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A partial differential equation of flag type is the linear differential

equation of the form:

(d1 + f1d2 + f2d3 + · · ·+ fn−1dn)(u) = 0,

where d1, d2, ..., dn are certain commuting locally nilpotent

differential operators on the polynomial algebra R[x1, x2, ..., xn] and

f1, ..., fn−1 are polynomials satisfying

di (fj) = 0 if i > j .
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Flag partial differential equations naturally appear in geometry,

physics and the representation theory of Lie algebras (groups).

Many variable-coefficient (generalized) Laplace equations, wave

equations, Klein-Gordon equations, Helmholtz equations are of this

type. Solving such equations is also important in finding invariant

solutions of nonlinear partial differential equations.
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In representation theory, we are more interested in polynomial

solutions of flag partial differential equations.

How can we find polynomial solutions of a flag partial differential

equation?
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Lemma 1. Let B be a commutative associative algebra and let A
be a free B-module generated by a filtrated subspace V =

⋃∞
r=0 Vr

(i.e., Vr ⊂ Vr+1). Let T1 be a linear operator on B ⊕A with a

right inverse T−
1 such that

T1(B,A), T−
1 (B,A) ⊂ (B,A),

T1(η1η2) = T1(η1)η2, T−
1 (η1η2) = T−

1 (η1)η2

for η1 ∈ B, η2 ∈ V .
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Let T2 be a linear operator on A such that

T2(Vr+1) ⊂ BVr , T2(f ζ) = fT2(ζ)

for

r ∈ N, f ∈ B, ζ ∈ A.
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Then we have

{g ∈ A | (T1 + T2)(g) = 0}

= Span{
∞∑
i=0

(−T−
1 T2)

i (hg) | g ∈ V , h ∈ B; T1(h) = 0},

where the summation is finite under our assumption. Moreover,

the operator
∑∞

i=0(−T−
1 T2)

iT−
1 is a right inverse of T1 + T2.
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We remark that the above operator T1 and T2 may not commute.

Take the notion

i , j = {i , i + 1, ..., j}

for two integers i and j such that i ≤ j . Denote by N the additive

semigroup of nonnegative integers.
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Define

xα = xα1
1 xα2

2 · · · xαn
n for α = (α1, ..., αn) ∈ N n.

Moreover, we denote

εi = (0, ..., 0,
i
1, 0, ..., 0) ∈ N n.

For each i ∈ 1, n, we define the linear operator
∫
(xi )

on A by:∫
(xi )

(xα) =
xα+εi

αi + 1
for α ∈ N n.
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Furthermore, we let

∫ (0)

(xi )
= 1,

∫ (m)

(xi )
=

m︷ ︸︸ ︷∫
(xi )

· · ·
∫

(xi )

and denote

∂α = ∂α1
x1
∂α2

x2
· · · ∂αn

xn
,

∫ (α)

=

∫ (α1)

(x1)

∫ (α2)

(x2)
· · ·

∫ (αn)

(xn)
for α ∈ N n.

Obviously,
∫ (α)

is a right inverse of ∂α for α ∈ N n. We remark

that
∫ (α)

∂α 6= 1 if α 6= 0 due to ∂α(1) = 0.
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Consider the wave equation in Riemannian space with a nontrivial

conformal group:

utt − ux1x1 −
n∑

i ,j=2

gi ,j(x1 − t)uxixj = 0, (∗)

where we assume that gi ,j(z) are one-variable polynomials. Change

variables:

z0 = x1 + t, z1 = x1 − t.

Then

∂2
t = (∂z0 − ∂z1)

2, ∂2
x1

= (∂z0 + ∂z1)
2.

So the equation (∗) changes to:

2∂z0∂z1 +
n∑

i ,j=2

gi ,j(z1)uxixj = 0.
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variables:

z0 = x1 + t, z1 = x1 − t.

Then

∂2
t = (∂z0 − ∂z1)

2, ∂2
x1

= (∂z0 + ∂z1)
2.

So the equation (∗) changes to:

2∂z0∂z1 +
n∑

i ,j=2

gi ,j(z1)uxixj = 0.
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gi ,j(z1)∂xi∂xj .

Take T−
1 = 1

2

∫
(z0)

∫
(z1)

, and

B = F[z0, z1], V = F[x2, ..., xn], Vr = {f ∈ V | deg f ≤ r}.

Then the conditions in Lemma 1 hold. Thus we have:
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Theorem 2. The space of all polynomial solutions for the equation

(∗) is:

Span {
∞∑

m=0

(−2)−m(
n∑

i ,j=2

∫
(z0)

∫
(z1)

gi ,j(z1)∂xi∂xj )
m(f0g0 + f1g1)

| f0 ∈ F[z0], f1 ∈ F[z1], g0, g1 ∈ F[x2, ..., xn]}
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Let m1,m2, ...,mn be positive integers. According to Lemma 1, the

set

{
∞∑

k2,...,kn=0

(−1)k2+···+kn

(
k2 + · · ·+ kk

k2, ..., kn

) ∫ ((k2+···+kn)m1)

(x1)
(x`1

1 )

×∂k2m2
x2

(x`2
2 ) · · · ∂knmn

xn
(x`n

n ) | `1 ∈ 0,m1 − 1, `2, ..., `n ∈ N}

forms a basis of the space of polynomial solutions for the equation

(∂m1
x1

+ ∂m2
x2

+ · · ·+ ∂mn
xn

)(u) = 0.
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Lemma 1 indeed gives an algorithm of finding polynomial solutions

for more general equations.

Let

fi ∈ R[x1, ..., xi ] for i ∈ 1, n − 1.

Consider the equation:

(∂m1
x1

+ f1∂
m2
x2

+ · · ·+ fn−1∂
mn
xn

)(u) = 0.

Denote

d1 = ∂m1
x1
, dr = ∂m1

x1
+ f1∂

m2
x2

+ · · ·+ fr−1∂
mr
xr

for r ∈ 2, n.
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We will apply Lemma 1 with T1 = dr , T2 =
∑n−1

i=r fi∂
mi+1
xi+1

inductively. Take a right inverse d−1 =
∫ (m1)
(x1)

. Suppose that we

have found a right inverse d−s of ds for some s ∈ 1, n − 1 such that

xid
−
s = d−s xi , ∂xi d

−
s = d−s ∂xi for i ∈ s + 1, n (∗∗)
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Constant-Coefficient PDEs

Lemma 1 enable us to take

d−s+1 =
∞∑
i=0

(−d−s fs)
id−s ∂

ims+1
xs+1

as a right inverse of ds+1. Obviously,

xid
−
s+1 = d−s+1xi , ∂xi d

−
s+1 = d−s+1∂xi for i ∈ s + 2, n.

By induction, we have found a right inverse d−s of ds such that

(∗∗) holds for each s ∈ 1, n.
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Constant-Coefficient PDEs

We set

Sr = {g ∈ R[x1, ..., xr ] | dr (g) = 0} for r ∈ 1, k.

Then

S1 =

m1−1∑
i=0

Rx i
1.

Suppose that we have found Sr for some r ∈ 1, n − 1.
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Given h ∈ Sr and ` ∈ N, we define

σr+1,`(h) =
∞∑
i=0

(−d−r fr )
i (h)∂ imr+1

xr+1
(x`

r+1),

which is actually a finite summation. Lemma 1 says

Sr+1 =
∞∑

`=0

σr+1,`(Sr ).

By induction, we obtain:
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Theorem 3. The set

{σn,`nσn−1,`n−1 · · ·σ2,`2(x
`1
1 ) | `1 ∈ 0,m1 − 1, `2, ..., `n ∈ N}

forms a basis of the polynomial solution space Sn of the partial

differential equation:

(∂m1
x1

+ f1∂
m2
x2

+ · · ·+ fn−1∂
mn
xn

)(u) = 0.
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Evolution Equations

First we want to solve the following evolution partial differential

equation:

ut = (∂x1 + xm1
1 ∂x2 + xm2

2 ∂x3 + · · ·+ x
mn−1

n−1 ∂xn)(u)

subject to the condition:

u(0, x1, ..., xn) = f (x1, ..., xn),

where f (x1, x2, ..., xn) is a smooth function.
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Theoretically, the solution is

u = et(∂x1+
Pn−1

r=1 xmr
r ∂xr+1 )(f ).

Practically, we often need an exact closed formula of the solution!
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For convenience, we denote m0 = 1 and x0 = 1. Set

Di = t
i−1∑
r=0

xmi
i ∂xi+1 for i ∈ 1, n.

Denote

A = Dn, B = −tx
mn−1

n−1 ∂xn .

Thus

Dn−1 = Dn + B = A + B.
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In our special case, the Campbell-Hausdorff formula becomes

ln eAeB = A + B +
∞∑

r=1

ar (adA)r (B), ar ∈ R,

equivalently,

eAeB = eA+
P∞

i=0 ai (adA)i (B).
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Denote

ϑ(x) =
1− e−x

x
=

∫ 0

−1
eyxdy =

∞∑
i=1

(−1)i−1

i !
x i−1.

After a long calculation, we obtain

eDn = eDn−1etϑ(Dn−1)(x
mn−1
n−1 )∂xn .
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eDn = eDn−1etϑ(Dn−1)(x
mn−1
n−1 )∂xn .
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Set

ξ1(t) = t, ξi (t) = tϑ(Di−1)(x
mi−1

i−1 ) for i ∈ 2, n.

By induction, we get

eDi = eξ1(t)∂x1 eξ2(t)∂x2 · · · eξi (t)∂xi for i ∈ 1, n.

Moreover, we define

η1(t) = t, ηi (t) = eDi−1(ξi (t)).
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An inductional process shows

ηi (t) =

∫ t

0
(xi−1 +

∫ yi−1

0
(xi−2 + ...

+

∫ y2

0
(x1 + y1)

m1dy1...)
mi−2dyi−2)

mi−1dyi−1.

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions
Evolution Equations

Constant-Coefficient PDEs

An inductional process shows

ηi (t) =

∫ t

0
(xi−1 +

∫ yi−1

0
(xi−2 + ...

+

∫ y2

0
(x1 + y1)

m1dy1...)
mi−2dyi−2)

mi−1dyi−1.

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions
Evolution Equations

Constant-Coefficient PDEs

Our final solution is

u = f (x1 + η1(t), x2 + η2(t), ..., xn + ηn(t)).

Indeed we have solve more general equations associated with

weighted root trees in graph theory.
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Constant-Coefficient PDEs

Given a continuous function f (x1, x2, ..., xn) on the region:

−ai ≤ xi ≤ ai , 0 < ai ∈ R, for i ∈ 1, n.

We want to solve the differential equation:

ut = (∂m1
x1

+ x1∂
m2
x2

+ x2∂
m3
x3

+ · · ·+ xn−1∂
mn
xn

)(u)

subject to the initial condition:

u(0, x1, ..., xn) = f (x1, x2, ..., xn) for xi ∈ [−ai , ai ].
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Denote

D(t) = t(∂m1
x1

+ x1∂
m2
x2

+ x2∂
m3
x3

+ · · ·+ xn−1∂
mn
xn

).

Define

ξ1(t, ∂x1 , ..., ∂xn) =

∫ t

0
(∂x1 +

∫ y1

0
(∂x2 + ...+

∫ yn−2

0
(∂xn−1

+yn−1∂
mn
xn

)mn−1dyn−1...)
m2dy2)

m1dy1,
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ξi (t, ∂x1 , ..., ∂xn) = xi−1

∫ t

0
(∂xi +

∫ yi

0
(∂xi+1 + ...+

∫ yn−2

0
(∂xn−1

+yn−1∂
mn
xn

)mn−1dyn−1...)
mi+1dyi+1)

mi dyi

and

ξn(t, ∂x1 , ..., ∂xn) = txn−1∂
mn
xn
.
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Dual arguments show

eD(t) = eξn(t,∂x1 ,...,∂xn )eξn−1(t,∂x1 ,...,∂xn ) · · · eξ1(t,∂x1 ,...,∂xn ).
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For convenience, we denote

k†i =
ki

ai
, ~k† = (k†1 , ..., k

†
n) for ~k = (k1, ..., kn) ∈ N n.

Set

e2π(~k†·~x)
√
−1 = e

Pn
r=1 2πk†r xr

√
−1.

Define

φ~k
(t, x1, ..., xn) =

1

2
[(

n∏
i=1

eξi (t,2πk†1
√
−1,...,2πk†n

√
−1))e2π~(k†·~x)

√
−1

+(
n∏

i=1

eξi (t,−2πk†1
√
−1,...,−2πk†n

√
−1))e−2π~(k†·~x)

√
−1]
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and

ψ~k
(t, x1, ..., xn) =

1

2
√
−1

[(
n∏

i=1

eξi (t,2πk†1
√
−1,...,2πk†n

√
−1))e2π~(k†·~x)

√
−1

−(
n∏

i=1

eξi (t,−2πk†1
√
−1,...,−2πk†n

√
−1))e−2π~(k†·~x)

√
−1].

Then

φ~k
(0, x1, ..., xn) = cos 2π(~k† · ~x),

ψ~k
(0, x1, ..., xn) = sin 2π(~k† · ~x).
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eξi (t,2πk†1
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√
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We define 0 ≺ ~k if its first nonzero coordinate is a positive integer.

The solution of our second problem is

u =
∑

0�~k∈Z n

(b~k
φ~k

(t, x1, ..., xn) + c~k
ψ~k

(t, x1, ..., xn))

with

b~k
=

1

2n−1a1a2 · · · an

∫ a1

−a1

· · ·
∫ an

−an

f (x1, ..., xn) cos 2π(~k†·~x)dxn · · · dx1

and

c~k
=

1

2n−1a1a2 · · · an

∫ a1

−a1

· · ·
∫ an

−an

f (x1, ..., xn) sin 2π(~k†·~x)dxn · · · dx1.
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Constant-Coefficient PDEs

Let m and n > 1 be positive integers and let

fi (∂x2 , ..., ∂xn) ∈ R[∂x2 , ..., ∂xn ] for i ∈ 1,m.

We want to solve the equation:

(∂m
x1
−

m∑
r=1

∂m−i
x1

fi (∂x2 , ..., ∂xn))(u) = 0

with x1 ∈ R and xr ∈ [−ar , ar ] for r ∈ 2, n, subject to the condition

∂s
x1

(u)(0, x2, ..., xn) = gs(x2, ..., xn) for s ∈ 0,m − 1,

where a2, ..., an are positive real numbers and g0, ..., gm−1 are

continuous functions.
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For convenience, we denote

k†i =
ki

ai
, ~k† = (k†2 , ..., k

†
n) for ~k = (k2, ..., kn) ∈ N n−1.

Set

e2π(~k†·~x)
√
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Pn
r=2 2πk†r xr
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For r ∈ 0,m − 1, as Lemma 1,

1

r !

∞∑
i1,...,im=0

(
i1 + · · ·+ im

i1, ..., im

) ∫ (
Pm

s=1 sis)

(x1)
(x r

1)

×(
m∏

p=1

fp(∂x2 , ..., ∂xn)
ip)(e2π(~k†·~x)

√
−1)

=
∞∑

i1,...,im=0

(
i1 + · · ·+ im

i1, ..., im

)
x

r+
Pm

s=1 sis
1

(r +
∑m

s=1 sis)!
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We write

∞∑
i1,...,im=0

(
i1 + · · ·+ im

i1, ..., im

)

×
x r
1

∏m
p=1(x

p
1 fp(2k†2π

√
−1, ..., 2k†nπ

√
−1))ip

(r +
∑m

s=1 sis)!

= φr (x1, ~k) + ψr (x1, ~k)
√
−1,

where φr (x1, ~k) and ψr (x1, ~k) are real functions. Moreover,

∂s
x1

(φr )(0, ~k) = δr ,s , ∂s
x1

(ψr )(0, ~k) = 0 for s ∈ 0, r .
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The solution of our initial-value problem is:

u =
m−1∑
r=0

∑
~0�~k∈Z n−1

[br (~k)(φr (x1, ~k
†) cos 2π(~k† · ~x)

−ψr (x1, ~k
†) sin 2π(~k† · ~x))

+cr (~k)(φr (x1, ~k
†) sin 2π(~k† · ~x)

+ψr (x1, ~k
†) cos 2π(~k† · ~x))]
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with

br (~k) =
1

2n−2a2 · · · an

∫ a2

−a2

· · ·
∫ an

−an

gr (x2, ..., xn)

× cos 2π(~k† · ~x) dxn · · · dx2

−
r−1∑
s=0

(bs(~k)∂r
x1

(φs)(0, ~k) + cs(~k)∂r
x1

(ψs)(0, ~k))

and

cr (~k) =
1

2n−2a2 · · · an

∫ a2

−a2

· · ·
∫ an

−an

gr (x2, ..., xn)

× sin 2π(~k† · ~x) dxn · · · dx2

−
r−1∑
s=0

(cs(~k)∂r
x1

(φs)(0, ~k)− bs(~k)∂r
x1

(ψs)(0, ~k)).
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Remark . If we take fi = bi with i ∈ 1,m to be constant

functions, we get m fundamental solutions

ϕr (x) =
∞∑

i1,...,im=0

(
i1 + · · ·+ im

i1, ..., im

)
x r

∏m
p=1(bpx

p)ip

(r +
∑m

s=1 sis)!
, r ∈ 0,m − 1

of the constant-coefficient ordinary differential equation

y (m) − b1y
(m−1) − · · · − bm−1y

′ − bm = 0.
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Given the initial conditions:

y (r)(0) = cr for r ∈ 0,m − 1,

we define a0 = c0 and

ar = cr −
r−1∑
s=0

∑
i1,...,ir−s∈N;

Pr
p=1 pip=r−s

(
r − s

i1, ..., ir−s

)
asb

i1
1 · · · b

ir−s
r−s

by induction on r ∈ 1,m − 1. Then the solution of the ODE with

the above initial condition is exactly

y =
m−1∑
r=0

arϕr (x).
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From the above results, it seems that the following functions

Yr (y1, ..., ym) =
∞∑

i1,...,im=0

(
i1 + · · ·+ im

i1, ..., im

)
y i1
1 y i2

2 · · · y im
m

(r +
∑m

s=1 sis)!
for r ∈ N

are important natural functions. Indeed,

Y1(x) = ex , Y0(0,−x) = cos x , Y1(0,−x) =
sin x

x
,

ϕr (x) = x rYr (b1x , b2x
2, ..., bmxm)

and

φr (x1,~x) + ψr (x1,~x)
√
−1

= x r
1Yr (x1f1(2k†2π

√
−1, ..., 2k†nπ

√
−1)), ...,

xm
1 fm(2k†2π

√
−1, ..., 2k†nπ

√
−1))

for r ∈ 0,m.
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Thank You!
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