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Polynomial Solutions

Flag Partial Differential Equations

A linear transformation (operator) T on a vector space V is called
locally nilpotent
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Flag Partial Differential Equations

A linear transformation (operator) T on a vector space V is called
locally nilpotent if for any v € V,

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions

Flag Partial Differential Equations

A linear transformation (operator) T on a vector space V is called
locally nilpotent if for any v € V, there exists a positive integer k
such that Tk(v) = 0.
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Polynomial Solutions

A partial differential equation of flag type
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Polynomial Solutions

A partial differential equation of flag type is the linear differential

equation of the form:

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions

A partial differential equation of flag type is the linear differential

equation of the form:

(di + fido + fod3 + -+ + fr_1d,)(u) = 0,
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Polynomial Solutions

A partial differential equation of flag type is the linear differential

equation of the form:
(di + fida + fods + - + f_1dp)(u) = 0,

where di, d, ..., d, are certain commuting locally nilpotent

differential operators on the polynomial algebra R[xq, x2, ..., Xn]
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Polynomial Solutions

A partial differential equation of flag type is the linear differential

equation of the form:
(di + fida + fods + - + f_1dp)(u) = 0,

where di, d, ..., d, are certain commuting locally nilpotent
differential operators on the polynomial algebra R[xq, x2, ..., xn] and

fi, ..., fo_1 are polynomials satisfying
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Polynomial Solutions

A partial differential equation of flag type is the linear differential

equation of the form:
(di + fida + fods + - + f_1dp)(u) = 0,

where di, d, ..., d, are certain commuting locally nilpotent
differential operators on the polynomial algebra R[xq, x2, ..., xn] and

fi, ..., fo_1 are polynomials satisfying

di(f)=0  if i>].
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Polynomial Solutions

Flag partial differential equations naturally appear in geometry,
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Flag partial differential equations naturally appear in geometry,

physics
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Flag partial differential equations naturally appear in geometry,

physics and the representation theory of Lie algebras (groups).
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Flag partial differential equations naturally appear in geometry,
physics and the representation theory of Lie algebras (groups).

Many variable-coefficient (generalized) Laplace equations,
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Polynomial Solutions

Flag partial differential equations naturally appear in geometry,
physics and the representation theory of Lie algebras (groups).

Many variable-coefficient (generalized) Laplace equations, wave
equations,
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Polynomial Solutions

Flag partial differential equations naturally appear in geometry,
physics and the representation theory of Lie algebras (groups).

Many variable-coefficient (generalized) Laplace equations, wave
equations, Klein-Gordon equations,
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Polynomial Solutions

Flag partial differential equations naturally appear in geometry,
physics and the representation theory of Lie algebras (groups).
Many variable-coefficient (generalized) Laplace equations, wave

equations, Klein-Gordon equations, Helmholtz equations are of this

type.
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Polynomial Solutions

Flag partial differential equations naturally appear in geometry,
physics and the representation theory of Lie algebras (groups).
Many variable-coefficient (generalized) Laplace equations, wave
equations, Klein-Gordon equations, Helmholtz equations are of this
type. Solving such equations is also important in finding invariant

solutions of nonlinear partial differential equations.
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Polynomial Solutions

In representation theory,
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Polynomial Solutions

In representation theory, we are more interested in polynomial

solutions of flag partial differential equations.
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Polynomial Solutions

In representation theory, we are more interested in polynomial
solutions of flag partial differential equations.
How can we find polynomial solutions of a flag partial differential

equation?
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Polynomial Solutions

Lemma 1. Let B be a commutative associative algebra
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Polynomial Solutions

Lemma 1. Let B be a commutative associative algebra and let A

be a free B-module
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Polynomial Solutions

Lemma 1. Let B be a commutative associative algebra and let A
be a free B-module generated by a filtrated subspace V = J;2, V,
(ie., Vi C Vij1).
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Polynomial Solutions

Lemma 1. Let B be a commutative associative algebra and let A
be a free B-module generated by a filtrated subspace V = J;2, V,
(i.e., V., C Voi1). Let Ty be a linear operator on B & A with a

right inverse T,
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Polynomial Solutions

Lemma 1. Let B be a commutative associative algebra and let A
be a free B-module generated by a filtrated subspace V = J;2, V,
(i.e., V. C Voi1). Let Ty be a linear operator on B @ A with a
right inverse T, such that

Ti(B,A), T; (B, A) C (B, A),

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions

Lemma 1. Let B be a commutative associative algebra and let A
be a free B-module generated by a filtrated subspace V = J;2, V,
(i.e., V. C Voi1). Let Ty be a linear operator on B @ A with a
right inverse T, such that

Ti(B,A), T; (B, A) C (B, A),

Ti(mm2) = Ta(m)mz, Ty (mm2) = Ty (m)m2
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Polynomial Solutions

Lemma 1. Let B be a commutative associative algebra and let A
be a free B-module generated by a filtrated subspace V = J;2, V,
(i.e., V. C Voi1). Let Ty be a linear operator on B @ A with a
right inverse T, such that

Ti(B,A), T; (B, A) C (B, A),

Ti(mm2) = Ta(m)mz, Ty (mm2) = Ty (m)m2
form € B, m € V.
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Polynomial Solutions

Let T, be a linear operator on A such that
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Polynomial Solutions

Let T, be a linear operator on A such that
To(Vry1) C BV:, To(fC) = fT2(Q)

for
reN, febB, (€A
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Polynomial Solutions

Then we have

{g € A|(T1+ T2)(g) =0}

= Span{d (~T; T»)'(hg) | g € V, he B; Ty(h) =0},
i=0
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Polynomial Solutions

Then we have

{g € A|(T1+ T2)(g) =0}

= Span{d (~T; T»)'(hg) | g € V, he B; Ty(h) =0},
i=0

where the summation is finite under our assumption.
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Polynomial Solutions

Then we have

{g € A|(T1+ T2)(g) =0}

= Span{d (~T; T»)'(hg) | g € V, he B; Ty(h) =0},
i=0

where the summation is finite under our assumption. Moreover,
the operator > :2,(—T; T2)' Ty s a right inverse of Ty + T».
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Polynomial Solutions

We remark that the above operator T; and T» may not commute.
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Polynomial Solutions

We remark that the above operator T; and T» may not commute.

Take the notion
ij={ii+1,..j}

for two integers i and j such that i <.
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Polynomial Solutions

We remark that the above operator T; and T» may not commute.

Take the notion

nj={ii+1, .../}
for two integers i/ and j such that i/ < j. Denote by N the additive
semigroup of nonnegative integers.
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Polynomial Solutions

Define

x4 =x{"x3% - xpn for = (o, ...,an) €N
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Define
x4 =x{"x3% - xpn for = (o, ...,an) €N

Moreover, we denote
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Polynomial Solutions

Define
x4 =x{"x3% - xpn for = (o, ...,an) €N
Moreover, we denote
& = (0,..,0,1,0,..,0) € N".

For each i € 1, n, we define the linear operator f(x,) on A by:
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Polynomial Solutions

Define
x4 =x{"x3% - xpn for = (o, ...,an) €N
Moreover, we denote
& = (0,..,0,1,0,..,0) € N".

For each i € 1, n, we define the linear operator f(x,) on A by:

on—i—e,-
/ (x¥) = ——= for a € N".
(i) 1

aj +

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions

Furthermore, we let

(0) (m)
L 0T
() (xi) (%) ()
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Polynomial Solutions

Furthermore, we let

(0) (m)
Lo [T
() (xi) (%) ()
and denote
(a) (a1) pla2) (an)
0% = 0102 - -+ 0y", / / / / for « € N".
(x1 (x2) (xn)
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Polynomial Solutions

Furthermore, we let

(0) (m)
LT
() (xi) (%) ()
and denote

(c) (1) pla2) (an)
0% = 0102 - -+ 0y", / / / / for « € N".
(1) J(x) (xn)

Obviously, f(a) is a right inverse of 9% for « € N".
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Polynomial Solutions

Furthermore, we let

(0) (m)
LT
() (xi) (%) ()
and denote

(c) (1) pla2) (an)
0% = 0102 - -+ 0y", / / / / for « € N".
(1) J(x) (xn)

Obviously, f(a) is a right inverse of 0“ for a € N". We remark
that [(®) 92 £ 1 if a # 0 due to 9°(1) = 0.
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Polynomial Solutions

Consider the wave equation in Riemannian space with a nontrivial

conformal group:
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Polynomial Solutions

Consider the wave equation in Riemannian space with a nontrivial

conformal group:

Ut — Uxyx; — Z g/,J )uX,XJ =0, (*)

ij=2
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Polynomial Solutions

Consider the wave equation in Riemannian space with a nontrivial

conformal group:

Ut — Uxyx; — Z g/,J )uX,XJ =0, (*)

ij=2

where we assume that g; j(z) are one-variable polynomials.
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Polynomial Solutions

Consider the wave equation in Riemannian space with a nontrivial

conformal group:

Ut — Uxyx; — Z g/,J )uX,XJ =0, (*)

ij=2
where we assume that g; j(z) are one-variable polynomials. Change

variables:
Zo = X1 + t, Z1 = X1 — t.

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions

Consider the wave equation in Riemannian space with a nontrivial

conformal group:

Ut — Uxyx; — Z g/,J )uX,XJ =0, (*)

ij=2
where we assume that g; j(z) are one-variable polynomials. Change

variables:
Zo = X1 + t, Z1 = X1 — t.

Then
ag = (820 - 821)2, a>2<1 = (820 + 821)2'
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Polynomial Solutions

Consider the wave equation in Riemannian space with a nontrivial

conformal group:

Ut — Uxyx; — Z g/,J )uX,XJ =0, (*)

ij=2

where we assume that g; j(z) are one-variable polynomials. Change
variables:

Zo = X1 + t, Z1 = X1 — t.

Then
ag = (820 - 821)2, a>2<1 = (820 + 821)2'

So the equation (x) changes to:

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions

Consider the wave equation in Riemannian space with a nontrivial

conformal group:

Ut — Uxyx; — Z g/,J )uX,XJ =0, (*)

ij=2

where we assume that g; j(z) are one-variable polynomials. Change
variables:

Zo = X1 + t, Z1 = X1 — t.

Then
ag = (820 - 821)2, a>2<1 = (820 + 821)2'

So the equation (x) changes to:

n
20200z + > 8ij(21) g = 0.
ij=2
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Polynomial Solutions

Denote

T1=20,0,, To= Y &.j(z1)0x0x-

ij=2
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Polynomial Solutions

Denote

T1=20,0,, To= Y &.j(z1)0x0x-

ij=2

Take T; = %f(ZO) f(ZI),
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Polynomial Solutions

Denote

T1=20,0,, To= Y &.j(z1)0x0x-

ij=2
Take T; = %f(m) Jizy)» @nd

B ="Flzo,z1], V=F[x2,...,xn], Vi ={f €V |degf <r}.
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Polynomial Solutions

Denote

T1=20,0,, To= Y &.j(z1)0x0x-

ij=2
Take T; = %f(m) Jizy)» @nd

B ="Flzo,z1], V=F[x2,...,xn], Vi ={f €V |degf <r}.

Then the conditions in Lemma 1 hold. Thus we have:
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Polynomial Solutions

Theorem 2. The space of all polynomial solutions for the equation

() is:
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Polynomial Solutions

Theorem 2. The space of all polynomial solutions for the equation

i,j=2
| fb € ]F[Z()], fl S ]F[Zl]v 80, 81 € ]F[X2a "'aXn]}
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Polynomial Solutions

Let my, my, ..., m, be positive integers.
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Polynomial Solutions

Let my, my, ..., m, be positive integers. According to Lemma 1, the

ko + -4+ k ((kot+--+kn)m1)
k2+ +kn [ A2 k 0
{ Z (o )/( ()

o . x1)

set

xaxkgmz(xfz) <o O (xl0Y | 0y €0, my — 1, bo, ..., €, € N}
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Polynomial Solutions

Let my, my, ..., m, be positive integers. According to Lemma 1, the

ko + -4+ k ((kot+--+kn)m1)
k2+ +kn [ A2 k 0
{Z (o w )] (=)

o ey x1)

xaxkgmz(xfz) <o O (xl0Y | 0y €0, my — 1, bo, ..., €, € N}

set

forms a basis of the space of polynomial solutions for the equation
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Polynomial Solutions

Let my, my, ..., m, be positive integers. According to Lemma 1, the

ko + -4+ k ((kot+--+kn)m1)
k2+ +kn [ A2 k 0
{Z (o w )] (=)

o ey x1)

set

xaxkgmz(xfz) <o O (xl0Y | 0y €0, my — 1, bo, ..., €, € N}
forms a basis of the space of polynomial solutions for the equation

(Ot + 002 4---+07")(u) = 0.
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Polynomial Solutions

Lemma 1 indeed gives an algorithm of finding polynomial solutions

for more general equations.
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Polynomial Solutions

Lemma 1 indeed gives an algorithm of finding polynomial solutions
for more general equations.
Let

fi € Rlxq, ..., xi] for ic1,n—1.
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Polynomial Solutions

Lemma 1 indeed gives an algorithm of finding polynomial solutions
for more general equations.
Let

fi € Rlxq, ..., xi] for ic1,n—1.

Consider the equation:

(Ot + 1052 + -+ f_10,")(u) = 0.
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Polynomial Solutions

Lemma 1 indeed gives an algorithm of finding polynomial solutions
for more general equations.
Let

fi € Rlxq, ..., xi] for ic1,n—1.

Consider the equation:
(8)’:171 + fla)’gZ + -4 fn_la;:")(u) =0.
Denote

di = O

X1

, dr =0+ RO + - 4 107" for re 2, n.
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Polynomial Solutions

We will apply Lemma 1 with Ty =d,, T, = Z,f':_rl 0t

Xi+1
inductively.
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Polynomial Solutions

We will apply Lemma 1 with Ty =d,, T, =3, Lol

Xi+1

inductively. Take a right inverse d;” = f((ml

X1)
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Polynomial Solutions

We will apply Lemma 1 with Ty =d,, T>, = Z,f':_rl fiog

inductively. Take a right inverse d; = f((XT)l) Suppose that we

have found a right inverse d; of ds for somes € 1,n—1
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Polynomial Solutions

We will apply Lemma 1 with Ty = d,, T2 S, ! fiog

inductively. Take a right inverse d;” = f(n) Suppose that we

have found a right inverse d;~ of ds for some s € 1,n — 1 such that
xid; =d; x;, Oxd, = d; O for ies+1,n (%)

XiHs
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Polynomial Solutions

Lemma 1 enable us to take

iy = > (—dy £)'d; oimp
=0

as a right inverse of ds;1.
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Polynomial Solutions

Lemma 1 enable us to take

iy = > (—dy £)'d; oimp
=0

as a right inverse of ds;1. Obviously,

=d_

1%y Oxd = d 10 for ies+2,n.

Xi s+1 s

By induction,
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Polynomial Solutions

Lemma 1 enable us to take

iy = > (—dy £)'d; oimp
=0

as a right inverse of ds;1. Obviously,
S

Xido 1 = d. 1Xi, Oxde 1 =d; 10x for ies+2,n.

By induction, we have found a right inverse d;- of ds such that
(*x) holds for each s € 1, n.
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Polynomial Solutions

We set

Sr={g e R[x1,...,x] | dr(g) =0} for r € 17
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Polynomial Solutions

We set
Sr={g e R[x1,...,x] | dr(g) =0} for r € 17

Then

m1—1

S1 = Z Rx;.

i=0
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Polynomial Solutions

We set
Sr={g e R[x1,...,x] | dr(g) =0} for r € 17

Then

m1—1

S1 = Z Rx;.
i=0

Suppose that we have found S, for some r € 1, n — 1.
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Polynomial Solutions

Given he€ S, and f € N,
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Polynomial Solutions

Given h € S, and ¢ € N, we define

orere(h) =Y (=dy £) (N (xf 1),
i=0
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Polynomial Solutions

Given h € S, and ¢ € N, we define

orere(h) =Y (=dy £) (N (xf 1),
i=0

which is actually a finite summation.

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions

Given h € S, and ¢ € N, we define

orere(h) =Y (=dy £) (N (xf 1),
i=0

which is actually a finite summation. Lemma 1 says

Sr1 = Z Or+1,6(Sr)-
£=0
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Polynomial Solutions

Given h € S, and ¢ € N, we define

orere(h) =Y (=dy £) (N (xf 1),
i=0

which is actually a finite summation. Lemma 1 says

Sr1 = Z Or+1,6(Sr)-
£=0

By induction, we obtain:
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Polynomial Solutions

Theorem 3. The set

{0ne,0n-1,0, 1" '02,52(Xf1) |64 €0,m —1, lo,....0, € N}
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Polynomial Solutions

Theorem 3. The set
{0’,,75,10',,,1’5”71 .- -0'2,52(Xfl) ‘ 61 S O, my; — ]., 62, ...,€,, c N}

forms a basis of the polynomial solution space S, of the partial

differential equation:

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Polynomial Solutions

Theorem 3. The set
{0’,,75,10',,,1’5”71 .- -0'2,52(Xfl) ‘ 61 S O, my; — ]., 62, ...,€,, c N}

forms a basis of the polynomial solution space S, of the partial

differential equation:

(O + RO + -+ Fya)(w) =0.
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Evolution Equations

Evolution Equations

First we want to solve the following evolution partial differential

equation:
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Evolution Equations

Evolution Equations

First we want to solve the following evolution partial differential

equation:

ue = (O + X{" 0y + 3305 + 1+ + X1 O ) (1)
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Evolution Equations

Evolution Equations

First we want to solve the following evolution partial differential

equation:
up = (O +X{" O, + X537 Oxs -+ X7 Ox, ) (1)
subject to the condition:

U(O,Xl, '--7Xn) = f(X17 "'7Xn)7
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Evolution Equations

Evolution Equations

First we want to solve the following evolution partial differential

equation:
Ur = (Oxg + X[ O0xy + 352055 + -+ + x5, ) (V)
subject to the condition:
u(0,x1, ..y Xn) = F(X1,y 0y Xn),

where f(x1,x2, ..., x,) is a smooth function.
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Evolution Equations

Theoretically, the solution is
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Evolution Equations

Theoretically, the solution is

u = et@q X0 X;nramrl)(f).
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Evolution Equations

Theoretically, the solution is

u = et@q X0 X;nramrl)(f).

Practically, we often need an exact closed formula of the solution!
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Evolution Equations

For convenience, we denote mg =1 and xg = 1.
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Evolution Equations

For convenience, we denote mg = 1 and xg = 1. Set

i—1
D; = t‘E:X,-"”é?Xi+1 for i €1,n.
r=0
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Evolution Equations

For convenience, we denote mg = 1 and xg = 1. Set
i—1

D; = t‘E:X,-"”é?Xi+1 for i €1,n.
r=0

Denote
A=D,, B=—tx "0,
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Evolution Equations

For convenience, we denote mg = 1 and xg = 1. Set
i—1

D; = t‘E:X,-"”é?Xi+1 for i €1,n.
r=0

Denote
A=D,, B=—tx "0,

Thus
D,.1=D,+B=A+B.
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Evolution Equations

In our special case, the Campbell-Hausdorff formula becomes
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Evolution Equations

In our special case, the Campbell-Hausdorff formula becomes

o
Inetef = A+ B+> a(adA)(B), a €R,
r=1
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Evolution Equations

In our special case, the Campbell-Hausdorff formula becomes
o
Inetef = A+ B+> a(adA)(B), a €R,
r=1

equivalently,

eAeB — A+Eoai(adA) (B)
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Evolution Equations

Denote
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Evolution Equations

Denote

After a long calculation,
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Evolution Equations

Denote

X 0 a -1 i—-1
Ix) = 1= :/ eyxdyzzi( ? X,

X 1!
-1 i=1
After a long calculation, we obtain

Dy _ D

D1 ot9(Dn—1)(xp " )y

e
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Evolution Equations

Set
&(t) =t, &(t) = td(Di—1) (1) for i€ 2.n.

1

By induction,
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Evolution Equations

Set

&(t)=t, &(t)=tI(Di_1)(x'1')  for i€ 2,n.

By induction, we get

eli = e81(1)0 g&a()0x .. Li(1)0y for i€1,n.

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Evolution Equations

Set
&(t)=t, &(t)=tI(Di_1)(x'1')  for i€ 2,n.
By induction, we get

eli = e81(1)0 g&a()0x .. Li(1)0y for i€1,n.

Moreover, we define

m(t) =t, ni(t) =e”(&(1).
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Evolution Equations

An inductional process shows
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Evolution Equations

An inductional process shows

ni(t) = /ot(Xil + /Oyil(x,-g + ..

Y2
+/ (x1 4+ y1)™dyr...)"2dyi_o) ™ dy_1.
0
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Evolution Equations

Our final solution is

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Evolution Equations

Our final solution is

u=f(x1+n1(t),x2 + n2(t), ..., xn + nn(t)).
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Evolution Equations

Our final solution is

u=f(x1+n1(t),x2 + n2(t), ..., xn + nn(t)).

Indeed we have solve more general equations associated with
weighted root trees in graph theory.
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Evolution Equations

Given a continuous function f(xi, x2, ..., Xp) on the region:
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Evolution Equations

Given a continuous function f(xi, x2, ..., Xp) on the region:

—a; < x; < a;, 0 < aj e R, for iel, n.
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Evolution Equations

Given a continuous function f(xi, x2, ..., Xp) on the region:
—a; < x; < a;, 0 < aj e R, for iel, n.

We want to solve the differential equation:
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Evolution Equations

Given a continuous function f(xi, x2, ..., Xp) on the region:
—a; < x; < a;, 0 < aj e R, for iel, n.
We want to solve the differential equation:

uy = (8)'(7171 + X18Q;2 + X28)23 + -+ Xn_18;:")(u)
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Evolution Equations

Given a continuous function f(xi, x2, ..., Xp) on the region:
—a; < x; < a;, 0<a €R, for i€1,n.
We want to solve the differential equation:
ur = (O + X102 + x00° 4 -+ - + xp-10; ") (u)
subject to the initial condition:

u(0,x1, ooy Xn) = F(X1, X2y ooy Xn) for x; € [—aj, aj].
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Evolution Equations

Denote

D(t) = t(95* + x1052 + xza;gs + o Xp1007).
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Evolution Equations

Denote
D(t) = t(0g" + x10,? + x205 + -+ + xp—10,").

Define

t y1 Yn—2
51(1?,8)(1,...,8)(”):/ (8X1+/o (8X2+"'+/o (O,

0
+Yn-105") " dy,1...) ™ dy2) ™ dy1,
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Evolution Equations

t Yi Yn—2
f,'(t, 8X1, . 8x,,) = X,'1/ (ax, + / (8X,-+1 + ...+ / (8)("_1
0 0 0

+¥Yn-100") " tdyp—1...) " dyip1) ™ dy;
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Evolution Equations

t Yi Yn—2
f,'(t, 8X1, . 8x,,) = X,'1/ (ax, + / (8X,-+1 + ...+ / (8)("_1
0 0 0

+¥Yn-100") " tdyp—1...) " dyip1) ™ dy;

and

En(t, Dy onny D) = 10",
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Evolution Equations

Dual arguments show

eD(t) — egﬂ(tvaxla---vaXn)egn—l(taaxl7---78Xn) “ e efl(tvaxlv“'vaxn)'
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Evolution Equations

For convenience, we denote

i ki

| Kt = (k... kD) for k= (k,....kn) €N".
aj
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Evolution Equations

For convenience, we denote

i ki

| Kt = (k... kD) for k= (k,....kn) €N".
aj

Set
Q2 (KR)9V=T _ 37 2wkl xev/=T
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Evolution Equations

For convenience, we denote
ki
9

k=X

| Kt = (k... kD) for k= (k,....kn) €N".
aj

Set
Q2 (KR)9V=T _ 37 2wkl xev/=T

Define

n N
Gt X1, oosXn) = %[(H eg,-(tgnkfﬁ,...,znki\/—ﬁ))ezw(kf.;)ﬁ
i—1

= t W okt RV =
+(H eg,(t,—zwkl\/?1,...,—27rknﬁ))e 2 (kt )ﬁ]
i=1
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Evolution Equations

and

1 i Wt 2nkl =T, 2k} v/=1)\ 2n(kt-%)v/—1
¢E(taxla""xn) = 2\/_71[(H eE (t 1\/7 ))e ( )

_(f[ eg,-(t,f27rk;r\/j1,...,f27rk,];\/jl))67271'(“-)?)\/?1]'

i=1
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Evolution Equations

and
1 T e(tomkly= Kiv/=T)y 2m(kt )/ =T
¢E(ta X1 eey X,,) = /7[(1_‘[ eﬁl(t’ZWkl VL 2k )e
V=17
_(H eg,-(t,f27rk;r\/j1,...,f27rk,];\/jl))67271'(“-)?)\/?1]'
i=1
Then

¢72(0, X1, ..., o) = cos 27 (k' - X),

Yr(0, X1, ..., Xp) = sin 2r(k - %).

Xiaoping Xu Methods of Solving Flag Partial Differential Equations



Evolution Equations

We define 0 < k if its first nonzero coordinate is a positive integer.
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Evolution Equations

We define 0 < k if its first nonzero coordinate is a positive integer.

The solution of our second problem is
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Evolution Equations

We define 0 < k if its first nonzero coordinate is a positive integer.

The solution of our second problem is

u= Z (bE¢E(t7X17"'7Xn)+CE’(/JE(t,X]_,...,Xn))

0=<keZn
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Evolution Equations

We define 0 < k if its first nonzero coordinate is a positive integer.
The solution of our second problem is

u= Z (bE¢E(t7X17"'7Xn)+CE’(/JE(t,X]_,...,Xn))

0=<keZn
with
1 ai an .
by = 7 Taa /_al . ”/—a,, f(X1y ...y Xn) cos 2 (kT-X)dx, - - - dxq
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Evolution Equations

We define 0 < k if its first nonzero coordinate is a positive integer.
The solution of our second problem is

u= Z (bE¢E(t7X17"'7Xn)+CE’(/JE(t,X]_,...,Xn))

0=<keZn
with
. it
by = = 13132 /—31 /—a,, X1y ey Xn) €O 270 (KT-X)dxp - - - dxq
and

Pt Kt
K= on— 13132 /31 /a,, X1y ey Xp) SIN270(KT-X)dlxp, - - - dXq.
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Constant-Coefficient PDEs

Constant-Coefficient PDEs

Let m and n > 1 be positive integers
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Constant-Coefficient PDEs

Constant-Coefficient PDEs

Let m and n > 1 be positive integers and let

fi(Oxyy s Ox,) € R[Dxy, ..., Ox,]  for i €1, m.
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Constant-Coefficient PDEs

Constant-Coefficient PDEs

Let m and n > 1 be positive integers and let
fi(Oxyy vy Ox,) € ROy, ..., Ox, | for iel,m.

We want to solve the equation:
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Constant-Coefficient PDEs

Constant-Coefficient PDEs

Let m and n > 1 be positive integers and let
fi(Oxyy vy Ox,) € ROy, ..., Ox, | for iel,m.

We want to solve the equation:

Zam ":(Oxys -y Oxy) ) (1) = O
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Constant-Coefficient PDEs

Constant-Coefficient PDEs

Let m and n > 1 be positive integers and let
fi(Oxyy vy Ox,) € ROy, ..., Ox, | for iel,m.

We want to solve the equation:
Zam Fi(Dss s D5,)) (1) = O

with x; € R and x, € [—a,, a,] for r € 2, n,
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Constant-Coefficient PDEs

Constant-Coefficient PDEs

Let m and n > 1 be positive integers and let
fi(Oxyy vy Ox,) € ROy, ..., Ox, | for iel,m.

We want to solve the equation:
Zam Fi(Dss s D5,)) (1) = O

with x; € R and x, € [—a,, a,] for r € 2, n, subject to the condition

0%, (u)(0,x2, ..., Xn) = gs(x2, .-+, Xn) for s€0,m—1,
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Constant-Coefficient PDEs

Constant-Coefficient PDEs

Let m and n > 1 be positive integers and let
fi(Oxyy vy Ox,) € ROy, ..., Ox, | for iel,m.

We want to solve the equation:

m

(o — Zag;—"f,-(axz, o 0)) (1) =0

r=1
with x; € R and x, € [—a,, a,] for r € 2, n, subject to the condition
0%, (u)(0,x2, ..., Xn) = gs(x2, .-+, Xn) for s€0,m—1,

where ay, ..., a, are positive real numbers and gy, ..., gn—1 are

continuous functions.
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Constant-Coefficient PDEs

For convenience, we denote

kT:ﬁ,

] ai

KT = (k.o ki) for K= (kp,oos k) € N1
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Constant-Coefficient PDEs

For convenience, we denote

kT:ﬁ,

]

KT = (k.o ki) for K= (kp,oos k) € N1

aj

Set
2r(K)V=T _ 37, 2mk] xe/—1
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Constant-Coefficient PDEs

Forre O,m—1,
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Constant-Coefficient PDEs

For re 0,m—1, as Lemma 1,

1 & i Cetash)
rl Z (1- : )/( (x1)

Hyeoesl
i oim=0 Ly-eey im x1)

X(H fp(ax2, ceey axn)lp)(ezﬂ'(l?f)?)\/fl)
p=1

S <i1+~-+im> xq
1y ey im (r+2 " 1 Sis)!

iLyereyim=0

Hf 2/(2*7(./ . 2klmy/ 1) 2r(kt %)y ~T
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Constant-Coefficient PDEs

For re 0,m—1, as Lemma 1,

1 & i Cetash)
rl Z (1- : )/( (x1)

o im=0 y...sIm x1)

H B - n)ip)(e2ﬂ(ET-)?)\/jl)

B i <,-1+..-+,-m> sy P2
iy eeim ) (r 4+ ST sis)!

iLyereyim=0

Hf 2/(2*7(./ . 2klmy/ 1) 2r(kt %)y ~T

p=1

is a complex solution of the equation for any kezn1
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Constant-Coefficient PDEs

We write

> A+
{110, (<, (kT —T, ..., 2k /=) )e
X
(r+ >0 sis)!
= ¢, (x1, k) + (31, k)V—1,
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Constant-Coefficient PDEs

We write

> A+
{110, (<, (kT —T, ..., 2k /=) )e
X
(r+ >0 sis)!
= ¢, (x1, k) + (31, k)V—1,

where ¢,(x1, k) and t,(x1, k) are real functions.
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Constant-Coefficient PDEs

We write

> A+
{110, (<, (kT —T, ..., 2k /=) )e
X
(r+ >0 sis)!
= ¢, (x1, k) + (31, k)V—1,

where ¢,(x1, k) and t,(x1, k) are real functions. Moreover,

95 (6)(0,k) = 0,5, 05, (4,)(0,K)=0  for s€O,r.
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Constant-Coefficient PDEs

The solution of our initial-value problem is:
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Constant-Coefficient PDEs

The solution of our initial-value problem is:

3
_

> [be(k)(r(x1, k') cos2m (k' - %)

O<kez -1

br(x1, kM) sin 2 (k' - X))
+er (k) (or(xa, KTy sin2m (kT - %)
i (1, k1) cos2m(kT - %))]

I
AIDM
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Constant-Coefficient PDEs

with

(k) = (X2, ...,
b ( ) 2n— 232 /;32 /—a,,g 2 )
kT X) dxp, - -

X COs 27r(

—Z(b 1 (65)(0, k) + cs(K)DL, (5)(0, k)
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Constant-Coefficient PDEs

with

(k) = (X2 ey X,
b(R) = gra / /g o
kT X) dxp, - -

X COs 27r(

—Z(b 1 (65)(0, k) + cs(K)DL, (5)(0, k)

. 1 a» an
(k) = T /a gr(x2, ..., Xn)
—da2 —dn
X sin 27r(l_<»T X) dxp - - - dxo

—Z cs (k)L (¢5)(0, k) — bs(k)L, (15)(0, k)).
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Remark .
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Constant-Coefficient PDEs

Remark . If we take f; = b; with / € 1, m to be constant

functions,
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Constant-Coefficient PDEs

Remark . If we take f; = b; with / € 1, m to be constant

functions, we get m fundamental solutions

g f e i\ XTI (bpxP) e )
er(x) = Z (Il—.i_ +Im> Lo (Bpx?) re0,m-1

Myeeesim (r+> 0 si)’

i1, ryim=0
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Constant-Coefficient PDEs

Remark . If we take f; = b; with / € 1, m to be constant

functions, we get m fundamental solutions

g i\ XTI (bpxP)e i
pt= > (oo com
i1y ey im (r+>-0 4 sis)!

i1, ryim=0

of the constant-coefficient ordinary differential equation

y(m) _ bly(m—l) — i —bm1y = by =0.
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Constant-Coefficient PDEs

Given the initial conditions:
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Constant-Coefficient PDEs

Given the initial conditions:

y((0) = ¢ for re 0,m—1,
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Constant-Coefficient PDEs

Given the initial conditions:

y((0) = ¢ for re 0,m—1,

we define ag = ¢g and

r—1
> 3 r—s i
ar = C — . . asb’l1 T brr—;
11505 Ir—s

— . . —r -
s=0jy,...,i,—_sEN; szl pip=r—s
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Constant-Coefficient PDEs

Given the initial conditions:

y((0) = ¢ for re 0,m—1,

we define ag = ¢g and

r—1
r—s : -
ar=C — § E . . asb’l1 e blrr:;
11505 Ir—s

— . . —r -
s=0jy,...,i,—_sEN; szl pip=r—s

by inductionon r € 1, m — 1.
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Constant-Coefficient PDEs

Given the initial conditions:

y((0) = ¢ for re 0,m—1,

we define ag = ¢g and
r—1 r s )
ar:Cr_E : Z ( . )asbllln'blrr—;
— . . , . Iy .y lr—s
s=0jy,...,i,—_sEN; szl pip=r—s

by induction on r € 1, m — 1. Then the solution of the ODE with

the above initial condition is exactly
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Constant-Coefficient PDEs

Given the initial conditions:
y((0) = ¢ for re 0,m—1,
we define ag = ¢g and
1
e VD> et e
' ' . . . ila"'airfs s
s=0 /1,...,1,«,56N; Z;:l plp=r—s

by induction on r € 1,m — 1. Then the solution of the ODE with

the above initial condition is exactly

3
L

y = arpr(x).

,
Il
o
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From the above results,
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Constant-Coefficient PDEs

From the above results, it seems that the following functions

o) . . i b i
’1+"'+’m ylyzr;]’"
bR = . . T ~—==m -\, f 6 N
Ve e Ym) Z < My eeyim )(r+22’_1 sis)! orr

iLyeeyim=0
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Constant-Coefficient PDEs

From the above results, it seems that the following functions

o) . . i b i
’1+"'+’m ylyzr;]’"
bR = . . T ~—==m -\, f 6 N
Ve e Ym) Z < My eeyim )(r+22’_1 sis)! orr

iLyeeyim=0

are important natural functions.
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Constant-Coefficient PDEs

From the above results, it seems that the following functions

o) . . i b i
’1+"'+’m ylyzr;]’"
bR = . . T ~—==m -\, f 6 N
Ve e Ym) Z < My eeyim )(r+22’_1 sis)! orr

ityeenyim=0
are important natural functions. Indeed,

sin x

Ni(x) = €%, W0, —x) = cosx, N1(0, —x) = — —,
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Constant-Coefficient PDEs

From the above results, it seems that the following functions

o) . . i b i
’1+"'+’m ylyzr;]’"
bR = . . T ~—==m -\, f 6 N
Ve e Ym) Z < My eeyim )(r+22’_1 sis)! orr

ityeenyim=0
are important natural functions. Indeed,

sin x

Ni(x) = €%, W0, —x) = cosx, N1(0, —x) = — —,

or(x) = x" Y (b1x, box?, ..., bmx™)
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From the above results, it seems that the following functions

o : i, i i
R4+ im\ Yi¥% Yo
g eeey == T — 7 . f GN
Vel ym) = 3 (m i )(r+z;"_1sfs)!

ityeenyim=0
are important natural functions. Indeed,

sin x

Ni(x) = €%, W0, —x) = cosx, N1(0, —x) = — —,

or(x) = x" Y (b1x, box?, ..., bmx™)

and
r(x1, %) + (31, X)V =1
= ryr(xlfl(zk;rﬂ\/j ,2kim/=1)), ...,
(2k27r\/7 ,2kimy/—1))
for r € 0, m.
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Thank You!
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