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Introduction and Preliminaries

All fields considered in this talk are of characteristic zero.

We consider only ordinary differential fields (one derivation).
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NNC Extensions

Let F be a differential field.

Definition

A differential field extension E ⊃ F is a No New Constants (NNC)
extension of F if the constants of E are the same as the constants
of F .
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Antiderivative Extension

Definition

Let E ⊃ F be a NNC extension. An element u ∈ E is an
antiderivative (of an element) of F if u′ ∈ F . A differential field
extension E ⊃ F is an antiderivative extension of F if for
i = 1, 2, · · · , n, there exists ui ∈ E such that u′i ∈ F and
E = F (u1, u2, · · · , un).
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Iterated Antiderivative Extension

Definition

A No New Constant extension E of F is called a Iterated
Antiderivative Extension of F if E = F (x1, · · · , xn) and for each i ,
x′i ∈ F (x1, · · · , xi−1), that is, xi is an antiderivative of an element
of F (x1, · · · , xi−1).
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Basic Theorems

Theorem

Let E ⊃ F be a NNC extension and let x ∈ E with x′ ∈ F . Then
either x is transcendental over F or x ∈ F .

Theorem

Let E ⊃ F be a differential field extension. Suppose that there is
an x ∈ E − F , x′ ∈ F and that F (x) contains a new constant.
Then there is an element y ∈ F such that y ′ = x′.

Kaplansky, Magid, Rosenlicht-Singer.
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Algebraic Dependence of Antiderivatives

Theorem

Let E ⊃ F be a NNC differential field extension and for
i = 1, 2, · · · , n, let xi ∈ E be antiderivatives of F . Then either xi ’s
are algebraically independent over F or there is a tuple
(c1, · · · , cn) ∈ Cn − {0} such that

∑n
i=1 cixi ∈ F .

Ostrowski, Kolchin, Ax, Rosenlicht,...
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Structure of Antiderivative Extensions

Corollary

Let E = F (x1, x2, · · · , xt) be an antiderivative extension of F and
let K be a differential subfield of E containing F . Then K is an
antiderivative extension of F .
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Iterated Antiderivative Extension

Definition

We recall that a No New Constant extension E of F is called a
Iterated Antiderivative Extension of F if E = F (x1, · · · , xn) and for
each i , x′i ∈ F (x1, · · · , xi−1), that is, xi is an antiderivative of an
element of F (x1, · · · , xi−1).
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Structure Theorem

Theorem

Let F be a differential field with an algebraically closed field of
constants C . Let E be an iterated antiderivative extension of F
and let K be a differential subfield of E such that K ⊇ F . Then K
is an iterated antiderivative extension of F .

RS

V. Ravi Srinivasan Symbolic Integration DART IV, Beijing, China



Introduction Iterated Antiderivative Extensions Picard-Vessiot Exensions

Remark

The structure theorem is not true in general if we consider a
liouvillian extensions instead of an iterated antiderivative
extensions.
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Liouvillian Extensions

.

Example 1, Rosenlicht, Singer

Consider

E := C(z , ez
2
,

∫
ez

2
) ⊃ K := C(z ,

∫
ez

2

ez2
) ⊃ C(z).

Then E is liouvillian over C(z) but K is not Liouvillian over C(z).

Example 2, Rosenlicht, Singer

E := F (
√

1− z2, sin−1 z)

is a liouvillian extension (generalized elementary extension) of C(z)
but K := F (

√
1− z2 sin−1 z) is not liouvillian (generalized

elementary) over C(z).
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Algebraically Independent Antiderivatives

Theorem

Let F be a differential that has elements f1, f2, · · · , fn ∈ F
such that for any c1, c2, · · · , cn ∈ C and for any f ∈ F if∑n

i=1 ci fi = f ′ then ci = 0 for all i .

Let E = F (x1, · · · , xn, y1, · · · , ym) be the field of rational
functions with n + m variables. For i = 1, · · · ,m, let
Pi ,Qi ,Ri ∈ F [x1, · · · , xn], (Pi ,Qi ) = (Pi ,Ri ) = (Qi ,Ri ) = 1
be polynomials satisfying the following condition:

Ri is an irreducible polynomial, Ri - Rj if i 6= j and Ri - Qj for
any 1 ≤ i , j ≤ m.

Extend derivation of F to E by setting x′i = fi and y′i = Pi
RiQi

.
Then E is a no new constants extension of F .
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Algebraically Independent Antiderivatives

Corollary

Let y ∈ E be an antiderivative of F . Then y =
∑m

i=1 αixi + f ,
where αi ∈ C and f ∈ F .
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Algebraically Independent Antiderivatives

Let

E = C(z)
(

ln z , ln(z + 1),

∫
1

ln(z + 1)
,

∫
(z + 1)2

z ln(z)

)
.

If y ∈ E and y ′ ∈ C(z) then y ′ = c1
x + c2

x+1 + f ′, where c1, c2 ∈ C
and f ∈ C(z)
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Iterated antiderivative extensions need not be Picard-Vessiot
Extensions: Consider C(z , ln z) over C.
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Part II

Picard-Vessiot Extensions with Certain Unipotent Algebraic
Groups as Galois Groups.
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Extensions with unipotent algebraic groups as Galois
Groups

Let F be a differential field with a field of constants C .

Let U(n + 1,C ) denote a full unipotent subgroup of the general
linear group GL(n + 1,C ).

We ask the following question: Under what conditions on F does
there exist a P-V extension (of F), whose Galois group is
Isomorphic to U(n + 1,C )
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.
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Extensions with unipotent algebraic groups as Galois
Groups

Condition on F

(NS) Let F be a differential field F that satisfies the following
condition: there are elements f1, f2, · · · , fn ∈ F such that for any
c1, c2, · · · , cn ∈ C and for any f ∈ F if

∑n
i=1 ci fi = f ′ then ci = 0

for all i .

Kovacic, Bialynicki-Birula

V. Ravi Srinivasan Symbolic Integration DART IV, Beijing, China



Introduction Iterated Antiderivative Extensions Picard-Vessiot Exensions

Extensions with unipotent algebraic groups as Galois
Groups

Let E = F (g), where g :=


1 x1,1 x2,1 · · · xn,1
0 1 x1,2 · · · xn−1,2
...

...
...

...
...

0 0 · · · 1 x1,n
0 0 · · · 0 1

. Extend

the derivation of F to E by setting g ′ = Ag , where

A :=


0 f1 0 · · · 0
0 0 f2 · · · 0
...

...
...

...
...

0 0 · · · 0 fn
0 0 · · · 0 0

.

Then E is a Picard-Vessiot extension of F with a differential Galois
group naturally isomorphic to U(n + 1,C ).
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Extensions with unipotent algebraic groups as Galois
Groups

We can also compute a linear differential operator over F for E .

L(Y ) :=
w(Y , 1, x1,1, x2,1, · · · , xn,1)

w(1, x1,1, x2,1, · · · , xn,1)

L−1{0} =spanC {1, x1,1, x2,1, · · · , xn,1}
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Computing a differential equation

Let E ⊇ F be differential field extensions and assume that the field
of constants C of F is algebraically closed. Then E is a
Picard-Vessiot Extension of F if and only if

1 E = F 〈V 〉, where V ⊂ E is a finite dimensional C− vector
space

2 There is a group G of differential automorphisms of E with
G (V ) ⊆ V and EG = F .

3 E ⊇ F is a NNC extension.

In particular if the above conditions hold and if {x1, · · · , xn} is a
C−basis of V then E is a Picard-Vessiot Extension of F for the
differential operator

L(Y ) :=
w(Y , x1, · · · , xn)

w(x1, · · · , xn)
.

and L−1{0} = V .
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Computing a differential equation for U(3,C )

Let f1, f2 ∈ F be elements satisfying the condition NS.
Outline of the proof:

Let E = F (g), where g =

 1 x1 y
0 1 x2
0 0 1

. Extend the derivation

on F to E by setting 1 x1 y
0 1 x2
0 0 1

′ =

 0 f1 0
0 0 f2
0 0 0

 1 x1 y
0 1 x2
0 0 1

.
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Computing a differential equation for U(3,C )

Note that x′1 = f1, x′2 = f2 and y′ = f1x2.

1 The differential field E is a NNC extension of F . (Suppose
not. Then by an earlier theorem, there should be a
y ∈ F (x1, x2) such that y ′ = f1x2 + f and one can show that
there is no such y ∈ F (x1, x2).)
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Computing a differential equation for U(3,C )

Let G be the differential Galois group of E fixing F and let σ ∈ G .

2 Note that σ(x1) = x1 + ασ, σ(x2) = x2 + βσ, where
ασ, βσ ∈ C . and that

σ(y)′ = σ(y′) = σ(x′1x2) = x′1σ(x2) = y′+βσx
′
1 = (y+βσx1)′.

Therefore σ(y) = y + βσx1 + γσ for some γσ ∈ C .

Let V :=spanC{1, x1, y} and note that GV ⊆ V and that
F 〈V 〉 = E .
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Computing a differential equation for U(3,C )

Moreover, G maps to U(3,C ) via

σ 7→

 1 ασ γσ
0 1 βσ
0 0 1


with respect to the the ordered basis {1, x1, y}. And
conversely, every element in U(3,C ) naturally induces a map
on V , which in turn induces a differential automorphism of
the differential field E fixing F .
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Computing a differential equation for U(3,C )

3 Show that if u ∈ E − F then the automorphism induced by 1 1 0
0 1 0
0 0 1

 or

 1 0 0
0 1 1
0 0 1

 or

 1 0 1
0 1 0
0 0 1


will not fix u.
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Computing a differential equation for U(3,C )

Since GV = V and EG = F , the differential equation

L(y) = w(Y , 1, x1, y)/w(1, x1, y)

has coefficients in F . Clearly L−1{0} = V .
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Examples

A computation shows

L(Y ) = Y ′′′ −
(

f ′2
f2

+
2f ′1
f1

)
Y ′′ +

(
f ′1f ′2
f1f2

+ 2

(
f ′1
f1

)2

− f ′′1
f1

)
Y ′
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F = C(z), z ′ = 1

Let c1, c2 ∈ C be distinct complex numbers and let fi = 1
x+ci

.
Then

Y ′′′ − 3z + 2c2 + c1
(z + c1)(z + c2)

Y ′′ +
1

(z + c1)(z + c2)
Y ′ = 0

has differential Galois group U(3,C ).

Solution Space: spanC{1, ln(z + c1),

∫
ln(z + c2)

z + c1
}.
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F = C (z), z ′ = 1, G ∼= U(4,C )

let fi = 1
x+ci

, where ci are distinct complex numbers for
i = 1, 2, 3, 4.

The differential equation

d4

dz4
+

6z2 + (3c1 + 4c2 + 5c3)z + c2c1 + 2c3c1 + 3c3c2
(z + c1)(z + c2)(z + c3)

d3

dz3

+
7z + c1 + 2c2 + 4c3

(z + c1)(z + c2)(z + c3)

d2

dz2

+
1

(z + c1)(z + c2)(z + c3)

d

dz
.

Solution Space:

spanC{1, ln(z + c1),

∫
ln(z + c2)

z + c1
,

∫ ∫ ln(z+c3)
z+c2

z + c1
}.
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