Symbolic Integration

DART IV, Beijing, China

V. Ravi Srinivasan

Rutgers University-Newark

October 29, 2010

- Iterated Antiderivative Extensions.
- Picard-Vessiot Extensions with Certain Unipotent Algebraic Groups as Galois Groups.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Iterated Antiderivative Extensions

Picard-Vessiot Exensions

Introduction and Preliminaries

All fields considered in this talk are of characteristic zero.

We consider only ordinary differential fields (one derivation).

・ 同 ト ・ ヨ ト ・ ヨ ト

NNC Extensions

Let F be a differential field.

Definition

A differential field extension $E \supset F$ is a *No New Constants* (NNC) extension of F if the constants of E are the same as the constants of F.

Iterated Antiderivative Extensions

Picard-Vessiot Exensions

Antiderivative Extension

Definition

Let $E \supset F$ be a NNC extension. An element $u \in E$ is an *antiderivative* (of an element) of F if $u' \in F$. A differential field extension $E \supset F$ is an *antiderivative extension* of F if for $i = 1, 2, \dots, n$, there exists $u_i \in E$ such that $u'_i \in F$ and $E = F(u_1, u_2, \dots, u_n)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Iterated Antiderivative Extensions

Picard-Vessiot Exensions

Iterated Antiderivative Extension

Definition

A No New Constant extension E of F is called a *Iterated* Antiderivative Extension of F if $E = F(\mathbf{x}_1, \dots, \mathbf{x}_n)$ and for each i, $\mathbf{x}'_i \in F(\mathbf{x}_1, \dots, \mathbf{x}_{i-1})$, that is, \mathbf{x}_i is an antiderivative of an element of $F(\mathbf{x}_1, \dots, \mathbf{x}_{i-1})$.

(4月) (4日) (4日)

Basic Theorems

Theorem

Let $E \supset F$ be a NNC extension and let $\mathbf{x} \in E$ with $\mathbf{x}' \in F$. Then either \mathbf{x} is transcendental over F or $\mathbf{x} \in F$.

Theorem

Let $E \supset F$ be a differential field extension. Suppose that there is an $\mathbf{x} \in E - F$, $\mathbf{x}' \in F$ and that $F(\mathbf{x})$ contains a new constant. Then there is an element $y \in F$ such that $y' = \mathbf{x}'$.

Kaplansky, Magid, Rosenlicht-Singer.

・ 同 ト ・ ヨ ト ・ ヨ ト

Algebraic Dependence of Antiderivatives

Theorem

Let $E \supset F$ be a NNC differential field extension and for $i = 1, 2, \dots, n$, let $\mathbf{x}_i \in E$ be antiderivatives of F. Then either \mathbf{x}_i 's are algebraically independent over F or there is a tuple $(c_1, \dots, c_n) \in C^n - \{0\}$ such that $\sum_{i=1}^n c_i \mathbf{x}_i \in F$.

Ostrowski, Kolchin, Ax, Rosenlicht,...

伺 ト イヨト イヨト

Iterated Antiderivative Extensions

Picard-Vessiot Exensions

Structure of Antiderivative Extensions

Corollary

Let $E = F(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_t)$ be an antiderivative extension of F and let K be a differential subfield of E containing F. Then K is an antiderivative extension of F.

(4月) (4日) (4日)

Iterated Antiderivative Extensions

Picard-Vessiot Exensions

Iterated Antiderivative Extension

Definition

We recall that a No New Constant extension E of F is called a *Iterated Antiderivative Extension* of F if $E = F(\mathbf{x}_1, \dots, \mathbf{x}_n)$ and for each $i, \mathbf{x}'_i \in F(\mathbf{x}_1, \dots, \mathbf{x}_{i-1})$, that is, \mathbf{x}_i is an antiderivative of an element of $F(\mathbf{x}_1, \dots, \mathbf{x}_{i-1})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Structure Theorem

Theorem

Let F be a differential field with an algebraically closed field of constants C. Let E be an iterated antiderivative extension of F and let K be a differential subfield of E such that $K \supseteq F$. Then K is an iterated antiderivative extension of F.

RS

<ロト < 部 > < 注 > < 注 >

Remark

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Liouvillian Extensions

Example 1, Rosenlicht, Singer

Consider

$$E := \mathbb{C}(z, e^{z^2}, \int e^{z^2}) \supset K := \mathbb{C}(z, \frac{\int e^{z^2}}{e^{z^2}}) \supset \mathbb{C}(z).$$

Then E is liouvillian over $\mathbb{C}(z)$ but K is not Liouvillian over $\mathbb{C}(z)$.

Example 2, Rosenlicht, Singer

$$E:=F(\sqrt{1-z^2},\sin^{-1}z)$$

is a liouvillian extension (generalized elementary extension) of $\mathbb{C}(z)$ but $K := F(\sqrt{1-z^2} \sin^{-1} z)$ is not liouvillian (generalized elementary) over $\mathbb{C}(z)$.

Picard-Vessiot Exensions

Algebraically Independent Antiderivatives

Theorem

Let F be a differential that has elements $f_1, f_2, \dots, f_n \in F$ such that for any $c_1, c_2, \dots, c_n \in C$ and for any $f \in F$ if $\sum_{i=1}^n c_i f_i = f'$ then $c_i = 0$ for all i.

- 4 同 2 4 日 2 4 日 2

Algebraically Independent Antiderivatives

Theorem

Let F be a differential that has elements $f_1, f_2, \dots, f_n \in F$ such that for any $c_1, c_2, \dots, c_n \in C$ and for any $f \in F$ if $\sum_{i=1}^{n} c_i f_i = f'$ then $c_i = 0$ for all i. Let $E = F(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{y}_1, \dots, \mathbf{y}_m)$ be the field of rational functions with n + m variables. For $i = 1, \dots, m$, let $P_i, Q_i, R_i \in F[\mathbf{x}_1, \dots, \mathbf{x}_n], (P_i, Q_i) = (P_i, R_i) = (Q_i, R_i) = 1$ be polynomials satisfying the following condition:

 R_i is an irreducible polynomial, $R_i \nmid R_j$ if $i \neq j$ and $R_i \nmid Q_j$ for any $1 \leq i, j \leq m$.

Algebraically Independent Antiderivatives

Theorem

Let F be a differential that has elements $f_1, f_2, \dots, f_n \in F$ such that for any $c_1, c_2, \dots, c_n \in C$ and for any $f \in F$ if $\sum_{i=1}^{n} c_i f_i = f'$ then $c_i = 0$ for all i. Let $E = F(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{y}_1, \dots, \mathbf{y}_m)$ be the field of rational functions with n + m variables. For $i = 1, \dots, m$, let $P_i, Q_i, R_i \in F[\mathbf{x}_1, \dots, \mathbf{x}_n], (P_i, Q_i) = (P_i, R_i) = (Q_i, R_i) = 1$ be polynomials satisfying the following condition:

 R_i is an irreducible polynomial, $R_i \nmid R_j$ if $i \neq j$ and $R_i \nmid Q_j$ for any $1 \leq i, j \leq m$.

Extend derivation of F to E by setting $\mathbf{x}'_i = f_i$ and $\mathbf{y}'_i = \frac{P_i}{R_i Q_i}$. Then E is a no new constants extension of F.

Iterated Antiderivative Extensions

Picard-Vessiot Exensions

Algebraically Independent Antiderivatives

Corollary

Let $y \in E$ be an antiderivative of F. Then $y = \sum_{i=1}^{m} \alpha_i x_i + f$, where $\alpha_i \in C$ and $f \in F$.

Iterated Antiderivative Extensions

Picard-Vessiot Exensions

Algebraically Independent Antiderivatives

Let

$$E = \mathbb{C}(z) (\ln z, \ln(z+1), \int \frac{1}{\ln(z+1)}, \int \frac{(z+1)^2}{z \ln(z)}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Iterated Antiderivative Extensions

Picard-Vessiot Exensions

Algebraically Independent Antiderivatives

Let

$$E = \mathbb{C}(z) \left(\ln z, \ln(z+1), \int \frac{1}{\ln(z+1)}, \int \frac{(z+1)^2}{z \ln(z)} \right).$$

If $y \in E$ and $y' \in \mathbb{C}(z)$ then $y' = \frac{c_1}{x} + \frac{c_2}{x+1} + f'$, where $c_1, c_2 \in \mathbb{C}$
and $f \in \mathbb{C}(z)$

(人間) (人) (人) (人) (人) (人)

■ Iterated antiderivative extensions need not be Picard-Vessiot Extensions: Consider C(z, ln z) over C.

(人間) (人) (人) (人) (人) (人)

Picard-Vessiot Extensions with Certain Unipotent Algebraic Groups as Galois Groups.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Picard-Vessiot Exensions •000000000000

Extensions with unipotent algebraic groups as Galois Groups

Let F be a differential field with a field of constants C.

Let $\mathcal{U}(n+1, C)$ denote a full unipotent subgroup of the general linear group GL(n+1, C).

We ask the following question: Under what conditions on F does there exist a P-V extension (of F), whose Galois group is Isomorphic to U(n + 1, C)

・吊り ・ラト ・ラト

.

★ロト ★御 と★注 と★注 と 注:

Picard-Vessiot Exensions

Extensions with unipotent algebraic groups as Galois Groups

Condition on F

(NS) Let F be a differential field F that satisfies the following condition: there are elements $f_1, f_2, \dots, f_n \in F$ such that for any $c_1, c_2, \dots, c_n \in C$ and for any $f \in F$ if $\sum_{i=1}^n c_i f_i = f'$ then $c_i = 0$ for all i.

Kovacic, Bialynicki-Birula

(4 同) (ヨ) (ヨ)

Picard-Vessiot Exensions

э

イロト イポト イヨト イヨト

Extensions with unipotent algebraic groups as Galois Groups

Let
$$E = F(g)$$
, where $g := \begin{pmatrix} 1 & \mathbf{x}_{1,1} & \mathbf{x}_{2,1} & \cdots & \mathbf{x}_{n,1} \\ 0 & 1 & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{n-1,2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & \mathbf{x}_{1,n} \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$. Extend
the derivation of F to E by setting $g' = Ag$, where
 $A := \begin{pmatrix} 0 & f_1 & 0 & \cdots & 0 \\ 0 & 0 & f_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & f_n \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$.
Then E is a Picard-Vessiot extension of F with a differential Galois
group naturally isomorphic to $\mathcal{U}(n+1, C)$.

Picard-Vessiot Exensions

Extensions with unipotent algebraic groups as Galois Groups

We can also compute a linear differential operator over F for E.

$$L(Y) := \frac{w(Y, 1, \mathbf{x}_{1,1}, \mathbf{x}_{2,1}, \cdots, \mathbf{x}_{n,1})}{w(1, \mathbf{x}_{1,1}, \mathbf{x}_{2,1}, \cdots, \mathbf{x}_{n,1})}$$

 $L^{-1}\{0\} = \operatorname{span}_C \{1, \mathbf{x}_{1,1}, \mathbf{x}_{2,1}, \cdots, \mathbf{x}_{n,1}\}$

伺下 イヨト イヨト

Computing a differential equation

Let $E \supseteq F$ be differential field extensions and assume that the field of constants C of F is algebraically closed. Then E is a Picard-Vessiot Extension of F if and only if

- **1** $E = F\langle V \rangle$, where $V \subset E$ is a finite dimensional C-vector space
- 2 There is a group G of differential automorphisms of E with $G(V) \subseteq V$ and $E^G = F$.
- **3** $E \supseteq F$ is a NNC extension.

In particular if the above conditions hold and if $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}$ is a C-basis of V then E is a Picard-Vessiot Extension of F for the differential operator

$$L(Y) := \frac{w(Y, \mathbf{x}_1, \cdots, \mathbf{x}_n)}{w(\mathbf{x}_1, \cdots, \mathbf{x}_n)}.$$

and $L^{-1}\{0\} = V$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $f_1, f_2 \in F$ be elements satisfying the condition NS. Outline of the proof:

(4月) (4日) (4日)

Let $f_1, f_2 \in F$ be elements satisfying the condition NS. Outline of the proof:

Let
$$E = F(g)$$
, where $g = \begin{pmatrix} 1 & \mathbf{x}_1 & \mathbf{y} \\ 0 & 1 & \mathbf{x}_2 \\ 0 & 0 & 1 \end{pmatrix}$. Extend the derivation

on F to E by setting

$$\left(\begin{array}{ccc} 1 & \mathbf{x}_1 & \mathbf{y} \\ 0 & 1 & \mathbf{x}_2 \\ 0 & 0 & 1 \end{array}\right)' = \left(\begin{array}{ccc} 0 & f_1 & 0 \\ 0 & 0 & f_2 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{ccc} 1 & \mathbf{x}_1 & \mathbf{y} \\ 0 & 1 & \mathbf{x}_2 \\ 0 & 0 & 1 \end{array}\right).$$

(4 同) (4 回) (4 回)

Note that
$$\mathbf{x}'_1 = f_1$$
, $\mathbf{x}'_2 = f_2$ and $\mathbf{y}' = f_1 \mathbf{x}_2$.

1 The differential field *E* is a NNC extension of *F*. (Suppose not. Then by an earlier theorem, there should be a $y \in F(\mathbf{x}_1, \mathbf{x}_2)$ such that $y' = f_1\mathbf{x}_2 + f$ and one can show that there is no such $y \in F(\mathbf{x}_1, \mathbf{x}_2)$.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G be the differential Galois group of E fixing F and let $\sigma \in G$.

2 Note that $\sigma(\mathbf{x}_1) = \mathbf{x}_1 + \alpha_{\sigma}$, $\sigma(\mathbf{x}_2) = \mathbf{x}_2 + \beta_{\sigma}$, where $\alpha_{\sigma}, \beta_{\sigma} \in C$. and that

$$\sigma(\mathbf{y})' = \sigma(\mathbf{y}') = \sigma(\mathbf{x}_1'\mathbf{x}_2) = \mathbf{x}_1'\sigma(\mathbf{x}_2) = \mathbf{y}' + \beta_\sigma \mathbf{x}_1' = (\mathbf{y} + \beta_\sigma \mathbf{x}_1)'.$$

Therefore $\sigma(\mathbf{y}) = \mathbf{y} + \beta_{\sigma} \mathbf{x}_1 + \gamma_{\sigma}$ for some $\gamma_{\sigma} \in C$. Let $V := \operatorname{span}_C \{1, \mathbf{x}_1, \mathbf{y}\}$ and note that $GV \subseteq V$ and that $F\langle V \rangle = E$.

・吊り ・ラト ・ラト

Moreover, G maps to $\mathcal{U}(3, C)$ via

$$\sigma \mapsto \left(\begin{array}{ccc} 1 & \alpha_{\sigma} & \gamma_{\sigma} \\ 0 & 1 & \beta_{\sigma} \\ 0 & 0 & 1 \end{array} \right)$$

with respect to the the ordered basis $\{1, \mathbf{x}_1, \mathbf{y}\}$. And conversely, every element in $\mathcal{U}(3, C)$ naturally induces a map on V, which in turn induces a differential automorphism of the differential field E fixing F.

伺下 イヨト イヨト

3 Show that if $u \in E - F$ then the automorphism induced by

$$\left(\begin{array}{rrrr}1 & 1 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{array}\right) \quad or \quad \left(\begin{array}{rrrr}1 & 0 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1\end{array}\right) \quad or \quad \left(\begin{array}{rrrr}1 & 0 & 1\\ 0 & 1 & 0\\ 0 & 0 & 1\end{array}\right)$$

will not fix *u*.

<ロト < 部 > < 注 > < 注 >

Since
$$GV = V$$
 and $E^G = F$, the differential equation

$$L(y) = w(Y, 1, \mathbf{x}_1, \mathbf{y})/w(1, \mathbf{x}_1, \mathbf{y})$$

has coefficients in *F*. Clearly $L^{-1}{0} = V$.

3

A computation shows

$$L(Y) = Y''' - \left(\frac{f'_2}{f_2} + \frac{2f'_1}{f_1}\right)Y'' + \left(\frac{f'_1f'_2}{f_1f_2} + 2\left(\frac{f'_1}{f_1}\right)^2 - \frac{f''_1}{f_1}\right)Y'$$

・ロト ・ 一 ト ・ モト ・ モト

æ

$F = \mathbb{C}(z), z' = 1$

• Let $c_1, c_2 \in \mathbb{C}$ be distinct complex numbers and let $f_i = \frac{1}{x+c_i}$. Then

$$Y''' - \frac{3z + 2c_2 + c_1}{(z + c_1)(z + c_2)}Y'' + \frac{1}{(z + c_1)(z + c_2)}Y' = 0$$

has differential Galois group $\mathcal{U}(3, C)$.

Solution Space: span_C {1, ln(z + c₁),
$$\int \frac{\ln(z + c_2)}{z + c_1}$$
 }.

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Iterated Antiderivative Extensions

Picard-Vessiot Exensions

⇒ >

$F = \overline{C(z), z' = 1}, \ G \cong \overline{U(4, C)}$

let $f_i = \frac{1}{x+c_i}$, where c_i are distinct complex numbers for i = 1, 2, 3, 4.

The differential equation

$$\begin{aligned} \frac{d^4}{dz^4} + \frac{6z^2 + (3c_1 + 4c_2 + 5c_3)z + c_2c_1 + 2c_3c_1 + 3c_3c_2}{(z + c_1)(z + c_2)(z + c_3)} \frac{d^3}{dz^3} \\ + \frac{7z + c_1 + 2c_2 + 4c_3}{(z + c_1)(z + c_2)(z + c_3)} \frac{d^2}{dz^2} \\ + \frac{1}{(z + c_1)(z + c_2)(z + c_3)} \frac{d}{dz}. \end{aligned}$$

Solution Space:

$$\operatorname{span}_{C}\{1, \ln(z+c_{1}), \int \frac{\ln(z+c_{2})}{z+c_{1}}, \int \frac{\int \frac{\ln(z+c_{3})}{z+c_{2}}}{z+c_{1}}\}.$$