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Abstract. The notion of partitioned-parametric Gröbner bases of a
polynomial ideal under constraints is introduced and an algorithm for
constructing partitioned-parametric Gröbner bases is given; the correct-
ness and the termination of the algorithm are proved. We also present
a method based on computing partitioned-parametric Gröbner bases for
proving geometric theorems mechanically. By this method, besides prov-
ing the generic truth of a geometric theorem, we can give the necessary
and sufficient conditions on the free parameters for the theorem to be
true. An example for proving geometric theorems by the partitioned-
parametric Gröbner bases method is given.

1 Introduction

Many geometric statements can be formulated in terms of polynomial equations,
and such algebraic formulations usually involve a number of parameters. An im-
portant problem concerning proving geometric theorems is to determine whether
a geometric statement is valid under a specialization of parameters.

In detail, a geometric statement of equality-type consists of two parts: hy-
potheses and conclusion. Both hypotheses and conclusion can be expressed in
terms of polynomial equations in a number of free arbitrary coordinates u1, . . .,
um, which we call parameters, and a number of dependent coordinates x1, . . . , xn,
which we call variables. Typically, the hypotheses are composed of

⎧
⎨

⎩

h1(u1, . . . , um, x1, . . . , xn) = 0,
· · · · · ·

hr(u1, . . . , um, x1, . . . , xn) = 0,
(1)

where the h’s are polynomials over a ground field K. The conclusion is

g(u1, . . . , um, x1, . . . , xn) = 0, (2)

where g is a polynomial over K. The problem to be considered is:
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Find all the constraints, viewed as polynomial equations and inequations in u1,
. . . , um, such that (1) implies (2).

For most geometric theorems, the conclusion does not strictly follow from the
hypotheses; there are some so-called degenerate cases. Wu introduced the charac-
teristic set method to prove geometric theorems and the “non-degenerate” condi-
tions can be given automatically [12]. This method has been successfully used to
prove many difficult geometric theorems, and to discover new theorems [3, 4, 11].
The application of the Gröbner bases method to geometric theorem-proving has
been investigated in [3, 6, 10]. An algorithm based on Gröbner bases is presented
in [10] for deriving simplest degeneracy conditions for geometric theorems.

Inspired by the work in [7, 9], in particular, the notion of parametric Gröbner
bases in [7], in this paper we introduce the notion of partitioned-parametric
Gröbner bases and based on it a method for analyzing the parameters involved
in an algebraic formulation of a geometric statement. This method partitions
the parametric space into finitely many subsets defined by polynomial equations
and inequations (i.e., parametric constraints), and show clearly on which subsets
the statement is valid and on which it is invalid. In other wrods, the necessary
and sufficient conditions on the parameters for a geometric statement to be true
can be given by this method.

Recently, we found that Montes [8] also presented an algorithm for discussing
Gröbner bases with parameters.

In the next section, the method for checking the consistency of a polyno-
mial constraint is described. In Section 3, the notion of parametric partition of
a constrained polynomial set is introduced and an algorithm for constructing
the parametric partition is described. In Section 4, the notion of partitioned-
parametric Gröbner bases of an ideal under a constraint is introduced and an
algorithm for computing partitioned-parametric Gröbner bases is presented. In
Section 5, a partitioned-parametric Gröbner bases method for proving geometric
theorems is proposed and an example is given to show how to use this method
to prove geometric theorems mechanically.

2 Constraints over the Parameters

Let K be a computable field and E be an algebraically closed field containing K.
For simplification, let u = (u1, . . . , um), where u1, . . . , um are parameters. K[u]
denotes the polynomial ring K[u1, . . . , um].

A constraint is viewed as a set of polynomial equations and inequations over
parameters, denoted by

C = {c1 = 0, . . . , cs = 0, d1 �= 0, . . . , dt �= 0}, ci, dj ∈ K[u], (3)

which is true or false, depending on values in E substituted for parameters
appearing in the constraint.

Let C be a constraint over the parameters; a set S(C) ⊂ Em is defined as

S(C) = {u′ ∈ Em|u′ satisfy the constraint C}.

Especially, S(C) = Em when C is the empty set.
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A constraint C is said to be consistent if S(C) is not an empty set.
A Gröbner bases algorithm or a characteristic set algorithm can be used for

checking the consistency of a constraint C of form (3).

– GB method: by introducing y1, . . . , yt, let d′j = djyj − 1, j = 1, . . . , t, and
C′ = {c1, . . . , cs, d

′
1, . . . , d

′
t} ⊂ K[u, y], where y = (y1, . . . , yt); then C is

consistent if and only if {1} is not the reduced Gröbner basis of C′.
– CS method: S(C) can be considered as a quasi-variety in Em. Whether

S(C) is an empty set can be detected by computing its projection [2]. More-
over, the methods of regular decomposition or irreducible decomposition of
S(C) can also be used to detect its consistency [11, 12].

For a polynomial constraint, the following proposition is obvious.

Proposition 1. If C is a constraint and p is a polynomial in K[u], then one
and only one of the following three cases should be satisfied:

(a) C ∪ {p �= 0} is not consistent, which can be equally described as for each
u′ ∈ S(C), p(u′) = 0, i.e., p can be considered as a zero function under
S(C).

(b) C ∪ {p = 0} is not consistent, which can be equally described as for each
u′ ∈ S(C), p(u′) �= 0, i.e., p as a function is nonzero on S(C).

(c) Both C ∪ {p = 0} and C ∪ {p �= 0} are consistent.

3 Parametric Partition of a Constrained Polynomial Set

Let u = (u1, . . . , um) and x = (x1, . . . , xn). By K[u, x], we denote the polynomial
ring with indeterminates u and x over K. Let f be a polynomial in K[u, x] and
u′ be a specialization of u, and f(u′, x) denotes the polynomial obtained by
substituting u′ for u. Let F be a set of polynomials in K[u, x], and F (u′, x) be
the set of polynomials obtained by substituting u′ for u into the polynomials
in F .

In [5], some terminologies about polynomials have been introduced. We will
extend them to polynomials with parameters.

Definition 1. Let f be a nonzero polynomial in K[u, x], where f can be consid-
ered as a polynomial in K[u][x], and f =

∑
α aαxα, where aα ∈ K[u]. Let > be

a monomial order on x.

(a) The multidegree of f is

multideg(f) = max(α ∈ Zn
≥0 : aα �= 0).

(b) The leading coefficient of f is

lc(f) = amultideg(f) ∈ K[u].

In particular, for f ∈ K[u], lc(f) = f .
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(c) The leading monomial of f is

lm(f) = xmultideg(f).

(d) The leading term of f is

lt(f) = lc(f)lm(f).

In paper [7], Kapur defined a constrained polynomial as a pair (C, f), where
C is a consistent constraint and f is a polynomial in K[u, x]. The constraint
polynomial (C, f) is unambiguous if lc(f)(u′) �= 0, ∀u′ ∈ S(C).

In the following, we will extend constrained polynomial and unambiguous
polynomial to constrained polynomial set and unambiguous polynomial set.

Definition 2. A constrained polynomial set is a pair (C, F ), where C is a con-
sistent constraint over the parameters u, and F is a finite set of polynomials in
K[u, x]. A constrained polynomial set (C, F ) is an unambiguous polynomial set
if for all u′ in S(C) and for all f in F , lc(f)(u′) �= 0.

For example, ({u1 − u2 = 0, u3 = 0, u1 �= 0, u2 �= 0}, {x1 − u1, 2u1u2x1 + 1}) and
({u1 = 0, u2 = 0}, {1}) are two unambiguous polynomial sets.

Now, we define the parametric partition of a constrained polynomial set.

Definition 3. A set {(C1, F1), . . . , (Cs, Fs)} of unambiguous polynomial sets is
a parametric partition of a constrained polynomial set (C, F ) if it satisfies the
following conditions:

(a) S(C1), . . . , S(Cs) is a partition of S(C), i.e.,
⋃s

i=1 S(Ci) = S(C) and S(Ci)∩
S(Cj) = ∅, for 1 ≤ i �= j ≤ s;

(b) ∀u′ ∈ S(C), if u′ ∈ S(Ci) then Fi(u′, x) and F (u′, x) generate the same ideal
in K(u′)[x], where K(u′) is the field generated by u′ over K.

Let F be a polynomial set; the parametric partition of (∅, F ) will be called the
parametric partition of F .

Theorem 1. For any constrained polynomial set, there is an algorithm to com-
pute its parametric partition in finite steps.

Proof. Let (C, F ) be an arbitrary constraint polynomial set. First we will con-
sider the case where F consists of only one polynomial, i.e., suppose that F =
{f}. According to Proposition 1, we know that:

1. If C ∪ {lc(f) �= 0} is not consistent, then lc(f) is zero on S(C); let f ′ =
f − lt(f). It is obvious that the parametric partition of (C, {f ′}) is exactly
the one of (C, {f}).

2. If C ∪ {lc(f) = 0} is not consistent, then lc(f) is nonzero on S(C), and
(C, {f}) is the parametric partition of itself.

3. Otherwise, both C ∪ {lc(f) = 0} and C ∪ {lc(f) �= 0} are consistent; then
the union of {(C ∪ {lc(f) �= 0}, {f})} and the parametric partition of (C ∪
{lc(f) = 0}, {f − lt(f)}) is the parametric partition of (C, {f}).
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Since f has a finite number of terms, the above process will terminate in finite
steps and the number of the unambiguous polynomial sets in the parametric
partition of (C, {f}) is also finite. It is easy to check that the above process will
give the parametric partition of (C, {f}).

If F has more than one polynomial, then suppose that F = {f1, . . . , fk−1, fk},
and that {(C1, F1), . . . , (Ct, Ft)} is a parametric partition of {f1, . . . , fk−1}. Let
{(Ci1, Fi1), . . . (Ciki ,Fi,ki )} be the parametric partition of (Ci, {fk}); it is easy to
check that (Cij , Fij ∪Fi) for i = 1, . . . , t, j = 1, . . . , ki is the parametric partition
of (C, F ).

For example, f = vxy + ux2 + x, g = uy2 + x2, F = {f, g}, assuming a
lexicographic order on terms defined by the variable order y > x. First, we
will construct the parametric partition of (∅, {f}), It is {(C1, {f}), (C2, {ux2 +
x}), (C3, {x})}, C1 = {v �= 0}, C2 = {v = 0, u �= 0}, C3 = {v = 0, u = 0}.
Then, we will construct the parametric partitions of (C1, {g}), (C2, {g}) and
(C3, {g}). The parametric partitions of (C1, {g}), (C2, {g}) and (C3, {g}) are
{({v �= 0, u �= 0}, {g}), ({v �= 0, u = 0}, {x2})}, {(C2, {g})} and {(C3, {x2})}
respectively. The parametric partition of (∅, F ) will be {({v �= 0, u �= 0}, {f, g}),
({v �= 0, u = 0}, {f, x2}), (C2, {ux2 + x, g}), (C3, {x, x2})}.

4 Partitioned-Parametric Gröbner Bases

Let F be a polynomial set and u′ be an element in E; we use IF to denote the
ideal generated by F in K[u, x]. Let

IF (u′, x) = {p | p can be written as f(u′, x)/g(u′), f ∈ IF , g ∈ K[u], g(u′) �= 0};

it is easy to check that IF (u′, x) is an ideal in K(u′)[x].

Definition 4. Let (C, F ) be a constrained polynomial set; a parametric partition
(C1, G1), . . . , (Cs, Gs) of (C, F ) is called the (reduced) partitioned-parametric
Gröbner basis of the ideal IF under the constraint C if: ∀u′ ∈ S(C), if u′ ∈
S(Ci) then Gi(u′, x) is the (reduced) Gröbner basis of IF (u′, x).

The partitioned-parametric Gröbner basis of the ideal IF under constraint ∅ will
be called the partitioned-parametric Gröbner basis of the ideal IF .

Two important operations in Gröbner bases computation are that of com-
puting an S-polynomial of a pair of distinct polynomials and the remainder on
division of a polynomial by one polynomial list. Below we extend these two
notations to polynomials with parameters.

For a polynomial f in K[u, x], for example f = u3x+x2+1, for a lexicographic
order with u > x, the leading monomial will be u3x. u3x becomes 0 by specifying
u to 0, which is different from the leading monomial of f |u=0. We will define the
following S-polynomial in K(u)[x].
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Definition 5. Let f, g be two polynomials in K[u, x]. Suppose that multideg(f)
= α, multideg(g) = β, and let γ = (γ1, . . . , γn), γi = max(αi, βi). The S-
polynomial of f and g is the combination

spoly(f, g) =
xγ

lt(f)
· f − xγ

lt(g)
· g =

xγ · (f · lt(g) − g · lt(f))
lt(f) · lt(g)

,

which is in K(u)[x].

For example, f = vxy + ux2 + x, g = uy2 + x2, assuming a lexicographic order
on terms defined by the variable order y > x,

spoly(f, g) =
u2x2y + uxy − vx3

uv
.

Definition 6. We will write f̄F for the remainder on division of f ∈ K[u, x] by
the ordered s-tuple F = (f1, . . . , fs) ⊂ K[u, x]; f̄F can be written as

f̄F = f − a1f1

lc(f1)
− a2f2

lc(f2)
− · · · − asfs

lc(fs)
,

where a1, . . . , as are in K[u, x]. f
F

is a linear combination with coefficients in
K(u), of monomials, none of which is divisible by any of lm(f1), . . . , lm(fs).

For example, F = {vxy + ux2 + x, uy2 + x2} and f = vy2 + ux3y + y, assuming
a lexicographic order on terms defined by the variable order y > x. Then

f̄F =
vuy − v2x2 − u3x4 − u2x3

uv
.

Let f be a polynomial in K(u)[x]. We use num(f) to denote the numerator
of f ; num(f) is in K[u, x].

Theorem 2. The parametric partition {(C1, G1), . . . , (Cs, Gs)} of a constrained
polynomial set (C, F ) is the partitioned-parametric Gröbner basis of IF under

constraint C if and only if for each i, ∀f, g ∈ Gi, num(num(spoly(f, g))
Gi

) is a
zero polynomial on S(Ci).

Proof. Since f and g are in Gi, the denominator of spoly(f, g) is the product of
lc(f) and lc(g) by Definitions 5 and 6. The leading coefficients of the polynomials
in Gi will be nonzero on S(Ci), so that the denominator of spoly(f, g) will be

nonzero on S(Ci). For the same reason, the denominator of num(spoly(f, g))
Gi

is also nonzero on S(Ci).
By the definition of parametric partition, we know that for each u′ ∈ S(Ci),

Gi(u′, x) and F (u′, x) generate the same ideal in K(u′)[x]. By Buchberger’s S-
polynomial criterion of Gröbner bases [1], we know that for each u′ in S(Ci),
Gi(u′, x) is the Gröbner basis of IF (u′,x).
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Theorem 3. For any constrained polynomial set, there is an algorithm to com-
pute out its partitioned-parametric Gröbner basis in finite steps.

We give the algorithm first.

Algorithm: PPGB(C, F )
Input: (C, F ) is a constrained polynomial set;
Output: A partitioned-parametric Gröbner basis of (C, F ).
1. If F = {1} then return (C, F ).
2. Let (C1, F1, ), . . . , (Cs, Fs) be the parametric partition of (C, F ).
3. For each i, compute the partitioned-parametric Gröbner basis of (Ci, Fi).

– SP(Fi)={spoly(f, g)
Fi | for each pair f, g ∈ Fi}.

– If for each h in SP(Fi), for each u′ ∈ S(Ci), h(u′, x) is 0 as a polynomial
in K[u′, x], then (Ci, Fi) is a partitioned-parametric Gröbner basis of
(Ci, Fi).

– Otherwise, compute the partitioned-parametric Gröbner basis of (Ci, Fi

∪ SP(Fi)).
4. Return the union of the partitioned-parametric Gröbner bases of (Ci, Fi).

It should be noticed that the polynomials in SP(Fi) will be in K(u)[x], and
their denominators will be nonzero on S(Ci). These polynomials can be replaced
by their numerators which are in K[u, x].

Proof. The correctness of the algorithm is guaranteed by Theorem 2. Now we
prove that the algorithm terminates in finite steps. It is well known that Buch-
berger’s algorithm for computing Gröbner bases terminates in finite steps and
the reason is that during the loop of successive iterations through expanding
the original polynomial set with the nonzero remainders of S-polynomials, the
leading terms of the ever-increasing polynomial set form an ascending chain of
ideals. As for the partitioned-parametric case, it becomes a litter more compli-
cated. On the one hand, it is easy to see that the ascending chain of ideals does
also exist for the leading coefficients are certainly nonzero under corresponding
constraint. On the other hand, in step 2, (C1, F1), . . . , (Cs, Fs) is the parametric
partition of (C, F ), and s is a finite number. So the algorithm PPGB forms a
tree structure of unambiguous polynomial sets, and the two sides prove that
the length of the tree is finite and the node number of the same layer is finite
respectively. So the number of leaves, which are unambiguous polynomial sets,
is finite too. This proves the termination of the algorithm.

5 Proving Geometric Theorem by Partitioned-Parametric
Gröbner Bases

The following theorem can solve the radical ideal membership problem.

Theorem 4 (Radical Ideal Membership). Let F be a finite set of polyno-
mials in K[x] and g be a polynomial in K[x]. Then g is in the radical of the ideal
IF if and only if {1} is the reduced Gröbner basis of (F, gy − 1).

Proof. See [1, 5].
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We can extend the above theorem to the case of polynomial ideals involving
parameters to establish the following theorem, which can solve the parametric
radical ideal membership problem.

Theorem 5 (Parametric Radical Ideal Membership). Let h1, . . . , hr, g be
polynomials in K[u, x], G={(C1, G1), . . . , (Cs, Gs)} be the reduced partitioned-
parametric Gröbner basis of the ideal generated by h1, . . . , hr, gy − 1 under con-
straint C. Then ∀u′ ∈ S(Ci), g(u′, x) is in the radical of the ideal generated by
h1(u′, x), . . ., hr(u′, x) in K(u′)[x] if and only if Gi = {1}.

Proof. It is obvious according to the definition of partitioned-parametric
Gröbner bases and Theorem 4.

Based on the above theorem, we propose the following method to prove geometric
theorems mechanically.

For a geometric theorem, hypotheses can be expressed by a set of polynomial
equations: {h1 = 0, . . . , hr = 0}, and the conclusion can be expressed by a
polynomial equation: g = 0. The polynomials hi and g are in K[u, x], where the
u’s are parameters and x’s are variables. Generally the conclusion g = 0 does
not strictly follow from the hypotheses {h1 = 0, . . . , hr = 0}.

Let F = {h1, . . . , hr, gy − 1}, for any term order on x and y, and let

{(C1, G1), . . . , (Cr, Gr), (Cr+1, Gr+1), . . . , (Cs, Gs)}

be the reduced partitioned-parametric Gröbner basis of IF . Assume that Gi =
{1} for i = 1, . . . , r and Gi �= {1} for i = r+1, . . . , s; then the geometric theorem
is true under the constraints C1, . . . , Cr and the geometric theorem is false under
the constraints Cr+1, . . . , Cs.

Consider the following example.

Example 1. The bisectors of the three angles of an arbitrary triangle, three-to-
three, intersect at four points. In other words, let the triangle be ∆ABC, the
two bisectors of � A and � B intersect at point D. We need to show that CD is
the bisector of � C.

To simplify calculation, and without loss of generality, we take the coordinates
of the points as A(u1, 0), B(u2, 0), C(0, u3), D(x1, x2). The hypotheses of the
theorem are expressed as:

h1 = u3[x2
2 − (x1 − u1)2] − 2u1x2(x1 − u1) = 0 (DA is the bisector of � CAB)

h2 = u3[x2
2 − (x1 − u2)2] − 2u2x2(x1 − u2) = 0 (DB is the bisector of � ABC)

The conclusion to be proved is

g = [u1(x2 − u3) + u3x1][u3(x2 − u3) − u2x1]
+[u2(x2 − u3) + u3x1][u3(x2 − u3) − u1x1] = 0.

Compute the partitioned-parametric Gröbner basis of {h1, h2, gy − 1} with
respect to the graded lex order with tie broken by y > x2 > x1. Here u1, u2, u3
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A B

C

O

D’

D

Fig. 1. Three bisectors pass through the same point

are considered as parameters. The partitioned-parametric Gröbner basis is G =
(C1, G1), . . . , (C7, G7), where

C1 = {u1 = 0, u3 = 0}, G1 = {1};
C2 = {−u2 + u1 �= 0, u3 �= 0}, G2 = {1};
C3 = {u3 = 0, −u2 + u1 �= 0, u1 �= 0, u2 �= 0}, G3 = {1};
C4 = {u2 = 0, u3 = 0, u1 �= 0}, G4 = {1};
C5 = {u2

3 + u2
1 = 0, −u2 + u1 = 0, u3 �= 0}, G5 = {1};

C6 = {−u2 + u1 = 0, u3 = 0, u1 �= 0, u2 �= 0}, G6 = {x1 − u1, 1 + 2x2yu3
1};

C7 = {−u2 + u1 = 0, u2
3 + u2

1 �= 0, u3 �= 0},
G7 = {u3x

2
2 − u3x

2
1 + 2u3u1x1 − u3u

2
1 − 2u1x2x1 + 2u2

1x2,

2yu1u
3
3 + 2yu3u

3
1 − 2yu3

3x1 − 4yu1x2u
2
3 − 2u3x1yu2

1 − 4x2yu3
1

+ 2yu2
3x1x2 + 2x1x2yu2

1 − 1, 2u5
3yu1 + 2u3

3yu3
1 − 2u5

3yx1 − 2yu1x2u
4
3

− 2yu3
1x2u

2
3 + 2x1yu3u

4
1 − 4yu1u

3
3x

2
1 − 4yu3

1u3x
2
1 + 2u3

3yx3
1

+ 2u3yx3
1u

2
1 − u2

3 − 2u2
1 − u3x2 + 2u1x1}.

From this partitioned-parametric Gröbner basis G, one can see that the con-
clusion g = 0 can be deduced from the hypotheses h1 = 0, h2 = 0 if and only if
the free parameters u1, u2, u3 satisfy one of the constraints C1, . . . , C5. From

C2 = {−u2 + u1 �= 0, u3 �= 0}, G2 = {1},

we know that the theorem is generically true.

If the variety defined by the hypotheses of a geometric statement is reducible,
this method for proving the geometric theorem cannot determine if the conclu-
sion of the geometric statement is true on some components of the hypotheses.
For example, when the hypothesis is x2 −u2 = 0 and the conclusion is x−u = 0,
the variety defined by x2 − u2 = 0 is reducible and there are 2 components: one
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is x − u = 0 and the other is x + u = 0. We cannot deduce that the conclusion
is true on the component x − u = 0 by our method.

6 Conclusion

In this paper, for any geometric theorem expressed as an algebraic formula-
tion which involves both parameters and variables, we present a method of
partitioned-parametric Gröbner bases to partition the parametric space to
finitely many subsets. We can give all the partitions of the parameter space
on which the geometric theorem is true.

Our partitioned-parametric Gröbner bases method comes from Kapur’s para-
metric Gröbner bases and has more advantages in the structure and expression.
The partitioned-parametric Gröbner bases can be applied for solving many prob-
lems about parametric polynomial systems, such as parametric ideal member-
ship, the number of solutions of a parametric polynomial equation system and
elimination of quantifier-blocks in algebraically closed fields.

We should thank Z. M. Li for helpful discussions.
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