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Abstract. In this paper, we present an algorithm to compute the pro-
jection of a quasi variety over an algebraic closed field. Based on the
algorithm, we give a method to prove geometric theorem mechanically,
and the non-degenerate conditions that we get by the method are proved
to be the ”weakest”, i.e. the geometric theorem is true if and only if
these non-degenerate conditions are satisfied. A method for automatic
geometric formula deduction is also proposed based on the algorithm.
The algorithm given in this paper has been implemented in computer
algebra system Maple.

1 Introduction

Wu’s method[1], as well as others based on computing of Gröbner basis, has
been fruitfully applied to automatic theorem proving in elementary geometry.
Using Wu’s method, more than 600 theorems have been proved by computer[2].
For both Wu’s method and Gröbner basis method, often a geometric theorem
is true only in a ”generic” sense, that is, certain degenerate cases must be ruled
out.

As for other methods based on Gröbner bases, various way to find non-
degenerate conditions are reported. Kapur[3] describes a complete method of
Gröbner bases to prove geometry theorems, including how to obtain non-
degenerate conditions. As Kapur claims that ”conditions found using this ap-
proach are often simple and weaker than the ones reported by using Wu’s method
or reported by Kutzler & Stifter’s [4] and Chou & Schelter [5] based on the
Gröbner basis method.”

F.Winkler[6] has given a method whereby to compute the simplest non-
degenerate conditions. His criteria for simplest is ”of as low a degree as possible”
or ”involving only certain variables.”

In many cases, the non-degenerate condition is too strong. The theorem is
still true even the non-degenerate condition is not satisfied.
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In this paper, we present an algorithm of the projection of quasi variety
which is based on Wu’s method and his theorems about the projection of quasi
variety[7]. A new method is given for mechanical geometric theorem proving and
formula deduction based on the projection of quasi varieties. During proving
geometry theorem, the weakest non-degenerate conditions can be obtained by
this method. Moreover, the variables occurring in such conditions are determined
in advance. As for geometry formula deduction, we can derive all conclusions
about certain variables. At last, we give two examples to show how the method
works.

2 Non-degenerate Condition and Projection of Quasi
Variety

In this paper, all polynomials are in polynomial ring K[x1, · · · xn], where K is
a computable field of character 0. E is an algebraic closed extension field of K.
For a geometric theorem, after setting up an appropriate coordinate system, the
corresponding geometric configuration of hypothesis can be expressed by a finite
set of polynomial equations PS = 0 i.e. PS = {p1, · · · , ps}, p1 = 0, · · · , ps =
0, pi ∈ K[x1, · · · , xn]. The geometric configuration of the conclusion can be
expressed by a polynomial equation C = 0, i.e. c = 0, c ∈ K[x1, · · · , xn]. If
PS = 0 ⇒ C = 0, then the theorem T = (PS, C) is called to be universally true.
i.e. ∀x ∈ En, p1(x) = 0, · · · , ps(x) = 0 ⇒ c(x) = 0. In most cases, a geometric
theorem is not universally true. It is true only if the non-degenerate condition
is satisfied. g �= 0 is called the non-degenerate condition if

(I)(∀x ∈ Kn)(p1(x) = · · · = ps(x) = 0 ∧ g(x) �= 0 ⇒ c(x) = 0)
(II)(∃x ∈ Kn)(p1(x) = · · · = ps(x) = 0 ∧ g(x) �= 0)

From the above definition, we can see that the non-degenerate condition is a suf-
ficient condition for a geometric theorem to be true.

Wu’s non-degenerate condition: In Wu’s method, the non-degenerate condition
is defined as the product of the initials of the characteristic set not equal to zero.
Suppose CS : C1, · · · , Cm is the characteristic set of PS, J =

∏
i Ii where Ii

is the initial of Ci. If the pseudo-remainder of the conclusion polynomial C
w.r.t the characteristic set CS is 0, i.e. there are non-negative integers si s.t.
Is1
1 · · · Ism

m C = Q1C1 + · · ·+ QmCm + 0, then J �= 0 is the non-degenerate con-
dition for the theorem to be true.

Kapur’s non-degenerate condition: Let G1, G2 be the Gröbner basis of ideal (PS)
and (PS ∪ {Cz − 1}). if G1 �= {1} and G2 �= {1}, then the theorem is true
when gi �= 0. If gi satisfy

(a)gi ∈ G2 ∩ K[x] ∧ gi /∈ (PS)
(b)1 /∈ GröbnerBasis(PS ∪ {giz − 1})

gi �= 0 is the non-degenerate condition.
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Winkler’s non-degenerate condition: Winkler has proved that all polynomials
satisfying (I) constitute an ideal, and among the polynomials in the Gröbner
basis of the ideal which satisfies (II), there is a polynomial g which has the least
leading term, g �= 0 is the simplest non-degenerate condition.

All the non-degenerate conditions mentioned above, are sufficient conditions
for a geometric theorem to be true.

Let PS be a polynomial set and D be a single polynomial in K[x1, · · · , xn]. E
is an algebraic closed extension field of K as before. We define

Zero(PS) = {e ∈ En|∀P ∈ PS, P (e) = 0}
Zero(/D) = {e ∈ En|D(e) �= 0}
Zero(PS/D) = Zero(PS)

⋂
Zero(/D)

Definition 1. (Quasi Variety)For any finite number of polynomial sets PSi and
polynomials Gi in K[x1, · · · , xn], the set

⋃

i

Zero(PSi/Gi)

is called a quasi variety.

Definition 2. (Projection)To eliminate variables xm+1, · · · , xn, the map pro-
jection is

Projxm+1,··· ,xn : En → Em

which sends (a1, · · · , an) to (a1, · · · , am). If V is an affine variety in En,
Projxm+1,··· ,xn (V ) may not be a variety in Em, but it is contained in a va-
riety in En.

For a polynomial set PS and a polynomial D , we apply projection
Projxm+1,··· ,xn to Zero(PS/D). Then we have

Projxm+1,··· ,xnZero(PS/D) = {e ∈ Em | ∃a ∈ E(n−m)s.t.(e, a)

∈ Zero(PS/D)}
when m = 0, we define Projx1,··· ,xnZero(PS/D) = true, if Zero(PS/D) �= ∅;
and false otherwise.

The projection of a quasi variety in En to Em is a quasi variety in Em. Please
see[7] for the details. The projection of a quasi variety has been investigated by
Wu[7],Wang[8] and Gao[10].

3 Algorithm to Compute Projection of Quasi Variety

In Wu[7], a method for computing the projection of a quasi variety is given.
Before giving a new algorithm, we will give several theorems which are needed
for constructing the new algorithm.
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Theorem 1. Let PS be a polynomial set and D a polynomial , there is an
algorithm to decompose PS into a finite set of ascending set ASi s.t.

Zero(PS/D) =
⋃

i

Zero(ASi/JiD)

where each ASi is an ascending set, Ji is the production of the initials of the
polynomials in ASi.

The proof and the algorithm can be found in Wu [1]. In [9], an improved algo-
rithm has been given to decompose a polynomial set into a series of ascending
sets.

Lemma 1. If Zero(PS/D) =
⋃

i Zero(ASi/JiD), then we have

Projxm+1,··· ,xnZero(PS/D) =
⋃

i

Projxm+1,··· ,xnZero(ASi/JiD)

Proof. It is enough to prove
Projxm+1,··· ,xn

⋃
i Zero(ASi/JiD) =

⋃
i Projxm+1,··· ,xnZero(ASi/JiD).

Take any element a = (a1, · · · , am) ∈ Em from Projxm+1,··· ,xn

⋃
i Zero(ASi/

JiD), then there exists a′ = (am+1, · · · , an) ∈ E(n−m) s.t. (a1, · · · , an)∈
⋃

i

Zero(ASi/JiD), then there exists an i s.t. (a1, · · · , an) ∈ Zero(ASi/Ji). Accord-
ing to the definition of projection, (a1, · · · , am) ∈ Projxm+1,··· ,xnZero(ASi/Ji),
it follows that a = (a1, · · · , am) ∈ ∪iProjxm+1,··· ,xnZero(ASi/JiD). It shows
Projxm+1,··· ,xn

⋃
i Zero(ASi/JiD) ⊂ ⋃

i Projxm+1,··· ,xnZero(ASi/JiD).
The inclusion of reversal direction also can be proved by the same way.

Lemma 2. AS = {A1, · · ·As} is an ascending set w.r.t. variable ordering (x1 <
x2 < · · · < xn),AS′ = {A1, · · · , As−1}, J and J ′ are the products of the ini-
tials of polynomials in AS and AS′ respectively. Is is the initial of As. d =
degree(As, xn), R = Prem(Dd, As, xn).

1. if degree(As, xn) �= 0, degree(D, xn) �= 0 then

Projxm+1,··· ,xnZero(AS/JD) = Projxm+1,··· ,xnZero(AS′/J ′(IsR))

2. if degree(As, xn) �= 0, degree(D, xn) = 0 then

Projxm+1,··· ,xnZero(AS/JD) = Projxm+1,··· ,xn−1Zero(AS′/J ′(IsD))

3. if degree(As, xn) = 0, degree(D, xn) �= 0 Let D =
∑

i=0 Dix
i
n, Di ∈

K[x1, · · · , xn−1], then

Projxm+1,··· ,xnZero(AS/JD) =
⋃

i

Projxm+1,··· ,xn−1Zero(AS′/J ′(IsDi))

4. If degree(As, xn) = 0, degree(D, xn) = 0, then

Projxm+1,··· ,xnZero(AS/JD) = Projxm+1,··· ,xn−1Zero(AS/JD))
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Proof. (1)(2)(4) are obviously according to the definition of projection and the
fundamental theorem of algebra. For (3), please see [7] for details.

According to the lemmas given above, we can eliminate one variable. All the
variables which will be eliminated can be eliminated successively if we compute
it recursively.

Let PS be a polynomial set and D be a polynomial in K[x1, · · · , xn]. If we
want to compute Projx1,··· ,xnZero(PS/D). The computing process can be di-
vided into two steps. The variable ordering should be xn > · · · > xm+1 > xm >
· · · > x1. Under this variable ordering, first we will decompose the polynomial set
PS into a series of ascending sets ASi s.t. Zero(PS/D) =

⋃
i Zero(ASi/JiD).

Each ASi is an ascending set for the variable ordering xn > · · · > xm+1 > xm >
· · · > x1. Then for each Zero(ASi/JiD) we can compute its projection. In the
following, we will give the algorithm in detail.

Step 1. Decompose polynomial set PS into a series of ascending sets ASi s.t.

Zero(PS/D) =
⋃

i

Zero(ASi/JiD)

where Ji is the product of the initials of the polynomials in ASi.
Please see [9] for the detail of the algorithm.

Step 2. Compute the projection of Zero(AS/JD), AS is an ascending set. J is
the product of the initials of the polynomials in AS,D is a polynomial.

ProjectAS(AS,J,D,X,Y)
Input:

AS: an ascending set w.r.t X;
D: a polynomial;
J: the product of the initials of the polynomials in AS;
X: a list of all variables with descending order;
Y: a list of variables to be eliminated, also with descending

order;
Output:

a list, its element is also a~list with the form [’as’,’d’],
’as’ is an ascending set and ’d’ is a~polynomial.

begin
y:=First(Y), A:=Last(AS);
Y’:=Y/y, AS’:=AS/A;
I:=initial(A);
if Y = [ ] then

result:=(AS,J*D);
if degree(A,y) =0 and degree(D,y)=0 then

result:= ProjectAS(AS,J,D,X,Y’);
else if degree(A,y) != 0 and degree(D,Y)=0 then
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result:= ProjectAS(AS’,J’,I*D,X,Y’);
else if degree(A,y)=0 and degree(D,y) != 0 then

result:=[];
cf:=coeffs(D,y);
for each c in cf do {

result:= result union ProjectAS(AS,J,c,X,Y’);
}

else if degree(A,y)!= 0 and degree(D,y) != 0 then
d:=degree(A,y);
R:=Prem(D^d,A,y);
result:= ProjectAS(AS’,J’,I*R,X,Y);

end if
return result;

end

In the above algorithm, ”/” means a list gotten by removing the element
behind it from the list before it; ”!=” means not equal to; initial(A) return
the initial of A; degree(A, y) return the degree of the polynomial A w.r.t the
variable y; coeffs(D, y) return a list composed of all the coefficients of the poly-
nomial D w.r.t variable y. Prem(Dd, A, y) return the pseudo-remainder of Dd

to A w.r.t variable y.

4 Application on Geometry Theorem Proving and
Formula Deduction

Let K = Q be the rational number field. E = C be the complex number field.
The corresponding geometric configuration of hypothesis is expressed by a finite
set of polynomial equations PS = 0 i.e. PS = {p1, · · · , ps}, p1 = 0, · · · , ps =
0, pi ∈ Q[x1, · · · , xn]. The geometric configuration of the conclusion is expressed
by a polynomial equation C = 0.i.e..c = 0, c ∈ Q[x1, · · · , xn]. We will divide
the the variables x1, · · · , xn into two parts x1, · · · , xm and xm+1 · · · , xn. Ap-
plying Projxm+1,··· ,xn to the quasi variety Zero(PS/C), the following theorem
determines that a geometric theorem is universally true or not. If not, a se-
ries of polynomial equations and inequations about the variables x1, · · · , xm are
given(i.e. Projxm+1,··· ,xnZero(PS/C)) , which is the sufficient and necessary
condition for the theorem to be false.

Theorem 2. For polynomial set PS and polynomial C as shown above, then
(1) if Projxm+1,··· ,xnZero(PS/C) = ∅ and Projxm+1,··· ,xnZero(PS/D) �= ∅,
then the theorem T is universally true.
(2) if Projxm+1,··· ,xnZero(PS/C) �= ∅, ∀(a1, · · · , am) ∈ Projxm+1,··· ,xnZero(PS
/C) , then there is (am+1, · · · , an) s.t. PS(a1, · · · , an) = 0 and C(a1, · · · , an) =
0;
(3) if there is (a1, · · · , an) s.t. PS(a1, · · · , an) = 0 and C(a1, · · · , an) �= 0, then
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(a1, · · · , am) ∈ Projxm+1,··· ,xnZero(PS/C), so that Projxm+1,··· ,xnZero(PS/C)
is not empty.

Proof. (1)we claim that Projxm+1,··· ,xnZero(PS/C) = ∅ ⇔ Zero(PS/C) = ∅. It
is obviously by the definition of projection. Since Projxm+1,··· ,xnZero(PS/C) =
∅, it follows that Zero(PS/C) = ∅, i.e. Zero(PS) ⊆ Zero(C) i.e. ∀ a =
(a1, · · · , an) ∈ En, p1(a) = 0, · · · , ps(a) = 0 ⇒ c(a) = 0 so that the theo-
rem T = (PS, C) is universally true. (2)(3) are obviously by the definition of
projection.

Based on the above theorem, we can prove geometric theorem mechanically
and give the non-degenerate conditions automatically by computing the projec-
tion of a quasi variety .

It’s obvious to see that we can predetermine the variables occurring in non-
degenerate conditions. So it’s convenient for us to observe the range of possible
value for any variables. As a rule, we will eliminate all the dependent variables .

Moreover, we can be certain that the conditions found through this method
are the weakest compared to the condition obtained by Wu’s method and the
others based on Gröbner basis such as Kapur’s and Winkler’s approaches.

Now we consider the application of projection method on formula deduction.

Theorem 3. The hypothesis of a geometric statement is expressed by a set of
polynomial equations PS = 0, then Projxm+1,··· ,xnZero(PS) gives a series of
polynomial equations and inequations which involve the variables x1, · · · , xm

only.

While deducing the unknown geometric formula by the projection method,
all the variables which do not occur in the final formula will be eliminated.

5 Examples

In this section, we will give two examples to show that how the projection method
is applied to automatic theorem proving and formula deduction. The first ex-
ample is taken from Wang [8]. We will prove it by computing the projection
of quasi variety and give the non-degenerate conditions and compared the re-
sult with Wu’s method. The second example is to derive the geometric formula
automatically from the given hypothesis.

Example 1. The bisectors of the three angles of an arbitrary triangle, three-to-
three, intersect at four points. Let the triangle be ∆ABC, the two bisectors of
∠A and ∠B intersect at point D. We need to show that CD is the bisector of
∠C.
We take the coordinates of the points as A(x1, 0), B(x2, 0), C(0, x3), D(x4, x5).
The hypothesis of the theorem consists of the following relations.
H1 = x3[x2

5 − (x4 − x1)2]− 2x1x5(x4 − x1) = 0 (DA is the bisector of ∠ CAB)
H2 = x3[x2

5 − (x4 − x2)2]− 2x2x5(x4 − x2) = 0 (DB is the bisector of ∠ ABC)
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A B
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O

D’

D

Fig. 1. Three bisectors go through the same point

The conclusion to be proved is C = 0
C = [x1(x5−x3)+x3x4][x3(x5−x3)−x2x4]+ [x2(x5−x3)+x3x4][x3(x5−x3)−
x1x4]

The characteristic set of {H1, H2} is CS = [C1, C2]
C1 = x3

3(x1 − x2)x4
4 + lowerterms

C2 = x3(x1 − x2)(x1 + x2 − x4)x5 + lowerterms

The pseudo-remainder of the conclusion polynomial C w.r.t the characteris-
tic set CS is 0. The theorem is true under the non-degenerate conditions which
are x3 �= 0,x1 �= x2, and x1 + x2 − x4 �= 0 in Wu’s sense.

There are three degenerate cases. They are:
Case 1 x1 = x2. In this case, A and B are coincide, then ABC is not a real
triangle anymore.
Case 2: x3 = 0. In this case, C is on the line AB, the ABC is not a real triangle
also.
Case 3:x1 + x2 − x4 = 0. In this case, the intersection point of the bisectors is
on line x = x1 + x2. In Wu’s method, we can’t determine the theorem is true
or not at this time. If we want to know if the theorem is still true, we should
put the polynomial P = x1 + x2 − x4 to the original polynomial set {H1, H2}
to form a new polynomial set {H1, H2, P}, compute its characteristic set again,
and decide the theorem is true or not under the condition x1 + x2 − x4 = 0.

Now we will prove the theorem and give the non-degenerate conditions by
computing the projection of the quasi variety.

In this example, x1, x2, x3 are the free variables and x4, x5 are the depen-
dent variables. We compute the projection of Zero({H1, H2}/C) to eliminate
the variables x4, x5: Projx4,x5Zero({H1, H2}/C) = Zero({−x2 + x1}/{x3, x2

1 +
x2

3})
⋃

Zero({−x2 + x1, x3}/{x1})
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Fig. 2. The relation among three line segments PQ,PM and PN

There are only two degenerate cases. They are:
Case 1: x2 = x1, x3 �= 0. In this case, A is coincidence with B, and C is not on
the line y = 0.
Case 2: x1 = x2 and x3 = 0 and x1 �= 0, In this case, A is coincide with B,but A
is not coincide with C.

This theorem is false only under these two degenerate cases and it is always
true except these two degenerate cases.

Example 2. Let R be a point on the circle with diameter AB. At a point P (not A
or B) of AB a perpendicular is drawn meeting BR at N , AR at M ,the circle
at Q, Find the relation among PQ,PM and PN .

First, take the coordinate of the points as O = (0, 0), A = (x1, 0), B =
(x2, 0), P = (x3, 0), R = (x4, x5), M = (x3, y1), Q = (x3, y2), N = (x3, y3) The
hypothesis is expressed as following polynomial equations.

H1 = x1 + x2 (AB is diameter)
H2 = x2

1 − x2
5 − x2

4 (|AO| = |RO|)
H3 = −y3(x4 − x3)− (x5 − y3)(x2 − x3) (N, R, B are collinear)
H4 = x5(x3 − x1)− y1(x4 − x1) (A, M, R are collinear)
H5 = x2

1 − y2
2 − x2

3 (|AO| = |QO|)
Since we want to derive formula about PQ,PM and PN , it is a formula

about the variables about y3, y2, y1. Since P �= A, P �= B and A �= O, let D =
{x3 − x1, x3 − x2, x1} in advance. Then eliminate the variables x5, x4, x3, x2, x1

by computing the projection of Zero({H1, H2, H3, H4, H5}/D).
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Projx5,x4,x3,x2,x1Zero({H1, H2, H3, H4, H5}/D)
= Zero({y3y1 − y2

2}/{y2}) ∪ Zero({y1}/{y2}) ∪ Zero({y3}/{y2})

There are three degenerate cases. They are:
Case 1: y3y1−y2

2 = 0, y2 �= 0 i.e. When R doesn’t coincide with A or B, we have
|PN | ∗ |PM | = |PQ|2.
Case 2: y1 = 0,y2 �= 0 i.e. R coincides with B
Case 3: y3 = 0,y2 �= 0 i.e. R coincides with A

6 Conclusion

We give an algorithm to compute the projection over an algebraic closed field.
Applying this algorithm to automatic theorem proving, we can get the weakest
non-degenerate condition for which the theorem is true. In fact, we can get
the sufficient and necessary condition for a geometric theorem to be false by
computing the projection of a quasi variety. This algorithm also can be applied
to automatic geometric formula deduction. There are more than one hundred
geometric theorems which have been proved by this method. Experiments show
that the projection of the quasi variety can be computed out if we can get the
zero decomposition for the given polynomial system.
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