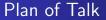
Methods of Solving Flag Partial Differential Equations

Xiaoping Xu

Institute of Mathematics Academy of Mathematics and System Sciences Chinese Academy of Sciences Beijing 100190

・ 同 ト ・ ヨ ト ・ ヨ



Xiaoping Xu Methods of Solving Flag Partial Differential Equations

→ 3 → < 3</p>

Flag Partial Differential Equations

A linear transformation (operator) T on a vector space V is called *locally nilpotent* if for any $v \in V$, there exists a positive integer k such that $T^{k}(v) = 0$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Flag Partial Differential Equations

A linear transformation (operator) T on a vector space V is called locally nilpotent if for any $v \in V$, there exists a positive integer ksuch that $T^{k}(v) = 0$.

Flag Partial Differential Equations

A linear transformation (operator) T on a vector space V is called *locally nilpotent* if for any $v \in V$, there exists a positive integer k such that $T^k(v) = 0$.

$$(d_1 + f_1 d_2 + f_2 d_3 + \dots + f_{n-1} d_n)(u) = 0,$$

where $d_1, d_2, ..., d_n$ are certain commuting locally nilpotent differential operators on the polynomial algebra $\mathbb{R}[x_1, x_2, ..., x_n]$ and $f_1, ..., f_{n-1}$ are polynomials satisfying

$$d_i(f_j) = 0 \qquad \text{if } i > j.$$

 $(d_1 + f_1 d_2 + f_2 d_3 + \dots + f_{n-1} d_n)(u) = 0,$

where $d_1, d_2, ..., d_n$ are certain commuting locally nilpotent differential operators on the polynomial algebra $\mathbb{R}[x_1, x_2, ..., x_n]$ and $f_1, ..., f_{n-1}$ are polynomials satisfying

$$d_i(f_j) = 0 \qquad \text{if } i > j.$$

$$(d_1 + f_1 d_2 + f_2 d_3 + \cdots + f_{n-1} d_n)(u) = 0,$$

where $d_1, d_2, ..., d_n$ are certain commuting locally nilpotent differential operators on the polynomial algebra $\mathbb{R}[x_1, x_2, ..., x_n]$ and $f_1, ..., f_{n-1}$ are polynomials satisfying

$$d_i(f_j) = 0 \qquad \text{if } i > j.$$

$$(d_1 + f_1 d_2 + f_2 d_3 + \cdots + f_{n-1} d_n)(u) = 0,$$

where $d_1, d_2, ..., d_n$ are certain commuting locally nilpotent differential operators on the polynomial algebra $\mathbb{R}[x_1, x_2, ..., x_n]$ and $f_1, ..., f_{n-1}$ are polynomials satisfying

$$d_i(f_j)=0 \qquad \text{if } i>j.$$

$$(d_1 + f_1 d_2 + f_2 d_3 + \cdots + f_{n-1} d_n)(u) = 0,$$

where $d_1, d_2, ..., d_n$ are certain commuting locally nilpotent differential operators on the polynomial algebra $\mathbb{R}[x_1, x_2, ..., x_n]$ and $f_1, ..., f_{n-1}$ are polynomials satisfying

$$d_i(f_j)=0 \qquad \text{if } i>j.$$

くほし くほし くほし

$$(d_1 + f_1 d_2 + f_2 d_3 + \cdots + f_{n-1} d_n)(u) = 0,$$

where $d_1, d_2, ..., d_n$ are certain commuting locally nilpotent differential operators on the polynomial algebra $\mathbb{R}[x_1, x_2, ..., x_n]$ and $f_1, ..., f_{n-1}$ are polynomials satisfying

$$d_i(f_j)=0 \qquad \text{if } i>j.$$

くほし くほし くほし

Flag partial differential equations naturally appear in geometry,

Flag partial differential equations naturally appear in geometry, physics and the representation theory of Lie algebras (groups).

Many variable-coefficient (generalized) Laplace equations, wave equations, Klein-Gordon equations, Helmholtz equations are of this type. Solving such equations is also important in finding invariant solutions of nonlinear partial differential equations.

In representation theory, we are more interested in polynomial solutions of flag partial differential equations. How can we find polynomial solutions of a flag partial differential equation?

In representation theory, we are more interested in polynomial solutions of flag partial differential equations.

How can we find polynomial solutions of a flag partial differential equation?

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

In representation theory, we are more interested in polynomial solutions of flag partial differential equations. How can we find polynomial solutions of a flag partial differential equation?

- * E > * E >

A 10

Lemma 1. Let ${\mathcal B}$ be a commutative associative algebra and let ${\mathcal A}$

be a free \mathcal{B} -module generated by a filtrated subspace $V = \bigcup_{r=0}^{\infty} V_r$ (i.e., $V_r \subset V_{r+1}$). Let T_1 be a linear operator on $\mathcal{B} \oplus \mathcal{A}$ with a right inverse T_1^- such that

$$T_1(\mathcal{B},\mathcal{A}), \ T_1^-(\mathcal{B},\mathcal{A}) \subset (\mathcal{B},\mathcal{A}),$$

 $T_1(\eta_1\eta_2) = T_1(\eta_1)\eta_2, \ \ T_1^-(\eta_1\eta_2) = T_1^-(\eta_1)\eta_2$ for $\eta_1 \in \mathcal{B}, \ \eta_2 \in V.$

伺 ト イ ヨ ト イ ヨ ト

$$T_1(\mathcal{B},\mathcal{A}), \ T_1^-(\mathcal{B},\mathcal{A}) \subset (\mathcal{B},\mathcal{A}),$$

 $T_1(\eta_1\eta_2) = T_1(\eta_1)\eta_2, \ \ T_1^-(\eta_1\eta_2) = T_1^-(\eta_1)\eta_2$ for $\eta_1 \in \mathcal{B}, \ \eta_2 \in V.$

伺 ト く ヨ ト く ヨ ト

$$T_1(\mathcal{B},\mathcal{A}), \ T_1^-(\mathcal{B},\mathcal{A}) \subset (\mathcal{B},\mathcal{A}),$$

 $T_1(\eta_1\eta_2) = T_1(\eta_1)\eta_2, \ T_1^-(\eta_1\eta_2) = T_1^-(\eta_1)\eta_2$ r $\eta_1 \in \mathcal{B}, \ \eta_2 \in V.$

$$T_1(\mathcal{B},\mathcal{A}), \ T_1^-(\mathcal{B},\mathcal{A}) \subset (\mathcal{B},\mathcal{A}),$$

 $T_1(\eta_1\eta_2) = T_1(\eta_1)\eta_2, \ \ T_1^-(\eta_1\eta_2) = T_1^-(\eta_1)\eta_2$ for $\eta_1 \in \mathcal{B}, \ \eta_2 \in V.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$T_1(\mathcal{B},\mathcal{A}), \ T_1^-(\mathcal{B},\mathcal{A}) \subset (\mathcal{B},\mathcal{A}),$$

 $T_1(\eta_1\eta_2) = T_1(\eta_1)\eta_2, \ \ T_1^-(\eta_1\eta_2) = T_1^-(\eta_1)\eta_2$ for $\eta_1 \in \mathcal{B}, \ \eta_2 \in V.$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$T_1(\mathcal{B},\mathcal{A}), \ T_1^-(\mathcal{B},\mathcal{A}) \subset (\mathcal{B},\mathcal{A}),$$

 $T_1(\eta_1\eta_2) = T_1(\eta_1)\eta_2, \ \ T_1^-(\eta_1\eta_2) = T_1^-(\eta_1)\eta_2$ or $\eta_1 \in \mathcal{B}, \ \eta_2 \in V.$

- 4 同 2 4 回 2 4 □

$$T_1(\mathcal{B},\mathcal{A}), \ T_1^-(\mathcal{B},\mathcal{A}) \subset (\mathcal{B},\mathcal{A}),$$

$$T_1(\eta_1\eta_2) = T_1(\eta_1)\eta_2, \ \ T_1^-(\eta_1\eta_2) = T_1^-(\eta_1)\eta_2$$

for $\eta_1 \in \mathcal{B}, \ \eta_2 \in V.$

Let T_2 be a linear operator on A such that

$T_2(V_{r+1}) \subset \mathcal{B}V_r, \ T_2(f\zeta) = fT_2(\zeta)$

for

$r \in \mathbb{N}, f \in \mathcal{B}, \zeta \in \mathcal{A}.$

Xiaoping Xu Methods of Solving Flag Partial Differential Equations

- 4 同 6 4 日 6 4 日 6

Let T_2 be a linear operator on A such that

$$T_2(V_{r+1}) \subset \mathcal{B}V_r, \ T_2(f\zeta) = fT_2(\zeta)$$

for

$$r \in \mathbb{N}, f \in \mathcal{B}, \zeta \in \mathcal{A}.$$

3

Then we have

$$\{g \in \mathcal{A} \mid (T_1 + T_2)(g) = 0\}$$

= $Span\{\sum_{i=0}^{\infty} (-T_1^- T_2)^i (hg) \mid g \in V, h \in \mathcal{B}; T_1(h) = 0\},\$

where the summation is finite under our assumption. Moreover, the operator $\sum_{i=0}^{\infty} (-T_1^-T_2)^i T_1^-$ is a right inverse of $T_1 + T_2$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Then we have

$$\{g \in \mathcal{A} \mid (T_1 + T_2)(g) = 0\}$$

= $Span\{\sum_{i=0}^{\infty} (-T_1^- T_2)^i (hg) \mid g \in V, h \in \mathcal{B}; T_1(h) = 0\},\$

where the summation is finite under our assumption. Moreover, the operator $\sum_{i=0}^{\infty} (-T_1^-T_2)^i T_1^-$ is a right inverse of $T_1 + T_2$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Then we have

$$\{g \in \mathcal{A} \mid (T_1 + T_2)(g) = 0\}$$

= $Span\{\sum_{i=0}^{\infty} (-T_1^- T_2)^i (hg) \mid g \in V, h \in \mathcal{B}; T_1(h) = 0\},\$

where the summation is finite under our assumption. Moreover, the operator $\sum_{i=0}^{\infty} (-T_1^-T_2)^i T_1^-$ is a right inverse of $T_1 + T_2$.

- - E - - E

A D

We remark that the above operator T_1 and T_2 may not commute. Take the notion

$$\overline{i,j} = \{i, i+1, \dots, j\}$$

for two integers i and j such that $i \leq j$. Denote by \mathbb{N} the additive semigroup of nonnegative integers.

- 4 同 ト 4 ヨ ト 4 ヨ ト

We remark that the above operator T_1 and T_2 may not commute. Take the notion

$$\overline{i,j} = \{i, i+1, ..., j\}$$

for two integers *i* and *j* such that $i \leq j$. Denote by \mathbb{N} the additive semigroup of nonnegative integers.

同 ト イ ヨ ト イ ヨ ト

We remark that the above operator T_1 and T_2 may not commute. Take the notion

$$\overline{i,j} = \{i, i+1, ..., j\}$$

for two integers *i* and *j* such that $i \leq j$. Denote by \mathbb{N} the additive semigroup of nonnegative integers.

$$x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$
 for $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$.

Moreover, we denote

$$\epsilon_i = (0, ..., 0, \overset{i}{1}, 0, ..., 0) \in \mathbb{N}^n.$$

For each $i \in \overline{1, n}$, we define the linear operator $\int_{(x_i)}$ on \mathcal{A} by:

$$\int_{(x_i)} (x^{\alpha}) = \frac{x^{\alpha + \epsilon_i}}{\alpha_i + 1} \ \text{ for } \ \alpha \in \mathbb{N}^n.$$

$$x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$
 for $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$.

Moreover, we denote

$$\epsilon_i = (0, ..., 0, \overset{i}{1}, 0, ..., 0) \in \mathbb{N}^n.$$

For each $i \in \overline{1, n}$, we define the linear operator $\int_{(x_i)}$ on \mathcal{A} by:

$$\int_{(x_i)} (x^{\alpha}) = \frac{x^{\alpha + \epsilon_i}}{\alpha_i + 1} \ \text{ for } \ \alpha \in \mathbb{N}^n.$$

- 4 同 🕨 - 4 目 🕨 - 4 目

$$x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$
 for $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$.

Moreover, we denote

$$\epsilon_i = (0, ..., 0, \overset{i}{1}, 0, ..., 0) \in \mathbb{N}^n.$$

For each $i \in \overline{1, n}$, we define the linear operator $\int_{(x_i)}$ on \mathcal{A} by:

$$\int_{(x_i)} (x^{\alpha}) = \frac{x^{\alpha + \epsilon_i}}{\alpha_i + 1} \ \text{ for } \ \alpha \in \mathbb{N}^n.$$

→ 3 → 4 3

$$x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$
 for $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$.

Moreover, we denote

$$\epsilon_i = (0, ..., 0, \overset{i}{1}, 0, ..., 0) \in \mathbb{N}^n.$$

For each $i \in \overline{1, n}$, we define the linear operator $\int_{(x_i)}$ on \mathcal{A} by:

$$\int_{(x_i)} (x^{\alpha}) = \frac{x^{\alpha + \epsilon_i}}{\alpha_i + 1} \text{ for } \alpha \in \mathbb{N}^n.$$

/□ ▶ < 글 ▶ < 글

$$\int_{(x_i)}^{(0)} = 1, \ \int_{(x_i)}^{(m)} = \overbrace{\int_{(x_i)} \cdots \int_{(x_i)}}^{m}$$

and denote

$$\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \cdots \partial_{x_n}^{\alpha_n}, \quad \int^{(\alpha)}_{(x_1)} = \int^{(\alpha_1)}_{(x_1)} \int^{(\alpha_2)}_{(x_2)} \cdots \int^{(\alpha_n)}_{(x_n)} \text{ for } \alpha \in \mathbb{N}^n.$$

Obviously, $\int^{(\alpha)} is a right inverse of <math>\partial^{\alpha}$ for $\alpha \in \mathbb{N}^n$. We remark that $\int^{(\alpha)} \partial^{\alpha} \neq 1$ if $\alpha \neq 0$ due to $\partial^{\alpha}(1) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\int_{(x_i)}^{(0)} = 1, \ \int_{(x_i)}^{(m)} = \overbrace{\int_{(x_i)} \cdots \int_{(x_i)}}^{m}$$

and denote

$$\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \cdots \partial_{x_n}^{\alpha_n}, \quad \int^{(\alpha)} = \int^{(\alpha_1)}_{(x_1)} \int^{(\alpha_2)}_{(x_2)} \cdots \int^{(\alpha_n)}_{(x_n)} \text{ for } \alpha \in \mathbb{N}^n.$$

Obviously, $\int^{(\alpha)} is a right inverse of <math>\partial^{\alpha}$ for $\alpha \in \mathbb{N}^n$. We remark that $\int^{(\alpha)} \partial^{\alpha} \neq 1$ if $\alpha \neq 0$ due to $\partial^{\alpha}(1) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\int_{(x_i)}^{(0)} = 1, \ \int_{(x_i)}^{(m)} = \overbrace{\int_{(x_i)} \cdots \int_{(x_i)}}^{m}$$

and denote

$$\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \cdots \partial_{x_n}^{\alpha_n}, \quad \int^{(\alpha)} = \int^{(\alpha_1)}_{(x_1)} \int^{(\alpha_2)}_{(x_2)} \cdots \int^{(\alpha_n)}_{(x_n)} \text{ for } \alpha \in \mathbb{N}^n.$$

Obviously, $\int^{(\alpha)}$ is a right inverse of ∂^{α} for $\alpha \in \mathbb{N}^n$. We remark that $\int^{(\alpha)} \partial^{\alpha} \neq 1$ if $\alpha \neq 0$ due to $\partial^{\alpha}(1) = 0$.

伺 ト イ ヨ ト イ ヨ ト

$$\int_{(x_i)}^{(0)} = 1, \ \int_{(x_i)}^{(m)} = \overbrace{\int_{(x_i)} \cdots \int_{(x_i)}}^{m}$$

and denote

$$\partial^{\alpha} = \partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \cdots \partial_{x_n}^{\alpha_n}, \quad \int^{(\alpha)} = \int^{(\alpha_1)}_{(x_1)} \int^{(\alpha_2)}_{(x_2)} \cdots \int^{(\alpha_n)}_{(x_n)} \text{ for } \alpha \in \mathbb{N}^n.$$

Obviously, $\int^{(\alpha)}$ is a right inverse of ∂^{α} for $\alpha \in \mathbb{N}^{n}$. We remark that $\int^{(\alpha)} \partial^{\alpha} \neq 1$ if $\alpha \neq 0$ due to $\partial^{\alpha}(1) = 0$.

直 と く ヨ と く ヨ と

Consider the wave equation in Riemannian space with a nontrivial conformal group:

$$u_{tt} - u_{x_1x_1} - \sum_{i,j=2}^{n} g_{i,j}(x_1 - t) u_{x_ix_j} = 0, \qquad (*)$$

where we assume that $g_{i,j}(z)$ are one-variable polynomials. Change variables:

$$z_0 = x_1 + t, \qquad z_1 = x_1 - t.$$

Then

$$\partial_t^2 = (\partial_{z_0} - \partial_{z_1})^2, \ \ \partial_{x_1}^2 = (\partial_{z_0} + \partial_{z_1})^2.$$

So the equation (*) changes to:

$$2\partial_{z_0}\partial_{z_1}+\sum_{i,j=2}^n g_{i,j}(z_1)u_{x_ix_j}=0.$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Consider the wave equation in Riemannian space with a nontrivial conformal group:

$$u_{tt} - u_{x_1x_1} - \sum_{i,j=2}^{n} g_{i,j}(x_1 - t) u_{x_ix_j} = 0, \qquad (*)$$

where we assume that $g_{i,j}(z)$ are one-variable polynomials. Change variables:

$$z_0 = x_1 + t, \qquad z_1 = x_1 - t.$$

Then

$$\partial_t^2 = (\partial_{z_0} - \partial_{z_1})^2, \ \ \partial_{x_1}^2 = (\partial_{z_0} + \partial_{z_1})^2.$$

So the equation (*) changes to:

$$2\partial_{z_0}\partial_{z_1}+\sum_{i,j=2}^n g_{i,j}(z_1)u_{x_ix_j}=0.$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Consider the wave equation in Riemannian space with a nontrivial conformal group:

$$u_{tt} - u_{x_1x_1} - \sum_{i,j=2}^{n} g_{i,j}(x_1 - t) u_{x_ix_j} = 0, \qquad (*)$$

where we assume that $g_{i,j}(z)$ are one-variable polynomials. Change variables:

$$z_0 = x_1 + t, \qquad z_1 = x_1 - t.$$

Then

$$\partial_t^2 = (\partial_{z_0} - \partial_{z_1})^2, \ \ \partial_{x_1}^2 = (\partial_{z_0} + \partial_{z_1})^2.$$

So the equation (*) changes to:

$$2\partial_{z_0}\partial_{z_1}+\sum_{i,j=2}^n g_{i,j}(z_1)u_{x_ix_j}=0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider the wave equation in Riemannian space with a nontrivial conformal group:

$$u_{tt} - u_{x_1x_1} - \sum_{i,j=2}^{n} g_{i,j}(x_1 - t) u_{x_ix_j} = 0, \qquad (*)$$

where we assume that $g_{i,j}(z)$ are one-variable polynomials. Change variables:

$$z_0 = x_1 + t, \qquad z_1 = x_1 - t.$$

Then

$$\partial_t^2 = (\partial_{z_0} - \partial_{z_1})^2, \ \ \partial_{x_1}^2 = (\partial_{z_0} + \partial_{z_1})^2.$$

So the equation (*) changes to:

$$2\partial_{z_0}\partial_{z_1}+\sum_{i,j=2}^n g_{i,j}(z_1)u_{x_ix_j}=0.$$

同 ト イ ヨ ト イ ヨ ト

Consider the wave equation in Riemannian space with a nontrivial conformal group:

$$u_{tt} - u_{x_1x_1} - \sum_{i,j=2}^{n} g_{i,j}(x_1 - t) u_{x_ix_j} = 0, \qquad (*)$$

where we assume that $g_{i,j}(z)$ are one-variable polynomials. Change variables:

$$z_0 = x_1 + t, \qquad z_1 = x_1 - t.$$

Then

$$\partial_t^2 = (\partial_{z_0} - \partial_{z_1})^2, \ \ \partial_{x_1}^2 = (\partial_{z_0} + \partial_{z_1})^2.$$

So the equation (*) changes to:

$$2\partial_{z_0}\partial_{z_1}+\sum_{i,j=2}^n g_{i,j}(z_1)u_{x_ix_j}=0.$$

伺 ト く ヨ ト く ヨ ト

Consider the wave equation in Riemannian space with a nontrivial conformal group:

$$u_{tt} - u_{x_1x_1} - \sum_{i,j=2}^{n} g_{i,j}(x_1 - t) u_{x_ix_j} = 0, \qquad (*)$$

where we assume that $g_{i,j}(z)$ are one-variable polynomials. Change variables:

$$z_0 = x_1 + t, \qquad z_1 = x_1 - t.$$

Then

$$\partial_t^2 = (\partial_{z_0} - \partial_{z_1})^2, \ \ \partial_{x_1}^2 = (\partial_{z_0} + \partial_{z_1})^2.$$

So the equation (*) changes to:

$$2\partial_{z_0}\partial_{z_1}+\sum_{i,j=2}^n g_{i,j}(z_1)u_{x_ix_j}=0.$$

.

Consider the wave equation in Riemannian space with a nontrivial conformal group:

$$u_{tt} - u_{x_1x_1} - \sum_{i,j=2}^{n} g_{i,j}(x_1 - t) u_{x_ix_j} = 0, \qquad (*)$$

where we assume that $g_{i,j}(z)$ are one-variable polynomials. Change variables:

$$z_0 = x_1 + t, \qquad z_1 = x_1 - t.$$

Then

$$\partial_t^2 = (\partial_{z_0} - \partial_{z_1})^2, \ \ \partial_{x_1}^2 = (\partial_{z_0} + \partial_{z_1})^2.$$

So the equation (*) changes to:

$$2\partial_{z_0}\partial_{z_1}+\sum_{i,j=2}^n g_{i,j}(z_1)u_{x_ix_j}=0.$$

.

Denote $T_1 = 2\partial_{z_0}\partial_{z_1}, \qquad T_2 = \sum_{i,j=2}^n g_{i,j}(z_1)\partial_{x_i}\partial_{x_j}.$ Take $T_1^- = \frac{1}{2}\int_{(z_0)}\int_{(z_1)^n}$ and $\mathcal{B} = \mathbb{F}[z_0, z_1], \quad V = \mathbb{F}[x_2, ..., x_n], \quad V_r = \{f \in V \mid \deg f \leq r\}.$

Then the conditions in Lemma 1 hold. Thus we have:

伺 ト く ヨ ト く ヨ ト

Denote $T_1 = 2\partial_{z_0}\partial_{z_1}, \qquad T_2 = \sum_{i,j=2}^n g_{i,j}(z_1)\partial_{x_i}\partial_{x_j}.$ Take $T_1^- = \frac{1}{2}\int_{(z_0)}\int_{(z_1)}$, and $\mathcal{B} = \mathbb{F}[z_0, z_1], \quad V = \mathbb{F}[x_2, ..., x_n], \quad V_r = \{f \in V \mid \deg f \leq r\}.$

Then the conditions in Lemma 1 hold. Thus we have:

伺 ト く ヨ ト く ヨ ト

Denote $T_1 = 2\partial_{z_0}\partial_{z_1}, \qquad T_2 = \sum_{i,j=2}^n g_{i,j}(z_1)\partial_{x_i}\partial_{x_j}.$ Take $T_1^- = \frac{1}{2}\int_{(z_0)}\int_{(z_1)}$, and $\mathcal{B} = \mathbb{F}[z_0, z_1], \quad V = \mathbb{F}[x_2, ..., x_n], \quad V_r = \{f \in V \mid \deg f \leq r\}.$

Then the conditions in Lemma 1 hold. Thus we have:

伺 ト イ ヨ ト イ ヨ ト

Denote $T_1 = 2\partial_{z_0}\partial_{z_1}, \qquad T_2 = \sum_{i,j=2}^n g_{i,j}(z_1)\partial_{x_i}\partial_{x_j}.$ Take $T_1^- = \frac{1}{2}\int_{(z_0)}\int_{(z_1)}$, and $\mathcal{B} = \mathbb{F}[z_0, z_1], \quad V = \mathbb{F}[x_2, ..., x_n], \quad V_r = \{f \in V \mid \deg f \leq r\}.$

Then the conditions in Lemma 1 hold. Thus we have:

伺 ト イ ヨ ト イ ヨ ト

Theorem 2. The space of all polynomial solutions for the equation (*) is:

Span {
$$\sum_{m=0}^{\infty} (-2)^{-m} (\sum_{i,j=2}^{n} \int_{(z_0)} \int_{(z_1)} g_{i,j}(z_1) \partial_{x_i} \partial_{x_j})^m (f_0 g_0 + f_1 g_1)$$

 | $f_0 \in \mathbb{F}[z_0], f_1 \in \mathbb{F}[z_1], g_0, g_1 \in \mathbb{F}[x_2, ..., x_n]$ }

Theorem 2. The space of all polynomial solutions for the equation (*) is:

Span {
$$\sum_{m=0}^{\infty} (-2)^{-m} (\sum_{i,j=2}^{n} \int_{(z_0)} \int_{(z_1)} g_{i,j}(z_1) \partial_{x_i} \partial_{x_j})^m (f_0 g_0 + f_1 g_1)$$

 | $f_0 \in \mathbb{F}[z_0], f_1 \in \mathbb{F}[z_1], g_0, g_1 \in \mathbb{F}[x_2, ..., x_n]$ }

/□ ▶ < 글 ▶ < 글

$$\{\sum_{k_{2},...,k_{n}=0}^{\infty} (-1)^{k_{2}+\cdots+k_{n}} \binom{k_{2}+\cdots+k_{k}}{k_{2},...,k_{n}} \int_{(x_{1})}^{((k_{2}+\cdots+k_{n})m_{1})} (x_{1}^{\ell_{1}}) \times \partial_{x_{2}}^{k_{2}m_{2}} (x_{2}^{\ell_{2}}) \cdots \partial_{x_{n}}^{k_{n}m_{n}} (x_{n}^{\ell_{n}}) \mid \ell_{1} \in \overline{0,m_{1}-1}, \ \ell_{2},...,\ell_{n} \in \mathbb{N}\}$$

forms a basis of the space of polynomial solutions for the equation

$$(\partial_{x_1}^{m_1}+\partial_{x_2}^{m_2}+\cdots+\partial_{x_n}^{m_n})(u)=0.$$

$$\{\sum_{k_{2},...,k_{n}=0}^{\infty} (-1)^{k_{2}+...+k_{n}} \binom{k_{2}+...+k_{k}}{k_{2},...,k_{n}} \int_{(x_{1})}^{((k_{2}+...+k_{n})m_{1})} (x_{1}^{\ell_{1}}) \times \partial_{x_{2}}^{k_{2}m_{2}} (x_{2}^{\ell_{2}}) \cdots \partial_{x_{n}}^{k_{n}m_{n}} (x_{n}^{\ell_{n}}) \mid \ell_{1} \in \overline{0,m_{1}-1}, \ \ell_{2},...,\ell_{n} \in \mathbb{N}\}$$

forms a basis of the space of polynomial solutions for the equation

$$(\partial_{x_1}^{m_1}+\partial_{x_2}^{m_2}+\cdots+\partial_{x_n}^{m_n})(u)=0.$$

$$\{\sum_{k_{2},...,k_{n}=0}^{\infty} (-1)^{k_{2}+\cdots+k_{n}} \binom{k_{2}+\cdots+k_{k}}{k_{2},...,k_{n}} \int_{(x_{1})}^{((k_{2}+\cdots+k_{n})m_{1})} (x_{1}^{\ell_{1}}) \times \partial_{x_{2}}^{k_{2}m_{2}} (x_{2}^{\ell_{2}}) \cdots \partial_{x_{n}}^{k_{n}m_{n}} (x_{n}^{\ell_{n}}) \mid \ell_{1} \in \overline{0,m_{1}-1}, \ \ell_{2},...,\ell_{n} \in \mathbb{N}\}$$

forms a basis of the space of polynomial solutions for the equation

$$(\partial_{x_1}^{m_1}+\partial_{x_2}^{m_2}+\cdots+\partial_{x_n}^{m_n})(u)=0.$$

直 と く ヨ と く ヨ と

$$\{\sum_{k_{2},...,k_{n}=0}^{\infty} (-1)^{k_{2}+...+k_{n}} \binom{k_{2}+...+k_{k}}{k_{2},...,k_{n}} \int_{(x_{1})}^{((k_{2}+...+k_{n})m_{1})} (x_{1}^{\ell_{1}}) \times \partial_{x_{2}}^{k_{2}m_{2}} (x_{2}^{\ell_{2}}) \cdots \partial_{x_{n}}^{k_{n}m_{n}} (x_{n}^{\ell_{n}}) \mid \ell_{1} \in \overline{0,m_{1}-1}, \ \ell_{2},...,\ell_{n} \in \mathbb{N}\}$$

forms a basis of the space of polynomial solutions for the equation

$$(\partial_{x_1}^{m_1}+\partial_{x_2}^{m_2}+\cdots+\partial_{x_n}^{m_n})(u)=0.$$

直 と く ヨ と く ヨ と

Let

$$f_i \in \mathbb{R}[x_1, ..., x_i]$$
 for $i \in \overline{1, n-1}$.

Consider the equation:

$$(\partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \cdots + f_{n-1} \partial_{x_n}^{m_n})(u) = 0.$$

Denote

$$d_1 = \partial_{x_1}^{m_1}, \quad d_r = \partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \dots + f_{r-1} \partial_{x_r}^{m_r} \qquad \text{for} \quad r \in \overline{2, n}.$$

イロト イポト イヨト イヨト

Let

$$f_i \in \mathbb{R}[x_1, ..., x_i]$$
 for $i \in \overline{1, n-1}$.

Consider the equation:

$$(\partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \cdots + f_{n-1} \partial_{x_n}^{m_n})(u) = 0.$$

Denote

$$d_1 = \partial_{x_1}^{m_1}, \quad d_r = \partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \dots + f_{r-1} \partial_{x_r}^{m_r} \qquad \text{for} \quad r \in \overline{2, n}.$$

イロト イポト イヨト イヨト

Let

$$f_i \in \mathbb{R}[x_1, ..., x_i]$$
 for $i \in \overline{1, n-1}$.

Consider the equation:

$$(\partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \cdots + f_{n-1} \partial_{x_n}^{m_n})(u) = 0.$$

Denote

$$d_1 = \partial_{x_1}^{m_1}, \quad d_r = \partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \dots + f_{r-1} \partial_{x_r}^{m_r} \qquad \text{for} \quad r \in \overline{2, n}.$$

- 4 同 6 4 日 6 4 日 6

Let

$$f_i \in \mathbb{R}[x_1, ..., x_i]$$
 for $i \in \overline{1, n-1}$.

Consider the equation:

$$(\partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \cdots + f_{n-1} \partial_{x_n}^{m_n})(u) = 0.$$

Denote

$$d_1 = \partial_{x_1}^{m_1}, \quad d_r = \partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \dots + f_{r-1} \partial_{x_r}^{m_r} \qquad \text{for} \quad r \in \overline{2, n}.$$

- 4 同 6 4 日 6 4 日 6

We will apply Lemma 1 with $T_1 = d_r$, $T_2 = \sum_{i=r}^{n-1} f_i \partial_{x_{i+1}}^{m_{i+1}}$ inductively. Take a right inverse $d_1^- = \int_{(x_1)}^{(m_1)}$. Suppose that we have found a right inverse d_2^- of d_2 for some $s \in \overline{1, n-1}$ such that

$$x_i d_s^- = d_s^- x_i, \quad \partial_{x_i} d_s^- = d_s^- \partial_{x_i} \qquad \text{for } i \in \overline{s+1, n} \qquad (**)$$

We will apply Lemma 1 with $T_1 = d_r$, $T_2 = \sum_{i=r}^{n-1} f_i \partial_{x_{i+1}}^{m_{i+1}}$ inductively. Take a right inverse $d_1^- = \int_{(x_1)}^{(m_1)}$. Suppose that we have found a right inverse d_s^- of d_s for some $s \in \overline{1, n-1}$ such that

$$x_i d_s^- = d_s^- x_i, \quad \partial_{x_i} d_s^- = d_s^- \partial_{x_i} \qquad \text{for } i \in \overline{s+1, n} \qquad (**)$$

We will apply Lemma 1 with $T_1 = d_r$, $T_2 = \sum_{i=r}^{n-1} f_i \partial_{x_{i+1}}^{m_{i+1}}$ inductively. Take a right inverse $d_1^- = \int_{(x_1)}^{(m_1)}$. Suppose that we have found a right inverse d_s^- of d_s for some $s \in \overline{1, n-1}$ such that

$$x_i d_s^- = d_s^- x_i, \quad \partial_{x_i} d_s^- = d_s^- \partial_{x_i} \qquad \text{for} \quad i \in \overline{s+1, n} \qquad (**)$$

We will apply Lemma 1 with $T_1 = d_r$, $T_2 = \sum_{i=r}^{n-1} f_i \partial_{x_{i+1}}^{m_{i+1}}$ inductively. Take a right inverse $d_1^- = \int_{(x_1)}^{(m_1)}$. Suppose that we have found a right inverse d_s^- of d_s for some $s \in \overline{1, n-1}$ such that

$$x_i d_s^- = d_s^- x_i, \quad \partial_{x_i} d_s^- = d_s^- \partial_{x_i} \qquad \text{for } i \in \overline{s+1, n} \qquad (**)$$

Lemma 1 enable us to take

$$d_{s+1}^{-} = \sum_{i=0}^{\infty} (-d_{s}^{-}f_{s})^{i}d_{s}^{-}\partial_{x_{s+1}}^{im_{s+1}}$$

as a right inverse of d_{s+1} . Obviously,

$$x_i d_{s+1}^- = d_{s+1}^- x_i, \quad \partial_{x_i} d_{s+1}^- = d_{s+1}^- \partial_{x_i} \qquad \text{for } i \in \overline{s+2, n}.$$

By induction, we have found a right inverse d_s^- of d_s such that (**) holds for each $s \in \overline{1, n}$.

同 ト イ ヨ ト イ ヨ ト

Lemma 1 enable us to take

$$d_{s+1}^{-} = \sum_{i=0}^{\infty} (-d_s^{-} f_s)^{i} d_s^{-} \partial_{x_{s+1}}^{im_{s+1}}$$

as a right inverse of d_{s+1} . Obviously,

$$x_i d_{s+1}^- = d_{s+1}^- x_i, \ \partial_{x_i} d_{s+1}^- = d_{s+1}^- \partial_{x_i} \qquad \text{for } i \in \overline{s+2, n}.$$

By induction, we have found a right inverse d_s^- of d_s such that (**) holds for each $s \in \overline{1, n}$.

同 ト イ ヨ ト イ ヨ ト

Lemma 1 enable us to take

$$d_{s+1}^{-} = \sum_{i=0}^{\infty} (-d_s^{-} f_s)^{i} d_s^{-} \partial_{x_{s+1}}^{im_{s+1}}$$

as a right inverse of d_{s+1} . Obviously,

$$x_i d_{s+1}^- = d_{s+1}^- x_i, \quad \partial_{x_i} d_{s+1}^- = d_{s+1}^- \partial_{x_i} \qquad \text{for } i \in \overline{s+2, n}.$$

By induction, we have found a right inverse d_s^- of d_s such that (**) holds for each $s \in \overline{1, n}$.

4 3 6 4 3

We set

$$\mathcal{S}_r = \{g \in \mathbb{R}[x_1, ..., x_r] \mid d_r(g) = 0\}$$
 for $r \in \overline{1, k}$.

Then

$$S_1 = \sum_{i=0}^{m_1-1} \mathbb{R} x_1^i.$$

Suppose that we have found S_r for some $r \in \overline{1, n-1}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We set

$$\mathcal{S}_r = \{g \in \mathbb{R}[x_1,...,x_r] \mid d_r(g) = 0\}$$
 for $r \in \overline{1,k}$.

Then

$$\mathcal{S}_1 = \sum_{i=0}^{m_1-1} \mathbb{R} x_1^i.$$

Suppose that we have found S_r for some $r \in \overline{1, n-1}$.

< ロ > < 同 > < 回 > < 回 >

We set

$$\mathcal{S}_r = \{g \in \mathbb{R}[x_1, ..., x_r] \mid d_r(g) = 0\}$$
 for $r \in \overline{1, k}$.

Then

$$\mathcal{S}_1 = \sum_{i=0}^{m_1-1} \mathbb{R} x_1^i.$$

Suppose that we have found S_r for some $r \in \overline{1, n-1}$.

/□ ▶ < 글 ▶ < 글

Given $h \in S_r$ and $\ell \in \mathbb{N}$, we define

$$\sigma_{r+1,\ell}(h) = \sum_{i=0}^{\infty} (-d_r^- f_r)^i(h) \partial_{x_{r+1}}^{im_{r+1}}(x_{r+1}^\ell),$$

which is actually a finite summation. Lemma 1 says

$$\mathcal{S}_{r+1} = \sum_{\ell=0}^{\infty} \sigma_{r+1,\ell}(\mathcal{S}_r).$$

By induction, we obtain:

・ 同 ト ・ ヨ ト ・ ヨ

Given $h \in S_r$ and $\ell \in \mathbb{N}$, we define

$$\sigma_{r+1,\ell}(h) = \sum_{i=0}^{\infty} (-d_r^- f_r)^i(h) \partial_{x_{r+1}}^{im_{r+1}}(x_{r+1}^\ell),$$

which is actually a finite summation. Lemma 1 says

$$\mathcal{S}_{r+1} = \sum_{\ell=0}^{\infty} \sigma_{r+1,\ell}(\mathcal{S}_r).$$

By induction, we obtain:

/□ ▶ < 글 ▶ < 글

Given $h \in S_r$ and $\ell \in \mathbb{N}$, we define

$$\sigma_{r+1,\ell}(h) = \sum_{i=0}^{\infty} (-d_r^- f_r)^i(h) \partial_{x_{r+1}}^{im_{r+1}}(x_{r+1}^\ell),$$

which is actually a finite summation. Lemma 1 says

$$\mathcal{S}_{r+1} = \sum_{\ell=0}^{\infty} \sigma_{r+1,\ell}(\mathcal{S}_r).$$

By induction, we obtain:

伺 ト イヨト イヨ

Given $h \in S_r$ and $\ell \in \mathbb{N}$, we define

$$\sigma_{r+1,\ell}(h) = \sum_{i=0}^{\infty} (-d_r^- f_r)^i(h) \partial_{x_{r+1}}^{im_{r+1}}(x_{r+1}^\ell),$$

which is actually a finite summation. Lemma 1 says

$$\mathcal{S}_{r+1} = \sum_{\ell=0}^{\infty} \sigma_{r+1,\ell}(\mathcal{S}_r).$$

By induction, we obtain:

同 ト イ ヨ ト イ ヨ ト

Given $h \in S_r$ and $\ell \in \mathbb{N}$, we define

$$\sigma_{r+1,\ell}(h) = \sum_{i=0}^{\infty} (-d_r^- f_r)^i(h) \partial_{x_{r+1}}^{im_{r+1}}(x_{r+1}^\ell),$$

which is actually a finite summation. Lemma 1 says

$$\mathcal{S}_{r+1} = \sum_{\ell=0}^{\infty} \sigma_{r+1,\ell}(\mathcal{S}_r).$$

By induction, we obtain:

同 ト イ ヨ ト イ ヨ ト

Theorem 3. The set

$$\{\sigma_{n,\ell_n}\sigma_{n-1,\ell_{n-1}}\cdots\sigma_{2,\ell_2}(\mathsf{x}_1^{\ell_1}) \mid \ell_1 \in \overline{0,m_1-1}, \ \ell_2,...,\ell_n \in \mathbb{N}\}$$

forms a basis of the polynomial solution space S_n of the partial differential equation:

$$(\partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \cdots + f_{n-1} \partial_{x_n}^{m_n})(u) = 0.$$

- 4 同 🕨 - 4 目 🕨 - 4 目

Theorem 3. The set

$$\{\sigma_{n,\ell_n}\sigma_{n-1,\ell_{n-1}}\cdots\sigma_{2,\ell_2}(\mathbf{x}_1^{\ell_1}) \mid \ell_1 \in \overline{\mathbf{0}, m_1-1}, \ \ell_2, ..., \ell_n \in \mathbb{N}\}$$

forms a basis of the polynomial solution space S_n of the partial differential equation:

$$(\partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \dots + f_{n-1} \partial_{x_n}^{m_n})(u) = 0.$$

A 10

→ 3 → < 3</p>

Theorem 3. The set

$$\{\sigma_{n,\ell_n}\sigma_{n-1,\ell_{n-1}}\cdots\sigma_{2,\ell_2}(\mathbf{x}_1^{\ell_1}) \mid \ell_1 \in \overline{\mathbf{0}, m_1-1}, \ \ell_2, ..., \ell_n \in \mathbb{N}\}$$

forms a basis of the polynomial solution space S_n of the partial differential equation:

$$(\partial_{x_1}^{m_1} + f_1 \partial_{x_2}^{m_2} + \cdots + f_{n-1} \partial_{x_n}^{m_n})(u) = 0.$$

A 10

→ 3 → < 3</p>

First we want to solve the following evolution partial differential equation:

$$u_t = (\partial_{x_1} + x_1^{m_1} \partial_{x_2} + x_2^{m_2} \partial_{x_3} + \dots + x_{n-1}^{m_{n-1}} \partial_{x_n})(u)$$

subject to the condition:

$$u(0, x_1, ..., x_n) = f(x_1, ..., x_n),$$

where $f(x_1, x_2, ..., x_n)$ is a smooth function.

伺 ト イヨト イヨ

First we want to solve the following evolution partial differential equation:

$$u_t = (\partial_{x_1} + x_1^{m_1} \partial_{x_2} + x_2^{m_2} \partial_{x_3} + \dots + x_{n-1}^{m_{n-1}} \partial_{x_n})(u)$$

subject to the condition:

$$u(0, x_1, ..., x_n) = f(x_1, ..., x_n),$$

where $f(x_1, x_2, ..., x_n)$ is a smooth function.

伺 ト イヨト イヨ

First we want to solve the following evolution partial differential equation:

$$u_t = (\partial_{x_1} + x_1^{m_1} \partial_{x_2} + x_2^{m_2} \partial_{x_3} + \dots + x_{n-1}^{m_{n-1}} \partial_{x_n})(u)$$

subject to the condition:

$$u(0, x_1, ..., x_n) = f(x_1, ..., x_n),$$

where $f(x_1, x_2, ..., x_n)$ is a smooth function.

同 ト イ ヨ ト イ ヨ ト

First we want to solve the following evolution partial differential equation:

$$u_t = (\partial_{x_1} + x_1^{m_1} \partial_{x_2} + x_2^{m_2} \partial_{x_3} + \dots + x_{n-1}^{m_{n-1}} \partial_{x_n})(u)$$

subject to the condition:

$$u(0, x_1, ..., x_n) = f(x_1, ..., x_n),$$

where $f(x_1, x_2, ..., x_n)$ is a smooth function.

· < E > < E >

Theoretically, the solution is

$$u=e^{t(\partial_{x_1}+\sum_{r=1}^{n-1}x_r^{m_r}\partial_{x_{r+1}})}(f).$$

Practically, we often need an exact closed formula of the solution!

- 4 同 6 4 国 6 4 国 6

Theoretically, the solution is

$$u=e^{t(\partial_{x_1}+\sum_{r=1}^{n-1}x_r^{m_r}\partial_{x_{r+1}})}(f).$$

Practically, we often need an exact closed formula of the solution!

- 4 同 6 4 国 6 4 国 6

Theoretically, the solution is

$$u=e^{t(\partial_{x_1}+\sum_{r=1}^{n-1}x_r^{m_r}\partial_{x_{r+1}})}(f).$$

Practically, we often need an exact closed formula of the solution!

同 ト イ ヨ ト イ ヨ ト

$$D_i = t \sum_{r=0}^{i-1} x_i^{m_i} \partial_{x_{i+1}}$$
 for $i \in \overline{1, n}$.

Denote

$$A=D_n, \ B=-tx_{n-1}^{m_{n-1}}\partial_{x_n}.$$

Thus

$$D_{n-1}=D_n+B=A+B.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$D_i = t \sum_{r=0}^{i-1} x_i^{m_i} \partial_{x_{i+1}}$$
 for $i \in \overline{1, n}$.

Denote

$$A=D_n, \ B=-tx_{n-1}^{m_{n-1}}\partial_{x_n}.$$

Thus

$$D_{n-1}=D_n+B=A+B.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$D_i = t \sum_{r=0}^{i-1} x_i^{m_i} \partial_{x_{i+1}}$$
 for $i \in \overline{1, n}$.

Denote

$$A=D_n, \ B=-tx_{n-1}^{m_{n-1}}\partial_{x_n}.$$

Thus

$$D_{n-1}=D_n+B=A+B.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$D_i = t \sum_{r=0}^{i-1} x_i^{m_i} \partial_{x_{i+1}}$$
 for $i \in \overline{1, n}$.

Denote

$$A=D_n, \ B=-tx_{n-1}^{m_{n-1}}\partial_{x_n}.$$

Thus

$$D_{n-1}=D_n+B=A+B.$$

イロト イポト イヨト イヨト

In our special case, the Campbell-Hausdorff formula becomes

$$\ln e^A e^B = A + B + \sum_{r=1}^{\infty} a_r (\operatorname{ad} A)^r (B), \qquad a_r \in \mathbb{R},$$

equivalently,

$$e^{A}e^{B} = e^{A + \sum_{i=0}^{\infty} a_{i}(\mathsf{ad}A)^{i}(B)}.$$

同 ト イ ヨ ト イ ヨ ト

In our special case, the Campbell-Hausdorff formula becomes

$$\ln e^A e^B = A + B + \sum_{r=1}^{\infty} a_r (\mathrm{ad} A)^r (B), \qquad a_r \in \mathbb{R},$$

equivalently,

$$e^{A}e^{B} = e^{A + \sum_{i=0}^{\infty} a_{i}(\operatorname{ad} A)^{i}(B)}.$$

同 ト イ ヨ ト イ ヨ ト

In our special case, the Campbell-Hausdorff formula becomes

$$\ln e^A e^B = A + B + \sum_{r=1}^{\infty} a_r (\mathrm{ad} A)^r (B), \qquad a_r \in \mathbb{R},$$

equivalently,

$$e^A e^B = e^{A + \sum_{i=0}^{\infty} a_i (\operatorname{ad} A)^i (B)}.$$

Image: Image:

Denote

$$\vartheta(x) = \frac{1 - e^{-x}}{x} = \int_{-1}^{0} e^{yx} dy = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i!} x^{i-1}.$$

After a long calculation, we obtain

$$e^{D_n} = e^{D_{n-1}} e^{t\vartheta(D_{n-1})(\mathsf{x}_{n-1}^{m_{n-1}})\partial_{\mathsf{x}_n}}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Denote

$$\vartheta(x) = \frac{1 - e^{-x}}{x} = \int_{-1}^{0} e^{yx} dy = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i!} x^{i-1}.$$

After a long calculation, we obtain

$$e^{D_n} = e^{D_{n-1}} e^{t\vartheta(D_{n-1})(\mathsf{x}_{n-1}^{m_{n-1}})\partial_{\mathsf{x}_n}}.$$

3

伺 と く ヨ と く ヨ と

Denote

$$\vartheta(x) = \frac{1 - e^{-x}}{x} = \int_{-1}^{0} e^{yx} dy = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i!} x^{i-1}.$$

After a long calculation, we obtain

$$e^{D_n}=e^{D_{n-1}}e^{t\vartheta(D_{n-1})(x_{n-1}^{m_{n-1}})\partial_{x_n}}.$$

A ►

A B > A B >

Set

$$\xi_1(t) = t, \ \xi_i(t) = t\vartheta(D_{i-1})(x_{i-1}^{m_{i-1}}) \quad \text{for } i \in \overline{2, n}.$$

By induction, we get

$$e^{D_i} = e^{\xi_1(t)\partial_{x_1}}e^{\xi_2(t)\partial_{x_2}}\cdots e^{\xi_i(t)\partial_{x_i}} \quad \text{for } i \in \overline{1, n}.$$

Moreover, we define

$$\eta_1(t) = t, \ \eta_i(t) = e^{D_{i-1}}(\xi_i(t)).$$

< ロ > < 同 > < 回 > < 回 >

Set

$$\xi_1(t) = t, \ \xi_i(t) = t \vartheta(D_{i-1})(x_{i-1}^{m_{i-1}}) \quad \text{for } i \in \overline{2, n}.$$

By induction, we get

$$e^{D_i} = e^{\xi_1(t)\partial_{x_1}} e^{\xi_2(t)\partial_{x_2}} \cdots e^{\xi_i(t)\partial_{x_i}} \quad \text{for } i \in \overline{1, n}.$$

Moreover, we define

$$\eta_1(t) = t, \ \eta_i(t) = e^{D_{i-1}}(\xi_i(t)).$$

Set

$$\xi_1(t) = t, \ \xi_i(t) = t \vartheta(D_{i-1})(x_{i-1}^{m_{i-1}}) \quad \text{for } i \in \overline{2, n}.$$

By induction, we get

$$e^{D_i} = e^{\xi_1(t)\partial_{x_1}}e^{\xi_2(t)\partial_{x_2}}\cdots e^{\xi_i(t)\partial_{x_i}} \quad \text{for } i \in \overline{1, n}.$$

Moreover, we define

$$\eta_1(t) = t, \ \eta_i(t) = e^{D_{i-1}}(\xi_i(t)).$$

An inductional process shows

$$\eta_i(t) = \int_0^t (x_{i-1} + \int_0^{y_{i-1}} (x_{i-2} + \dots + \int_0^{y_2} (x_1 + y_1)^{m_1} dy_1 \dots)^{m_{i-2}} dy_{i-2})^{m_{i-1}} dy_{i-1}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An inductional process shows

$$\eta_i(t) = \int_0^t (x_{i-1} + \int_0^{y_{i-1}} (x_{i-2} + \dots + \int_0^{y_2} (x_1 + y_1)^{m_1} dy_1 \dots)^{m_{i-2}} dy_{i-2})^{m_{i-1}} dy_{i-1}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our final solution is

$$u = f(x_1 + \eta_1(t), x_2 + \eta_2(t), \dots, x_n + \eta_n(t)).$$

Indeed we have solve more general equations associated with weighted root trees in graph theory.

/□ ▶ < 글 ▶ < 글

Our final solution is

$$u = f(x_1 + \eta_1(t), x_2 + \eta_2(t), ..., x_n + \eta_n(t)).$$

Indeed we have solve more general equations associated with weighted root trees in graph theory.

/□ ▶ < 글 ▶ < 글

Our final solution is

$$u = f(x_1 + \eta_1(t), x_2 + \eta_2(t), ..., x_n + \eta_n(t)).$$

Indeed we have solve more general equations associated with weighted root trees in graph theory.

Image: Image:

 $-a_i \leq x_i \leq a_i, \quad 0 < a_i \in \mathbb{R}, \quad \text{for } i \in 1, n.$

We want to solve the differential equation:

$$u_t = (\partial_{x_1}^{m_1} + x_1 \partial_{x_2}^{m_2} + x_2 \partial_{x_3}^{m_3} + \dots + x_{n-1} \partial_{x_n}^{m_n})(u)$$

subject to the initial condition:

$$u(0, x_1, ..., x_n) = f(x_1, x_2, ..., x_n)$$
 for $x_i \in [-a_i, a_i]$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $-a_i \leq x_i \leq a_i, \quad 0 < a_i \in \mathbb{R}, \quad \text{for } i \in \overline{1, n}.$

We want to solve the differential equation:

$$u_t = (\partial_{x_1}^{m_1} + x_1 \partial_{x_2}^{m_2} + x_2 \partial_{x_3}^{m_3} + \dots + x_{n-1} \partial_{x_n}^{m_n})(u)$$

subject to the initial condition:

$$u(0, x_1, ..., x_n) = f(x_1, x_2, ..., x_n)$$
 for $x_i \in [-a_i, a_i]$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $-a_i \leq x_i \leq a_i, \quad 0 < a_i \in \mathbb{R}, \quad \text{for } i \in \overline{1, n}.$

We want to solve the differential equation:

 $u_t = (\partial_{x_1}^{m_1} + x_1 \partial_{x_2}^{m_2} + x_2 \partial_{x_3}^{m_3} + \dots + x_{n-1} \partial_{x_n}^{m_n})(u)$

subject to the initial condition:

 $u(0, x_1, ..., x_n) = f(x_1, x_2, ..., x_n)$ for $x_i \in [-a_i, a_i]$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

$$-a_i \leq x_i \leq a_i, \quad 0 < a_i \in \mathbb{R}, \quad \text{for } i \in \overline{1, n}.$$

We want to solve the differential equation:

$$u_t = (\partial_{x_1}^{m_1} + x_1 \partial_{x_2}^{m_2} + x_2 \partial_{x_3}^{m_3} + \dots + x_{n-1} \partial_{x_n}^{m_n})(u)$$

subject to the initial condition:

$$u(0, x_1, ..., x_n) = f(x_1, x_2, ..., x_n)$$
 for $x_i \in [-a_i, a_i]$.

伺 ト イヨト イヨト

$$-a_i \leq x_i \leq a_i, \quad 0 < a_i \in \mathbb{R}, \quad \text{for } i \in \overline{1, n}.$$

We want to solve the differential equation:

$$u_t = (\partial_{x_1}^{m_1} + x_1 \partial_{x_2}^{m_2} + x_2 \partial_{x_3}^{m_3} + \dots + x_{n-1} \partial_{x_n}^{m_n})(u)$$

subject to the initial condition:

$$u(0, x_1, ..., x_n) = f(x_1, x_2, ..., x_n)$$
 for $x_i \in [-a_i, a_i]$.

- * E > * E >

A 10

Denote

$$D(t)=t(\partial_{x_1}^{m_1}+x_1\partial_{x_2}^{m_2}+x_2\partial_{x_3}^{m_3}+\cdots+x_{n-1}\partial_{x_n}^{m_n}).$$

Define

$$\xi_1(t,\partial_{x_1},...,\partial_{x_n}) = \int_0^t (\partial_{x_1} + \int_0^{y_1} (\partial_{x_2} + ... + \int_0^{y_{n-2}} (\partial_{x_{n-1}} + y_{n-1}\partial_{x_n}^{m_n})^{m_{n-1}} dy_{n-1}...)^{m_2} dy_2)^{m_1} dy_1,$$

Denote

$$D(t)=t(\partial_{x_1}^{m_1}+x_1\partial_{x_2}^{m_2}+x_2\partial_{x_3}^{m_3}+\cdots+x_{n-1}\partial_{x_n}^{m_n}).$$

Define

$$\xi_{1}(t,\partial_{x_{1}},...,\partial_{x_{n}}) = \int_{0}^{t} (\partial_{x_{1}} + \int_{0}^{y_{1}} (\partial_{x_{2}} + ... + \int_{0}^{y_{n-2}} (\partial_{x_{n-1}} + y_{n-1}\partial_{x_{n}}^{m_{n}})^{m_{n-1}} dy_{n-1}...)^{m_{2}} dy_{2})^{m_{1}} dy_{1},$$

$$\xi_{i}(t,\partial_{x_{1}},...,\partial_{x_{n}}) = x_{i-1} \int_{0}^{t} (\partial_{x_{i}} + \int_{0}^{y_{i}} (\partial_{x_{i+1}} + ... + \int_{0}^{y_{n-2}} (\partial_{x_{n-1}} + y_{n-1}\partial_{x_{n}}^{m_{n}})^{m_{n-1}} dy_{n-1}...)^{m_{i+1}} dy_{i+1})^{m_{i}} dy_{i}$$

and

$$\xi_n(t,\partial_{x_1},...,\partial_{x_n})=tx_{n-1}\partial_{x_n}^{m_n}.$$

*ロ * * @ * * 注 * * 注 *

æ.

$$\xi_{i}(t,\partial_{x_{1}},...,\partial_{x_{n}}) = x_{i-1} \int_{0}^{t} (\partial_{x_{i}} + \int_{0}^{y_{i}} (\partial_{x_{i+1}} + ... + \int_{0}^{y_{n-2}} (\partial_{x_{n-1}} + y_{n-1}\partial_{x_{n}}^{m_{n}})^{m_{n-1}} dy_{n-1}...)^{m_{i+1}} dy_{i+1})^{m_{i}} dy_{i}$$

and

$$\xi_n(t,\partial_{x_1},...,\partial_{x_n})=tx_{n-1}\partial_{x_n}^{m_n}.$$

*ロ * * @ * * 注 * * 注 *

Dual arguments show

$$e^{D(t)} = e^{\xi_n(t,\partial_{x_1},\ldots,\partial_{x_n})} e^{\xi_{n-1}(t,\partial_{x_1},\ldots,\partial_{x_n})} \cdots e^{\xi_1(t,\partial_{x_1},\ldots,\partial_{x_n})}.$$

<ロ> <同> <同> < 同> < 同>

$$k_i^\dagger = rac{k_i}{a_i}, \;\; ec{k}^\dagger = (k_1^\dagger,...,k_n^\dagger) \qquad ext{for} \;\; ec{k} = (k_1,...,k_n) \in \mathbb{N}^{\:n}.$$

Set

$$e^{2\pi(\vec{k}^{\dagger}\cdot\vec{x})\sqrt{-1}} = e^{\sum_{r=1}^{n} 2\pi k_r^{\dagger} x_r \sqrt{-1}}.$$

Define

$$\begin{split} \phi_{\vec{k}}(t, x_1, \dots, x_n) &= \frac{1}{2} [(\prod_{i=1}^n e^{\xi_i(t, 2\pi k_1^{\dagger} \sqrt{-1}, \dots, 2\pi k_n^{\dagger} \sqrt{-1})}) e^{2\pi \vec{k} \cdot \vec{x}) \sqrt{-1}} \\ &+ (\prod_{i=1}^n e^{\xi_i(t, -2\pi k_1^{\dagger} \sqrt{-1}, \dots, -2\pi k_n^{\dagger} \sqrt{-1})}) e^{-2\pi \vec{k} \cdot \vec{x}) \sqrt{-1}}] \end{split}$$

$$k_i^\dagger = rac{k_i}{a_i}, \ \ ec{k}^\dagger = (k_1^\dagger,...,k_n^\dagger) \qquad ext{for} \ \ ec{k} = (k_1,...,k_n) \in \mathbb{N}^n.$$

Set

$$e^{2\pi(\vec{k}^{\dagger}\cdot\vec{x})\sqrt{-1}} = e^{\sum_{r=1}^{n} 2\pi k_r^{\dagger} x_r \sqrt{-1}}.$$

Define

$$\begin{split} \phi_{\vec{k}}(t, x_1, \dots, x_n) &= \frac{1}{2} [(\prod_{i=1}^n e^{\xi_i(t, 2\pi k_1^{\dagger} \sqrt{-1}, \dots, 2\pi k_n^{\dagger} \sqrt{-1})}) e^{2\pi \vec{k} \cdot \vec{x}) \sqrt{-1}} \\ &+ (\prod_{i=1}^n e^{\xi_i(t, -2\pi k_1^{\dagger} \sqrt{-1}, \dots, -2\pi k_n^{\dagger} \sqrt{-1})}) e^{-2\pi \vec{k} \cdot \vec{x}) \sqrt{-1}}] \end{split}$$

$$k_i^{\dagger} = rac{k_i}{a_i}, \ \ ec{k^{\dagger}} = (k_1^{\dagger},...,k_n^{\dagger}) \qquad ext{for} \ \ ec{k} = (k_1,...,k_n) \in \mathbb{N}^n.$$

Set

$$e^{2\pi (\vec{k}^{\dagger} \cdot \vec{x})\sqrt{-1}} = e^{\sum_{r=1}^{n} 2\pi k_r^{\dagger} x_r \sqrt{-1}}$$

Define

$$\begin{split} \phi_{\vec{k}}(t, x_1, \dots, x_n) &= \frac{1}{2} [(\prod_{i=1}^n e^{\xi_i(t, 2\pi k_1^{\dagger} \sqrt{-1}, \dots, 2\pi k_n^{\dagger} \sqrt{-1})}) e^{2\pi (\vec{k}^{\dagger} \cdot \vec{x}) \sqrt{-1}} \\ &+ (\prod_{i=1}^n e^{\xi_i(t, -2\pi k_1^{\dagger} \sqrt{-1}, \dots, -2\pi k_n^{\dagger} \sqrt{-1})}) e^{-2\pi (\vec{k}^{\dagger} \cdot \vec{x}) \sqrt{-1}}] \end{split}$$

Polynomial Solutions Evolution Equations Constant-Coefficient PDEs

and

$$\psi_{\vec{k}}(t, x_1, ..., x_n) = \frac{1}{2\sqrt{-1}} [(\prod_{i=1}^n e^{\xi_i(t, 2\pi k_1^{\dagger}\sqrt{-1}, ..., 2\pi k_n^{\dagger}\sqrt{-1})}) e^{2\pi \vec{k} \cdot \vec{x})\sqrt{-1}} - (\prod_{i=1}^n e^{\xi_i(t, -2\pi k_1^{\dagger}\sqrt{-1}, ..., -2\pi k_n^{\dagger}\sqrt{-1})}) e^{-2\pi \vec{k} \cdot \vec{x})\sqrt{-1}}].$$

Then

$$\begin{split} \phi_{\vec{k}}(0,x_1,...,x_n) &= \cos 2\pi (\vec{k}^{\dagger}\cdot\vec{x}), \\ \psi_{\vec{k}}(0,x_1,...,x_n) &= \sin 2\pi (\vec{k}^{\dagger}\cdot\vec{x}). \end{split}$$

Polynomial Solutions Evolution Equations Constant-Coefficient PDEs

and

$$\psi_{\vec{k}}(t, x_1, ..., x_n) = \frac{1}{2\sqrt{-1}} [(\prod_{i=1}^n e^{\xi_i(t, 2\pi k_1^{\dagger}\sqrt{-1}, ..., 2\pi k_n^{\dagger}\sqrt{-1})}) e^{2\pi \vec{k} \cdot \vec{x})\sqrt{-1}} - (\prod_{i=1}^n e^{\xi_i(t, -2\pi k_1^{\dagger}\sqrt{-1}, ..., -2\pi k_n^{\dagger}\sqrt{-1})}) e^{-2\pi \vec{k} \cdot \vec{x})\sqrt{-1}}].$$

Then

$$\phi_{\vec{k}}(0, x_1, ..., x_n) = \cos 2\pi (\vec{k}^{\dagger} \cdot \vec{x}),$$

$$\psi_{\vec{k}}(0, x_1, ..., x_n) = \sin 2\pi (\vec{k}^{\dagger} \cdot \vec{x}).$$

æ

Polynomial Solutions Evolution Equations Constant-Coefficient PDEs

We define $0 \prec \vec{k}$ if its first nonzero coordinate is a positive integer. The solution of our second problem is

$$u = \sum_{0 \leq \vec{k} \in \mathbb{Z}^n} (b_{\vec{k}} \phi_{\vec{k}}(t, x_1, ..., x_n) + c_{\vec{k}} \psi_{\vec{k}}(t, x_1, ..., x_n))$$

with

$$b_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \cos 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1$$

and

$$c_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \sin 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We define $0 \prec \vec{k}$ if its first nonzero coordinate is a positive integer. The solution of our second problem is

$$u = \sum_{0 \leq \vec{k} \in \mathbb{Z}^n} (b_{\vec{k}} \phi_{\vec{k}}(t, x_1, ..., x_n) + c_{\vec{k}} \psi_{\vec{k}}(t, x_1, ..., x_n))$$

with

$$b_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \cos 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1$$

and

$$c_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \sin 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1.$$

イロト イポト イヨト イヨト

We define $0 \prec \vec{k}$ if its first nonzero coordinate is a positive integer. The solution of our second problem is

$$u = \sum_{0 \leq \vec{k} \in \mathbb{Z}^n} (b_{\vec{k}} \phi_{\vec{k}}(t, x_1, ..., x_n) + c_{\vec{k}} \psi_{\vec{k}}(t, x_1, ..., x_n))$$

with

$$b_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \cos 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1$$

and

$$c_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \sin 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1.$$

(日) (同) (三) (三)

We define $0 \prec \vec{k}$ if its first nonzero coordinate is a positive integer. The solution of our second problem is

$$u = \sum_{0 \leq \vec{k} \in \mathbb{Z}^n} (b_{\vec{k}} \phi_{\vec{k}}(t, x_1, ..., x_n) + c_{\vec{k}} \psi_{\vec{k}}(t, x_1, ..., x_n))$$

with

$$b_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \cos 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1$$

and

$$c_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \sin 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1.$$

3

- 4 同 6 4 日 6 4 日 6

We define $0 \prec \vec{k}$ if its first nonzero coordinate is a positive integer. The solution of our second problem is

$$u = \sum_{0 \leq \vec{k} \in \mathbb{Z}^n} (b_{\vec{k}} \phi_{\vec{k}}(t, x_1, ..., x_n) + c_{\vec{k}} \psi_{\vec{k}}(t, x_1, ..., x_n))$$

with

$$b_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \cos 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1$$

and

$$c_{\vec{k}} = \frac{1}{2^{n-1}a_1a_2\cdots a_n} \int_{-a_1}^{a_1} \cdots \int_{-a_n}^{a_n} f(x_1, ..., x_n) \sin 2\pi (\vec{k}^{\dagger} \cdot \vec{x}) dx_n \cdots dx_1.$$

3

- 4 同 6 4 日 6 4 日 6

Let m and n > 1 be positive integers and let

 $f_i(\partial_{x_2},...,\partial_{x_n}) \in \mathbb{R}[\partial_{x_2},...,\partial_{x_n}] \quad \text{for } i \in \overline{1,m}.$

We want to solve the equation:

$$(\partial_{x_1}^m - \sum_{r=1}^m \partial_{x_1}^{m-i} f_i(\partial_{x_2}, ..., \partial_{x_n}))(u) = 0$$

with $x_1 \in \mathbb{R}$ and $x_r \in [-a_r, a_r]$ for $r \in \overline{2, n}$, subject to the condition

$$\partial_{x_1}^s(u)(0,x_2,...,x_n) = g_s(x_2,...,x_n) \quad \text{for } s \in \overline{0,m-1},$$

Let m and n > 1 be positive integers and let

$$f_i(\partial_{x_2},...,\partial_{x_n}) \in \mathbb{R}[\partial_{x_2},...,\partial_{x_n}] \quad \text{for } i \in \overline{1,m}.$$

We want to solve the equation:

$$(\partial_{x_1}^m - \sum_{r=1}^m \partial_{x_1}^{m-i} f_i(\partial_{x_2}, ..., \partial_{x_n}))(u) = 0$$

with $x_1 \in \mathbb{R}$ and $x_r \in [-a_r, a_r]$ for $r \in \overline{2, n}$, subject to the condition

$$\partial_{x_1}^s(u)(0,x_2,...,x_n) = g_s(x_2,...,x_n) \quad \text{for } s \in \overline{0,m-1},$$

Let m and n > 1 be positive integers and let

$$f_i(\partial_{x_2},...,\partial_{x_n}) \in \mathbb{R}[\partial_{x_2},...,\partial_{x_n}] \quad \text{for } i \in \overline{1,m}.$$

We want to solve the equation:

$$(\partial_{x_1}^m - \sum_{r=1}^m \partial_{x_1}^{m-i} f_i(\partial_{x_2}, ..., \partial_{x_n}))(u) = 0$$

with $x_1 \in \mathbb{R}$ and $x_r \in [-a_r, a_r]$ for $r \in \overline{2, n}$, subject to the condition

$$\partial_{x_1}^s(u)(0,x_2,...,x_n) = g_s(x_2,...,x_n) \quad \text{for } s \in \overline{0,m-1},$$

Let m and n > 1 be positive integers and let

$$f_i(\partial_{x_2},...,\partial_{x_n}) \in \mathbb{R}[\partial_{x_2},...,\partial_{x_n}] \quad \text{for } i \in \overline{1,m}.$$

We want to solve the equation:

$$(\partial_{x_1}^m - \sum_{r=1}^m \partial_{x_1}^{m-i} f_i(\partial_{x_2}, ..., \partial_{x_n}))(u) = 0$$

with $x_1 \in \mathbb{R}$ and $x_r \in [-a_r, a_r]$ for $r \in \overline{2, n}$, subject to the condition

$$\partial_{x_1}^s(u)(0,x_2,...,x_n) = g_s(x_2,...,x_n) \quad \text{for } s \in \overline{0,m-1},$$

Let m and n > 1 be positive integers and let

$$f_i(\partial_{x_2},...,\partial_{x_n}) \in \mathbb{R}[\partial_{x_2},...,\partial_{x_n}] \quad \text{for } i \in \overline{1,m}.$$

We want to solve the equation:

$$(\partial_{x_1}^m - \sum_{r=1}^m \partial_{x_1}^{m-i} f_i(\partial_{x_2}, ..., \partial_{x_n}))(u) = 0$$

with $x_1 \in \mathbb{R}$ and $x_r \in [-a_r, a_r]$ for $r \in \overline{2, n}$, subject to the condition

$$\partial_{x_1}^s(u)(0,x_2,...,x_n)=g_s(x_2,...,x_n) \qquad \text{for } s\in\overline{0,m-1},$$

Let m and n > 1 be positive integers and let

$$f_i(\partial_{x_2},...,\partial_{x_n}) \in \mathbb{R}[\partial_{x_2},...,\partial_{x_n}] \quad \text{for } i \in \overline{1,m}.$$

We want to solve the equation:

$$(\partial_{x_1}^m - \sum_{r=1}^m \partial_{x_1}^{m-i} f_i(\partial_{x_2}, ..., \partial_{x_n}))(u) = 0$$

with $x_1 \in \mathbb{R}$ and $x_r \in [-a_r, a_r]$ for $r \in \overline{2, n}$, subject to the condition

$$\partial_{x_1}^s(u)(0,x_2,...,x_n)=g_s(x_2,...,x_n) \qquad ext{for } s\in\overline{0,m-1},$$

Let m and n > 1 be positive integers and let

$$f_i(\partial_{x_2},...,\partial_{x_n}) \in \mathbb{R}[\partial_{x_2},...,\partial_{x_n}] \quad \text{for } i \in \overline{1,m}.$$

We want to solve the equation:

$$(\partial_{x_1}^m - \sum_{r=1}^m \partial_{x_1}^{m-i} f_i(\partial_{x_2}, ..., \partial_{x_n}))(u) = 0$$

with $x_1 \in \mathbb{R}$ and $x_r \in [-a_r, a_r]$ for $r \in \overline{2, n}$, subject to the condition

$$\partial_{x_1}^s(u)(0,x_2,...,x_n)=g_s(x_2,...,x_n) \quad \text{for } s\in\overline{0,m-1},$$

$$k_i^{\dagger} = \frac{k_i}{a_i}, \quad \vec{k}^{\dagger} = (k_2^{\dagger}, ..., k_n^{\dagger}) \quad \text{for} \quad \vec{k} = (k_2, ..., k_n) \in \mathbb{N}^{n-1}.$$

$$k_i^{\dagger} = \frac{k_i}{a_i}, \quad \vec{k}^{\dagger} = (k_2^{\dagger}, ..., k_n^{\dagger}) \quad \text{for } \vec{k} = (k_2, ..., k_n) \in \mathbb{N}^{n-1}.$$

Set
 $e^{2\pi(\vec{k}^{\dagger} \cdot \vec{x})\sqrt{-1}} = e^{\sum_{r=2}^n 2\pi k_r^{\dagger} x_r \sqrt{-1}}.$

3

.

For $r \in \overline{0, m-1}$, as Lemma 1,

$$\frac{1}{r!} \sum_{i_1,...,i_m=0}^{\infty} {\binom{i_1 + \dots + i_m}{i_1,...,i_m}} \int_{(x_1)}^{(\sum_{s=1}^m si_s)} {(x_1^r)} \\
\times (\prod_{p=1}^m f_p(\partial_{x_2},...,\partial_{x_n})^{i_p}) (e^{2\pi(\vec{k}^{\dagger}\cdot\vec{x})\sqrt{-1}}) \\
= \sum_{i_1,...,i_m=0}^{\infty} {\binom{i_1 + \dots + i_m}{i_1,...,i_m}} \frac{x_1^{r+\sum_{s=1}^m si_s}}{(r+\sum_{s=1}^m si_s)!} \\
\times \left[\prod_{p=1}^m f_p(2k_2^{\dagger}\pi\sqrt{-1},...,2k_n^{\dagger}\pi\sqrt{-1})^{i_p}\right] e^{2\pi(\vec{k}^{\dagger}\cdot\vec{x})\sqrt{-1}}$$

is a complex solution of the equation for any $\vec{k} \in \mathbb{Z}^{n-1}$.

< ロ > < 同 > < 回 > < 回 >

For $r \in \overline{0, m-1}$, as Lemma 1,

$$\begin{aligned} \frac{1}{r!} \sum_{i_1,...,i_m=0}^{\infty} \begin{pmatrix} i_1 + \dots + i_m \\ i_1,...,i_m \end{pmatrix} \int_{(x_1)}^{(\sum_{s=1}^m si_s)} (x_1^r) \\ \times (\prod_{p=1}^m f_p(\partial_{x_2},...,\partial_{x_n})^{i_p}) (e^{2\pi(\vec{k}^{\dagger}\cdot\vec{x})\sqrt{-1}}) \\ = \sum_{i_1,...,i_m=0}^{\infty} \begin{pmatrix} i_1 + \dots + i_m \\ i_1,...,i_m \end{pmatrix} \frac{x_1^{r+\sum_{s=1}^m si_s}}{(r+\sum_{s=1}^m si_s)!} \\ \times \left[\prod_{p=1}^m f_p(2k_2^{\dagger}\pi\sqrt{-1},...,2k_n^{\dagger}\pi\sqrt{-1})^{i_p}\right] e^{2\pi(\vec{k}^{\dagger}\cdot\vec{x})\sqrt{-1}} \end{aligned}$$

is a complex solution of the equation for any $\vec{k} \in \mathbb{Z}^{n-1}$.

For $r \in \overline{0, m-1}$, as Lemma 1,

$$\begin{aligned} \frac{1}{r!} \sum_{i_1,...,i_m=0}^{\infty} \begin{pmatrix} i_1 + \dots + i_m \\ i_1,...,i_m \end{pmatrix} \int_{(x_1)}^{(\sum_{s=1}^m si_s)} (x_1^r) \\ \times (\prod_{p=1}^m f_p(\partial_{x_2},...,\partial_{x_n})^{i_p}) (e^{2\pi(\vec{k}^{\dagger}\cdot\vec{x})\sqrt{-1}}) \\ = \sum_{i_1,...,i_m=0}^{\infty} \begin{pmatrix} i_1 + \dots + i_m \\ i_1,...,i_m \end{pmatrix} \frac{x_1^{r+\sum_{s=1}^m si_s}}{(r+\sum_{s=1}^m si_s)!} \\ \times \left[\prod_{p=1}^m f_p(2k_2^{\dagger}\pi\sqrt{-1},...,2k_n^{\dagger}\pi\sqrt{-1})^{i_p} \right] e^{2\pi(\vec{k}^{\dagger}\cdot\vec{x})\sqrt{-1}} \end{aligned}$$

is a complex solution of the equation for any $\vec{k} \in \mathbb{Z}^{n-1}$.

□ > < = > <

-

We write

$$\sum_{i_1,...,i_m=0}^{\infty} \binom{i_1+\cdots+i_m}{i_1,...,i_m} \\ \times \frac{x_1^r \prod_{p=1}^m (x_1^p f_p(2k_2^{\dagger}\pi\sqrt{-1},...,2k_n^{\dagger}\pi\sqrt{-1}))^{i_p}}{(r+\sum_{s=1}^m si_s)!} \\ = \phi_r(x_1,\vec{k}) + \psi_r(x_1,\vec{k})\sqrt{-1},$$

where $\phi_r(x_1,ec k)$ and $\psi_r(x_1,ec k)$ are real functions. Moreover,

$$\partial_{x_1}^s(\phi_r)(0,ec k)=\delta_{r,s}, \ \ \partial_{x_1}^s(\psi_r)(0,ec k)=0 \qquad ext{for} \ \ s\in\overline{0,r}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We write

$$\sum_{i_1,...,i_m=0}^{\infty} \binom{i_1+\cdots+i_m}{i_1,...,i_m} \\ \times \frac{x_1^r \prod_{p=1}^m (x_1^p f_p(2k_2^{\dagger}\pi\sqrt{-1},...,2k_n^{\dagger}\pi\sqrt{-1}))^{i_p}}{(r+\sum_{s=1}^m si_s)!} \\ = \phi_r(x_1,\vec{k}) + \psi_r(x_1,\vec{k})\sqrt{-1},$$

where $\phi_r(x_1, \vec{k})$ and $\psi_r(x_1, \vec{k})$ are real functions. Moreover,

 $\partial_{x_1}^s(\phi_r)(0,\vec{k}) = \delta_{r,s}, \ \ \partial_{x_1}^s(\psi_r)(0,\vec{k}) = 0 \qquad ext{for} \ \ s\in\overline{0,r}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

We write

$$\sum_{i_1,...,i_m=0}^{\infty} \binom{i_1+\cdots+i_m}{i_1,...,i_m} \\ \times \frac{x_1^r \prod_{p=1}^m (x_1^p f_p(2k_2^{\dagger}\pi\sqrt{-1},...,2k_n^{\dagger}\pi\sqrt{-1}))^{i_p}}{(r+\sum_{s=1}^m si_s)!} \\ = \phi_r(x_1,\vec{k}) + \psi_r(x_1,\vec{k})\sqrt{-1},$$

where $\phi_r(x_1, \vec{k})$ and $\psi_r(x_1, \vec{k})$ are real functions. Moreover,

$$\partial_{x_1}^s(\phi_r)(0,ec k)=\delta_{r,s}, \ \ \partial_{x_1}^s(\psi_r)(0,ec k)=0 \qquad ext{for} \ \ s\in\overline{0,r}.$$

伺 ト く ヨ ト く ヨ ト

The solution of our initial-value problem is:

$$u = \sum_{r=0}^{m-1} \sum_{\vec{0} \leq \vec{k} \in \mathbb{Z}^{n-1}} [b_r(\vec{k})(\phi_r(x_1, \vec{k}^{\dagger}) \cos 2\pi(\vec{k}^{\dagger} \cdot \vec{x})) -\psi_r(x_1, \vec{k}^{\dagger}) \sin 2\pi(\vec{k}^{\dagger} \cdot \vec{x})) +c_r(\vec{k})(\phi_r(x_1, \vec{k}^{\dagger}) \sin 2\pi(\vec{k}^{\dagger} \cdot \vec{x})) +\psi_r(x_1, \vec{k}^{\dagger}) \cos 2\pi(\vec{k}^{\dagger} \cdot \vec{x}))]$$

3

The solution of our initial-value problem is:

$$u = \sum_{r=0}^{m-1} \sum_{\vec{0} \leq \vec{k} \in \mathbb{Z}^{n-1}} [b_r(\vec{k})(\phi_r(x_1, \vec{k}^{\dagger}) \cos 2\pi(\vec{k}^{\dagger} \cdot \vec{x}) \\ -\psi_r(x_1, \vec{k}^{\dagger}) \sin 2\pi(\vec{k}^{\dagger} \cdot \vec{x})) \\ +c_r(\vec{k})(\phi_r(x_1, \vec{k}^{\dagger}) \sin 2\pi(\vec{k}^{\dagger} \cdot \vec{x}) \\ +\psi_r(x_1, \vec{k}^{\dagger}) \cos 2\pi(\vec{k}^{\dagger} \cdot \vec{x}))]$$

・ロン ・部 と ・ ヨ と ・ ヨ と …

3

with

$$b_{r}(\vec{k}) = \frac{1}{2^{n-2}a_{2}\cdots a_{n}} \int_{-a_{2}}^{a_{2}} \cdots \int_{-a_{n}}^{a_{n}} g_{r}(x_{2},...,x_{n}) \\ \times \cos 2\pi(\vec{k}^{\dagger}\cdot\vec{x}) dx_{n}\cdots dx_{2} \\ -\sum_{s=0}^{r-1} (b_{s}(\vec{k})\partial_{x_{1}}^{r}(\phi_{s})(0,\vec{k}) + c_{s}(\vec{k})\partial_{x_{1}}^{r}(\psi_{s})(0,\vec{k}))$$

and

$$c_{r}(\vec{k}) = \frac{1}{2^{n-2}a_{2}\cdots a_{n}} \int_{-a_{2}}^{a_{2}} \cdots \int_{-a_{n}}^{a_{n}} g_{r}(x_{2},...,x_{n}) \\ \times \sin 2\pi(\vec{k}^{\dagger}\cdot\vec{x}) dx_{n}\cdots dx_{2} \\ -\sum_{s=0}^{r-1} (c_{s}(\vec{k})\partial_{x_{1}}^{r}(\phi_{s})(0,\vec{k}) - b_{s}(\vec{k})\partial_{x_{1}}^{r}(\psi_{s})(0,\vec{k})).$$

æ

with

$$b_{r}(\vec{k}) = \frac{1}{2^{n-2}a_{2}\cdots a_{n}} \int_{-a_{2}}^{a_{2}} \cdots \int_{-a_{n}}^{a_{n}} g_{r}(x_{2},...,x_{n})$$

$$\times \cos 2\pi(\vec{k}^{\dagger}\cdot\vec{x}) dx_{n}\cdots dx_{2}$$

$$-\sum_{s=0}^{r-1} (b_{s}(\vec{k})\partial_{x_{1}}^{r}(\phi_{s})(0,\vec{k}) + c_{s}(\vec{k})\partial_{x_{1}}^{r}(\psi_{s})(0,\vec{k}))$$

and

$$c_{r}(\vec{k}) = \frac{1}{2^{n-2}a_{2}\cdots a_{n}}\int_{-a_{2}}^{a_{2}}\cdots\int_{-a_{n}}^{a_{n}}g_{r}(x_{2},...,x_{n})$$

$$\times \sin 2\pi(\vec{k}^{\dagger}\cdot\vec{x})\,dx_{n}\cdots dx_{2}$$

$$-\sum_{s=0}^{r-1}(c_{s}(\vec{k})\partial_{x_{1}}^{r}(\phi_{s})(0,\vec{k})-b_{s}(\vec{k})\partial_{x_{1}}^{r}(\psi_{s})(0,\vec{k})).$$

*ロト *個ト *注ト *注ト

æ

$$\varphi_r(x) = \sum_{i_1,...,i_m=0}^{\infty} {i_1 + \dots + i_m \choose i_1,...,i_m} \frac{x^r \prod_{\rho=1}^m (b_\rho x^\rho)^{i_\rho}}{(r + \sum_{s=1}^m s_{s_s})!}, \qquad r \in \overline{0, m-1}$$

of the constant-coefficient ordinary differential equation

$$y^{(m)} - b_1 y^{(m-1)} - \dots - b_{m-1} y' - b_m = 0.$$

$$\varphi_r(x) = \sum_{i_1,\dots,i_m=0}^{\infty} \binom{i_1+\dots+i_m}{i_1,\dots,i_m} \frac{x^r \prod_{p=1}^m (b_p x^p)^{i_p}}{(r+\sum_{s=1}^m si_s)!}, \qquad r \in \overline{0,m-1}$$

of the constant-coefficient ordinary differential equation

$$y^{(m)} - b_1 y^{(m-1)} - \dots - b_{m-1} y' - b_m = 0.$$

伺 ト イヨト イヨ

$$\varphi_r(x) = \sum_{i_1,...,i_m=0}^{\infty} {i_1 + \cdots + i_m \choose i_1,...,i_m} \frac{x^r \prod_{\rho=1}^m (b_\rho x^\rho)^{i_\rho}}{(r + \sum_{s=1}^m s i_s)!}, \qquad r \in \overline{0, m-1}$$

of the constant-coefficient ordinary differential equation

$$y^{(m)} - b_1 y^{(m-1)} - \dots - b_{m-1} y' - b_m = 0.$$

伺 ト イヨト イヨ

$$\varphi_r(x) = \sum_{i_1,\ldots,i_m=0}^{\infty} \binom{i_1+\cdots+i_m}{i_1,\ldots,i_m} \frac{x^r \prod_{\rho=1}^m (b_\rho x^\rho)^{i_\rho}}{(r+\sum_{s=1}^m si_s)!}, \qquad r \in \overline{0,m-1}$$

of the constant-coefficient ordinary differential equation

$$y^{(m)} - b_1 y^{(m-1)} - \cdots - b_{m-1} y' - b_m = 0.$$

同 ト イ ヨ ト イ ヨ ト

$$y^{(r)}(0) = c_r$$
 for $r \in \overline{0, m-1}$,

we define $a_0 = c_0$ and

$$a_{r} = c_{r} - \sum_{s=0}^{r-1} \sum_{i_{1},...,i_{r-s} \in \mathbb{N}; \ \sum_{p=1}^{r} pi_{p} = r-s} \binom{r-s}{i_{1},...,i_{r-s}} a_{s} b_{1}^{i_{1}} \cdots b_{r-s}^{i_{r-s}}$$

by induction on $r \in \overline{1, m - 1}$. Then the solution of the ODE with the above initial condition is exactly

$$y = \sum_{r=0}^{m-1} a_r \varphi_r(x).$$

イロト イポト イヨト イヨト

$$y^{(r)}(0) = c_r$$
 for $r \in \overline{0, m-1}$,

we define $a_0 = c_0$ and

$$a_{r} = c_{r} - \sum_{s=0}^{r-1} \sum_{i_{1},...,i_{r-s} \in \mathbb{N}; \ \sum_{p=1}^{r} pi_{p} = r-s} \binom{r-s}{i_{1},...,i_{r-s}} a_{s} b_{1}^{i_{1}} \cdots b_{r-s}^{i_{r-s}}$$

by induction on $r \in \overline{1, m - 1}$. Then the solution of the ODE with the above initial condition is exactly

$$y = \sum_{r=0}^{m-1} a_r \varphi_r(x).$$

- 4 同 6 4 日 6 4 日 6

$$y^{(r)}(0) = c_r$$
 for $r \in \overline{0, m-1}$,

we define $a_0 = c_0$ and

$$a_{r} = c_{r} - \sum_{s=0}^{r-1} \sum_{i_{1},...,i_{r-s} \in \mathbb{N}; \sum_{p=1}^{r} pi_{p} = r-s} {\binom{r-s}{i_{1},...,i_{r-s}}} a_{s} b_{1}^{i_{1}} \cdots b_{r-s}^{i_{r-s}}$$

by induction on $r \in \overline{1, m - 1}$. Then the solution of the ODE with the above initial condition is exactly

$$y = \sum_{r=0}^{m-1} a_r \varphi_r(x).$$

- 4 同 6 4 日 6 4 日 6

$$y^{(r)}(0) = c_r$$
 for $r \in \overline{0, m-1}$,

we define $a_0 = c_0$ and

$$a_{r} = c_{r} - \sum_{s=0}^{r-1} \sum_{i_{1},...,i_{r-s} \in \mathbb{N}; \sum_{p=1}^{r} pi_{p} = r-s} {r-s \choose i_{1},...,i_{r-s}} a_{s} b_{1}^{i_{1}} \cdots b_{r-s}^{i_{r-s}}$$

by induction on $r \in \overline{1, m-1}$. Then the solution of the ODE with the above initial condition is exactly

$$y = \sum_{r=0}^{m-1} a_r \varphi_r(x).$$

- 4 同 6 4 日 6 4 日 6

$$y^{(r)}(0) = c_r$$
 for $r \in \overline{0, m-1}$,

we define $a_0 = c_0$ and

$$a_{r} = c_{r} - \sum_{s=0}^{r-1} \sum_{i_{1},...,i_{r-s} \in \mathbb{N}; \sum_{p=1}^{r} pi_{p} = r-s} {\binom{r-s}{i_{1},...,i_{r-s}}} a_{s} b_{1}^{i_{1}} \cdots b_{r-s}^{i_{r-s}}$$

by induction on $r \in \overline{1, m-1}$. Then the solution of the ODE with the above initial condition is exactly

$$y = \sum_{r=0}^{m-1} a_r \varphi_r(x).$$

A 10

· < E > < E >

$$y^{(r)}(0) = c_r$$
 for $r \in \overline{0, m-1}$,

we define $a_0 = c_0$ and

$$a_{r} = c_{r} - \sum_{s=0}^{r-1} \sum_{i_{1},...,i_{r-s} \in \mathbb{N}; \sum_{p=1}^{r} pi_{p} = r-s} {\binom{r-s}{i_{1},...,i_{r-s}}} a_{s} b_{1}^{i_{1}} \cdots b_{r-s}^{i_{r-s}}$$

by induction on $r \in \overline{1, m-1}$. Then the solution of the ODE with the above initial condition is exactly

$$y=\sum_{r=0}^{m-1}a_r\varphi_r(x).$$

A 10

· < E > < E >

From the above results, it seems that the following functions

$$\mathcal{Y}_{r}(y_{1},...,y_{m}) = \sum_{i_{1},...,i_{m}=0}^{\infty} \binom{i_{1}+\cdots+i_{m}}{i_{1},...,i_{m}} \frac{y_{1}^{i_{1}}y_{2}^{i_{2}}\cdots y_{m}^{i_{m}}}{(r+\sum_{s=1}^{m}si_{s})!} \quad \text{for } r \in \mathbb{N}$$

are important natural functions. Indeed,

$$\mathcal{Y}_1(x) = e^x, \ \mathcal{Y}_0(0, -x) = \cos x, \ \mathcal{Y}_1(0, -x) = \frac{\sin x}{x},$$

$$\varphi_r(x) = x^r \mathcal{Y}_r(b_1 x, b_2 x^2, \dots, b_m x^m)$$

and

$$\phi_r(x_1, \vec{x}) + \psi_r(x_1, \vec{x})\sqrt{-1} \\ = x_1^r \mathcal{Y}_r(x_1 f_1(2k_2^{\dagger} \pi \sqrt{-1}, ..., 2k_n^{\dagger} \pi \sqrt{-1})), ..., \\ x_1^m f_m(2k_2^{\dagger} \pi \sqrt{-1}, ..., 2k_n^{\dagger} \pi \sqrt{-1}))$$

for $r \in \overline{0, m}$.

From the above results, it seems that the following functions

$$\mathcal{Y}_{r}(y_{1},...,y_{m}) = \sum_{i_{1},...,i_{m}=0}^{\infty} \binom{i_{1}+\cdots+i_{m}}{i_{1},...,i_{m}} \frac{y_{1}^{i_{1}}y_{2}^{i_{2}}\cdots y_{m}^{i_{m}}}{(r+\sum_{s=1}^{m}si_{s})!} \quad \text{for } r \in \mathbb{N}$$

are important natural functions. Indeed,

$$\mathcal{Y}_1(x) = e^x, \ \mathcal{Y}_0(0, -x) = \cos x, \ \mathcal{Y}_1(0, -x) = \frac{\sin x}{x},$$

$$\varphi_r(x) = x^r \mathcal{Y}_r(b_1 x, b_2 x^2, ..., b_m x^m)$$

and

$$\begin{split} \phi_r(x_1, \vec{x}) + \psi_r(x_1, \vec{x}) \sqrt{-1} \\ &= x_1^r \mathcal{Y}_r(x_1 f_1(2k_2^{\dagger} \pi \sqrt{-1}, ..., 2k_n^{\dagger} \pi \sqrt{-1})), ..., \\ &\quad x_1^m f_m(2k_2^{\dagger} \pi \sqrt{-1}, ..., 2k_n^{\dagger} \pi \sqrt{-1})) \end{split}$$

for $r \in \overline{0, m}$.

- 4 同 6 4 日 6 4 日 6

From the above results, it seems that the following functions

$$\mathcal{Y}_{r}(y_{1},...,y_{m}) = \sum_{i_{1},...,i_{m}=0}^{\infty} \binom{i_{1}+\cdots+i_{m}}{i_{1},...,i_{m}} \frac{y_{1}^{i_{1}}y_{2}^{i_{2}}\cdots y_{m}^{i_{m}}}{(r+\sum_{s=1}^{m}si_{s})!} \quad \text{for } r \in \mathbb{N}$$

are important natural functions. Indeed,

$$\mathcal{Y}_1(x) = e^x, \ \mathcal{Y}_0(0, -x) = \cos x, \ \mathcal{Y}_1(0, -x) = \frac{\sin x}{x},$$

$$\varphi_r(x) = x^r \mathcal{Y}_r(b_1 x, b_2 x^2, ..., b_m x^m)$$

and

$$\begin{split} \phi_r(x_1, \vec{x}) + \psi_r(x_1, \vec{x}) \sqrt{-1} \\ &= x_1^r \mathcal{Y}_r(x_1 f_1(2k_2^{\dagger} \pi \sqrt{-1}, ..., 2k_n^{\dagger} \pi \sqrt{-1})), ..., \\ &\quad x_1^m f_m(2k_2^{\dagger} \pi \sqrt{-1}, ..., 2k_n^{\dagger} \pi \sqrt{-1})) \end{split}$$

for $r \in \overline{0, m}$.

From the above results, it seems that the following functions

$$\mathcal{Y}_{r}(y_{1},...,y_{m}) = \sum_{i_{1},...,i_{m}=0}^{\infty} \binom{i_{1}+\cdots+i_{m}}{i_{1},...,i_{m}} \frac{y_{1}^{i_{1}}y_{2}^{i_{2}}\cdots y_{m}^{i_{m}}}{(r+\sum_{s=1}^{m}si_{s})!} \quad \text{for } r \in \mathbb{N}$$

are important natural functions. Indeed,

$$\mathcal{Y}_1(x) = e^x, \ \mathcal{Y}_0(0, -x) = \cos x, \ \mathcal{Y}_1(0, -x) = \frac{\sin x}{x},$$

$$\varphi_r(x) = x^r \mathcal{Y}_r(b_1 x, b_2 x^2, \dots, b_m x^m)$$

and

$$\phi_r(x_1, \vec{x}) + \psi_r(x_1, \vec{x})\sqrt{-1}$$

= $x_1^r \mathcal{Y}_r(x_1 f_1(2k_2^{\dagger}\pi\sqrt{-1}, ..., 2k_n^{\dagger}\pi\sqrt{-1})), ..., x_1^m f_m(2k_2^{\dagger}\pi\sqrt{-1}, ..., 2k_n^{\dagger}\pi\sqrt{-1}))$

for $r \in \overline{0, m}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

From the above results, it seems that the following functions

$$\mathcal{Y}_{r}(y_{1},...,y_{m}) = \sum_{i_{1},...,i_{m}=0}^{\infty} \binom{i_{1}+\cdots+i_{m}}{i_{1},...,i_{m}} \frac{y_{1}^{i_{1}}y_{2}^{i_{2}}\cdots y_{m}^{i_{m}}}{(r+\sum_{s=1}^{m}si_{s})!} \quad \text{for } r \in \mathbb{N}$$

are important natural functions. Indeed,

$$\mathcal{Y}_1(x) = e^x, \ \mathcal{Y}_0(0, -x) = \cos x, \ \mathcal{Y}_1(0, -x) = \frac{\sin x}{x},$$

$$\varphi_r(x) = x^r \mathcal{Y}_r(b_1 x, b_2 x^2, ..., b_m x^m)$$

and

$$\phi_r(x_1, \vec{x}) + \psi_r(x_1, \vec{x})\sqrt{-1}$$

= $x_1^r \mathcal{Y}_r(x_1 f_1(2k_2^{\dagger}\pi\sqrt{-1}, ..., 2k_n^{\dagger}\pi\sqrt{-1})), ..., x_1^m f_m(2k_2^{\dagger}\pi\sqrt{-1}, ..., 2k_n^{\dagger}\pi\sqrt{-1}))$

for $r \in \overline{0, m}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

From the above results, it seems that the following functions

$$\mathcal{Y}_{r}(y_{1},...,y_{m}) = \sum_{i_{1},...,i_{m}=0}^{\infty} \binom{i_{1}+\cdots+i_{m}}{i_{1},...,i_{m}} \frac{y_{1}^{i_{1}}y_{2}^{i_{2}}\cdots y_{m}^{i_{m}}}{(r+\sum_{s=1}^{m}si_{s})!} \quad \text{for } r \in \mathbb{N}$$

are important natural functions. Indeed,

$$\mathcal{Y}_1(x) = e^x, \ \mathcal{Y}_0(0, -x) = \cos x, \ \mathcal{Y}_1(0, -x) = \frac{\sin x}{x},$$

$$\varphi_r(x) = x^r \mathcal{Y}_r(b_1 x, b_2 x^2, ..., b_m x^m)$$

and

$$\begin{aligned} \phi_r(x_1, \vec{x}) + \psi_r(x_1, \vec{x})\sqrt{-1} \\ &= x_1^r \mathcal{Y}_r(x_1 f_1(2k_2^{\dagger} \pi \sqrt{-1}, ..., 2k_n^{\dagger} \pi \sqrt{-1})), ..., \\ &\quad x_1^m f_m(2k_2^{\dagger} \pi \sqrt{-1}, ..., 2k_n^{\dagger} \pi \sqrt{-1})) \end{aligned}$$

for $r \in \overline{0, m}$.

伺 ト く ヨ ト く ヨ ト

Reference:

[1] X. Xu, Tree diagram Lie algebras of differential operators and evolution partial differential equations, *Journal of Lie Theory* **16** (2006), 691-718.

X. Xu, Flag partial differential equations and representations of Lie algebras, *Acta Applicanda Mathematicae* **102** (2008), 249-280.

伺下 イヨト イヨト

Thank You!

Xiaoping Xu Methods of Solving Flag Partial Differential Equations

17 ▶

★ 3 → < 3</p>

3