣

∣

∣

∣

∣

1− x

2

)

.
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Solving linear operator equations
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Let L be a linear operator acting on the ring K[x].
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Let L be a linear operator acting on the ring K[x].

We aim to find a basis {bk(x)} of K[x] such that

L(bk(x)) = Akbk(x) +Bkbk−h(x), ∀ k ∈ N,

where Ak, Bk ∈ K and h is a fixed positive integer.
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L(bk(x)) = Akbk(x) +Bkbk−h(x), ∀ k ∈ N,

where Ak, Bk ∈ K and h is a fixed positive integer.

We further require that

bk(x) are monic

bk−1(x) divides bk(x)
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Suitable bases

Let L be a linear operator acting on the ring K[x].

We aim to find a basis {bk(x)} of K[x] such that

L(bk(x)) = Akbk(x) +Bkbk−h(x), ∀ k ∈ N,

where Ak, Bk ∈ K and h is a fixed positive integer.

We further require that

bk(x) are monic

bk−1(x) divides bk(x)

Then bk(x) = (x− x1)(x− x2) · · · (x− xk).

HyperRep – p. 8/25



Suitable bases

Let L be a linear operator acting on the ring K[x].

We aim to find a basis {bk(x)} of K[x] such that

L(bk(x)) = Akbk(x) +Bkbk−h(x), ∀ k ∈ N,

where Ak, Bk ∈ K and h is a fixed positive integer.

We further require that

bk(x) are monic

bk−1(x) divides bk(x)

Then bk(x) = (x− x1)(x− x2) · · · (x− xk).

Such bases are called suitable bases.

HyperRep – p. 8/25



Searching for suitable bases
We solve x1, . . . , xk for explicit integer k. Recall that

L(bk(x)) = Akbk(x) +Bkbk−h(x).
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Searching for suitable bases
We solve x1, . . . , xk for explicit integer k. Recall that

L(bk(x)) = Akbk(x) +Bkbk−h(x).

Then

Ak = [xk]L(bk(x)) and Bk = [xk−h]
(

L(bk(x))− Akbk(x)
)

can be expressed in terms of x1, . . . , xk.

HyperRep – p. 9/25



Searching for suitable bases
We solve x1, . . . , xk for explicit integer k. Recall that

L(bk(x)) = Akbk(x) +Bkbk−h(x).

Then

Ak = [xk]L(bk(x)) and Bk = [xk−h]
(
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(
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Searching for suitable bases
We solve x1, . . . , xk for explicit integer k. Recall that

L(bk(x)) = Akbk(x) +Bkbk−h(x).

Then

Ak = [xk]L(bk(x)) and Bk = [xk−h]
(

L(bk(x))− Akbk(x)
)

can be expressed in terms of x1, . . . , xk.

Comparing coefficients of xi, we obtain a system of
polynomial equations on x1, . . . , xk.

Starting from k = 1, we iteratively set up and solve the
equations until reaching a certain degree k0.

Finally, guess the general form of xk from the pattern.
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Example

L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x).
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Example
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b0(x) = 1, b1(x) = x− x1.
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Example

L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x).

Take h = 1 and set

b0(x) = 1, b1(x) = x− x1.

L(b1(x)) = (n2 − 1)x− n2x1 = A1(x− x1) + B1.
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Example

L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x).

Take h = 1 and set

b0(x) = 1, b1(x) = x− x1.

L(b1(x)) = (n2 − 1)x− n2x1 = A1(x− x1) + B1.

A1 = (n2 − 1) and B1 = −x1.
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Example

L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x).

Take h = 1 and set

b0(x) = 1, b1(x) = x− x1.

L(b1(x)) = (n2 − 1)x− n2x1 = A1(x− x1) + B1.

A1 = (n2 − 1) and B1 = −x1.

We do not obtain any equation on x1.
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Example

Set b2(x) = (x− x1)(x− x2).
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Example

Set b2(x) = (x− x1)(x− x2).

(n2 − 4)x2 − (n2 − 1)(x1 + x2)x+ 2 + n2x1x2

= A2(x− x1)(x− x2) +B2(x− x1),
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Example

Set b2(x) = (x− x1)(x− x2).

(n2 − 4)x2 − (n2 − 1)(x1 + x2)x+ 2 + n2x1x2

= A2(x− x1)(x− x2) +B2(x− x1),

A2 = n2 − 4, B2 = −3(x1 + x2), and x1x2 = 3x21 − 2.
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Example

Set b2(x) = (x− x1)(x− x2).

(n2 − 4)x2 − (n2 − 1)(x1 + x2)x+ 2 + n2x1x2

= A2(x− x1)(x− x2) +B2(x− x1),

A2 = n2 − 4, B2 = −3(x1 + x2), and x1x2 = 3x21 − 2.

For k ≥ 3, we derive

x1 = x2 = · · · = xk = 1 and x1 = x2 = · · · = xk = −1.
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Example

Set b2(x) = (x− x1)(x− x2).

(n2 − 4)x2 − (n2 − 1)(x1 + x2)x+ 2 + n2x1x2

= A2(x− x1)(x− x2) +B2(x− x1),

A2 = n2 − 4, B2 = −3(x1 + x2), and x1x2 = 3x21 − 2.

For k ≥ 3, we derive

x1 = x2 = · · · = xk = 1 and x1 = x2 = · · · = xk = −1.

Guess:
bk(x) = (x+ 1)k or bk(x) = (x− 1)k.

HyperRep – p. 11/25



Verify suitable bases

L(bk(x)) = Akbk(x) +Bkbk−h(x)
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Verify suitable bases

L(bk(x)) = Akbk(x) +Bkbk−h(x)

holds if and only if

Ak = [xh]
L(bk(x))

bk−h(x)
, and Bk = [x0]

(

L(bk(x))

bk−h(x)
−Ak

bk(x)

bk−h(x)

)

,

and
L(bk(x))

bk−h(x)
= Ak

bk(x)

bk−h(x)
+Bk.
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Verify suitable bases

L(bk(x)) = Akbk(x) +Bkbk−h(x)

holds if and only if

Ak = [xh]
L(bk(x))

bk−h(x)
, and Bk = [x0]

(

L(bk(x))

bk−h(x)
−Ak

bk(x)

bk−h(x)

)

,

and
L(bk(x))

bk−h(x)
= Ak

bk(x)

bk−h(x)
+Bk.

Verify

solve out Ak and Bk
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Example

Let
L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x).

Verify (x− 1)k.

It is a suitable basis and

Ak = n2 − k2 and Bk = k − 2k2.
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Series solutions

As done by Abramov and Petkovšek, L can be extended to
formal series of the form

∑

∞

k=0 ckbk(x) by setting

L

(

∞
∑

k=0

ckbk(x)

)

=

∞
∑

k=0

(ckAk + ck+hBk+h)bk(x).
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Series solutions

As done by Abramov and Petkovšek, L can be extended to
formal series of the form

∑

∞

k=0 ckbk(x) by setting

L

(

∞
∑

k=0

ckbk(x)

)

=

∞
∑

k=0

(ckAk + ck+hBk+h)bk(x).

Suppose
ckAk + ck+hBk+h = 0, ∀ k ∈ N.

Then y(x) =
∑

∞

k=0 ckbk(x) is a formal solution to the equation
L(y(x)) = 0.
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Series solutions

As done by Abramov and Petkovšek, L can be extended to
formal series of the form

∑

∞

k=0 ckbk(x) by setting

L

(

∞
∑

k=0

ckbk(x)

)

=

∞
∑

k=0

(ckAk + ck+hBk+h)bk(x).

Suppose
ckAk + ck+hBk+h = 0, ∀ k ∈ N.

Then y(x) =
∑

∞

k=0 ckbk(x) is a formal solution to the equation
L(y(x)) = 0.

When
∑

∞

k=0 ckbk(x) is a finite summation, it is a real solution.
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Hypergeometric series solutions

When Ak, Bk and xk are all rational functions of k, tk = ckbk(x)

is an h-fold hypergeometric term.
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Hypergeometric series solutions

When Ak, Bk and xk are all rational functions of k, tk = ckbk(x)

is an h-fold hypergeometric term.

tk+h

tk
= −Ak · bk+h(x)

Bk+h · bk(x)
.
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Hypergeometric series solutions

When Ak, Bk and xk are all rational functions of k, tk = ckbk(x)

is an h-fold hypergeometric term.

tk+h

tk
= −Ak · bk+h(x)

Bk+h · bk(x)
.

L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x).

tk+1

tk
= − Ak

Bk+1
(x− 1) =

(k − n)(k + n)

(k + 1)(k + 1/2)
· 1− x

2
,
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Hypergeometric series solutions

When Ak, Bk and xk are all rational functions of k, tk = ckbk(x)

is an h-fold hypergeometric term.

tk+h

tk
= −Ak · bk+h(x)

Bk+h · bk(x)
.

L(p(x)) = (1− x2)p′′(x)− xp′(x) + n2p(x).

tk+1

tk
= − Ak

Bk+1
(x− 1) =

(k − n)(k + n)

(k + 1)(k + 1/2)
· 1− x

2
,

y(x) =

∞
∑

k=0

tk = t0 · 2F1

(

−n, n

1/2

∣

∣

∣

∣

∣

1− x

2

)
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Differential/Difference equations
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Jacobi polynomials

L(p(x)) = (1−x2)p′′(x)+(β−α−(α+β+2)x)p′(x)+n(n+α+β+1)p(x).
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Jacobi polynomials

L(p(x)) = (1−x2)p′′(x)+(β−α−(α+β+2)x)p′(x)+n(n+α+β+1)p(x).

bk: (x− 1)k or (x+ 1)k.
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Jacobi polynomials

L(p(x)) = (1−x2)p′′(x)+(β−α−(α+β+2)x)p′(x)+n(n+α+β+1)p(x).

bk: (x− 1)k or (x+ 1)k.

P
(α,β)
n (x) =

(α + 1)n
n!

2F1

(

−n, n+ α + β + 1

α + 1

∣

∣

∣

∣

∣

1− x

2

)

= (−1)n
(β + 1)n

n!
2F1

(

−n, n+ α + β + 1

β + 1

∣

∣

∣

∣

∣

1 + x

2

)

.
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Hahn polynomials

L(p(x)) = B(x)y(x+1)−(n(n+α+β+1)+B(x)+D(x))y(x)+D(x)y(x−1),

where B(x) = (x+ α + 1)(x−N) and D(x) = x(x− β −N − 1).
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Hahn polynomials

L(p(x)) = B(x)y(x+1)−(n(n+α+β+1)+B(x)+D(x))y(x)+D(x)y(x−1),

where B(x) = (x+ α + 1)(x−N) and D(x) = x(x− β −N − 1).

bk:

{(x+α+1)k}, {(−1)k(−x+N+β+1)k}, {(x−N)k}, {(−1)k(−x)k}.
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Hahn polynomials

L(p(x)) = B(x)y(x+1)−(n(n+α+β+1)+B(x)+D(x))y(x)+D(x)y(x−1),

where B(x) = (x+ α + 1)(x−N) and D(x) = x(x− β −N − 1).

bk:

{(x+α+1)k}, {(−1)k(−x+N+β+1)k}, {(x−N)k}, {(−1)k(−x)k}.

Qn(x) = cn · 3F2

(

−n, n+ α + β + 1, x+ α + 1

α + 1, α + β +N + 2

∣

∣

∣

∣

∣

1

)

.
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Non-uniform lattice

x = x(s) and L acts on s.

L(p(s)) = B(s)p(s+1)−(n(n+α+β+1)+B(s)+D(s))p(s)+D(s)p(s−1),

B(s) and D(s) are rational functions.
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Non-uniform lattice

x = x(s) and L acts on s.

L(p(s)) = B(s)p(s+1)−(n(n+α+β+1)+B(s)+D(s))p(s)+D(s)p(s−1),

B(s) and D(s) are rational functions.

bk(s) = (x(s)− x1)(x(s)− x2) · · · (x(s)− xk)
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Non-uniform lattice

x = x(s) and L acts on s.

L(p(s)) = B(s)p(s+1)−(n(n+α+β+1)+B(s)+D(s))p(s)+D(s)p(s−1),

B(s) and D(s) are rational functions.

bk(s) = (x(s)− x1)(x(s)− x2) · · · (x(s)− xk)

For Racah polynomials, we find x(s) = s(s+ γ + δ + 1) and
xk = x(sk):

sk = k+α−γ−δ−1, sk = k−δ−1, sk = k−1, or sk = k+β−γ−1.
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Non-uniform lattice

x = x(s) and L acts on s.

L(p(s)) = B(s)p(s+1)−(n(n+α+β+1)+B(s)+D(s))p(s)+D(s)p(s−1),

B(s) and D(s) are rational functions.

bk(s) = (x(s)− x1)(x(s)− x2) · · · (x(s)− xk)

For Racah polynomials, we find x(s) = s(s+ γ + δ + 1) and
xk = x(sk):

sk = k+α−γ−δ−1, sk = k−δ−1, sk = k−1, or sk = k+β−γ−1.

Rn(x(s)) = 4F3

(

−n, n+ α + β + 1,−s+ α− γ − δ, s+ α + 1

α + 1, α − δ + 1, α + β − γ + 1

∣

∣

∣

∣

∣

1

)

.
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Recurrence relations
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Recurrence relations

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x).
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Recurrence relations

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x).

Pn =

∞
∑

k=0

ckbk(n) −→ Pn = an

∞
∑

k=0

ckbk(n)
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Recurrence relations

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x).

Pn =

∞
∑

k=0

ckbk(n) −→ Pn = an

∞
∑

k=0

ckbk(n)

Let

p(n) =

∞
∑

k=0

ckbk(n), r(n) = an+1/an.

HyperRep – p. 21/25



Recurrence relations

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x).

Pn =

∞
∑

k=0

ckbk(n) −→ Pn = an

∞
∑

k=0

ckbk(n)

Let

p(n) =

∞
∑

k=0

ckbk(n), r(n) = an+1/an.

Define L by

L(p(n)) = αnr(n)p(n+ 1) + (βn − x)p(n) +
γn

r(n− 1)
p(n− 1).
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Choose r(n)

(a) r(n) = p(n)/q(n), q(n) is a factor of the numerator of αn

and p(n− 1) is a factor of the numerator of γn.

(b) The numerator of γn
r(n−1)

is divisible by n.

(c) L(1) is a constant independent of n.
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Example

Pn+1(x) + (n− x)Pn(x) + αn2Pn−1(x) = 0.
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Example

Pn+1(x) + (n− x)Pn(x) + αn2Pn−1(x) = 0.

r(n) =
−1±

√
1− 4α

2
(n+ 1).
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Example

Pn+1(x) + (n− x)Pn(x) + αn2Pn−1(x) = 0.

r(n) =
−1±

√
1− 4α

2
(n+ 1).

L(p(n)) =
u− 1

2
(n+ 1)p(n+ 1) + (n− x)p(n)− u+ 1

2
np(n− 1),

where u2 = 1− 4α.
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Example

Pn+1(x) + (n− x)Pn(x) + αn2Pn−1(x) = 0.

r(n) =
−1±

√
1− 4α

2
(n+ 1).

L(p(n)) =
u− 1

2
(n+ 1)p(n+ 1) + (n− x)p(n)− u+ 1

2
np(n− 1),

where u2 = 1− 4α.

bk(n) = (−1)k(−n)k and

Pn(x) = a0

(

u− 1

2

)n

n! 2F1

(

−n, (−2x+ u− 1)/2u

1

∣

∣

∣

∣

∣

2u

u− 1

)

.
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The Al-Salam-Chihara polynomials

2xQn(x) = Qn+1(x)+(a+b)qnQn(x)+(1−qn)(1−abqn−1)Qn−1(x).
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The Al-Salam-Chihara polynomials

2xQn(x) = Qn+1(x)+(a+b)qnQn(x)+(1−qn)(1−abqn−1)Qn−1(x).

t = q−n r(t) = (t− ab)/at.
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The Al-Salam-Chihara polynomials

2xQn(x) = Qn+1(x)+(a+b)qnQn(x)+(1−qn)(1−abqn−1)Qn−1(x).

t = q−n r(t) = (t− ab)/at.

L(p(t)) =
t− ab

2at
p(t/q) +

(

a+ b

2t
− x

)

p(t) +
a(t− 1)

2t
p(tq).

bk(t) = (t− 1)(t− q−1) · · · (t− q−k+1) and

Qn(x) = a0
(ab; q)n

an
3φ2

(

q−n, aeiθ, ae−iθ

ab, 0

∣

∣

∣

∣

∣

q; q

)

, x = cos θ.
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